216 research outputs found

    Switching Trajectory Control for High Voltage Silicon Carbide Power Devices with Novel Active Gate Drivers

    Get PDF
    The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability. However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs with XHV-6 package which are developed by CREE are approaching those of an ideal switch with high dv/dt and di/dt. The fast switching speed of SiC devices introduces challenges for the application since electromagnetic interference (EMI) noise and overshoot voltage can be serious. Also, the insulation should be carefully designed to prevent partial discharge. To address the aforementioned issues, this work investigates the switching behaviors of SiC power MOSFETs with mathematic models and the formation of EMI noise in a power converter. Based on the theoretical analysis, a model-based switching trajectory optimizing three-level active gate driver (AGD) is proposed. The proposed AGD has five operation modes, i.e., faster/normal/slower for the turn-on process and slower/normal for the turn-off process. The availability of multiple operation modes offers an extra degree of freedom to improve the switching performance for a particular application and enables it to be more versatile. The proposed AGD can provide higher switching speed adjustment resolution than the other AGDs, and this feature will allow the proposed AGD to fine tune the switching speed of SiC power devices. In addition, a novel model-based trajectory optimization strategy is proposed to determine the optimal gate driver output voltage by trading the EMI noise against the switching energy losses. For the 10 kV SiC power MOSFET, the detailed design considerations of the proposed AGD are demonstrated in this dissertation. The functionalities of the 3-L AGD are validated through the double pulse tests results with 1.2 kV and 10 kV SiC power MOSFETs

    Design and Switching Performance Evaluation of a 10 kV SiC MOSFET Based Phase Leg for Medium Voltage Applications

    Get PDF
    10 kV SiC MOSFETs are promising to substantially boost the performance of future medium voltage (MV) converters, ranging from MV motor drives to fast charging stations for electric vehicles (EVs). Numerous factors influence the switching performance of 10 kV SiC MOSFETs with much faster switching speed than their Si counterparts. Thorough evaluation of their switching performance is necessary before applying them in MV converters. Particularly, the impact of parasitic capacitors in the MV converter and the freewheeling diode is investigated to understand the switching performance more comprehensively and guide the converter design based on 10 kV SiC MOSFETs.A 6.5 kV half bridge phase leg based on discrete 10 kV/20 A SiC MOSFETs is designed and fully validated to operate continuously at rated voltage with dv/dt up to 80 V/ns. Based on the phase leg, the impact of parasitic capacitors brought by the load inductor and the heatsink on the switching transients and performance of 10 kV SiC MOSFETs is investigated. Larger parasitic capacitors result in more oscillations, longer switching transients, as well as higher switching energy loss especially at low load current. As for the freewheeling diode, the body diode of 10 kV SiC MOSFETs is suitable to serve as the freewheeling diode, with negligible reverse recovery charge at various temperatures. The switching performance with and without the anti-parallel SiC junction barrier Schottky (JBS) diode is compared quantitatively. It is not recommended to add an anti-parallel diode for the 10 kV SiC MOSFET in the converter because it increases the switching loss

    Development of a Hybrid-Electric Aircraft Propulsion System Based on Silicon Carbide Triple Active Bridge Multiport Power Converter

    Get PDF
    Constrained by the low energy density of Lithium-ion batteries with all-electric aircraft propulsion, hybrid-electric aircraft propulsion drive becomes one of the most promising technologies in aviation electrification, especially for wide-body airplanes. In this thesis, a three-port triple active bridge (TAB) DC-DC converter is developed to manage the power flow between the turbo generator, battery, and the propulsion motor. The TAB converter is modeled based on the emerging Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) modules operating at high switching frequency, so the size of the magnetic transformer can be significantly reduced. Different operation modes of this hybrid-electric propulsion drive based on the SiC TAB converter are modeled and simulated to replicate the takeoff mode, cruising mode, and regenerative charging mode of a typical flight profile. Additionally, soft switching is investigated for the TAB converter to further improve the efficiency and power density of the converter, and zero voltage switching is achieved at heavy load operating conditions. The results show that the proposed TAB converter is capable of achieving high efficiency during all stages of the flight profile

    Characterization Methodology, Modeling, and Converter Design for 600 V Enhancement-Mode GaN FETs

    Get PDF
    Gallium Nitride (GaN) power devices are an emerging technology that have only become available commercially in the past few years. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This dissertation reviews the unique characteristics, commercial status, and design challenges that surround GaN FETs, in order to provide sufficient background to potential GaN-based converter designers.Methodology for experimentally characterizing a GaN FET was also presented, including static characterization with a curve tracer and impedance analyzer, as well as dynamic characterization in a double pulse test setup. This methodology was supplemented by additional tests to determine losses caused by Miller-induced cross talk, and the tradeoff between these losses and overlap losses was studied for one example device.Based on analysis of characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The impact of the Miller effect during the turn-on transient was studied, as well as the dynamic performance of GaN at elevated temperature.Furthermore, solutions were proposed for several key design challenges in GaN-based converters. First, a driver-integrated overcurrent and short-circuit protection scheme was developed, based on the relationship between gate voltage and drain current in GaN gate injection transistors. Second, the limitations on maximum utilization of current and voltage in a GaN FET were studied, particularly the voltage overshoots following turn-on and turn-off switching transients, and the effective cooling of GaN FETs in higher power operation. A thermal design was developed for heat extraction from bottom-cooled surface-mount devices. These solutions were verified in a GaN-based full-bridge single-phase inverter

    Switching Performance Evaluation, Design, and Test of a Robust 10 kV SiC MOSFET Based Phase Leg for Modular Medium Voltage Converters

    Get PDF
    10 kV SiC MOSFETs are one of the most promising power semiconductor devices for next-generation high-performance modular medium voltage (MV) converters. With extraordinary device characteristics, 10 kV SiC MOSFETs also bring a variety of challenges in the design and test of MV converters. To tackle these inherent challenges, this dissertation focuses on a robust half bridge (HB) phase leg based on 10 kV SiC MOSFETs for modular MV converters. A baseline design and test of the phase leg is established first as the foundation of the research in this dissertation. Thorough evaluation of 10 kV SiC MOSFETs’ switching performance in a phase leg is necessary before applying them in MV converters. The impact of parasitic capacitors and the freewheeling diode is investigated to understand the switching performance more extensively and guide the converter design. One non-negligible challenge is the flashover fault resulting from the premature insulation breakdown, a short circuit fault with extremely fast transients. A device model is established to analyze the behavior of 10 kV SiC MOSFETs when the fault occurs in a phase leg thoroughly. Subsequently, the gate driver and protection design considerations are summarized to achieve lower short circuit current and overvoltage and ensure the survival of the MOSFET that in ON state when the fault happens. Furthermore, it is challenging to design the overcurrent/short circuit protection with fast response and strong noise immunity under fast switching transients for 10 kV SiC MOSFETs. The noise immunity of the desaturation (desat) protection is studied quantitatively to provide design guidelines for noise immunity enhancement. Then, the protection scheme based on desat protection is developed and validated withimmunity, the strong noise immunity of the developed protection is also successfully validated. In addition, a simple test scheme is proposed and validated experimentally, in order to qualify the HB phase leg based on the 10 kV SiC MOSFET comprehensively for the modular MV converter applications. The test scheme includes the ac-dc continuous test with two phase legs in series to create the testing condition similar to what is generated in a modular MV converter, especially the high dv/dt. The test scheme can fully test the capability of the phase leg to withstand high dv/dt and its resulting noise

    Advanced Silicon Carbide Based Fault-Tolerant Multilevel Converters

    Get PDF
    The number of safety-critical loads in electric power areas have been increasing drastically in the last two decades. These loads include the emerging more-electric aircraft (MEA), uninterruptible power supplies (UPS), high-power medical instruments, electric and hybrid electric vehicles (EV/HEV) and ships for military use, electric space rovers for space exploration and the like. This dissertation introduces two novel fault-tolerant three-level power converter topologies, named advanced three-level active neutral point clamped converter (A3L-ANPC) and advanced three-level active T-Type (A3L-ATT) converter. The goal of these converters is to increase the reliability of multilevel power converters used in safety-critical applications.These new fault-tolerant multilevel power converters are derived from the conventional ANPC and T-Type converter topologies. The topologies has significantly improved the fault-tolerant capability under any open circuit or certain short-circuit faults in the power semiconductor devices. In addition, under healthy conditions, the redundant phase leg can be utilized to share overload current with other main legs, which enhances the overload capability of the converter. The conduction losses in the power devices can be reduced by sharing the load current with the redundant leg. Moreover, unlike other existing fault-tolerant power converters in the literature, full output voltages can be always obtained during fault-tolerant operation. Experimental prototypes of both the A3L-ANPC and A3L-ATT converters were built based on Silicon Carbide (SiC) MOSFETs. Experimental results confirmed the anticipated performance of the novel three-level converter topologies.SiC MOSFET technology is at the forefront of significant advances in electric power conversion. SiC MOSFETs switch significantly faster than the conventional Silicon counterparts resulting in power converters with higher efficiency and increased switching frequencies. Low switching losses are one of the key characteristics of SiC technology. In this dissertation, hard and soft switching losses of a high power SiC MOSFET module are measured and characterized at different voltage and current operating points to determine the maximum operating frequency of the module. The purpose of characterizing the SiC MOSFET module is to determine the feasibility of very high frequency (200kHz-1MHz) power conversion which may not be possible to be implemented in the conventional Silicon based high power conversion. The results show that higher switching frequencies are achievable with soft switching techniques in high power converters

    Methodology to Improve Switching Speed of SiC MOSFETs in Hard Switching Applications

    Get PDF
    To meet the higher efficiency and power density requirement for power converters, the switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes it possible to run converters at faster switching speed in hard switching applications. Nevertheless, the switching speed is not only dependent on the device’s characteristics, but also strongly related to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the impact factors limiting the switching speed are required to be understood. Specific solutions and methods need to be developed to mitigate the influence from these impact factors.The characterization of the switching speed for SiC MOSFETs with different current ratings is conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching speed are evaluated in detail.According to the evaluation, the switching speed of SiC discrete devices with low current rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge pump gate drive are proposed, which can provide higher current during the switching transient regardless of the low transconductance and large internal gate resistance of SiC discrete devices.For SiC power modules with high current rating, the switching speed is mainly determined by the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple modulation is developed to mitigate the effect of the non-linear device output capacitance, which helps reduce the overvoltage and enables higher switching speed operation of SiC power modules.Furthermore, the layout design methodology for three-level converters concerning the multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 3L-ANPC converter with SiC power modules is presented in detail.Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. The proposed control and busbar above are utilized to increase the switching speed of the SiC power module

    Isolated and Bidirectional DC-DC Converter for Electric Vehicles

    Get PDF
    O estado da arte iniciou com a análise na literatura de topologias de conversores DC-DC. Técnicas de modulação são estudadas com vista a melhorar a eficiência de conversão, realçando as vantagens e limitações inerentes das mesmas. Após a análise da literatura, o foco projeto passou a ser a topologias de dupla ponte com dispositivos ativos e com isolamento galvânico intermédio entre as duas pontes (conhecido em inglês por dual active bridge). Algumas técnicas de modulação que permitem o funcionamento do conversor são analisadas no documento e suportadas com resultados obtidos em ambiente de simulação. O dimensionamento do transformador de potência é realizado assim como a descrição dos passos. É relizado uma análise de mercado de dispositivos de comutação com a tecnologia "Silicon Carbide" e são apresentados estimativas de perdas e eficiência de operação na utilização de transistores com a techonoloa SiC no conversor analisado. Os resultados são obtidos com recurso a simulações computacionais que através de modelos de aproximação permitem aproximar o conversor a uma situação mais proxima da real. Em termos de implementação, é esperado a implementação um circuito de comando para dois MOSFETS com tecnologia SiC com a configuração em meia ponte ligada a uma carga

    Demonstration of High Power Density kW Converters utilizing Wide-Band Gap Devices

    Get PDF

    Review of Resonant Gate Driver in Power Conversion

    Get PDF
    corecore