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Abstract 

To meet the higher efficiency and power density requirement for power converters, the 

switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power 

MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes 

it possible to run converters at faster switching speed in hard switching applications. Nevertheless, 

the switching speed is not only dependent on the device’s characteristics, but also strongly related 

to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the 

impact factors limiting the switching speed are required to be understood. Specific solutions and 

methods need to be developed to mitigate the influence from these impact factors. 

The characterization of the switching speed for SiC MOSFETs with different current ratings is 

conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching 

speed are evaluated in detail. 

According to the evaluation, the switching speed of SiC discrete devices with low current 

rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge 

pump gate drive are proposed, which can provide higher current during the switching transient 

regardless of the low transconductance and large internal gate resistance of SiC discrete devices. 

For SiC power modules with high current rating, the switching speed is mainly determined by 

the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the 

multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple 

modulation is developed to mitigate the effect of the non-linear device output capacitance, which 

helps reduce the overvoltage and enables higher switching speed operation of SiC power modules. 
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Furthermore, the layout design methodology for three-level converters concerning the 

multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 

3L-ANPC converter with SiC power modules is presented in detail. 

Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. 

The proposed control and busbar above are utilized to increase the switching speed of the SiC 

power module.  
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1 Introduction 

This chapter starts with the illustration of the requirement and impact of the switching 

behavior of power semiconductor devices in hard switching applications from different aspects, 

which include the efficiency, power density, EMI and reliability. Then the background of silicon 

carbide (SiC) MOSFETs is introduced. The characteristics of the device are presented, and the 

benefits and challenges when applying SiC MOSFETs are examined. Finally, an outline for this 

dissertation is provided. 

1.1 Requirement and Impact of Switching Speed in Hard Switching Applications  

As a consequence of natural resources depletion and motivation to reduce carbon dioxide 

emission, electricity generated from renewable energy will see a four times increase by 2050 [1]. 

With such trend, power electronics conversion will play more and more important role in both the 

load and source side. The share of electricity flowing through power electronics was 30% in 2005, 

and this number is expected to rise to 80% by 2030 [2]. For instance, hybrid power generation and 

distributed propulsive power have been identified as candidate transformative aircraft 

configurations for future commercial transport vehicles with reduced fuel burn and harmful 

emissions [3]. 

From the performance point of view, the two key technical specifications for power 

electronics conversion are efficiency and power density. The National Aeronautics and Space 

Administration (NASA) has proposed a roadmap to achieve 25 kW/kg power density and 99.5% 

efficiency for inverters in aircraft electric propulsion drives [3]. The switching behavior of power 

devices has great influence on reaching these targets as the power devices are turned on and off 

with voltage and current across them. Passive components like inductors, transformers and 
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capacitors serve as energy buffers to smooth the power, and their size and performance are also 

significantly affected by the switching patterns controlled by the power devices. Thus, the 

requirement and impact of switching speed of power semiconductor devices in power converter 

systems, especially in hard switching applications, needs investigation. 

Fig. 1-1 shows the typical hard switching transient with drain current, drain-source voltage in 

a typical phase-leg, and the generated energy loss of the lower device throughout each switching 

event (turn-on or turn-off). As non-ideal switches, it takes time (i.e., switching time ton, toff) to 

complete the switching transition, and a certain amount of loss is produced (i.e., switching loss Eon, 

Eoff) along with the voltage and current change. which are the underlying reasons causing the non-

ideal power conversion [4], [5]. Specifically, according to the aforementioned design targets of 

power converters, the impact of the switching performance in hard switching applications on 

efficiency, density, and EMI and reliability are evaluated as follows. 

1.1.1 Efficiency 

The loss dissipated by power converters primarily comes from three parts: power devices, 

passive components, and auxiliary circuits. Among them, the power device related loss occupies 

a large portion [6], [7]. For specific applications without magnetic components in their power stage 

such as motor drives, power devices are the main contributor to the total loss of the power converter. 

Power device loss consists of conduction loss, switching loss and gate drive loss [4], [5]. In 

high power and hard switching applications, conduction loss and switching loss are dominant, 

while gate drive loss can be neglected. Although the characteristics of different power devices can 

affect the results, and the loss is dependent on voltage and load conditions, the switching loss is 

typically more than 50% of the total power device loss in an optimal converter design [8]. With  
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Fig. 1-1. Switching waveform of power devices indicating switching time and switching loss. 

 

the same switching speed and switching energy in each switching event, the switching loss is 

proportional to the switching frequency. Thus, switching loss gets higher with higher switching 

frequency. To increase the switching frequency and avoid increasing the switching loss in hard 

switching applications, the only way is to reduce the dissipated energy in each switching event. 

Based on Fig. 1-1, the dissipated energy is caused by the overlap of device drain current and drain-

source voltage. Hence, to achieve lower energy loss, the overlap area needs to be reduced. In other 

words, the device should switch faster to decrease the rise/fall time of the device current and 

voltage. In summary, increasing the power device switching speed is beneficial for improving the 

efficiency of the converter system. 

Fig. 1-2 plots the calculated conduction and switching loss in a 500 kW inverter for aircraft 

application. Clearly, the switching loss is linear to the switching frequency, and higher switching 

speed with lower gate resistance leads to lower loss. To meet the target in [3], higher switching 

speed is preferred to reduce the switching loss. 
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Fig. 1-2. Conduction and switching loss with different switching frequencies in a 500 kW 

inverter for aircraft application. 

 

1.1.2 Power Density 

Power devices, passive components, cooling systems, and auxiliary circuits are the main parts 

contributing to the size and weight of power converters. Among them, thermal management 

systems (e.g., heatsink and fan) and passive components (e.g., DC-link capacitor, transformer and 

filter) are most critical [9]. Fig. 1-3 illustrates the weight and volume breakdown of a 6.1 kW EV 

charger [10]. Notably, the heatsink occupies 16% of the weight and 25% of the volume, while the 

passive components (magnetics and dc-bus capacitors) account for 55% of the weight and 50% of 

the volume. 

The device switching speed shows different impacts on the weight and size of thermal 

management systems and passive components. In general, higher loss produced by power devices 

results in larger and heavier cooling systems to dissipate the heat. Based on the explanation in the  
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Fig. 1-3. Weight and volume breakdown of a 6.1 kW EV charger [10]. 

 

last section, increasing the switching speed of power devices can help reduce the switching loss, 

thus decrease the required weight and size of the thermal management system.  

1.1.3 EMI and Reliability 

According to the investigation of efficiency and power density, increasing power device 

switching speed can help achieve better performance. However, this is not the case for 

electromagnetic interference (EMI) and reliability.  

EMI is a critical concern when developing power converters as it affects the operation 

reliability of neighboring equipment as well as the power converter itself. Equipment has to 

compile with several standards (e.g., IEC61800-3 Qp for motor drives, DO-160E for airborne 

equipment). To mitigate the EMI noise, filters are necessary to be implemented, which increases 

the size and weight of the converter system [11-14]. 

There are mainly three ways that the EMI noise can interfere with the external circuit: 

conductive coupling, radiated coupling, and near field coupling [15]. Among them, conductive 

coupling is usually the most significant EMI in power electronics systems and attracts more 

attention. Conducted EMI noise flows in both power lines and the ground. It is usually decoupled 
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to common mode (CM) and differential mode (DM) noise to conduct measurement and analysis 

more conveniently as shown in Fig. 1-4. 

CM and DM noise is influenced by both the switching frequency and the switching speed of 

the power devices. The relationship between the switching frequency and the EMI filter 

weight/size is not necessarily linear because of the noise spectrum and varying standard 

requirement for different frequencies. Generally speaking, the lower corner frequency an EMI 

filter has, the better EMI noise attenuation it can provide. With the same EMI filter structure, the 

lower corner frequency calls for larger inductance and capacitance, which increases the weight and 

size. Fig. 1-5 depicts the results of designed inductance versus the switching frequency for CM 

and DM filters, respectively [16]. Although there is no monotonic relationship between filter 

inductance and switching frequency, the inductance value shows a general increasing trend with 

higher switching frequency. 

The device switching speed mainly influences the CM noise. Faster switching speed 

introduces higher dv/dt across the parasitic capacitance and injects larger leakage current into the 

ground. However, it is found that the switching speed (dv/dt) of devices only influences the noise 

spectrum at high frequency range (>1 MHz) as shown in Fig. 1-6 [13]. Actually, this principle is 

well known in signal processing industry [17]. Thus, the switching speed has less significant 

influence on EMI noise than the switching frequency.  

Another critical concern in reliability is the overvoltage induced by the resonance between 

parasitic inductance and capacitance during the switching transient. The parasitic inductances are 

mainly from the wiring structure of the power devices, the equivalent series inductance (ESL) of 

capacitors, and the PCB or busbar traces. The parasitic capacitances include the power device input 
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Fig. 1-4. Flow of CM and DM noise in a single-phase converter [15]. 

 

Fig. 1-5. Sweeping results of filter inductance versus the switching frequency [16]. 

Left: DM inductance. Right: CM inductance. 

     

Fig. 1-6. CM bare noise spectral envelopes with different device voltage rise/fall time [13]. 

Left: voltage rise time. Right: voltage fall time. 
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and output capacitance, and the stray capacitance between two PCB or busbar layers. Generally, 

the higher dv/dt and di/dt with faster switching speed contribute to higher overvoltage [18]. Fig. 

1-7 plots the peak device drain-source voltage versus dv/dt and di/dt [19]. As dv/dt and di/dt get 

higher (kdv/dt and kdi/dt in the figure get larger), higher peak voltage occurs. If the overvoltage 

exceeds the device rating, the device lifetime can be significantly influenced, or the device can be 

directly damaged. Therefore, the overvoltage must be kept in an acceptable range when increasing 

the switching speed of power devices. 

1.2 SiC MOSFETs 

Power semiconductor devices are the fundamental components in power electronics 

converters. The characteristics of power semiconductor devices are the key points to determine the 

overall performance of a power converter. Conventionally, the power devices are mainly silicon 

(Si) based because of the maturity and low cost of the material. However, Si devices have exhibited 

limitations in conduction loss, switching speed and operating temperature [20], [21], and have 

reached close to the theoretical thermal and voltage handling limits [22]. Fortunately, the 

development of wide bandgap (WBG) devices brings a revolutionary change. Two representatives 

of WBG materials are silicon carbide (SiC) and gallium nitride (GaN) as they show promising 

characteristics in electrical, thermal and manufacturability. A comparison of properties between 

WBG and Si material is shown in Fig. 1-8. It is observed that from the aspects of voltage, switching 

frequency and thermal conductivity, WBG materials present superior characteristics [23]. 

Both SiC and GaN based power devices have distinct benefits for specific applications: SiC 

is regarded as a stronger candidate for power electronic applications above 1.2 kV, while GaN is 

ideal for high-frequency applications, and is regarded as highly competitive in applications below 
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Fig. 1-7. Overvoltage under different dv/dt and di/dt [19]. 
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Fig. 1-8. Comparison of properties between WBG and Si material [23]. 

 

1.2 kV. In particular, device voltage rating between 650V and 1.2 kV is a competitive space that 

can be supported by either SiC or GaN technologies [24]. Thus, SiC devices are more suitable for 

high power high voltage applications. Today, SiC processing technologies are more mature and 

show higher reliability than GaN, which has resulted in SiC devices having a larger market share.  

Fig. 1-9 shows the market breakdown of SiC devices from 2017 to 2023. The total SiC based 

device market is expected to grow steadily, reaching more than $1.5 billion in 2023. Among all 
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the applications, the largest one is EV/HEV. This dissertation focuses on SiC devices, especially 

SiC MOSFETs, and the following sections will introduce the benefits and challenges of SiC 

utilization. 

1.2.1 Benefits 

SiC as a compound semiconductor material is formed by silicon (Si) and carbon (C). Currently, 

4H-SiC is preferred for power devices primarily because of its high carrier mobility, particularly 

in the vertical c-axis direction [25]. Table 1-1 summarizes the physical property differences 

between Si and 4H-SiC [26]. As a rule of thumb, SiC has ten times the electric breakthrough field, 

allowing for thinner epitaxial layers to support the high blocking voltage in power devices. As an 

example, a 4.5 kV power device would require only a 40 µm-50 µm drift layer, as opposed to 

almost 500 µm in the case of silicon. The thinner and more highly doped drift layer leads to much 

lower drift resistance, hence, to low forward voltage and low conduction loss, while maintaining 

high blocking voltage. The velocity of minority carriers swept out of the depletion region is 

determined by saturation drift velocity. Hence, a higher saturated drift velocity of SiC will also 

increase the switching speed. Moreover, SiC thermal conductivity is 3.7 W/cm/K, allowing for 

efficient thermal management. With a high electric breakthrough field, SiC can be used especially 

for high-voltage unipolar devices such as MOSFETs and Schottky diodes, achieving low switching 

loss. 

In today’s power transistors, the Si IGBT is typically the preferred choice for high power high 

voltage applications. Moreover, the Si IGBT as a bipolar device has lower on-state losses than 
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Fig. 1-9. SiC power devices market revenue from 2017 to 2023 [24]. 

 

 high voltage Si MOSFET. However, a major drawback of Si IGBTs is that high switching speed 

operation is difficult due to the restricted dynamics of injected holes, resulting in significant 

switching loss by tail currents. Alternatively, the larger critical electric field for breakdown of SiC 

allows greatly reduced drift region resistance for the same breakdown voltage compared to the Si 

based devices. Furthermore, SiC MOSFETs have the intrinsic benefit of being unipolar devices, 

and thus enable faster switching than a Si IGBT, and better controllability of switching behavior. 

This makes the SiC MOSFET a more attractive device as shown in Fig. 1-10 [27]. 

Table 1-1. Comparison of physical properties of Si and 4H-SiC [12]. 

Material Property Si 4H-SiC 

Energy bandgap (eV) 1.12 3.23 

Breakdown field (MV/cm) 0.25 2.5 

Thermal conductivity (W/cmK) 1.5 3.7 

Saturation drift velocity (cm/s) 1.05 ×107 2 ×107 
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Fig. 1-11 shows the comparison of the characteristics of a Si IGBT and a SiC MOSFET from 

Infineon with the same voltage and current ratings (1.2 kV, 50 A) at room temperature with the 

characteristics of SiC MOSFET normalized to 1. The SiC MOSFET shows significantly better 

properties in all aspects of switching time, switching loss, reverse recovery and gate charge. 

1.2.2 Challenges 

As described previously, due to the fast switching-speed capability, SiC MOSFETs offer a 

promising opportunity to significantly improve the overall performance of power conversion, such 

as increased power efficiency and density, as compared to Si IGBTs.  However, it is the high 

switching-speed capability of SiC MOSFETs that makes their switching behavior become more 

susceptible to the parasitics and noise of the circuit especially in hard switching applications. As a 

result, the observed switching performance of SiC MOSFETs in real power converter systems 

cannot achieve the claimed number in manufacturer’s datasheet. For example, the switching time 

of a SiC MOSFET based three-phase inductive motor drive was increased by a factor of 2, which 

induced 30% increase in switching loss compared with the test result of double pulse test under the 

same operating conditions because of the influence from the motor load [28]. On the other hand, 

the high speed switching transient introduces more oscillation and voltage spikes across the 

parasitics, which decrease the reliability of the components in the converter. Therefore, specific 

design is required to fully utilize SiC MOSFETs. 
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Fig. 1-10. Application of Si IGBT and SiC MOSFET [27]. 

  

Fig. 1-11. Comparison of Si IGBT and SiC MOSFET with same voltage and current ratings. 

 

1.3 Dissertation Outline 

According to the above introduction, several conclusions can be drawn. 1) In hard switching 

applications, higher switching speed is beneficial for improving the converter efficiency and power 

density. EMI is not impacted much if the switching frequency is not changed, but the overvoltage 
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can be an issue to worsen the reliability. 2) SiC devices can provide superior switching 

characteristics that allow higher switching speed operation. Therefore, how to fully utilize the 

potential of the high switching speed capability of SiC MOSFETs, and to avoid the negative effect 

from increasing the switching speed is worth investigating. The research objectives of this 

dissertation are to 1) evaluate the key factors that limit the switching speed increase of SiC 

MOSFETs in hard switching applications with hardware testing; 2) develop solutions to avoid or 

suppress the negative effect of these factors, and improve the switching speed of SiC MOSFETs. 

This dissertation is organized as follows: 

Chapter 2 reviews the existing research in two areas. First, the commonly discussed impact 

factors of switching performance are summarized and reviewed one by one, which include gate 

drive technology, parasitics and layout, load, and heatsink. Second, the widely adopted 

methodology of switching performance characterization including double pulse test and 

calorimetric measurement is reviewed. Note that the reviewed literature in this chapter is not 

limited within the SiC research area.  

Chapter 3 conducts the switching characterization with a SiC low current discrete MOSFET 

and a SiC high current MOSFET module. Based on the testing results, the impact factors that limit 

the switching speed of SiC MOSFETs are analyzed from the perspective of both device intrinsic 

characteristics and external circuits. 

Chapter 4 proposes a current source gate drive for SiC discrete MOSFETs that can avoid the 

limitations of existing gate drive technologies. The detailed operating principle, parameter design, 

loss analysis, benefits and challenges are presented.  
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Chapter 5 proposes a charge pump gate drive with simpler structure and control to overcome 

the drawback of the current source gate drive. Similarly, the detailed operating principle, parameter 

design, loss analysis, benefits and challenges are illustrated.  

Chapter 6 presents the modeling and mitigation of overvoltage in three-level active neutral 

point clamped converters. The multiple commutation loops issue is introduced, and the related 

overvoltage is modeled. With the model, the relationship between the overvoltage and the two 

commutation loops is evaluated. Moreover, a modified modulation is developed to mitigate the 

influence of the non-linear device output capacitance and reduce the overvoltage. 

Chapter 7 introduces the design criteria of power stage layout for three-level converters to 

reduce the loop parasitic inductance. Based on the criteria, a detailed design example is provided 

for the laminated busbar layout of a 500 kVA SiC based three-level active neutral point clamped 

converter. The fabrication process of the designed busbar with aluminum is also presented. 

Chapter 8 presents the design and testing of a 1 MW inverter for aircraft applications based 

on SiC power modules. The developed technologies in previous chapters are implemented. The 

design of sub-systems and the detailed switching loss analysis are included. 

Chapter 9 gives the conclusion, main contribution and recommended future work.  
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2 Literature Review 

Extensive work has been conducted to characterize and analyze the switching behavior of 

power semiconductor devices. Since the motivation of this dissertation is to evaluate the impact 

factors of the SiC MOSFET switching speed, the existing work in this area should be reviewed 

and summarized. In the meantime, the methodology of characterizing the device switching 

behavior is also critical, especially for high switching speed conditions. In this chapter, literature 

in the above two areas is reviewed. Note that not only SiC devices are concentrated, but also Si 

MOSFETs, Si IGBTs and GaN devices are included. 

2.1 Impact Factors of Switching Speed in Hard Switching Applications 

Phase-leg configuration is the basic cell of most hard switching converters and is commonly 

selected to evaluate device switching performance. Fig. 2-1 plots the configuration of a phase-leg 

switching cell with the main components highlighted, which include power semiconductor devices, 

gate drives, parasitics and load current. According to [29], there are four main factors impacting 

the switching speed of WBG power devices, namely gate drives, parasitics, inductive loads, and 

heatsinks. 

2.1.1 Gate Drives 

As shown in Fig. 2-1, a typical gate drive mainly consists of gate drive circuit, signal isolator, 

and isolated power supply. Among them, gate drive circuit directly provides the required gate 

voltage and current to the power devices, and greatly influences the switching performance of 

power devices. In addition, if the signal isolator and isolated power supply cannot operate properly 

during the fast switching transient, the PWM signals’ transmission from controller to gate drive 

can be interfered, and the switching operation of the power device can be affected [30]. 
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Fig. 2-1. Configuration of phase-leg with gate drivers and parasitics. 

 

In terms of the technology of a gate drive circuit, it can be grouped into three fundamental 

categories: voltage source gate drives (VSGs), current source gate drives (CSGs), and resonant 

gate drives (RGs) [31], [32]. The advantage of the RG is its ability to reduce the gate drive loss 

[33-35]. However, for SiC MOSFETs in high voltage and high power applications, the gate drive 

loss is small compared to other losses due to their superior intrinsic gate charge characteristic, 

which makes RGs less attractive because of its more complicated structure.  

The VSG is the most common technology for semiconductor power devices because of its 

simple structure and control. Fig. 2-2 shows a phase-leg with a typical VSG. The VSG circuit can 

be simplified to a half bridge phase leg that connects the gate drive power supply. The typical 

switching waveform during the switching transient of the lower switch is shown in Fig. 2-3. During 

turn-on transient, the gate drive output voltage increases from zero to Vdr_L in tr. The total turn-on 

switching time ton is the sum of current rise time tcr and the voltage fall time tvf. The turn-off 

transient is similar to turn-on. In a proper gate drive circuit design or selection for SiC MOSFETs  
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Fig. 2-2. Phase-leg with VSG. 
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Fig. 2-3. Typical waveforms during switching transient with VSG. 

 

in hard switching applications, tr is much lower than ton and does not have great influence on the 

switching transient. 
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 For SiC MOSFETs, some manufacturers provide guidance about the design of VSG [27], 

[36], and researchers have proposed more advanced controls and topologies to improve the 

performance of VSGs, which mainly includes crosstalk and overvoltage suppression [37-41], 

current and voltage balancing [42-45], and dynamic gate impedance control [46-50]. However, it 

is still not clear whether the switching speed of the SiC discrete devices and power modules have 

been maximized with the existing VSG technology.  

If the VSG is not sufficient to fully utilize the switching speed of SiC MOSFETs, the CSG 

can be a candidate in spite of its more complex hardware circuit and control strategy. The basic 

switching transient with CSGs is similar to that with VSGs. The main difference between VSGs 

and CSGs is the gate current. For VSGs, the gate current it proportional to the difference between 

gate drive supply voltage and the device gate voltage. As gate voltage increases in switching 

transients, the gate current keeps decreasing. In contrast, the gate current provided by CSGs can 

be independent from the gate drive supply voltage. Thus, with the same gate charge, the required 

charging/discharging time with CSGs can be reduced. Fig. 2-4 presents a typical CSG for Si 

MOSFET with an inductor [51]. 

Not much research has been conducted to develop CSGs for SiC MOSFETs, and most of them 

are based on linear circuits, which are difficult for applications requiring large gate current [52], 

[53]. More CSGs have been proposed for Si MOSFETs and Si IGBTs. In [51], [54-57], CSGs with 

inductors are adopted for low voltage Si MOSFETs in voltage regulator applications to reduce the 

gate drive loss. In [58-62], CSGs based on voltage controlled current source with BJTs are used to 

adaptively tune the dv/dt and di/dt and improve the switching loss of Si IGBTs. Nevertheless, these  
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Fig. 2-4. CSG proposed in [51]. 

 

CSGs are not designed for SiC MOSFETs. Compared to Si MOSFETs and Si IGBTs, there are 

some unique characteristics of SiC MOSFETs like lower gate source voltage rating, lower 

transconductance, and higher internal gate resistance. Therefore, existing CSGs may not be 

suitable for SiC MOSFETs. 

In addition to gate driver circuit, signal isolator and isolated power supply also show influence 

on the switching speed of power devices. As shown in Fig. 2-2, the source of the upper side switch 

is the middle point of the phase-leg, and it jumps between the DC bus voltage and the lower side 

ground at switching frequency. This high frequency dv/dt can result in CM current from secondary 

to primary side of the isolator through the coupling capacitance [63]. This current can interfere 

with the PWM signals generated from the micro-controller. In consequence, abnormal PWM 

signals are transmitted to the gate drive, and the power devices are falsely turned-on or off. Thus, 

special attention should be paid to the common mode transient immunity (CMTI) of the signal 

isolator and the coupling capacitance of the isolated power supply. 
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2.1.2 Parasitics and Layout 

Fig. 2-5 shows the primary parasitics in the phase-leg configuration, including three parasitic 

inductances, three parasitic capacitances, and one internal gate resistance of power devices. These 

parasitics influence the transients of two loops: the gate loop and the power loop. The parasitics 

involved in the gate loop are gate loop inductance Lgs, common source inductance Lcm, transfer 

capacitance Cgd, input capacitance Cgs, and internal gate resistance Rg(int). The power loop mainly 

includes power loop inductance Lds, common source inductance Lcm, transfer capacitance Cgd, and 

output capacitance Cds. Note that Lcm and Cgd are shared by both loops. 

The influence of parasitics on the gate loop is first reviewed. According to the equivalent 

circuit of the gate loop, a LCR resonant network is formed by Lgs, Lcm, Cgd, Cgs and Rg(int) [64]. 

Therefore, an oscillation can occur across the device gate-source terminal if the parasitic 

inductance is large enough. In extreme cases where the oscillation is high enough to exceed the 

device rating, the gate of the device can be damaged. An external gate resistance can be added to 

mitigate the oscillation, but the device switching speed is slowed down. For SiC MOSFETs, they 

normally have larger internal gate resistance than conventional Si devices, which is beneficial for 

lowering the gate loop oscillation. Generally, the influence of the parasitics on the gate loop is 

limited as long as the loop layout is carefully designed. 

Compared to the gate loop, the more critical concern comes from the power loop. The 

mechanism of the power loop oscillation is due to the resonance between the power loop 

inductance Lds and device output capacitance Cds. Many papers have discussed the modeling and 

mitigation of the oscillation issue [65-70], and most of them were focused on the turn-off 

overvoltage. However, several studies have shown that the turn-on overvoltage is normally higher 

than the turn-off case in WBG devices [18], [19], [71]. The mechanism of turn-off and turn-on  
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Fig. 2-5. Parasitics in the switching commutation loop. 

 

overvoltage is different. Fig. 2-6 shows the equivalent circuits of the turn-on and turn-off transients 

[29]. The turn-on transient is mainly affected by dv/dt, while di/dt has larger influence on the turn-

off. Nevertheless, di/dt also has significant influence on the turn-on transition [18]. To guarantee 

that the overvoltage is not high enough to damage the device, snubber circuits are usually added 

to absorb the oscillation energy [72], [73]. However, these snubbers not only increase the loss, but 

also increase the complexity of the power stage, which deteriorate the reliability of the converter. 

Most of the research on power device overvoltage is based on two-level phase-leg. However, 

the overvoltage issue can even be more severe and complicated in multi-level topologies since 

they have multiple commutation loops. Several studies focused on switching loops in three-level 

converters [74-77]. Two modulations for three-level active neutral point clamped (3L-ANPC) 

converters are compared in [74] to evaluate the loss distribution with different switching loops. 

The multi-loop influence on loss, harmonics and overvoltage in commonly used three-level 

converters is analyzed in [75]. The overvoltage issue in the 3L-ANPC converter and its causes are 

investigated in [76], while [77] provides a solution for the overvoltage mitigation. However, there  



23 
 

              

Fig. 2-6. Equivalent circuits of turn-on and turn-off transients [29]. 

Left: turn-on. Right: turn-off. 

 

is still the lack of an analytical model that can explain the coupling effect among different 

commutation loops and build the relationship between the overvoltage and the parasitics for multi-

level converters. 

Last but not least, the mutual influence between the gate and power loop should also be 

evaluated. The shared parasitics by the two loops are the common source inductance Lcm and 

transfer capacitance Cgd. During the turn-on transient, the increase of drain current introduces a 

positive di/dt across Lcm. In consequence, a positive voltage drop occurs on Lcm, which reduces the 

real voltage applied to the gate-source of the device. A similar situation happens during the turn-

off transient. The absolute value of the applied gate voltage is reduced due to a negative voltage 

across Lcm. Therefore, the switching speed is reduced [78]. Fortunately, this issue can be strongly 

attenuated by using the Kelvin connection for device packaging [79], and many manufacturers 

have already had products for the SiC MOSFET [80], [81]. 

Compared to Lcm, the so called “cross-talk” phenomenon caused by Cgd is more severe. The 

mechanism of cross-talk during turn-on and turn-off switching transients is shown in Fig. 2-7 [37]. 

Taking turn-on transient as an example, the rise of the drain-source voltage of the upper switch 

generates the current flowing through the transfer capacitance Cgd_H. This current then introduces 

a positive voltage across the gate resistance. If the current is large enough and the induced voltage  
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Fig. 2-7. Mechanism of cross-talk [37]. Left: turn-on. Right: turn-off. 

 

exceeds the threshold voltage of the power device, the upper switch is falsely turned-on. Since the 

lower switch has already been turned-on at this moment, a shoot-through current occurs from DC 

bus to the ground, which not only generates extra loss, but also can cause device damage if the 

shoot-through time lasts long enough. Although the cross-talk during the turn-off transient creates 

a negative spurious voltage and does not cause false turn-on, the gate may degrade if the negative 

voltage is lower than the minimum allowed gate rating. Apparently, higher switching speed results 

in higher current on Cgd, leading to more severe cross-talk. To avoid or suppress the cross-talk, 

auxiliary circuits have been developed to regulate the impedance of the device gate, which should 

be effective in most cases [37-39], [82-85]. 

From the above survey on parasitic influence, it can be concluded that parasitics bring about 

negative effect for high switching speed operation. To further improve the device switching speed, 

the parasitics are desired to be reduced. Among the aforementioned parasitics, the capacitances 

and the internal gate resistance are the intrinsic parameters of the device, which are not changeable. 

So the parasitics that can be decreased are the inductances. Since the power loop can introduce 
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more serious issues, and the common source inductance can be improved by using Kelvin 

connection, the power loop inductance is the critical element. The most straightforward way to 

reduce this inductance is optimizing the circuit layout. Methodology and guidance of power loop 

layout have been studied for both PCB design [86-91] and busbar design [92-97]. There are two 

main types of layout design for the power loop design. As shown in the left side of Fig. 2-8, the 

power loop of lateral layout is paralleled with the PCB layer. Shielding layers can be added to the 

inner PCB layers to screen the magnetic field. The loop of vertical layout is perpendicular to the 

PCB layers and utilize multiple layers to complete the loop, as shown in the right side of Fig. 2-8. 

Considering that the PCB board thickness is relatively small, the power loop inductance of vertical 

layout is normally lower than that of lateral loop because of the smaller loop area [86]. Thus, 

vertical layout is recommended for power loop design of a two-level phase leg. 

However, most previous work focused only on low power two-level converters based on PCBs 

and did not pay much attention to the high power busbar design for multi-level converters. Actually, 

noise issue is even more serious in high power hard switching converters because of the higher 

voltage and current stress. Moreover, the multiple commutation loops in multi-level converters 

make the loop layout more complicated. In [98-104], busbars are designed specifically for three-

level converters such as NPC-type and T-type converters. However, the loop inductance is 

normally higher than 100 nH, which still limits the switching speed of SiC MOSFETs due to 

introduced voltage overshoot. Thus, methodology should be developed for low inductance layout 

design of three-level converters.  
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Fig. 2-8. Two types of layout for power loop [86]. Left: lateral. Right: vertical. 

 

2.1.3 Loads 

In motor drive applications, one of the problems with the device fast switching is the motor 

overvoltage resulting from reflected wave phenomenon. The reason of this issue is the high dv/dt 

of the power devices and surge impedance mismatch between the cable and motor [105]. If the 

output line-to-line voltage is not filtered, the peak voltage at the motor side can be much higher 

than the DC bus voltage [106]. 

Recently, it has been found that the load also has impact on the switching speed and loss of 

the power devices [28], [107-112]. The equivalent circuit of a three-phase two-level inverter with 

motor load is depicted in Fig. 2-9. It is observed that the load is equivalently paralleled with the 

power device. During the switching transient, the impedance of the device is dominated by its 

output capacitance. If the equivalent impedance of the load paralleling with the device is much 

larger than the impedance of the output capacitance, then the switching performance of the device 

is not affected.  Fig. 2-10 draws the impedance curves with different loads. For SiC MOSFETs, 

the typical frequencies of interest during the switching transient is several MHz. It is clear that the  
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Fig. 2-9. Equivalent circuit of three-phase inverter with motor load [28]. 

Left: converter system. Right: single phase-leg. 

 

Fig. 2-10. Impedance curves with different loads [28]. 

 

motor load has lower or similar impedance compared to the device output capacitance in that 

specific frequency range. In consequence, both the switching time and loss of the power device is 

increased. 
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2.1.4 Heatsinks 

In high power applications, heatsinks and coldplates are widely implemented to maintain the 

temperature of the power devices. Power devices are mounted to the heatsink with a thin layer of 

thermal insulation material like thermal pad or thermal grease. Thus, as shown in Fig. 2-11, 

parasitic capacitances are introduced between the drain of the power devices and the heatsink plate 

[113], [114]. As a result, extra capacitances are paralleled with drain-source of the devices, which 

slow down the switching speed. If the heatsink is grounded, an extra path is generated. CM current 

flows through this path during the fast switching transient and results in higher EMI. 

2.2 Methodology for Characterization of Device Switching Performance  

Although different models and simulation tools have been developed [66], [115-119], the most 

straightforward and effective way to evaluate the switching performance of a power device is still 

the real hardware testing. Nowadays, there are two main kinds of methods to implement the 

switching characterization: double pulse test and calorimetric measurement. 

2.2.1 Double Pulse Test 

The most widely adopted way for the switching characterization is the double pulse test (DPT) 

[120-126]. Fig. 2-12 plots the typical configuration and waveforms of the DPT for a phase-leg. 

Two pulses with different width are generated for the gate of the lower switch, which is the device 

under test (DUT). The upper switch keeps off and the body diode provides the freewheeling path. 

When the lower switch is on, the DC bus voltage is applied across the load inductor L, and the 

drain current id increases linearly. By turning off and on of the lower switch, the device voltage 

and current during the turn-off and turn-on transients can be captured with the help of an  
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Fig. 2-11. Capacitive coupling between devices and heatsink. 
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Fig. 2-12. Typical DPT for phase-leg. (a) Configuration. (b) Waveforms. 

 

oscilloscope. After the data processing, the switching time and loss can be calculated. The 

fundamental elements in a DPT are drawn in Fig. 2-13. 

According to the above introduction, the key point of the DPT is to capture the waveforms 

during the device switching transients. Because the switching time of WBG devices is usually  
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Fig. 2-13. Elements in a typical DPT [126]. 

 

short, namely tens of or even several nanoseconds, it is required to pay special attention to the 

selection and usage of probes and oscilloscopes. 

It has been concluded in [126] that high bandwidth passive probes are preferred for voltage 

measurement, while coaxial shunt is more suitable for current measurement. Moreover, probe-tip 

adaptors are recommended to shorten the grounding lead, which helps reduce noise due to the loop 

inductance [127]. 

Another critical issue is the voltage-current alignment. Since the DPT uses the overlap 

between the captured voltage and current waveforms to calculate the switching loss, the 

propagation delay mismatch in voltage and current measurement can result in serious inaccuracy. 

As shown in Fig. 2-14, a 2-ns misalignment leads to more than 100% error in switching loss 

estimation [126]. Therefore, it is important to deskew the probes by using the deskew function in 

the oscilloscope or the deskew fixture to align the voltage and current measurement. 
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Fig. 2-14. Relationship between calculated switching loss and V-I alignment [126]. 

 

2.2.2 Calorimetric Measurement 

Another popular method to characterize the device switching performance is the calorimetric 

measurement [128-133]. Different from the DPT using electric waveforms, calorimetric 

measurement utilizes heat dissipated during the operation of the device to get the switching loss. 

Fig. 2-15 illustrates the configuration and testing setup of a typical calorimetric measurement [130]. 

The DUT is located inside a box with thermal insulation, and temperature sensors are attached to 

the DUT or the heatsink close to the DUT. By monitoring the temperature of the device, the 

switching loss can be calculated. 

With the temperature stabilized, the total dissipated power of a device is 

 
c a

sw

th

T T
P

R

−
=   (2-1) 

where Tc and Ta are monitored device and ambient temperature inside the box, while Rth is the 

thermal resistance from device case to the ambient. 
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Fig. 2-15. Calorimetric measurement for device loss [130]. 

Left: configuration. Right: testing setup. 

 

Since the total loss includes both the switching and conduction loss, the switching loss can be 

calculated by deducting the conduction loss. When calculating the conduction loss, the on-

resistance can be obtained based on the monitored temperature and the temperature dependent 

curve from the device datasheet. 

From the last section, the DPT requires careful alignment to obtain accurate switching 

information, which increases the difficulty of implementation especially in very high switching 

speed applications. In general, the calorimetric measurement can provide more accurate loss 

results. However, the calorimetric measurement is only effective to obtain the loss of a power 

device. For example, it is very difficult to identify the turn-on and turn-off loss, not to mention the 

switching time and transient overshoot information. Thus, the DPT is more applicable for cases 

where details of the switching process are needed, while the calorimetric measurement is preferred 

when accurate total switching loss is needed.  
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2.3 Summary 

This chapter presents the review of two areas that are closely related to the switching 

performance of power devices. 

First, the impact factors that limit the switching speed of power devices in hard switching 

applications is reviewed. Four elements are included: gate drive technologies, parasitics and layout 

design, loads, and heatsinks. For gate drive technologies, voltage source gate drives (VSG) are 

most widely implemented, while current source gate drives (CSG) can also be the candidate. 

However, it is not clear if the existing gate drives can fully utilize the switching speed capability 

of SiC MOSFETs. Parasitics mainly introduce overvoltage and influence the reliability of power 

devices. PCB and busbar layout should be optimized to reduce the parasitics, especially the loop 

inductance. For loads and heatsinks, they both introduce extra parasitics to the circuit, and can 

deteriorate the switching performance and increase EMI of the converter. 

Second, two main methods of characterizing device switching performance are summarized: 

double pulse test (DPT) and calorimetric measurement. For DPT, the selection and usage of 

measurement tools is critical because the waveforms during the fast switching transient should be 

captured. For calorimetric measurement, high accurate switching loss can be obtained. These two 

methods have advantages and drawbacks, and are suitable for different applications. 

  



34 
 

3 Characterization of Switching Speed of SiC MOSFETs 

This chapter studies the limitation and impact factors of switching speed of SiC devices in 

hard switching applications. As has been pointed out, both the device intrinsic characteristics and 

the external circuit have significant influence on the switching performance. Therefore, both are 

evaluated with double pulse tests in this chapter. 

SiC MOSFETs with various current ratings should be evaluated because they have different 

intrinsic characteristics, and the parasitics exhibit significantly different influence when di/dt and 

dv/dt change. Fig. 3-1 plots the comparison between some SiC discrete devices and power modules 

from different manufacturers. Generally, power modules with multiple SiC dies in parallel have 

higher current rating. Therefore, a SiC discrete device and a SiC power module are selected for 

testing. Specific design concerns are introduced in detail for high power module characterization. 

With the conducted test above, the switching transients in different cases are analyzed and 

compared. The impact factors that limit the switching speed of SiC MOSFETs are described, 

which serve as the reference for proposing solutions to improve the switching speed. 

This part of work is published or accepted in the journal and conference papers [134], [135].  

3.1 Switching Transient Analysis 

3.1.1 Typical Switching Transient and Impact Factors of Switching Speed 

A typical phase-leg configuration with two MOSFETs as well as the parasitics are plotted in 

Fig. 3-2. The parameters and parasitics are defined as in Table 3-1. The load current flows into the 

switching node, so the lower side MOSFET is the active switch, while the upper side MOSFET is 

the synchronous switch. 
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Fig. 3-1. Voltage and current ratings of SiC discrete devices and power modules from several 

manufacturers. 

 

Fig. 3-2. Phase-leg configuration of FET/FET structure including switches and circuit parasitics. 
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Fig. 3-3 plots the typical waveforms during the switching transient, and the different modes 

during the switching transient are briefly explained as follows. 

1) Mode 1: turn-on signal is applied to the gate drive of the lower MOSFET, and the gate-

source voltage vgs_L starts to increase. The drain-source voltage vds_L of the lower MOSFET remains 

at the bus voltage VDC, and the drain current id_L is zero until vgs_L reaches the threshold voltage 

Vth. In this mode, the lower MOSFET operates in the cutoff region. 

Table 3-1. Parameters and parasitics definition in Fig. 3-2 

Parameters Description 

Io Load current 

VDC DC bus voltage 

Vdr Gate drive supply voltage 

ig_L Gate current of lower switch 

id_L Drain current of lower switch 

vgs_L Gate-source voltage of lower switch 

vds_H /vds_L Drain-source voltage of upper/lower switch 

Rg(ext)_H /Rg(ext)_L External gate resistance of upper/lower switch 

Rg(int)_H /Rg(int)_L Internal gate resistance of upper/lower switch 

Cgs_H /Cgs_L Gate input capacitance of upper/lower switch 

Cgd_H /Cgd_L Transfer capacitance of upper/lower switch 

Cds_H /Cds_L Output capacitance of upper/lower switch 

Lg_H /Lg_L Gate loop inductance of upper/lower switch 

Lss_H /Lss_L Common source inductance of upper/lower switch 

Lds Total power loop inductance 
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Fig. 3-3. Typical switching transient waveforms. 

 

 

2) Mode 2: after vgs_L reaches Vth, the lower MOSFET starts to turn on and the load current 

starts to commutate from the body diode of the upper MOSFET to the channel of the lower 

MOSFET. vds_L does not drop because the body diode of the upper MOSFET still conducts and 

vds_L is clamped at the bus voltage. During this process, the lower MOSFET operates in the 

saturation region, and the drain current can be expressed as 

 
_ _( ) ( ( ) )d L m gs L thi t g v t V= −   (3-1) 

where gm is the transconductance of the MOSFET. 

This mode ends when the drain current reaches the load current Io. At the end of this mode, 

the gate-source voltage reaches the Miller voltage, which is expressed as 
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The current rise time can be calculated as 
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3) Mode 3: the current completes the commutation, and the body diode of the upper MOSFET 

is off. The drain-source voltage of the lower MOSFET starts to decrease while that of upper device 

increases. The gate current ig_L is mainly used to charge the transfer capacitance Cgd_L so the gate-

source voltage keeps constant, which equals to Vmil. During the process, the drain-source voltage 

of the lower MOSFET vds_L is 
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This mode ends when vds_L drops to zero. The voltage fall time is expressed as 
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4) Mode 4: Cgs_L is further charged until vgs_L reaches Vdr while vds_L and id_L go into steady 

state. 

The turn-off transient from mode 5 to 8 in Fig. 3-3 is similar to the turn-on. The detailed 

analysis will not be covered in this dissertation.  

As mentioned above, the switching speed mainly influences the switching loss. In hard 

switching applications, the current-voltage overlap loss is the dominant loss. From Fig. 3-3, it is 
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observed that the current-voltage overlap only occurs on the lower MOSFET, which is the active 

switch. Therefore, the overlap loss during turn-on transient can be written as 

 
_ _

0

ovt

on d L ds LE i v dt=    (3-6) 

where tov is the overlap time of drain current and drain-source voltage. During the turn-on transient, 

it equals to the sum of tcr and tvf. Eq. (3-6) can be simplified if the voltage and current are regarded 

as changing linearly: 

 
1

( )
2

on o DC cr vfE I V t t= +   (3-7) 

Thus, it is necessary to evaluate the impact factors on tcr and tvf so that the switching loss is 

better understood.  

From (3-3), the current rise time is influenced by Rg(ext)_L, Rg(int)_L, Cgs_L, Vdr, Vth, gm and Io. 

From (3-5), the impact factors for voltage fall time are Rg(ext)_L, Rg(int)_L, Cgd_L, Vdr, VDC, gm and Io. 

Table 3-2 summarizes the trend of tcr and tvf when these factors increase. Remarkably, among these 

factors, Io, VDC, Vdr and Rg(ext) are determined by the external circuit and are tunable. The remaining 

factors are purely determined by the device itself.  

To improve the switching loss, the overlap time needs to be reduced. However, the parasitics, 

especially the loop inductance, limit the ability for enhancing the switching speed. 

As has been mentioned in Section 2.1.2, the di/dt and dv/dt of the MOSFET during switching 

transient increase when the switching speed increases. As a result, the overvoltage across the 

switch gets higher owing to the influence from the device parasitic capacitance and the loop 

inductance. 
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For the device gate loop, the cross-talk occurs due to the displacement current flowing through 

gate resistance caused by the drain-gate dv/dt during the switching transient. Fortunately, several 

methods have been proposed to attenuate the phenomenon according to the review in Section 2.1.2. 

Simple auxiliary circuits can be implemented with low cost and easy control. 

The drain-source overvoltage is a more severe and challenging issue that prevent an increase 

of switching speed. To prevent the switch from damage, snubbers have to be added or the switching 

speed has to be slowed. In terms of snubbers, it not only increases the loss but also makes the 

power stage more complicated and less reliable. In Fig. 3-3, it is observed that the overvoltage 

occurs on vds_H when the lower MOSFET is turned on, and on vds_L when the lower MOSFET is 

turned off. According to the review in Section 2.1.2, the turn-on overvoltage on vds_H and the turn-

Table 3-2. Factors that influence the switching time 

Factor 
Trend when the factor increases 

tcr tvf 

Io Increase Increase 

VDC No change Increase 

Vdr Decrease Decrease 

Rg(ext)_L Increase Increase 

Rg(int)_L Increase Increase 

Cgs_L Increase No change 

Cgd_L No change Increase 

Vth Increase Increase 

gm Decrease Decrease 
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off overvoltage on vds_L have different mechanisms. However, both of these two types of 

overvoltage are strongly dependent on the di/dt and dv/dt of the switch [18], [66].  

3.1.2 Influence of Different Current Ratings 

The switching performance of the devices with the same semiconductor technology but 

different current ratings can be different. Assuming a low current rating discrete device and a high 

current rating power module use the same die technology, the module can be ideally regarded as 

paralleling N discrete devices as shown in Fig. 3-4, and has N times higher rated current.  

Fig. 3-5 shows the comparison of di/dt and dv/dt between the discrete device and the power 

module. If the applied gate drives have enough driving capability in both cases, the gate current 

for each die in the module should be the same as for the discrete device. Thus, the current rise time 

of the discrete device and the power module is identical at rated current condition. As a result, the 

power module shows N times higher di/dt than the discrete device. On the other hand, if the applied 

bus voltage is the same, the power module has the same dv/dt as the discrete device because both 

the gate current and the transfer capacitance is N times higher. This di/dt difference brings about 

significantly different parasitic effect. Generally, it is more difficult for the power module with 

higher power rating and higher di/dt to increase the switching speed. Characterization of SiC 

Discrete Device and Power Module 

3.1.3 Testing Setup 

Since the body diode reverse recovery is not significant for SiC MOSFETs, FET/FET cell 

configuration is used for characterizing the devices with the same die technology but different 

current ratings. One discrete device and one power module utilizing the state-of-the-art die and 

packaging technology are selected to test, and the parameters are listed in Table 3-3. As shown,  
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Fig. 3-4. Dies in discrete device and power modules. (a) Discrete device. (b) Power module. 
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Fig. 3-5. Ideal di/dt and dv/dt comparison between discrete device and power module. 

 

the power module has much higher current rating as well as lower on-resistance and internal gate 

resistance. Because of the current rating and packaging variation, different testing setups have to 

be adopted. For both setups, 500 V is used as the DC bus voltage. 
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3.1.3.1 Discrete Device 

Fig. 3-6 demonstrates the DPT board for discrete devices. Note that the bulky DC-link 

capacitors are located on a dedicated board and connected with the device under test (DUT) 

through short wires so that one capacitor board can be used to test multiple switching cells. Fig. 

3-7 shows the established testing platform. 

3.1.3.2 Power Module 

The module used here is illustrated in Fig. 3-8, which has a half bridge structure containing 

two MOSFETs. Since the peak current of the module is more than 800 A, the current shunt used 

in discrete device case is no longer suitable due to the high loss. Among different current 

measurement methods, Rogowski coil is a good candidate without introducing extra loss or PCB 

size increase [136]. The Rogowski coil from CWT can provide 30 MHz bandwidth with 35 ns rise 

time capture capability, which is sufficient for the current measurement here [137]. From Fig. 3-8,  

Table 3-3. Parameters of tested discrete device and power module 

 Discrete Module 

 Manufacturer Wolfspeed Wolfspeed 

Packaging TO-247 4pin High Performance 62 mm 

Die 3rd Gen 3rd Gen 

Vbr (V) 1200 900 

Id (A) 30 880 

Rds(on) (mΩ) 75 1.25 

Rg(int) (Ω) 10.5 0.2 

Coss (pF) @500 V 65 2800 
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Fig. 3-6. Double pulse testing board. 
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Fig. 3-7. Testing platform of double pulse test. 

 

Fig. 3-8. Tested power module. 
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there are three screw holes for each switch terminal. Thus, three Rogowski coils are implemented 

to measure the total current of the module.       

To achieve thermal balance and avoid dynamic overshoot, the current distribution should be 

balanced among the paralleling dies inside the module. Fig. 3-9 draws two types of layout design 

of the DPT. With Fig. 3-9(a), the DC-link capacitors are located at one side of the module.  

The testing setup and current waveforms from the three Rogowski coils are shown in Fig. 

3-10 and Fig. 3-11, respectively. Remarkably, there is large current unbalance among the three 

Rogowski coils, which indicates that the drain current is not evenly distributed inside the module. 

Fig. 3-12 and Fig. 3-13 show the DPT boards and the testing platform following the layout 2 

in Fig. 3-9(b). The DC-link capacitors are placed symmetric to the power module, which helps 

achieve the current balance. Fig. 3-14 shows the tested drain currents. Compared to Fig. 3-11, the 

current balance is significantly improved. The tested inductance of the DPT power loop is 10 nH.    

3.1.4 Experimental Results 

Fig. 3-15 illustrates the tested switching waveforms of the discrete device at 30 A with no 

external gate resistance. The overvoltage of the upper MOSFET during turn-on is 106 V above the 

DC bus voltage (500 V) while that of the lower MOSFET during turn-off is 101 V. Since the 

voltage rating of the device is 1.2 kV, it means that even with the lowest external gate resistance, 

there is still large room to accelerate the switching speed without exceeding the breakdown voltage 

of the tested SiC MOSFET. 

On the other hand, it is shown in Fig. 3-16 that with 1.4 Ω external gate resistance, the 

overvoltage is much larger for the power module, namely 438 V for the upper MOSFET and 362 

V for the lower MOSFET when the load current is 800 A. In such case, the drain-source voltage  
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     (a)                                                                     (b) 

Fig. 3-9. DPT layout for power module. (a) Layout 1. (b) Layout 2. 

 

Fig. 3-10. Testing setup with layout 1. 

Drain current: 40 A/div

10 µs/div

 

Fig. 3-11. Drain current distribution with layout 1. 
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Fig. 3-12. Gate drive for power module. 

 

Fig. 3-13. Testing setup with layout 2. 

Drain current: 60 A/div

10 µs/div

 

Fig. 3-14. Drain current distribution with layout 2. 
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(a)                                                                        (b) 

Fig. 3-15. Tested switching waveforms of discrete device when VDC=500 V, Io=30 A and 

Rg(ext)_L=0 Ω. (a) Turn-on. (b) Turn-off. 
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(a)                                                                        (b) 

Fig. 3-16. Tested switching waveforms of power module when VDC=500 V, Io=800 A and 

Rg(ext)_L=1.4 Ω. (a) Turn-on. (b) Turn-off. 
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of the MOSFETs already approaches their voltage rating (900 V). Therefore, the switching speed 

cannot be further increased. 

Fig. 3-17 plots the relationship between the overvoltage during the switching transient and the 

applied external gate resistance of the discrete device and the power module at full load condition. 

Clearly, the power module shows higher overvoltage for both the upper and lower MOSFETs. As 

the external gate resistance decreases, the overvoltage of the power module increases more rapidly, 

which is due to its lower internal gate resistance. 

Fig. 3-18 and Fig. 3-19 illustrate di/dt and dv/dt versus the applied external gate resistance of 

the discrete device and the power module at full load condition. The power module exhibits a much 

higher di/dt that contributes to the higher overvoltage. The dv/dt of the discrete device and power 

module are similar, which matches with the previous analysis in Section 3.1.2. 

3.1.5 Analysis and Discussion 

3.1.5.1 Discrete Devices 

From the above testing results, there is still much room to increase the switching speed of the 

discrete device. It is desired to understand the inherent bottleneck for further increasing the 

switching speed during the switching transient. 

In Fig. 3-15, it is observed that the turn-on switching time is 34.6 ns while the turn-off 

switching time is 15.2 ns at full load condition. From the turn-on waveforms in Fig. 3-15(a), the 

voltage fall time is dominant and accounts for 3/4 of the total turn-on time. Thus, the voltage falling 

process is worth analyzing in detail.  
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Fig. 3-17. Comparison of tested overvoltage between discrete device and power module. 

   

Fig. 3-18. Comparison of tested di/dt between discrete device and power module. 

 

Fig. 3-19. Comparison of tested dv/dt between discrete device and power module. 
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According to (3-5), for a certain device, the voltage fall time is mainly impacted by the gate 

current during the Miller plateau. Based on the analysis in Section 3.1.1, the gate current during 

Miller plateau is expressed as 

 _

( ) _ ( ) _

o
dr th

m
g L

g int L g ext L

I
V V

g
I

R R

− −

=
+

  (3-8) 

Fig. 3-20 presents the tested transfer characteristics of the two devices with 500 V DC bus 

voltage. Lower transconductance contributes to higher Miller voltage, which is 9 V for the SiC 

MOSFET and 4.5 V for the Si CoolMOS when the load current is 30 A as shown in Fig. 3-20. As 

a result, the discharging current for the transfer capacitance is much smaller in the SiC MOSFET.  

In addition, the internal gate resistance of discrete SiC devices is usually large due to the gate 

oxide reliability issue. Low gm and high Rg(int)_L contributes to low gate current during the Miller 

plateau. In consequence, the voltage across the transfer capacitance drops slowly with this gate 

current even without any external gate resistance, and the voltage fall time dominates the turn-on 

time. Therefore, the key point to improve the switching speed of the SiC discrete devices is to 

enhance the gate current provided by the gate drive.  

3.1.5.2 Power Modules 

From the testing results in Fig. 3-16 the switching speed of the power module with high current 

rating is limited by the drain-source overvoltage resulting from the higher di/dt and the parasitics 

in the switching loop. Without further improving the layout and achieving lower parasitics, the 

existing VSG technology is sufficient to maximize the switching speed of power modules with 

large current rating. Thus, the main focus of increasing the switching speed of the 
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Fig. 3-20. Tested transfer characteristics when Vds=500 V. 

 

SiC power module is to reduce the voltage overshoot by introducing some advanced control 

strategies or optimizing the layout design.  

3.2 Conclusion 

To understand the key impact factors that limit the switching speed of SiC MOSFETs in hard 

switching applications, switching characterization is conducted and evaluated with double pulse 

tests.  

First, two switching cell configurations are investigated to compare the switching transients 

of a SiC MOSFET and a Si CoolMOS with same voltage and current ratings. The testing results 

show that if the reverse recovery of device body diode can be neglected, the SiC MOSFET has 

higher switching loss and longer switching time with the same applied gate drive circuits. The 

turn-on time is longer than the turn-off time, and the voltage fall time is dominant during the turn-

on transient. This is mainly due to the lower intrinsic transconductance of SiC MOSFETs and the 

consequential lower gate current to discharge the transfer capacitance and change the drain-source 

voltage of the device. 
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Second, the switching transients of a low current SiC discrete device and a high current SiC 

power module are tested. For the high current power module, detailed design including the testing 

setup layout, de-sat protection, and cross-talk suppression circuits are introduced. The results show 

that the constraints limiting the switching speed for the discrete device and the power module are 

different. There is still plenty of room to improve the switching speed for the discrete device even 

when the external gate resistance is reduced to zero, which means the conventional voltage source 

gate drive cannot maximize the switching speed. The reason is still the low transconductance and 

the limited gate current. Therefore, gate drives with stronger gate current capability are required 

to further improve the switching speed of the SiC discrete devices. On the other hand, the power 

module suffers from high overvoltage caused by the loop parasitics due to higher di/dt. Thus, the 

key points to enhance the switching speed of the SiC power module are developing control 

strategies to mitigate the device overvoltage and optimizing the power loop layout to reduce 

parasitic inductances. 
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4 Current Source Gate Drive 

This chapter presents a current source gate drive (CSG) designed for SiC discrete MOSFETs 

that can increase the switching speed and reduce the switching loss. First, the limitation of the 

existing voltage source gate drives (VSG) and CSG are analyzed, and the requirements of the gate 

drive technology for SiC discrete devices are concluded. Based on the requirements, a CSG 

dedicated for SiC discrete MOSFETs that can avoid the influence from the large internal gate 

resistance is proposed, and its operation principle is analyzed in detail. Both the switching and gate 

drive loss calculations are presented and compared with the conventional VSG to show the 

superiority of the CSG, and the key parameters design procedure is given. Moreover, the benefits 

as well as the challenges of applying the proposed CSG is summarized. The effectiveness of the 

CSG is verified with experimental results. 

This part of work is published or accepted in the journal and conference papers [135], [138]. 

4.1 Limitations of Existing Gate Drives 

According to the analysis of Section 3.1.5.1, the key factor that limits the switching speed of 

SiC discrete devices is the relatively low gate current during the voltage fall time, which results 

from the low transconductance and high internal gate resistance. Therefore, a gate drive with 

stronger gate current ability is needed. In this section, VSG is first evaluated to see if it can improve 

the switching speed since it is the most widely adopted gate drive technology. Then CSG is also 

analyzed as an alternative candidate. 

4.1.1 Voltage Source Gate Drive 

From (3-8), the only two factors that can be manually tuned are the gate drive supply voltage 

Vdr and the external gate resistance Rg(ext)_L. Unfortunately, Vdr is limited by the SiC MOSFET gate 
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voltage rating, which is typically around 20 V. On the other hand, even though Rg(ext)_L is reduced 

to be zero, the large internal gate resistance still exists. As a result, it is difficult to increase the 

gate current during Miller plateau with conventional VSGs. Therefore, CSG is a better candidate 

because of its ability to enhance the gate current independently. With the same gate charge, CSGs 

can provide constant current during the switching transient and hence reduce the switching time, 

especially the voltage fall time. 

4.1.2 Current Source Gate Drive 

As shown in Fig. 4-1, the required CSG should be able to provide constant current during the 

switching transient, especially during voltage fall time to reduce the gate charging/discharging 

time. Nevertheless, the existing CSG topologies cannot necessarily provide a constant current for 

discrete SiC devices with large internal gate resistance. When the gate current flows, large voltage 

drop occurs across the internal gate resistance. According to (3-2), the gate-source Miller voltage 

is only related to threshold voltage Vth, transconductance gm and load current Io. Thus, the gate-

source voltage during the Miller plateau does not change with a CSG and is still relatively high. 

As a result, to keep the current constant, the external gate voltage vgs(ext) is likely to be higher than 

the gate drive supply voltage Vdr. For the existing CSGs containing a constant current source (CCS) 

as shown in Fig. 4-2, there always exists a MOSFET or BJT between the gate drive supply voltage 

and the gate external voltage. In consequence, vgs(ext) is clamped by Vdr and the CSG will lose 

current control.       

For example, a typical CSG topology in [51] is used to simulate for a SiC MOSFET with 5 Ω 

internal gate resistance, and the result is shown in Fig. 4-3. The constant current ends when the 

external gate voltage approaches to Vdr and before vds starts to drop. Then the CSG becomes a 

classical VSG. With such a CSG, the reduction of switching time is significantly limited, which is  
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Fig. 4-1. Comparison of gate current between CSG and VSG. 

 

Fig. 4-2. Configuration of CSG with constant gate current. 

 

Fig. 4-3. Simulation waveforms of switching transient with existing CSG and VSG.  

 

only 2.5 ns in Fig. 4-3. Therefore, it is desired to develop a CSG that can keep constant gate current 

during the switching process regardless of the large internal gate resistance for discrete SiC devices. 
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In conclusion, the basic requirements for the desired CSG should have two key functions. 1) 

During the switching transient, the CSG can keep CCS regardless of large internal gate resistance. 

External gate voltage can be higher than gate drive supply voltage. 2) After the switching transient 

ends, the CSG can actively change to VSG to protect the gate voltage from over-charging/ 

discharging.  

4.2 Proposed Current Source Gate Drive 

4.2.1 Topology and Operating Principles 

Based on the requirements summarized above, Fig. 4-4 shows the proposed CSG for SiC 

discrete devices [138]. One P-channel MOSFET S1, one N-channel MOSFET S4, two bidirectional 

switches S2 & S3 and one inductor L are included in the gate drive. Note that S1-S4 are low voltage 

switches and have small footprints. 

During one typical switching period, there are eight modes. The key waveforms are illustrated 

in Fig. 4-5, which include the gate signals of switches S1- S4, the inductor current iL, the gate current 

ig, the external and real gate-source voltage vgs(ext) and vgs, the drain-source voltage vds, and drain 

current id. The equivalent circuit in each mode during the turn-on transient is plotted in Fig. 4-6, 

and the modes are briefly explained as follows. 

1) Subinterval 1 (t0-t1): Pre-charging state. Before t0, only S2 is on, and the SiC MOSFET is 

in the off state. At t0, the P-channel MOSFET S1 is turned-on so the inductor is charged by Vdr, and 

the inductor current iL increases linearly. This mode aims to build the current required for charging 

the gate, and the current at t1 is 

 
1 1 0( ) ( )dr

L

V
I t t t

L
= −    (4-1) 
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Fig. 4-4. Circuit of proposed CSG for discrete device.  

 

Fig. 4-5. Operation waveforms of proposed CSG.  

 

Therefore, the initial gate current can be tuned by changing t1 and selecting the proper 

inductance for L. 

2) Subinterval 2 (t1-t2): Gate charging state. At t1, the bi-directional switch S2 is turned-off so 

the inductor current flows through the gate resistance and charges the gate capacitance Cgs of the 
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(a)                                                                        (b) 

 

(c)                                                                       (d) 

Fig. 4-6. Equivalent circuits in different operation subintervals of proposed CSG. 

(a) Subinterval 1. (b) Subinterval 2. (c) Subinterval 3. (d) Subinterval 4. 

 

SiC MOSFET. L, Rg(ext), Rg(int) and Cgs form an LCR resonant network. During the short time 

interval of this mode, the inductor current iL does not change much so the gate can be regarded as 

charged by a current source. The switching transient of the SiC MOSFET completes in this mode 

so the switching time, especially the voltage fall time, is reduced compared to a conventional VSG.  

Note that due to the internal gate resistance, the external gate voltage vgs(ext) is always higher 

than the real gate voltage vgs. In order to keep the current source during this mode, the bi-directional 
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switch S3 should be in off state so that vgs(ext) can be higher than Vdr. If a simple N-channel MOSFET 

is adopted for S3, the body diode of S3 conducts when vgs(ext) approaches to Vdr and vgs(ext) is clamped. 

In such case, the gate drive automatically changes to be a VSG, and the gate current decreases 

rapidly like Fig. 4-3. Therefore, a bi-directional switch is necessary for keeping the current source. 

The relationship between external and real gate voltage is 

 
( ) ( ) ( )( )gs gs ext g g ext g intv v i R R= − +    (4-2) 

3) Subinterval 3 (t2-t3): Free-wheeling state. At t2, the bi-directional switch S3 is turned-on, 

and vgs(ext) is pulled down to be Vdr. Then, the gate drive turns to be a conventional voltage source, 

and ig reduces until the real gate voltage reaches Vdr. Note that the time to turn on S3 is critical. If 

t2 is too early, the transient has not finished, and the switching loss increases as ig drops. Otherwise, 

if t2 is too late, the constant current keeps charging and the gate voltage would be higher than the 

maximum rating, which damages the device. Therefore, the timing of turning on S3 should be 

carefully selected, which is one of the challenges to implement this CSG. In this mode, iL free-

wheels through S1 and S3 and keeps constant. Since iL in this mode contributes to nothing but loss, 

the time interval should be controlled to be as short as possible.  

4) Subinterval 4 (t3-t4): Discharging state. At t3, the P-channel MOSFET S1 is turned-off and 

iL flows through S3 and the body diode of S4. The inductor is discharged by Vdr and iL decreases 

linearly to zero, which means that the stored energy in L returns to the power supply of the gate 

drive without being wasted. 

From t4, the turn-off transition starts, and the operation principle is similar to the turn-on 

transition. 
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4.2.2 Loss Analysis 

The switching loss is the main target to reduce, and it is directly related to the switching time. 

So calculating the switching time based on the equations in Chapter 3 can indicate the switching 

loss. In addition, the gate drive loss should also be addressed. 

4.2.2.1 Switching Loss 

The basic switching time and loss calculation for the conventional VSG is analyzed in Section 

3.1.1. The current rise time tcr and voltage fall time tvf are given by (3-3) and (3-5), respectively. 

For the proposed CSG, assuming the gate current is constant, the current rise time can be 

expressed as 

 ( )
o

cr CSG gs

m g

I
t C

g I
=   (4-3) 

The voltage fall time is 

 ( )
DC

vf CSG gd

g

V
t C

I
=   (4-4) 

Based on the above analysis, the turn-on time of a typical 1.2 kV, 30 A SiC MOSFET with 

10.5 Ω internal gate resistance is plotted in Fig. 4-7. With the same initial gate current, it is 

observed that the current rise time and the voltage fall time with the proposed CSG decreases 

compared to the conventional VSG. Remarkably, the voltage fall time with the proposed CSG is 

independent of the load, while higher load current leads to longer voltage fall time for the 

conventional VSG. Therefore, the heavier the load is, the more turn-on time can be reduced. At 

full load condition, the total overlap time can be reduced by half, leading to significant switching 

loss reduction. 
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Fig. 4-7. Switching time comparison between VSG and CSG at different load conditions. 

 

4.2.2.2 Gate Drive Loss 

For the conventional VSG, the gate drive energy loss of each switching cycle is 

 
( )g VSG dr gE V Q=   (4-5) 

where Qg is the gate charge. 

Since the gate current is discontinuous in one switching period and the switches S1-S4 and 

inductor L in the CSG have low parasitics, the conduction loss, switching loss of the switches and 

the core loss of the inductor is negligible. Therefore, the gate drive energy loss of the proposed 

CSG is derived as 

 
( ) ( ) ( )

1
( )

2
g CSG dr g g ext g int g gE V Q R R I Q= + +   (4-6) 

With the same SiC MOSFET as in Fig. 4-7, the relationship between gate drive loss during 

one switching cycle and external gate resistance Rg(ext) is plotted in Fig. 4-8. Due to the large 

internal gate resistance, the proposed CSG shows higher gate drive loss than the VSG. However, 

because of the superior intrinsic gate charge characteristic of SiC MOSFETs, the gate drive loss is  
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Fig. 4-8. Gate drive energy loss comparison between VSG and CSG with different external gate 

resistance. 

 

much lower than the switching loss. So the higher gate drive loss of the proposed CSG does not 

impact the overall loss reduction. 

4.2.3 Parameter Design 

The key components in the proposed CSG circuit are the inductor L and the external gate 

resistor Rg(ext). In terms of the control, the critical parameters are the inductor charging time tic 

(from t0 to t1 in Fig. 4-5) and the gate charging time tgc (from t1 to t2 in Fig. 4-5).  

As mentioned above, the CSG should keep constant current during the switching transient of 

the device. The gate charging time tgc consists of two periods. From the start of the gate charging 

at t1 in Fig. 4-5 to the end of the current rise, the equivalent circuit this period is illustrated in Fig. 

4-9, which is a typical RLC series tank.  

For such a typical second order system, the response of current can be written as 
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Fig. 4-9. Equivalent circuit of proposed CSG during gate charging. 

 

where A1, A2, B1 and B2 are the coefficients related to the initial state. The damping ratio ζ, time 

constant α, angular resonance frequency ω0, and damped resonance frequency ωd are: 
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Considering the over-damped case where L is small, the circuit is like a RC first order system. 

The RC time constant without external gate resistance is 89 ns for the discrete device in Table 3-3, 

which is too long for the gate charging time. Therefore, the RLC network should operate at under-

damped condition where ζ is smaller than 1. The gate current can be derived as 

 ( ) ( )( ) ( )

0 0

1
( ) cos sin

2

g ext g intt t

g g d dr g d

d

R R
i t I e t V I e t

L

  


− −
+ 

= + − 
 

  (4-9) 

where Ig0 is the initial gate current. 
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When the drain current of the SiC MOSFET reaches the load current, the drain-source voltage 

begins to decrease. The gate voltage vgs is clamped to the Miller voltage Vmil. In this period, the 

circuit becomes a RL first order system, and the gate current response can be derived as 

 
2 ( )

1

( ) ( ) ( ) ( )

( ) ( ) crt tdr mil dr mil
g g

g ext g int g ext g int

V V V V
i t I e

R R R R

− −− −
= − +

+ +
  (4-10) 

where Ig1 is the gate current at the beginning of the voltage falling stage. When the drain-source 

voltage of the MOSFET drops to zero at t2, the switching transient ends and the proposed CSG 

should be changed to VSG. The inductor is shorted and the equivalent circuit becomes a RC first 

order system until the gate is fully charged. 

The discrete SiC MOSFET in Table 3-3 is used to evaluate the parameter selection. The input 

capacitance Cgs is 1.35 nF. Still, the DC bus voltage is 500 V and the load current is 30 A. The 

gate drive supply voltage Vdr is 15 V and 5 Ω external gate resistance is adopted. According to Fig. 

3-20, the Miller voltage Vmil is 9 V. With certain gate current, the current rise time and voltage fall 

time can be estimated by (3-3) and (3-5). 

Assuming the required gate current is 1.5 A, the calculated gate currents during the switching 

transient with different inductance values are illustrated in Fig. 4-10. Higher inductance leads to 

lower current drop and is better from the perspective of maintaining constant current. However, 

higher inductance not only results in larger size, but also makes it more difficult to build the 

required initial gate current. 
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Fig. 4-10. Calculated gate current with different inductances. 

 

Based on (4-1), with certain gate drive supply voltage, the required time to build the current 

is proportional to the inductance. As a result, the higher the inductance is, the longer it takes to 

initialize the gate current. Since the MOSFET cannot be turned on before the current reaches the 

required value, there is a maximum duty cycle limit for the proposed CSG. For the initial current 

of 1.5 A with the gate drive supply voltage of 15 V, assuming the maximum duty cycle is 0.95, 

the relationship between the allowed highest switching frequency and the inductance is 

demonstrated in Fig. 4-11. Notably, the allowed maximum switching frequency is lower than 100 

kHz when the inductance is higher than 5 μH, while the frequency is lower than 50 kHz when the 

inductance is higher than 10 μH. Hence, lower inductance value is preferred for high switching 

frequency operation.  

Considering the trade-off between keeping the current source and achieving high switching 

frequency, a moderate inductance should be selected for different applications. In this dissertation, 

the allowed current drop by the end of the switching transient is set to be less than 20%. Based on 

Fig. 4-10, a 1 μH inductor is chosen to provide 1.5 A gate current for the tested discrete SiC 

MOSFET. 
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Fig. 4-11. Relationship between allowed maximum switching frequency and inductance. 

 

4.2.4 Benefits and Challenges 

Benefits: 1) The current source keeps the gate current at relatively high level during the 

switching transient. It shortens the long voltage fall/ rise time caused by the small transconductance 

and high Miller voltage of the SiC MOSFET with conventional VSG. As a result, the switching 

loss is significantly reduced. 

2) The utilization of bi-directional switches enables constant current source during the whole 

switching transient and is suitable for discrete SiC MOSFETs with large internal gate resistance. 

3) The gate current can be tuned by changing the pre-charging time. It provides the potential 

for more flexible and intelligent control strategies like di/dt and dv/dt control to better utilize and 

protect the SiC MOSFET. 

4) The control of the switches turns the gate drive from current source to voltage source after 

the switching transient of the SiC MOSFET. The inductor and gate current keep at zero in steady 

state to eliminate circulating current and extra loss. 
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5) The stored energy in the inductor can return to the source of the gate drive after the 

switching transient, which avoids increasing the gate drive loss. 

Challenges: 1) The introduction of the bi-directional switches disables the automatic change 

from CSG to VSG after the switching transient. Thus, the proposed CSG requires accurate time 

control to turn it to be VSG so that the gate is not over-charged/ discharged at different DC bus 

voltage and load conditions. 

2) With the increased dv/dt, the overvoltage and cross-talk of the MOSFET during a switching 

transient increases. In addition, higher dv/dt can lead to higher noise and increase EMC. Therefore, 

the trade-off between switching speed, device reliability and noise should be balanced for real 

applications. 

4.3 Experimental Results 

The discrete SiC MOSFET from Wolfspeed in Table 3-3 is selected to test the proposed CSG. 

A conventional VSG is also tested with the same SiC MOSFET for comparison. The internal gate 

resistance of the MOSFET is 10.5 Ω. To make a fair comparison, the power supply of both gate 

drives is +15/-4 V. Zero external gate resistance is applied for the conventional VSG, and the gate 

current of the proposed CSG is set to be 1.4 A so that both gate drives have similar initial gate 

current. 

Fig. 4-12 demonstrates the picture of the proposed CSG. It can be seen that the inductor is 

small and does not impact the size of the gate drive. A DPT is implemented to evaluate the 

switching performance of both gate drives, and a similar platform is adopted as shown in Fig. 3-7. 

The tested gate-source voltage of S1 to S4 and gate inductor current iL in the proposed CSG is 

plotted in Fig. 4-13. Compared with Fig. 4-5, it can match well with the theoretical analysis. 



69 
 

 

Fig. 4-12. Prototype of proposed CSG. 

 

Fig. 4-13. Tested control signals of CSG. 

 

Fig. 4-14 and Fig. 4-15 illustrate the tested switching waveforms of the instantaneous power, 

drain current and drain-source voltage with both gate drives at 500 V bus voltage and 30 A load 

current condition. Clearly, the switching time decreases with the proposed CSG during turn-on 

transient, and voltage fall time reduces significantly. From the shaded area of the instantaneous 

power, the turn-on loss has great improvement. The penalty is that because of the higher dv/dt, the 

overvoltage of the upper MOSFET increases from 106 V to 375 V. The turn-off loss and time also 
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Fig. 4-14. Tested turn-on waveform of vds and id at 500 V, 30 A. 

 

Fig. 4-15. Tested turn-off waveform of vds and id at 500 V, 30 A. 

 

decrease with the proposed CSG but the overvoltage of the lower MOSFET does not increase. 

This is mainly because the displacement current during turn-off cannot exceed the load current. 

Thus, the voltage rise time is limited by the load current rather than the gate drive capability, which 

prevents the drain-source voltage from increasing. 
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The gate voltage and current waveform at 500 V bus voltage and 30 A load current condition 

with the proposed CSG is shown in Fig. 4-16. Due to the large internal gate resistance, the real 

gate voltage cannot be directly monitored. With the measured external gate voltage vgs(ext) and the 

gate current ig, the real gate voltage can be calculated by (4-2) and is drawn as a blue dashed line. 

The inductor current iL is also plotted for reference. Although the external gate voltage exceeds 

the maximum gate voltage of the MOSFET (+19/-8 V), the real gate voltage is beneath the 

limitation. However, the margin of gate voltage is very small due to the parasitic ringing. How to 

avoid the gate overvoltage, accurately control the gate drive to turn to voltage source, and protect 

the MOSFET can be an issue and requires more attention for the CSG. 

Fig. 4-17 shows the tested switching time with the conventional VSG and the proposed CSG 

at different load conditions. From Fig. 4-17(a), the voltage fall time at full load with the proposed 

CSG is 6.8 ns while that with the conventional VSG is 25.6 ns. The total turn-on switching time 

decreases from 34.6 ns to 11.4 ns with the proposed CSG. In addition, Fig. 4-17(a) can match with 

the trend in Fig. 4-7, which verifies the theoretical analysis. 

In Fig. 4-17(b), the turn-off switching time decreases from 15.2 ns to 7.6 ns at full load with 

the proposed CSG. Comparing the turn-on and turn-off time, the improvement in turn-on time is 

better due to two main reasons. 

First, a negative voltage (e.g. -4 V) is supplied to the gate of the device during turn-off. Since 

the Miller voltage is relatively high as previously discussed, the gate current during the turn-off 

transient is higher than during the turn-on with the conventional VSG, which makes the turn-off 

process faster than the turn-on process. 
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Fig. 4-16. Waveform of gate voltage and current with proposed CSG at 500 V, 30 A. 

 

(a)                                                                          (b) 

Fig. 4-17. Comparison of tested switching time at different load conditions. 
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Second, the voltage rise time during the turn-off transient is influenced by not only the gate 

current charging the transfer capacitance, but also the load current charging the output capacitance. 

At light load condition, the voltage rise time is dominated by the load current instead of the gate 

current, so both drive technologies show similar voltage rise time in Fig. 4-17(b). As the load 

current increases, the voltage rise time with the conventional VSG is determined by the gate drive 

current. But for the proposed CSG with much higher gate current, the voltage rise time is still 

dominated by the load current. On the contrary, the voltage fall time during turn-on is independent 

of the load current with the proposed CSG, which is verified in Fig. 4-17(a) and can help to achieve 

larger turn-on time reduction. As a result, increasing gate current has more significant 

improvement for turn-on time than turn-off time.    

Fig. 4-18 plots the switching loss at different load conditions. The switching loss with the 

proposed CSG at full load is 148 μJ, which is less than one third of the loss with the conventional 

VSG. The trend can match with the switching time curve in Fig. 4-17. Note that the switching loss 

with the proposed CSG can be further reduced by increasing the gate current as long as the 

overvoltage is within an acceptable range.          

Fig. 4-19 presents the overall performance comparison between the conventional VSG and 

the proposed CSG. The smaller area means better overall performance, and the characteristics of 

the proposed CSG are normalized to 1. The proposed CSG can provide significantly shorter 

switching time and lower switching loss. The only drawback is the higher overvoltage especially 

on the upper MOSFET, which is the common trade-off to pursue higher switching speed in hard 

switching applications. 
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Fig. 4-18. Comparison of tested switching loss at different load conditions. 

 

Fig. 4-19. Performance comparison between conventional VSG and proposed CSG. 

 

4.4 Conclusion 

To increase the switching speed of SiC discrete MOSFETs, it is desired to increase the gate 

current during the switching transient. However, due to the high Miller voltage and internal gate 

resistance of the discrete device, the gate current with the conventional VSG and existing CSG is 

limited, and the voltage fall time during turn-on transient is dominant. 
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By introducing a bi-directional switch to the gate drive circuit, a CSG is proposed that can 

achieve constant gate current during the whole switching transient regardless of the influence by 

the large gate resistance. The external gate voltage can be higher than the gate drive supply voltage 

without being clamped. After the switching transient, the CSG is controlled to turn to VSG to 

avoid the gate over-charge and discharge. The detailed operating principles and the design of 

parameters, especially the inductance, are discussed. There is a trade-off between keeping the 

constant gate current and realizing the fast response time of the CSG, and the parameters should 

be selected based on the application requirements. 

A comparison is made between the conventional VSG and proposed CSG with double pulse 

tests. The results show that the turn-on and turn-off times are shortened by 67% and 50%, 

respectively, with the proposed CSG at full load condition. A switching loss reduction of 68% is 

achieved by the proposed CSG in comparison with the conventional VSG. 
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5 Charge Pump Gate Drive 

This chapter presents a charge pump gate drive (CPG) designed for SiC discrete MOSFETs 

that can increase the turn-on switching speed and loss. First, the limitations of the proposed CSG 

in the last chapter are analyzed. The derivation of the proposed CPG is introduced in detail, and 

the operation principles are evaluated. The design procedure is given, and the switching and gate 

drive loss calculation is presented and compared with the conventional VSG to show the 

superiority of the CPG. In addition, the benefits as well as the challenges of applying the proposed 

CPG is summarized. The effectiveness of the CPG is verified with experimental results. 

This part of work is published in the conference paper [139]. 

5.1 Limitation of Current Source Gate Drive 

In the last chapter, a CSG that can keep the gate current constant throughout the switching 

transient is proposed. Nevertheless, it has the following constraints, which limits its 

implementation in real applications. 

1) It requires accurate timing control to avoid the overcharging issue. In real applications, the 

switching time is influenced by the load current and bus voltage. As a result, the time to turn the 

CSG back to VSG has to be tuned, which is difficult to realize. 

2) The CSG relies on an inductor to generate the required gate current. Although the inductor 

does not occupy much space on the PCB, it is difficult to be integrated into gate drive chips. 

3) The required bi-directional switches as well as the inductor in the circuit make the gate 

drive complicated and difficult to be integrated. 
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In general, although the proposed CSG achieves considerable switching loss reduction, it is 

still desired to develop a gate drive circuit that can meet the compact, reliable and low cost 

requirements of the gate drives for SiC MOSFETs, especially for discrete devices. From device 

datasheets and the reported testing results, the turn-on loss is the dominant part in switching loss 

[52], [81], [128], [135], [140]. Therefore, turn-on loss is the main target to be reduced compared 

with the turn-off loss. 

5.2 Proposed Charge Pump Gate Drive 

5.2.1 Topology Derivation 

Considering the switching process, there are two main requirements for the gate drive. First, 

it should provide sufficient gate current during the switching transient to shrink the switching time. 

Second, the gate voltage should be kept under the rating of the MOSFET in both transient and 

steady state. As mentioned above, the gate drive supply voltage cannot be too high mainly due to 

the second requirement. However, as shown in Fig. 5-1, the dynamic supply voltage vp can be 

higher than the gate voltage rating during the switching transient since it takes time for gate voltage 

vgs to increase. As long as vp drops back to the normal value Vdr (lower than the gate voltage rating) 

before vgs approaches Vdr, there is no risk of overcharging the gate. 

In [37], [39], [141], [142], four-level gate drives (4LG) were adopted to achieve such function. 

A typical 4LG as well as its operating waveform are shown in Fig. 5-2. Two power supplies and 

two half-bridges provide four different gate drive voltages, namely Vp, Vp-Vn, 0 and –Vn. During 

the turn-on switching transient, Vp is used to enhance the turn-on speed. In steady state, the voltage 

drops to (Vp-Vn).  
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Fig. 5-1. Ideal supply voltage of gate drive. 

 

Fig. 5-2. Four-level gate drive circuit and operating waveform. 

 

However, such 4LG has two drawbacks. First, due to the limited negative gate voltage rating, 

Vn (e.g. 5 V) is usually much lower than Vp (e.g. 20 V). As a consequence, the voltage enhancement 

during the turn-on transient is limited. To further increase the voltage, additional power supplies 

or transformers are required [39], which significantly increase the complexity and cost of the gate 

drive. 

Second, the voltage shift from Vp to (Vp-Vn) requires an accurate control signal to avoid gate 

overvoltage, which not only increases the complexity of the circuit, but also cannot adaptively fit 

for different load and bus voltage conditions, where the switching transient time changes. 
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Therefore, the required gate drive should have the ability to automatically change the voltage level 

and guarantee that the gate voltage is always lower than the rating. 

With the aforementioned idea and requirements, Fig. 5-3 shows the proposed charge pump 

gate drive. It consists of two main parts: a charge pump circuit and a typical voltage source gate 

drive. The charge pump utilizes the flying capacitor structure, which consists of a pair of 

MOSFETs M1 and M2, two diodes D1 and D2, and two capacitors Cf and Cp. Cf is the flying 

capacitor while Cp is the charge-storage capacitor. The VSG is a totem-pole bridge including two 

MOSFETs MH and ML. Rg(ext) is the external gate resistance, while Rg(int) is the internal gate 

resistance. vp is the voltage across Cp, which is also the gate drive output voltage. The power supply 

Vdr is connected with M1 and M2. Another power supply Vn provides the required negative voltage 

across the gate-source during the OFF state. 

5.2.2 Operating Principle 

During one typical turn-on switching period, there are five modes, and the key waveforms are 

illustrated in Fig. 5-4, which includes the charge pump control signal Sc, gate drive output control 

signal Sg, the flying capacitor voltage vf, the pump capacitor voltage vp, the gate current ig, the 

external and real gate-source voltage vgse and vgs. The equivalent circuit in each subinterval is 

plotted in Fig. 5-5, and the operation during the turn-on transient is briefly explained as follows. 

1) Subinterval 1 (t0-t1): OFF steady state. Before t1, both Sc and Sg are in low level, and M2 and 

ML are in ON state. In this state, both vf and vp equal to Vdr and do not change if the forward voltage 

drop of D1 and D2 is neglected. The gate drive output is low to keep the SiC MOSFET in OFF state. 

2) Subinterval 2 (t1-t2): voltage pump state. At t1, Sc changes to high level, and M1 is turned 

on. As a result, D1 conducts while D2 is off. The flying capacitor Cf transfers energy to the charge- 
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Fig. 5-3. Circuit of proposed CPG. 
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Fig. 5-4. Operation waveforms of proposed CPG. 

 

storage capacitor Cp. Assuming the energy transfer is lossless, the relationship between vp and vf 

at t2 can be expressed as: 
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Fig. 5-5. Equivalent circuits in different subintervals of proposed CPG. 

(a) Subinterval 1. (b) Subinterval 2. (c) Subinterval 3. (d) Subinterval 4. (e) Subinterval 5. 

 

If the capacitance Cf is much higher than Cp, the voltage drop on vf can be neglected, and vp(t2) 

is pumped to 2Vdr. Note that since the energy directly flows from one capacitor to the other, this 
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time period can be very short. By the end of this subinterval, the required high supply voltage is 

established.  

3) Subinterval 3 (t2-t3): standby state. At t2, Sc is pulled down to turn on M2 and turn off M1. 

In such case, D1 is off as vp is higher than vf. Because part of the energy on Cf is given to Cp, D2 

conducts and the power supply Vdr charges Cf. In this state, Cp is disconnected from Cf, and vp 

remains constant at high voltage level. Note that this subinterval can also be very short as long as 

D1 is off before the gate drive output signal Sg becomes high. The gate drive output is still low, 

and the SiC MOSFET is in OFF state. 

4) Subinterval 4 (t3-t4): gate-charging state I. At t3, Sg turns to high, and the gate drive starts 

to provide current to charge the SiC MOSFET gate capacitance. Because vp approximately equals 

to 2Vdr at the beginning of this state, the gate current can be enhanced compared with the 

conventional VSG. The gate voltage vgse starts to increase from –Vn, and the SiC MOSFET is 

turned on when the gate threshold voltage Vth is reached. As Cp is disconnected with Cf and Vdr, 

there is no source to provide energy to charge Cp. Therefore, vp keeps decreasing during the 

charging process, and the gate voltage approaches to vp in the end. By tuning the external gate 

resistance Rg(ext), the decreasing rate of vp can be regulated, which enables the change of switching 

speed like a typical VSG. 

The key point of this CPG is that the capacitance Cp should be selected to guarantee that vp 

can finally reach Vdr. If Cp is too large and has too much stored energy, the steady state vp after the 

gate charging process can be higher than Vdr, which results in overcharging. The detailed analysis 

of Cp calculation is provided in Section V. It should be noted that the external gate-source voltage 

vgse can be dynamically higher than (Vdr-Vn) because of the internal gate resistance of the SiC 

MOSFETs. However, the real gate-source voltage keeps increasing and does not exceed (Vdr-Vn). 



83 
 

5) Subinterval 5 (t4-t5): gate-charging state II. vp reaches Vdr at t4, and the gate voltage is still 

increasing. D1 conducts to connect Cp with Vdr. Hence, Vdr directly provides energy to charge the 

gate, and the gate drive becomes a typical VSG throughout the rest of the MOSFET ON state. 

The turn-off process of the proposed CPG is the same as a typical VSG since the turn-off loss 

is not as large as the turn-on loss. However, the same circuit can also be adopted to reduce the 

turn-off loss. 

5.2.3 Benefits and Challenges 

Benefits: 1) the pumped gate drive output voltage enables higher gate current that charges the 

gate capacitance during the turn-on switching transient compared with the conventional VSG. As 

a result, the turn-on switching loss is reduced. 

2) The pumped voltage naturally drops back to normal gate supply voltage without any 

additional control, which avoids overcharging and has a simple gate drive structure at the same 

time. 

3) The proposed CPG is still a voltage source based gate drive, and the implementation is the 

same as a typical VSG for the end-user. The SiC MOSFET turn-on switching speed can be easily 

tuned by changing the external gate resistance. Thus, it is convenient to replace the conventional 

VSG in power converters with the proposed CPG. 

4) The energy transfer time is short between capacitors, resulting in a short charge pump time. 

Therefore, the time delay between PWM signal and device turn-on is reduced. 

5) No extra power supply is required compared with a conventional VSG, which keeps costs 

low. 

6) No inductor is required, which makes the proposed CPG easy for integration. 
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7) The control signals of the transistors share the same ground, which avoids complex level 

shifters or floating drives.  

Challenges: 1) the drop of the gate drive output voltage is determined by the charge-storage 

capacitor value Cp. Thus, Cp needs to be carefully selected considering the gate capacitance Cgs. If 

Cp is too large, the pumped voltage cannot decrease to the normal voltage Vdr, which can introduce 

overcharging. Otherwise, if Cp is too small, the pumped voltage reduces too quickly during the 

switching transient, which deteriorates the switching speed improvement. 

2) The increased turn-on speed results in higher dv/dt, leading to more significant influence 

from parasitics. For example, higher drain-source overvoltage and cross-talk phenomenon can 

occur on the synchronous device, and EMI can become worse. These side effects from increasing 

the switching speed should be taken into consideration when applying the proposed CPG. 

5.2.4 Parameter Design and Selection 

5.2.4.1 Capacitance Design 

As mentioned above, the key point in designing the proposed CPG is to select the proper 

capacitance Cp. Fig. 5-6 shows the waveforms of the pumped voltage vp and the external gate to 

ground voltage (vgse+Vn) with different Cp. The equivalent circuit after the SiC MOSFET turns on 

is also plotted. During the turn-on transient, Cp transfers charge to Cgs. In the end, the voltage 

across the two capacitances is the same. The main difference is whether vp can drop to Vdr to 

conduct D1 and D2, and it is determined by the relationship between Cp and Cgs. 

If Cp is too small, as shown by the blue line in Fig. 5-6, there is not sufficient stored charge 

for Cgs. As a result, vp decreases quickly and reaches Vdr even when (vgse+Vn) is still low. Then the  
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Fig. 5-6. Voltage waveforms during turn-on transient and equivalent circuit with different Cp. 

 

required charge is provided by Vdr, and the gate drive is the same as the conventional VSG. In this 

case, the switching speed improvement is limited. 

On the other hand, oversized Cp can have severe consequences. As shown by the red line, vp 

drops slowly as Cp has more stored charge. In the end, (vgse+Vn) rises higher than Vdr, which results 

in overcharging and can cause reliability issues for the gate of the SiC MOSFET. 

The ideal case is shown by the green line. vp reduces to Vdr at the same time when (vgse+Vn) 

reaches vp. Under this circumstance, no overcharging occurs, and the switching speed 

improvement is maximized. The following calculation presents how to select such proper Cp. 

Once MH is turned on, part of the charge stored in Cp is used to charge the output capacitance 

of ML, which is represented as CossL. Then the output of the gate drive becomes high level, and Cp 

provides charge to the gate capacitance Cgs to turn on the SiC MOSFET. After the drain current of 

the SiC MOSFET rises to the load current, the gate current discharges the transfer capacitance Cgd 

of the SiC MOSFET and decreases the drain-source voltage. Therefore, if D1 and D2 do not conduct, 

and Vdr does not provide energy to Cp, the charge in Cp is transferred to the gate capacitance Cgs, 

the transfer capacitance Cgd of the SiC MOSFET, and the output capacitance CossL of ML: 
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p gs gd ossLQ Q Q Q= + +   (5-2) 

where Qp is the lost charge in Cp, Qgs and Qgd are the gate-to-source charge and gate-to-drain 

charge of the SiC MOSFET, and QossL is the received charge of CossL during the turn-on transient. 

When the gate voltage goes into steady state at tb in Fig. 5-6, the relationship between vp and 

the gate voltage is: 

 ( ) ( )p b gs b n drv t v t V V= + =   (5-3) 

Therefore, the charge transfer during the turn-on transient is derived as: 

 

0

_

p gsossL
p n dr
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dc

gd Q

Q QQ
V V V

C C C

Q
V

C


− = = + =



 =



  (5-4) 

where Vp0 is the initial voltage of vp, which is approximately 2Vdr. Vdc is the DC bus voltage, and 

Cgd_Q is the charge equivalent transfer capacitance of the SiC MOSFET at Vdc. Thus, the required 

Cp can be calculated as: 

 
( ) _gs dr n gd Q dc oss dr

p

dr

C V V C V C V
C

V

− + +
=   (5-5) 

Note that this is the maximum Cp that can be used to avoid overcharging. To leave some 

margin, the selected Cp should be a little lower than the calculated value from (5-5). 

In terms of Cf in Fig. 5-3, as mentioned in above, it should be much higher than Cp. In practice, 

choosing a Cf that is 50 times higher than Cp should be enough. 
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5.2.4.2 Signal Generation 

The proposed CPG only needs two control signals, and they can be easily realized with one 

PWM input signal and some logic gates.  

The realization of the logic signals to control the proposed CPG is shown in Fig. 5-7. The 

delay units can be simply implemented with RC filters with different values. Two logic integrated 

circuits are used to generate the required signals. Thus, the control signal generation is simple, and 

the units can be easily integrated. The logic waveforms for the control signals are illustrated in Fig. 

5-8. 

5.2.5 Loss Analysis 

5.2.5.1 Switching Loss 

To simplify the loss analysis, the drain current and the drain-source voltage during the 

switching transient can be approximately regarded as linearly increasing or decreasing. Therefore, 

the switching loss can be indicated by comparing tcr and tvf with different gate drives. 

The turn-on transient starts at t3 in Fig. 5-4. From t3 to t3.2, vp decreases while vgs increases, 

and the equivalent circuit is plotted in Fig. 5-9(a). The initial voltage of vp and vgs is 2Vdr and –Vn, 

respectively. The voltage relationship in the gate loop can be written as: 

 
0 0

1 1
2 ( ) ( ) ( )

t t

dr g g g g

p gs

V i t dt R i t i t dt
C C

− = +    (5-6) 

where Rg is the sum of Rg(ext) and Rg(int). 
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Fig. 5-7. Control logic implementation. 
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Fig. 5-8. Control logic waveforms. 
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Fig. 5-9. Equivalent circuit of gate loop during turn-on transient. (a) t3 to t3.2. (b) t3.2 to t3.3. 

 

The gate current can be calculated as: 

 
2 1

( ) expdr
g

g g e

V
i t t

R R C

 
= −  

 

  (5-7) 

where Ce is the equivalent capacitance in the gate loop: 
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1

 
1 1

p gseC C C
= +   (5-8) 

vp and vgs during the charging are: 
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The current rise time tcr is from t3.1 to t3.2. At t3.1, vgs equals to the threshold voltage Vth. At t3.2, 

vgs equals to the Miller voltage Vmil. With (5-10), the time interval from t3.1 to t3.2 can be calculated 

as: 
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  (5-11) 

where Vmil is related to the load current IL and the transconductance of the SiC MOSFET gm: 

 L
mil th

m

I
V V

g
= +   (5-12) 

Starting from t3.2, the gate current discharges the transfer capacitance Cgd, and the gate voltage 

is clamped at Vmil. The equivalent circuit changes to Fig. 5-9(b). The voltage relationship is: 

 ( )3.2
0

1
( ) ( )

t

p g g g mil n

p

v t i t dt R i t V V
C

− = + +   (5-13) 

The initial voltage of vp at t3.2 can be calculated by (5-9): 

 ( )
( )

3.2 2
mil n gs

p dr

p

V V C
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C

+
= −   (5-14) 
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The gate current is derived as: 

 0 1
( ) expg

g g p

V
i t t

R R C

 
= − 

 
 

  (5-15) 

where V0=vp(t3.2)-Vmil -Vn. 

The gate drive output voltage vp is: 

 ( ) ( )3.2 3.2
0

1 1
( ) ( ) exp

t

p p g p

p g p

v t v t i t dt v t t
C R C

 
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During the voltage fall time tvf from t3.2 to t3.3, the voltage across the transfer capacitance 

decreases from Vdc to around zero. The process is expressed as: 

 
0

1
( )

vft

g dc
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i t dt V
C

=   (5-17) 

Substituting (5-15) into (5-17), the voltage fall time can be calculated: 
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  (5-18) 

In terms of the conventional VSG, the current rise time tcr and voltage fall time tvf are given 

by (3-3) and (3-5), respectively. 

Based on the calculation above, the turn-on switching time is calculated for a 1.2 kV, 30 A 

SiC MOSFET [140] with zero external gate resistance, and the results at different load conditions 

are plotted in Fig. 5-10. Both the current rise time and voltage fall time achieve significant 

improvement especially at high load currents. Compared with the conventional VSG, the total 

turn-on switching time is reduced by 60% at full load with the proposed CPG. Thus, lower turn-

on switching loss is achieved. 
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Fig. 5-10. Turn-on switching time comparison between conventional VSG and proposed CPG 

under different loads. 

 

5.2.5.2 Gate Drive Loss 

The gate drive loss of the proposed CPG is mainly generated in two intervals. First, energy is 

lost when Cp is pumped up by the flying capacitor Cf. Second, during the turn-on transient, all the 

transferred energy from Cp to Cgs, Cgd, and CossL is dissipated. 

Assuming Cf is much larger than Cp, during the charge pump state from t1 to t2 in Fig. 5-4, vp 

increases from Vdr to 2Vdr. Cf can be regarded as a constant voltage source, and vf does not change. 

According to the energy transfer theory, the amount of energy transferred to the capacitor equals 

to the amount of energy dissipated in the circuit. Thus, the energy loss during this period is written 

as: 

 ( )
2 2 2

1

1 1 3
2

2 2 2
g p dr p dr p drE C V C V C V= − =   (5-19) 

During the turn-on transient, the initial and final voltage of vp is 2Vdr and Vdr, respectively. 

Therefore, the energy loss Eg2 is the same as Eg1. Neglecting the loss in other parts of the CPG, the 

total gate drive loss during one switching period is: 
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2

( ) 3g CPG p drE C V=   (5-20) 

In terms of the conventional VSG, the gate drive loss is calculated by: 

 ( )g VSG dr gE V Q=   (5-21) 

where Qg is the total gate charge of the SiC MOSFET, which usually can be obtained from the 

device datasheet. 

With the same SiC MOSFET used in Fig. 5-10, the gate drive loss of the proposed CPG is 

calculated to be 1.7 μJ, while that of the conventional VSG is 1.0 μJ. Therefore, the gate drive loss 

increases with the proposed CPG. However, the typical switching loss of the SiC MOSFET is 

higher than 100 μJ. Thus, the increased gate drive loss can be neglected compared to the reduction 

of the turn-on switching loss with the proposed CPG. 

5.3 Experimental Results 

The proposed CPG is developed, and the components and parameters used for the gate drive 

are listed in Table 5-1. The prototype is shown in Fig. 5-11. Note that the charge pump part only 

accounts for a small portion of the PCB. The CPG can change to a conventional VSG by disabling 

the signal Sc. Thus, comparison experiments can be conducted for both the proposed CPG and 

conventional VSG on the same gate drive board. Double pulse test (DPT) is implemented to 

evaluate the performance of the SiC MOSFETs with the proposed CPG. Fig. 5-12 illustrates the 

testing platform of the DPT. 

To comprehensively investigate the performance of the proposed CPG, two SiC MOSFETs 

from different manufacturers are tested. The device parameters are listed in Table 5-2. To leave 

enough margin for the drain-source voltage and avoid the influence of cross-talk from the upper 
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Fig. 5-11. Prototype of proposed CPG. 
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Fig. 5-12. Testing platform. 

 

Table 5-1. Components and parameters of CPG. 

M1, M2 

SI4599 

P and N channel 

MOSFETs, Vishay, 

40 V, 5 A 

MH, ML 

SI4559 

P and N channel 

MOSFETs, Vishay, 

60 V, 4 A 

D1, D2 

SS24 

Schottky diode, ONSemi, 

40 V, 2 A 

Cp Calculated with (5-5) 

Cf Around 50 x Cp 
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device, a 1.7 kV SiC Schottky diode (C3D25170H from Wolfspeed) is used as the upper device 

(synchronous switch). 

The basic charge pump function of the proposed CPG is evaluated first. Based on the 

calculation from (5-5), Cp should be 1.7 nF for the tested SiC MOSFET. Fig. 5-13 shows the tested 

pumped voltage and external gate voltage with different Cp values for Device A, which has 1.4 nF 

gate capacitance. When Cp is 370 pF, vp decreases quickly while (vgse+Vn) rises slowly, resulting 

in higher switching loss. When Cp is 3.4 nF, the final static gate-source voltage vgse is 21 V, which 

exceeds the gate voltage rating of the tested SiC MOSFET (19 V). When Cp is 1.8 nF, however, 

the final static voltage is the same as the blue curve, which equals to Vdr, and the gate voltage rises 

much more rapidly than the blue curve. Note that (vgse+Vn) can be higher than vp because the SiC 

MOSFET has 10.5 Ω internal gate resistance, while the external gate resistance is zero. The 

capacitance value in this case is slightly higher than the calculation result (1.7 nF) from (5-5). It is  

Table 5-2. Parameters of tested SiC MOSFETs. 

 Device A Device B 

Part No. C3M0075120K SCT3030KL 

Manufacturer Wofspeed Rohm 

Packaging TO-247 4pin TO-247 3pin 

Voltage 1.2 kV 1.2 kV 

Current 30 A 72 A 

Rg(int) 10.5 Ω 5 Ω 

Cgs 1.4 nF 2.2 nF 

Cgd_Q 8.7 pF 98 pF 

Vdr 19 V 18 V 

Vn 4 V 0 
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Fig. 5-13. Tested waveforms of pumped voltage and external gate voltage with different Cp. 

 

mainly because the calculation neglects the energy loss during the charge transfer. Generally, the 

testing result can match well with the analysis in Fig. 5-6.       

The switching speed of the SiC MOSFET can be tuned by changing the external gate 

resistance. Fig. 5-14 illustrates the tested pumped voltage and external gate voltage with different 

Rg(ext) when Cp is 1.8 nF. The gate voltage rises slower with larger Rg(ext). Therefore, the usage of 

the CPG is the same as a conventional VSG, and the switching speed can be easily regulated. 

Remarkably, the steady state vp is independent of Rg(ext), and it always approaches to Vdr. 

The tested turn-on transient waveforms with the proposed CPG and the conventional VSG for 

Device A are plotted in Fig. 5-15(a). Both gate drives utilize zero external gate resistance. Clearly, 

both the current rise time and voltage fall time are greatly reduced, which indicates much faster 

switching speed with the proposed CPG. The shaded area of the instantaneous power suggests that 

the turn-on switching loss is also significantly decreased. Fig. 5-15(b) demonstrates the transient 

waveforms of the proposed CPG with different external gate resistances. By increasing the 

resistance, the switching speed is slowed. Detailed data analysis will be presented in next 

subsection. 
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Fig. 5-14. Tested waveforms of pumped voltage and external gate voltage with different Rg(ext). 
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(a)                                                                        (b) 

Fig. 5-15. Tested turn-on transient waveforms for Device A at 500 V, 30 A. 

(a) Comparison between CPG and VSG with zero Rg(ext). (b) CPG with different Rg(ext). 

 

Fig. 5-16(a) and (b) show the tested waveforms for Device B. Similar to the result for Device 

A, the proposed CPG can achieve much higher switching speed. 

The comparison of the turn-on time and loss for Device A is given in Fig. 5-17. The proposed 

CPG with various Rg(ext) and the conventional VSG with zero Rg(ext) are illustrated. In addition, the 
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(a)                                                                        (b) 

Fig. 5-16. Tested turn-on transient waveforms for Device B at 500 V, 65 A. 

(a) Comparison between CPG and VSG with zero Rg(ext). (b) CPG with different Rg(ext). 

 

result with the current source gate drive (CSG) in last chapter is included since it is tested with the 

same SiC MOSFET and under the same operating conditions. From Fig. 5-17(a), with zero Rg(ext), 

the proposed CPG can achieve 67.4% reduction in turn-on switching time comparing with VSG. 

Moreover, the turn-on time of the CPG is even less than that of the CSG, where constant gate 

current is provided. As the external gate resistance increases, the switching time of the CPG 

increases. Nevertheless, until Rg(ext) reaches 15 Ω, the turn-on time of the CPG is lower than the 

VSG with zero Rg(ext). 

The turn-on loss exhibits a similar trend. At full load and with zero Rg(ext), the CPG has a 71.7% 

reduction in turn-on loss compared with the VSG, and a 29.4% reduction compared with the CSG. 

The average di/dt and dv/dt during the switching transient are plotted in Fig. 5-17(c) and (d). 

The di/dt with zero Rg(ext) at full load condition is 2.4 times of the VSG, and the achieved maximum 

di/dt is 8.6 A/ns. The dv/dt is 3.0 times higher than the VSG with a maximum value of 63.2 V/ns. 
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(c)                                                                        (d) 

Fig. 5-17. Performance comparison of proposed CPG with different Rg(ext), VSG and CSG for 

Device A. (a) Turn-on time. (b) Turn-on loss. (c) Average di/dt. (d) Average dv/dt. 

 

Similarly, significant improvement is shown with Device B, as illustrated in Fig. 5-18. The 

proposed CPG achieves 69.5% decrease of the turn-on time and 67.9% decrease of the turn-on loss 

at full load and with zero Rg(ext). The corresponding di/dt and dv/dt is 4.0 and 2.6 times higher than 

the VSG, and the maximum value is 12.3 A/ns and 28.7 V/ns, respectively. 

Despite the higher switching speed, there are also challenges when utilizing the proposed CPG. 

As can be observed from Fig. 5-15(a) and Fig. 5-16(a), the turn-on drain-source overvoltage across  
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(c)                                                                        (d) 

Fig. 5-18. Performance comparison of proposed CPG with different Rg(ext), VSG and CSG for 

Device B. (a) Turn-on time. (b) Turn-on loss. (c) Average di/dt. (d) Average dv/dt. 

 

the upper devices (synchronous switch) is significantly increased because of the high switching 

speed.  

The overvoltage with different gate resistances is shown in Fig. 5-19. With zero Rg(ext), the 

overvoltage is 492 V with Device A, and 384 V with Device B. In hard switching applications, 

there is always trade-off between higher switching speed and the side effect resulting from 

parasitics. However, since the synchronous switch turns off with zero current, the voltage 

overshoot does not increase the overall switching loss. 
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Fig. 5-19. Turn-on drain-source overvoltage of synchronous switch with different Rg(ext). 

 

Another issue caused by the higher switching speed and parasitics is the cross-talk in a FET-

FET phase-leg architecture. To evaluate the cross-talk with the proposed CPG, the upper device is 

changed to a SiC MOSFET, which is the same as the lower device. The upper device operates as 

the active switch, and the gate voltage of the lower device is monitored. As shown in Fig. 5-20, 

with zero Rg(ext), the gate voltage of the lower device increases to 2 V during the turn-on transient 

when DC voltage is 200 V, which has the potential to cause shoot-through. With higher Rg(ext), the 

gate voltage decreases and keeps under the threshold voltage. Thus, the proposed CPG can achieve 

higher switching speed without causing shoot-through in most cases.              

In extreme cases that require ultra-fast switching speed such that zero Rg(ext) is required, anti-

cross-talk auxiliary circuits [37], [39], [143], [144] can be adopted to mitigate the issue. It is worth 

noting that the proposed CPG can also be implemented to dynamically decrease the gate voltage 

of the synchronous switch during the turn-on transient, so that the device is more difficult to be 

falsely turned on. 

Generally, higher overvoltage and worse cross-talk is the intrinsic penalty of the switching 

speed increase. However, the value of the proposed CPG is not deteriorated by these side effects. 
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Fig. 5-20. Tested cross-talk waveform for Device A with different Rg(ext). 

 

From Fig. 5-15 and Fig. 5-16, even though the gate resistance of the proposed CPG increases to 

10 Ω, the switching loss is still much lower than the conventional VSG. With such higher 

resistance, the overvoltage is within the acceptable range, and the cross-talk does not cause shoot-

through according to Fig. 5-19 and Fig. 5-20.  

In real applications, it is up to the designer to decide the proper switching speed to achieve 

good balance in different aspects of converter performance, which is the same way in the 

conventional VSG implementation. The proposed CPG provides the potential to further increase 

the switching speed and reduce the switching loss of the SiC MOSFET, which is difficult to 

achieve with the conventional VSG. 

5.4 Conclusion 

To further simplify the structure and control of the gate drive, a charge pump gate drive (CPG) 

utilizing the charge transfer is proposed in this chapter, which can dynamically increase the gate 

drive output voltage during the turn-on switching transient to increase the switching speed. With 

the proper capacitance selection for the proposed CPG, the gate drive voltage can automatically 
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drop back to the normal value without additional control, which avoids the overcharging issue and 

keeps the structure simple. 

The function of the proposed CPG is verified with double pulse tests with different load and 

external gate resistances. Two SiC MOSFETs from different manufacturers are tested and 

compared to the results with the conventional VSG. Under full load condition, the turn-on 

switching time of the CPG is decreased by 67.4% and 69.5% for the two MOSFETs, while the 

turn-on switching loss is reduced by 71.7% and 67.9%, respectively. The challenge of 

implementing the proposed CPG is the larger parasitic influence such as the overvoltage and cross-

talk caused by the higher di/dt and dv/dt with the increased switching speed. The end-user can tune 

the external gate resistance to adjust the switching speed, which is the same as a conventional VSG. 
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6 Modeling and Control of Overvoltage in Three-Level Active Neutral Point 

Clamped Converters 

The main hurdle to increase the switching speed in high current SiC power modules is the 

overvoltage induced by circuit parasitics. This chapter presents the analytical model for the device 

drain-source overvoltage related to the two commutation loops in three-level active neutral point 

clamped (3L-ANPC) converters. State space analysis is implemented to build the model. Based on 

the model, the overvoltage of both the high and line switching frequency devices is analyzed and 

discussed in detail. Furthermore, a modified modulation is developed to mitigate the influence of 

the non-linear output capacitance and thus reduce the overvoltage. The model as well as the 

modified modulation is verified with the experimental results based on a 500 kVA 3L-ANPC 

converter.  

This part of work is published or accepted in the journal and conference papers [77], [145], 

[146]. 

6.1 Introduction of 3L-ANPC Converter 

6.1.1 Topology and Merits 

Compared to the conventional two-level (2L) converters, three-level (3L) converters own the 

merits of lower device voltage rating, better harmonic spectrum, lower EMI noise, higher 

switching speed capability, and better dynamic response [147], [148]. Among the 3L converter 

topologies, the neutral point clamped (NPC) converter is one of the popular candidates for medium 

voltage and high power applications such as grid tied solar inverters, motor drives, and electric 

transportation systems. In applications requiring higher efficiency or flexible control, the active 

neutral point clamped (ANPC) converter is proposed by replacing the diodes in the NPC converter 
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with the active switches like MOSFETs or IGBTs [149-151]. The topology of a 3L ANPC 

converter is plotted in Fig. 6-1. 

6.1.2 Modulation Schemes 

According to the switch states transition, there are two main types of fundamental modulation 

schemes for a 3L-ANPC converter single phase leg. For the modulation 1 in Fig. 6-2(a), during 

half line period, the outer switch (S1L) and the clamping switch (S3L) operate complementarily at 

high switching frequency. The inner switches (S2H and S2L) also operate complementarily but at 

line switching frequency [74], [152-156]. As a result, the high switching speed commutation 

occurs between the outer and clamping switches (S3L and S1L), and the commutation loop only 

includes these two switches. Compared with the other modulation scheme, it involves fewer 

switches and has a shorter loop length. Therefore, the loop in modulation 1 is called the short loop. 

Note that in the other half phase leg, the non-active clamping switch (S3H in Fig. 6-2) is kept in 

ON state to provide constant potential for the non-active outer and inner switches (S1H and S2H in 

Fig. 6-2). 

The other modulation scheme (modulation 2) is drawn in Fig. 6-2(b). In contrast with the 

modulation 1, the inner switches continuously operate at high switching frequency, while the outer 

and clamping switches operate at line frequency [149], [157-159]. The commutation loop contains 

four switches (S3H, S2H, S2L and S1L in Fig. 6-2(b)), and is called the long loop. There are also some 

hybrid modulations that combine these two basic schemes together but with higher complexity 

[160], [161]. 
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Fig. 6-1. Topology of 3L-ANPC converter. 

 

(a) 

 

(b) 

Fig. 6-2.  Modulation schemes for 3L-ANPC converter phase leg. 

(a) Modulation 1. (b) Modulation 2. 
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Conventionally, modulation 2 has wider implementation as only two switches operate at high 

switching frequency. However, with the increase of switching speed by SiC MOSFETs, 

modulation 1 is adopted more and more frequently because of the following reasons. 

1) Modulation 2 has longer commutation loop, which introduces more parasitic inductance. 

At the same switching speed, more inductance results in higher overvoltage across the switch. To 

avoid damaging the power device and reduce EMI noise, the switching speed has to be reduced, 

leading to higher loss. 

2) In high power applications, power modules with half bridge structure are popular for 

bridge-type topologies. With modulation 1, it is easier to achieve loss balance among three 

modules if S1H and S3H, S1L and S3L, S2H and S2L are paired. On the contrary, it is difficult to achieve 

such balance in modulation 2 because S2H and S2L always operate at high switching frequency and 

these devices bear most of the switching loss. 

6.2 Modeling of Drain-Source Overvoltage 

As shown in the analysis above, modulation 1 is more suitable for high switching frequency 

applications due to the shorter commutation loop and better loss balancing. However, as has been 

pointed out in [75-77], there is multi-commutation loop issue in 3L-ANPC converters. 

6.2.1 Loop Analysis and Equivalent Circuit 

The equivalent circuit of a phase leg in the 3L-ANPC converter is illustrated in Fig. 6-3. 

Different connecting bars and parasitic inductances are highlighted. Since S2L and S3H are on, S2H 

is equivalently paralleled with S3L. The detailed switching waveform is plotted in Fig. 6-4. Note 

that S2H is a non-active switch during a half line cycle. When the active switch S3L commutates 

with S1L, the drain-source voltage of S2H follows that of S3L. The parasitic inductance resonates  
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Fig. 6-3. 3L-ANPC converter single phase considering layout and parasitics. 

 

Fig. 6-4. Ideal switching transient waveforms when S1L is active switch. 

 

with the output capacitance of S2H. So the resonance of vds_2H is excited by the operation of S3L, 

which differs from modulation 2, where S2H is an active switch and the resonance is independent 
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of S3L. Therefore, both the short and long commutation loops exist, and there is coupled influence 

between S3L and S2H. 

Assume each busbar part is independent and is not coupled with other busbar parts, and each 

switch has the same stray inductance. The two loops share the neutral busbar, positive/negative 

busbar, the switch S1L and the DC-link capacitor. The short loop contains the switch S3L while the 

longer loop includes two pieces of middle busbar as well as the switches S3H, S2H and S2L. When 

the load current flows into the phase leg and S1L is the active switch, the equivalent circuit of the 

phase leg can be drawn in Fig. 6-5. Generally, the overvoltage during turn-on is higher than during 

turn-off [19], [29], so here the turn-on overvoltage during the transient of the active switch S1L is 

analyzed. L1 is the shared loop inductance by two loops and equals to the sum of capacitor ESL 

LC, neutral busbar inductance Lo, negative busbar inductance Ln, and one switch stray inductance 

Ls. L2 is the sum of two middle busbar inductance 2Lm and three switch stray inductance 3Ls. L3 

equals to one switch stray inductance Ls. The short loop inductance Lst is L1+L3 while the long loop 

inductance Llg is L1+L2. R1, R2 and R3 are the loop parasitic resistances. C3L and C2H are the output 

capacitances of S3L and S2H. i3 and i2 are the currents through S3L and S2H. S1L is represented as a 

controlled voltage source. 

Based on Fig. 6-5, assuming the output capacitance of the switch has a constant value, the 

gain of the drain-source voltage across two switches can be expressed as 
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where 
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Fig. 6-5. Equivalent circuit of phase leg during negative half line cycle. 
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The bode plots of the voltage gain G2H and G3L are shown in Fig. 6-6. For reference, G3L in a 

conventional 2L phase leg without the long commutation loop is also illustrated. The parameters 

are as follows: L1=4 nH, L2=15 nH, L3=1.5 nH, C3L=C2H=3.8 nF. 

It is observed that there are two resonant frequencies in the 3L phase leg: fr1 and fr2. The effect 

of the resonant frequencies can be observed in Fig. 6-7. For the high switching frequency device 

S3L, the dominant resonant frequency of the drain-source voltage is fr2, which is also close to the 

resonant frequency in a 2L phase leg. For the line switching frequency device S2H, the dominant 

resonant frequency is fr1. Generally, the line switching frequency device has lower resonant 

frequency than the high switching frequency device does. 
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Fig. 6-6. Voltage gain of line and high switching frequency devices in 3L and 2L phase leg. 

 

Fig. 6-7. Voltage response at resonant frequencies in 3L and 2L phase leg. 

 

6.2.2 Overvoltage Model Considering Non-Linear Output Capacitance 

For semiconductor power devices like MOSFETs and IGBTs, the output capacitance is non-

linear and is dependent on the drain-source voltage. Based on different semiconductor material 

and device structure, the output capacitance at low voltage can be 10-500 times higher than that at 

high voltage [162]. According to [77], the non-linearity of the output capacitance is one of the 

largest impact factor for the overvoltage. 
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Since the output capacitance is non-linear and voltage dependent, it is difficult to directly 

derive the voltage response in frequency domain like in (6-1). Here, the state space analysis is 

implemented to build the analytical voltage response model in time domain. 

First, the instantaneous voltage and current relationship in Fig. 6-5 can be derived based on 

KVL and KCL: 
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By applying the state space, (6-3) can be written in the format of 

 ( ) ( ) ( )X t AX t BU t= +   (6-4) 

X=[i3 i2 vds_3L vds_2H]T is the state vector. The analysis begins when the current commutation 

finishes and vds_1L starts to drop. At this moment, i3=i2=0 and vds_3L=vds_2H=0. So the initial state 

X0=[0 0 0 0]T. 

U=Vdc- vds_1L is the input vector. Here, vds_1L is assumed to drop linearly during turn-on 
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where Vds_1L_0 is the initial voltage of S1L and is expressed as 
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 1
_1 _ 0 1 3( ) L

ds L dc

di
V V L L

dt
= − +   (6-6) 

where i1L is the current flowing through S1L. 

A and B are state and input matrix and they can be derived as 
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where 
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1
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The voltage dependent output capacitance is modeled with the equation [163] 
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  (6-9) 

where C0v and Chv are the low-voltage and high-voltage capacitances while x and Cj are curve 

fitting coefficients. 

Fig. 6-8 compares the derived analytical voltage transient waveforms between constant and 

non-linear output capacitances. The constant capacitance uses the time related effective value 

based on the device datasheet. Obviously, the overvoltage with non-linear capacitance is much  
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Fig. 6-8. Transient waveforms with constant and non-linear capacitance based on established 

model. 

 

higher than the constant capacitance case. To predict the real condition during switching transient, 

voltage dependent non-linear capacitance has to be taken into consideration in the model. 

6.2.3 Analysis of Overvoltage with Established Model 

Based on the analytical model built above, the overvoltage of both high and line switching 

frequency switches can be evaluated. Fig. 6-9 illustrates the transient waveforms of 3L and 2L 

phase leg. Despite the influence of the non-linear capacitance, the basic trend of resonant 

frequencies analyzed in Fig. 6-6 and Fig. 6-7 is still valid. The resonant frequency of the high 

switching frequency device is close to that in a typical 2L phase leg, and is higher than the line 

switching frequency device. 

The overvoltage on both the high and line switching frequency devices should be investigated 

to understand the relationship between overvoltage and loop inductance. The overvoltage 

percentage OV(%) is defined to simplify the analysis 
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Fig. 6-9. Transient waveforms with 3L and 2L phase leg based on established model. 

 

 
_

(%) 100%
ds pk dc

dc

V V
OV

V

−
=    (6-10) 

Based on the analytical model, the relationship among the short loop inductance Lst, the ratio 

between long and short loop inductances Llg/ Lst, and OV(%) is shown in Fig. 6-10. From the plot, 

the following conclusions can be made. 

1) With the same inductance ratio of short and long loops, the increase of inductance leads to 

higher overvoltage for both the high and line switching frequency devices. 

2) Keeping the same short loop inductance, the larger long loop inductance results in higher 

overvoltage across the line switching frequency device. However, the overvoltage of the high 

switching frequency device reaches its peak when Llg/ Lst is 3-4. Further increasing the long loop 

inductance does not cause higher overvoltage. This can be explained that the increased Llg 

decouples C3L and C2H. The voltage rise on C3L is the excitation of the resonance on C2H. Larger 

Llg prevents vds_2H following the trend of vds_3L, and vds_2H in turn shows less influence on vds_3L. 
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Fig. 6-10. Overvoltage ratio of high and line switching frequency devices under different Lst and 

Llg/Lst ratio. 

 

3) When Llg/ Lst =1, the two devices have the same overvoltage, which is easy to understand. 

Generally speaking, the line frequency device exhibits higher overvoltage compared to the high 

switching frequency device especially with large Lst and inductance ratio. The only exception is 

when Lst is small (lower than 5 nH) and Llg/ Lst is 2.5-4. 

In terms of the coupling effect between the high and line frequency devices, it is also important 

to know the influence of the long loop on the switching speed of the high switching device. Fig. 

6-11 shows the voltage rise time of the high switching frequency device in 3L and 2L phase legs 

with different loop inductance ratios. The closer the two loop inductances are, the longer voltage 

rise time appears for the high switching frequency device in a 3L phase leg. The two loops have 

the strongest coupling when they have the same loop inductance value, leading to the largest 

influence on the rising speed of the voltage across the switch. From Fig. 6-11, when the loop 

inductance ratio is larger than 2.2, the voltage rise time difference between 3L and 2L phase leg is 

smaller than 10%. Considering the 3L-ANPC converter, it is common that the long loop has much 

larger parasitic inductance than the short loop does. Therefore, in most cases, the switching speed  
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Fig. 6-11. Voltage rise time difference of high switching frequency devices between 3L and 2L 

single phase. 

 

of the high switching frequency device in a 3L phase leg is not slowed down much compared with 

a 2L phase leg. 

The detailed analytical transient waveform comparison under the same short loop inductance 

is provided in Fig. 6-12. For a 2L phase leg, the voltage rise time is 15 ns. In a 3L phase leg, when 

the two loops have the same inductance, the voltage rise time is 18.5 ns, which indicates a 23 % 

increase. Meanwhile, when the long loop inductance is five times higher than the short loop 

inductance, the voltage rise time increase is less than 1 ns. 

From Fig. 6-10 to Fig. 6-12, it can be summarized that the overvoltage on the line frequency 

device is normally more severe, and the switching speed of the high switching frequency device 

is not impacted. Thus, the line switching frequency device deserves more analysis. 

Fig. 6-13 shows the relationship between the overvoltage on the line switching frequency 

device and the voltage fall time of the vds_1L as well as the long loop inductance Llg. Although the 

relationship is not purely monotonic, generally larger Llg and lower tvf_1L result in higher 

overvoltage. 
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Fig. 6-12. Voltage transient waveforms with different Llg/Lst and same Lst based on established 

model. 
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Fig. 6-13. Overvoltage of line switching frequency device under different Llg and tvf_1L. 

 

6.3 Control and Modeling with Modified Modulation 

6.3.1 Modified Modulation 

As shown in the analysis of Section 6.2.2, one of the sources for the high overvoltage is the 

non-linear output capacitance. For a typical power device, the output capacitance shown in Fig. 

6-14 can be approximately divided into two regions [66]. When the drain-source voltage is low,  
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Fig. 6-14. Non-linear output capacitance of 900 V Si and SiC MOSFET. 

 

the capacitance decreases rapidly as the voltage increases, and this is the main non-linear region. 

On the other hand, the capacitance does not change much after the voltage reaches a certain 

threshold (normally less than 1/10 of the voltage rating). Therefore, if there is an initial voltage 

across the drain-source of the switch and it is higher than the threshold, the effect of the capacitance 

non-linearity can be significantly mitigated. The ideal state trajectory of the resonance between 

the output capacitance and the loop inductance is drawn in Fig. 6-15. Without the initial voltage, 

the device drain-source voltage resonates from zero to the peak value higher than 2Vdc. Meanwhile, 

the trajectory becomes smaller and the peak voltage reduces with the initial voltage at the 

beginning of the resonance. In addition, the shape of the trajectory is more circular, which indicates 

that the capacitance is more constant. 

The required initial voltage across the device drain-source can be realized with a simple 

modification based on the conventional modulation. Table 6-1 highlights the change of the 

operation states for the switches in a phase leg with the modified modulation. Compared with the 

conventional one, the only change is turning off the non-active clamping switches (S3H and S3L) 

instead of keeping them on. 
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Fig. 6-15. State trajectory of parasitic resonance during switching transient. 

 

6.3.2 Loop Analysis and Equivalent Circuit 

For the modified modulation, all of the three non-active switches (S1H-S3H in Fig. 6-2) are off 

during the half line cycle. This makes the analysis more complicated because the voltage 

distribution on these switches are changing with the commutating of S1L and S3L. As a result, not 

only the dynamic overvoltage, but also the steady state voltage within a switching cycle should be 

evaluated. 

Table 6-1. Change of switch states with modified modulation compared to 

conventional modulation. 

State S1H S2H S3H S3L S2L S1L 

P On On Off On→Off Off Off 

O+ Off On On On→Off Off Off 

O- Off Off On→Off On On Off 

N Off Off On→Off Off On On 
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Similar to Fig. 6-5, the equivalent circuit with the modified modulation in the negative half 

line cycle is plotted in Fig. 6-16. In addition to the non-active line switching frequency device S2H, 

both the output capacitances of the non-active high switching frequency devices S1H and S3H are 

also involved. 

6.3.3 Overvoltage Model 

The state space analysis is adopted to build the analytical voltage response model. The 

instantaneous voltage and current relationship is derived as 
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 (6-11) 

X=[i1H i3H i3L vds_1H vds_2H vds_3H vds_3L]T is the state vector. U=[Vdc vds_1L ]T is the input vector. 

vds_1L is still assumed to drop linearly during turn-on as in (6-5). 
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Fig. 6-16. Equivalent circuit of phase leg during half line cycle with modified modulation. 

 

The state and input matrixes A and B are 
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6.3.4 Analysis of Overvoltage with Established Model 

From Fig. 6-16, the line switching frequency device S2H is no longer equivalently paralleled 

with S3L. When S3L is on, there is initial voltage across the drain-source of S2H.  
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The switching transient waveforms based on the established model is illustrated in Fig. 6-17. 

The initial voltage on S2H is 120 V. Compared to the waveform with the conventional modulation, 

the overvoltage of the high and line switching frequency devices with the modified modulation 

achieve a reduction of 124 V and 188 V, respectively.  

6.3.5 Analysis of Steady State Voltage 

Since there is voltage distribution among the non-active switches, this distribution is worth 

investigating because the steady state voltage in different switching states can introduce extra loss 

and increase the stress of steady state. Moreover, the reduction of the dynamic overvoltage is 

highly dependent on the initial voltage of the line switching frequency device. 

To simplify the analysis, the loop inductances are neglected as they only affect the dynamic 

transient. The drain-source voltage of S3L is modeled as a trapezoidal pulse with overvoltage. The 

equivalent circuit is plotted in Fig. 6-18.  

In addition, the non-linear output capacitance is expressed as two discrete values [66]: 
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  (6-15) 

where m and n are the coefficients that determine the intrinsic threshold and the non-linearity of 

the capacitance, which can be obtained from the device’s datasheet. 

The operating waveforms are shown in Fig. 6-19. Assuming the voltage across S3L, S2H and 

S3H is zero at t0. From t0 to t1, vds_3L rises from 0 to Vpk1, which includes the overvoltage caused by 

the loop inductance. vds_2H follows vds_3L and increases to its peak value while vds_3H keeps at zero. 

At t1, C2H and C3H equal to C and nC. 
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Fig. 6-17. Transient waveforms with different modulations based on established model. 

C2H +

 

vds_2H

C1H

+  
vds_1H

Vdc

C3H

+

 
vds_3H

+
 

vds_3L

+  
i3H

i1H

 

Fig. 6-18. Equivalent circuit of phase leg with modified modulation for steady state analysis. 

C2H

t0

nC

C

Vdc

Vdc

Vpk1 Vpk2

Vpk3

vds_3L

vds_2H
vds_3H

C3H

t1 t2 t3 t4 t6 t7 t8.1 t8.2t9.1t5 t9.2  

Fig. 6-19. Conceptual operating waveforms with modified modulation. 
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From t1 to t2, vds_3L finishes the dynamic resonance and drops back to Vdc. The relationship 

between vds_3H and vds_2H can be expressed as 
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Assuming Vpk1=(k1+1)Vdc and 0<k1<1, vds_3H and vds_2H at t2 can be calculated by 
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The voltage distribution at t3 equals to that at t2. From t3, vds_3L and vds_2H decrease, while vds_3H 

increases. At t4, vds_3H increases to Vdc/m, where C3H changes from nC to C. 
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vds_3H and vds_2H at t4 are  
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At t5, vds_3L decreases to 0. S2H and S3H are in parallel, and vds_2H = vds_3H. 
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At t6, vds_3L rises again. At t7, vds_3H drops to Vdc/m, where C3H changes from C to nC. 
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vds_3H and vds_2H at t7 are 
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Because of the initial voltage, the overvoltage across S3L and S2H are lower than the previous 

switching cycle. Assuming Vpk2=(k2+1)Vdc and 0<k2<k1<1, vds_3H and vds_2H at t8.1 are 
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After vds_3L and vds_2H recover from the dynamic peak at t9.1, vds_3H and vds_2H are 
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If the overvoltage of S3H increases during the load change, vds_3H drops to 0 before vds_3L and 

vds_2H rise to their peak value at t8.2. As a result, the condition at t8.2 is the same as t1 except for the 

voltage peak value. Assuming Vpk3=(k3+1)Vdc and 0<k1<k3<1, vds_3H and vds_2H from t8.2 to t9.2 

follow the process during t1 and t2. 
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Comparing (6-15), (6-25) and (6-26), it is observed that the steady state vds_3H and vds_2H are 

only dependent on the highest peak vds_3L that occurs before. Higher peak vds_3L results in higher 

steady state vds_3H and vds_2H while lower peak vds_3L does not change steady state vds_3H and vds_2H. 

The relationship between the steady state vds_2H and the overvoltage coefficient k1 for two 

kinds of devices is plotted in Fig. 6-20. The initial voltage across S2H when S3L is ON (t5-t6) is 

always higher than Vdc/m, which indicates that the modified modulation can help avoid the non-

linear region and reduce the overvoltage. Moreover, the steady state vds_2H when S3L is off does not 

exceed 1.2 times of the DC voltage. Therefore, the steady state voltage stress on the device is not 

increased significantly. 

Fig. 6-21 plots the waveforms based on the analytical model in section 6.3.5. The overvoltage 

at tb is lower than ta, but the steady state vds_3H and vds_2H does not change after tb. On the other 

hand, the switching speed is manually increased at tc and the overvoltage increases, leading to 

higher steady state vds_3H and vds_2H after tc. 

6.4 Experimental Results 

A 500 kVA 3L-ANPC converter based on SiC MOSFETs is built to verify the analytical 

model. The DC bus voltage Vdc is 500 V, and the line-to-line output voltage RMS value is 600 V. 

The switching frequency of the SiC MOSFETs is 30 kHz, and the output line frequency is 3 kHz. 

The 900 V HT-3000 series SiC MOSFET module from Wolfspeed is used. The single phase leg 

of the converter prototype is shown in Fig. 6-22, and the testing platform is shown in Fig. 6-23. 

The conventional modulation is implemented first and the voltage waveforms of the SiC 

MOSFETs in one line cycle as well as the zoom in switching transient are illustrated in Fig. 6-24. 

The applied gate resistance is 2.5 Ω, with which the dv/dt of vds_1L is 10 V/ns. The peak voltage of  
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Fig. 6-20. Relationship between steady state vds_2H and k1 with different devices. 
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Fig. 6-21. Waveforms with modified modulation based on established model. 
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Fig. 6-22. Prototype of 3L-ANPC converter phase leg. 
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Fig. 6-23. Testing platform of 3L-ANPC converter. 
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(a)                (b) 

Fig. 6-24. Tested switching waveforms with conventional modulation. 

(a) One line cycle. (b) Switching transient. 

 

the high switching frequency device S3L is 754 V, while that of the line switching frequency device 

S2H is 736 V. Considering the device voltage rating of 900 V, there is not much margin to further 

increase the switching speed. 
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Fig. 6-25 plots the waveforms with the modified modulation. The peak voltage of S3L and S2H 

are 592 V and 560 V, respectively. Comparing the tested results of the conventional modulation 

with the same switching speed and parasitic inductances, the overvoltage is significantly reduced, 

which validates the attenuation of the non-linear capacitance influence analyzed in Section 6.2.2.  

With the modified modulation, it is possible to increase the switching speed. Fig. 6-26 shows 

the tested waveforms when the gate resistance is reduced from 2.5 Ω to 1.3 Ω. The peak voltage 

of the two devices are 702 V and 806 V, which are still lower than the 900 V voltage rating. The 

envelope of the peak voltage and steady state voltage of S2H is highlighted in Fig. 6-26(a). As the 

peak voltage increases, the steady state voltage also increases, which matches with the analysis in 

Section 6.3.5. The dv/dt of vds_1L achieves 18 V/ns. 

From Fig. 6-24(b) to Fig. 6-26(b), the tested waveforms are compared with the analytical 

model results. Fig. 6-27 plots the error of device drain-source peak voltage between the model and 

tested results with different gate resistances Generally, they can match with each other. The 

mismatch is mainly caused by three reasons:  

1) The excitation is assumed to have an ideal trapezoidal shape in the model. However, the 

actual voltage rise and drop is not linear, as shown in vds_1L of Fig. 6-24(b) and Fig. 6-25(b).  

2) The coupling between different busbar parts is complicated, and it leads to errors when 

using a single inductance value to represent the inductance of each part.  

3) The model of high frequency AC resistance is not accurate when the power modules and 

capacitors are included, which makes the prediction of the amplitude after the first peak pulse to 

be less accurate. Nevertheless, the analytical model is good enough to show the trend of the 

overvoltage. 
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(a)                (b) 

Fig. 6-25. Tested switching waveforms with modified modulation. 

 (a) One line cycle. (b) Switching transient. 
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(a)                (b) 

Fig. 6-26. Tested switching waveforms with modified modulation and with lower gate resistance. 

(a) One line cycle. (b) Switching transient. 
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Fig. 6-27. Error of drain-source peak voltage between model estimation and tested results with 

different gate resistance. 
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6.5 Conclusion 

This chapter develops the analytical model for the device drain-source overvoltage in 3L-

ANPC converters. Two commutation loops exist during the switching transient, which results in 

coupling effect between the high and line switching frequency devices. According to the 

investigation with the established model, several conclusions can be drawn. 1) The non-linearity 

of the device output capacitance shows significant influence on the device overvoltage. 2) The line 

switching frequency device usually has higher overvoltage than the high switching frequency 

device. 3) The resonant frequency of the line switching frequency device is lower than the high 

switching frequency device. 4) The switching speed of the high switching frequency device is not 

impacted by the coupling effect of the line switching frequency device when the long loop 

inductance is much larger than the short loop inductance. 

By turning off the non-active clamping switch, a modified modulation is developed to reduce 

the overvoltage. Initial voltage is built across the line switching frequency device, which helps the 

device output capacitance avoid the non-linear region and the overvoltage is decreased. Because 

of this initial voltage, the steady state drain-source voltage distribution among the non-active 

switches is also analyzed. Extra output capacitance loss is introduced due to the initial voltage, but 

it can be neglected compared to the reduced switching loss with the modified modulation. 

A 500 kVA 3L-ANPC converter with 30 kHz switching frequency based on SiC MOSFET 

power modules is built and tested. The overvoltage model of the conventional and modified 

modulations are verified. With the modified modulation, 162 V and 176 V overvoltage reduction 

is achieved for the high and line switching frequency devices. 
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7 Layout Design and Realization for Three-Level Converters 

In addition to modeling the device overvoltage and reducing it with control strategies, the 

more straightforward solution to decrease the overvoltage is to shrink the parasitics, especially the 

loop inductance of the power loop. For three-level converters, the power loop layout is more 

complicated due to the existence of multiple commutation loops. This chapter first briefly 

introduces the basic theories of magnetic cancellation. Then based on the loop analysis, the design 

criteria of two main types of three-level converters is provided. The detailed design examples are 

given for both the PCB and busbar layout of the three-level active neutral point clamped (3L-

ANPC) converter. Moreover, the procedure of building a laminated busbar for a high power 3L-

ANPC converter is presented, which includes material selection, cutting, insulation 

implementation and soldering. 

This part of work is published in the conference paper [164]. 

7.1 Basic Theories 

For a closed electric loop, the current always follows the path with lowest impedance [17]. 

The resistance is dominant at low frequency, so the return current tends to follow the shortest 

geometric path on a plane as shown in Fig. 7-1. However, at high frequency, the inductance is 

dominant and the current follows the path with lowest inductance. As shown in Fig. 7-1, the current 

return path lies directly beneath the outgoing path instead of the shortest geometric path. This 

phenomenon is related to the magnetic cancellation effect. 
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Fig. 7-1. Current flow path at low and high frequency. 

 

With Ampere’s law, the curl of the magnetic field B is equal to the product of the permeability 

μ and current density J: 

  =B J   (7-1) 

With Faraday’s law, the curl of the electric field E is equal to the partial derivative of the 

magnetic field B: 

 
t


 = −


E B   (7-2) 

According to the definition of inductance: 

 
di

v L
dt

=   (7-3) 

the magnetic field gives rise to the inductance. Thus, the direct way to reduce the inductance is to 

cancel the magnetic field. 

For a current loop with outgoing and returning paths, there are two typical ways for layout. 

The first one is to laterally place the two paths side by side in the same plane, which is shown in 

Fig. 7-2(a). The other one shown in Fig. 7-2(b) is to stack the paths in two planes in two horizontal  
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(a)                                                                  (b) 

Fig. 7-2. Typical ways of layout. (a) Lateral placement. (b) Vertical placement. 

 

planes. From the perspective of magnetic cancellation, the vertical placement can achieve better 

performance. As shown in Fig. 7-3, with opposite current directions on two plates, the generated 

magnetic fields also have opposite directions, which cancel with each other. Considering the 

overlap of the magnetic fields, the vertical placement can apparently achieve more cancellation.  

For a current loop with two plates like Fig. 7-2, the parasitic inductance of one plate includes 

two parts: self-inductance and mutual inductance. 

The self-inductance L of one plate can be calculated with the equation from [92], [165] 
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where μ0 and μr are the vacuum permeability and the relative permeability of the insulation material; 

l, w and h are the length, width and thickness of the plate; d is the distance between two adjacent 

plates. 

The mutual inductance M between two plates is calculated as [92], [165] 
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where k is the correction coefficient and φ is the angle between the current direction of two plates. 
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(a)                                                             (b) 

Fig. 7-3. Magnetic field distribution. (a) Lateral placement. (b) Vertical placement. 

 

If the two plates have the same shape and the current directions are opposite, the magnetic 

fields generated by the currents on the two plates have a cancelling effect. In such case, the total 

parasitic inductance of the busbar is 
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  (7-6) 

From (7-6), to minimize the parasitic inductance, it is preferred to increase the mutual 

inductance between two adjacent busbar layers. The method is to decrease the distance, and 

increase the overlap area of the two plates, which can match with the observation from Fig. 7-2. 

Also, this explains the reason why the returning path lies directly beneath the outgoing path at high 

frequency in Fig. 7-1, as the loop inductance is minimized due to the magnetic cancelling effect. 

7.2 Layout Design Methodology for Three-Level Converters 

Multiple commutation loops exist in 3L converters and it requires special attention to optimize 

the layout design. According to the structure of the topology, 3L converters can be categorized 

into two main groups: converters with symmetric and asymmetric commutation loops. 
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7.2.1 Converter with Symmetric Commutation Loops 

A typical example of the 3L converter with symmetric commutation loops is the 3L T-type 

converter. Fig. 7-4 plots the configuration of a single phase leg of the 3L T-type converter with 

commutation loops highlighted. The phase leg contains two high frequency commutation loops. It 

is noted that from the schematic point of view, the two loops have identical and symmetric 

structure, and the sources of the two loops are different decoupling capacitors. For such 

configuration, the layout criteria and procedure are as follows. 

1) Determine the available paths. From Fig. 7-4, there are four paths in total for layout: Path 

1 connects the upper side decoupling capacitor with the drain of upper side switch SH. Path 2 

connects the lower side decoupling capacitor with the source of lower side switch SL. Path 3 

connects the common source switch SN with the other two switches. Path 4 connects the decoupling 

capacitors with SN. 

2) Find the shared paths by two loops and select them as the returning path. Path 3 and 4 are 

shared by both commutation loops. Thus, they can be located in one plane to serve as the returning 

path for both loops. 

3) Locate the rest of the paths in one plane and place them laterally. Path 1 and 2 belongs to 

two different loops so they should be placed side by side in one plane. The layout of Path 1 and 2 

should be identical so that the parasitics are the same for two loops. 

4) Increase the area of the returning path to fully overlap with both outgoing paths. Based on 

the above analysis, the outgoing and returning path should be overlapped to maximize the magnetic 

cancellation. 
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Fig. 7-4. Phase leg of 3L T-type converter and the corresponding modulation. 

 

Based on the criteria, the layout configuration of 3L T-type converter phase leg is drawn in 

Fig. 7-5. Note that the criteria only provide the general guidance, and the layout in a real case 

should be modified with different voltage/current ratings and device packaging. 

7.2.2 Converter with Asymmetric Commutation Loops 

For 3L converters with asymmetric commutation loops, a typical example is the 3L-ANPC 

converter. The loop analysis has already been presented in Section 6.2.1. The phase leg of the 3L-

ANPC converter is plotted in Fig. 7-6 again and two commutation loops are included. Different 

from the converter with symmetric loops, here the two loops have different length and are no 

longer symmetric, which makes the layout more complicated. In addition, the two loops share the 

same decoupling capacitor as the source. 

In such structure, the basic criteria still follow the aforementioned rules in symmetric loops. 

However, special attention should be paid to the longer loop design as it includes more paths and 

devices. Detailed design examples for both PCB and busbar layout are presented below. 
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Fig. 7-5. Layout configuration of 3L T-type converter phase leg. 

 

Fig. 7-6. 3L-ANPC converter single phase considering layout and parasitics. 

 

7.3 PCB Layout with Discrete Devices for 3L-ANPC Converter 

This section mainly compares the lateral and vertical layout for 3L-ANPC converter phase leg 

in PCB design. The detailed layout optimization will be provided in busbar design in the next 

section. 

7.3.1 Lateral Loop Design 

Fig. 7-7 presents the example of lateral layout design for a 20 kW SiC MOSFET based 3L-

ANPC converter phase leg. Generally, the placement of the power devices follows the circuit  
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Fig. 7-7. Lateral layout PCB design for 3L-ANPC phase leg. 

 

schematic drawing, where two line switching frequency devices are next to the four high switching 

frequency devices. This layout is straightforward and can utilize multiple copper layers to conduct 

current in parallel. However, the penalty is that the whole loop is at one layer and unavoidably 

generates a large area.  

7.3.2 Vertical Loop Design 

For the vertical layout in Fig. 7-8, all six devices are located in a line and the loops are vertical 

to the PCB layers. With such design, the outgoing and returning paths are overlapped, and the 

magnetic cancellation between the PCB layers is maximized for both commutation loops. Based 

on the simulation in Ansys Q3D, the loop inductance of the long loop with the lateral layout is 57 

nH, while that in the vertical layout is 12 nH, which indicates the superiority of the vertical layout. 

7.4 Busbar Layout with Power Modules for 3L-ANPC Converter 

In high power applications, power modules are normally implemented and busbars are the 

main connectors between different components. Extensive work has been conducted for busbars  

 

Decoupling 

Caps

Decoupling 

Caps

S1H

S3L

S1L

S2H

S2L

S3H



141 
 

 

Fig. 7-8. Vertical layout PCB design for 3L-ANPC phase leg. 

 

design, and laminated structure is usually used [94], [95]. An example of designing a two-layer 

busbar for a 3L-ANPC converter phase leg is given below. 

7.4.1 Busbar Layout Considering Multi-Loops in 3L-ANPC Converter 

According to (7-5) and (7-6), it is preferred to increase the mutual inductance between two 

adjacent busbar layers. In other words, two busbar parts with opposite current directions in Fig. 

7-9 should be overlapped to form the laminated architecture. To simplify the design and reduce 

the cost, here a two-layer laminated structure is adopted for the required busbar. 

In terms of the short commutation loop, it only includes two busbar parts: the neutral busbar 

and the negative (or positive) busbar. So the two parts should be laminated in two layers. 

The long commutation loop is more complicated and critical. The design criteria in Section 

7.2 is followed.  

1) Four busbar parts are included in the loop shown in Fig. 7-6: the neutral busbar (yellow), 

negative busbar (red) and two middle busbars (blue).  

S3L S1LS3HS1H S2H S2L
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Fig. 7-9. Typical structure of two-layer busbar. 

 

2) The shared loop is chosen as the returning path. Here, the neutral and negative busbar are 

shared by both loops. The neutral busbar is selected as the returning path because it is also the 

shared path for the other two commutation loops in the upper side of the phase leg.  

3) The other busbar parts should be located in the other layer. 

4) The neutral busbar should cover the area of all the other busbar parts. 

Considering the overall system layout including the placement of SiC MOSFET power 

modules and the capacitors, Fig. 7-10 plots the conceptual 3D view of the busbar layout for the 

long commutation loop. The middle busbars (blue) and the negative (orange) busbar are placed in 

the same layer. The neutral busbar (yellow) is a whole plate and serves as the returning path of the 

commutation loop. With such design, the busbar parts are coupled and the magnetic field can be 

canceled with the opposite current flowing direction, resulting in lower loop inductance. 

The equivalent circuits of the commutation loops considering the busbar structure are 

illustrated in Fig. 7-11. For the short commutation loop, the negative and neutral busbar are 

coupled and the mutual inductance is Mon. For the long loop, the negative and middle busbars are 

coupled with the neutral busbars. The mutual inductance between middle and neutral busbars is 

Mom. Note that the effective self-inductance of the neutral busbar in the short loop (Lo1) is smaller 

than that in the long loop (Lo=Lo1+ Lo2+ Lo3). 
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Fig. 7-10. 3D view of busbar layout with long commutation loop. 

               

    (a)                                                               (b) 

Fig. 7-11. Equivalent circuits of commutation loops. (a) Short loop. (b) Long loop. 

 

Based on Fig. 7-11, the loop inductances of short loop Lst and long loop Llg can be written as 

 1 2 2

2 2 4 4

st C o n on s

lg C o n m on om s

L L L L M L

L L L L L M M L

= + + − +


= + + + − − +

  (7-7) 

where Lc is the ESL of decoupling capacitors, Ls is the power module stray inductance, and Ln is 

the negative busbar self-inductance. 

7.4.2 DC-Link Capacitor Selection and Placement 

Film capacitors should be used for the DC-link capacitor due to their low ESL. There are two 

options for the capacitor selection. One is to choose a single bulky capacitor, and the other is to 

use multiple capacitors in parallel. 
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Table 7-1 shows the comparison of the examples of the two options. To achieve 100 μF 

capacitance value, ten smaller capacitors need to be paralleled. However, considering the ESL, 

weight and price, paralleling capacitors is a better choice. The challenge is to carefully place the 

capacitors to reach minimized inductance and good current balancing. Ideally, no extra decoupling 

capacitor is needed as the overall inductance of the paralleled capacitors is low enough.  

As recommended in [166], the adjacent two paralleled capacitors are placed oppositely. Fig. 

7-12 sketches the top view of the placement of the capacitors on the busbar plate. The red line 

represents the current on the top layer (positive/negative busbar), and the yellow dotted line is the 

current on the bottom layer (neutral busbar), while the dark dashed line is the current inside the 

capacitors. For the left side capacitor, the current flows into the capacitor on the bottom layer, 

while the current flows out of the right side capacitor through the top layer. Therefore, current on 

two laminated plates is in opposite directions, which helps the magnetic field cancellation and 

reduces the total inductance. 

Fig. 7-13 shows the designed busbar plate for DC-link capacitors. There are ten capacitors in 

two rows. The orange plate is the negative/positive busbar while the yellow one is the neutral 

busbar. The finalized busbar design for single phase is shown in Fig. 7-14. 

 

7.5 Busbar Fabrication with Aluminum 

After the design is determined, busbar manufacturers can help build the busbar. However, it 

usually takes long lead time and the price can be expensive. To reduce the risk, it would be better 

to fabricate the busbar prototype in the lab and verify its function before sending it to 

manufacturers. This section discusses the procedure of making laminated busbars with aluminum.  
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Fig. 7-12. Top view of busbar with capacitors placement and current flowing directions. 

 

Fig. 7-13. Designed plate for capacitors. 

 

Note that the fabrication with copper is similar or even simpler because soldering on aluminum is 

tricky and requires special attention, which will be introduced in Section 7.5.3. 

Table 7-1. Comparison of DC-link capacitors. 

 Part Capacitance ESL Weight Price Required Qty 

 
FFVE6K0107K 100 μF 25 nH 350 g $ 60 1 

 
MKP1848C61060JK2 10 μF 15 nH 15 g $ 4.2 10 
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(a)                                                                       (b) 

Fig. 7-14. Designed laminated busbar for single phase. (a) Top view. (b) Bottom view. 

 

7.5.1 Cutting 

Two methods are commonly used for metal cutting: laser and water jet. Laser cutters use a 

focused laser, such as a CO2 gas laser, to generate the energy to burn and cut the material. On the 

other hand, as the name suggests, water jet cutters rely on pressurized water to hit the material with 

very high speed. The beam of the two methods are illustrated in Fig. 7-15, and the performance 

comparison is given in Table 7-2. It can be concluded that laser is more precise than water jet. The 

reason is that abrasives like garnets and aluminum oxide are usually added to increase the cutting 

ability. In addition, water jet cutter takes more time and cost to cut the same length. Therefore, 

laser is more suitable for busbars with thin metals. However, water jet can also be used for most 

applications if laser is not applicable. 
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(a)                                                                       (b) 

Fig. 7-15. Metal cutting methods. (a) Water jet. (b) Laser [167]. 

 

After the cutting, edges are preferred to be smoothed with sand papers or filing machines to 

avoid the high electric field around sharp corners. 

7.5.2 Insulation 

For medium voltage high power converters, insulation is extremely important in terms of 

reliability and safety. Layers in laminated busbar are close to each other for loop inductance 

reduction. As a result, partial discharge and arcing can occur when the busbar insulation is not well 

implemented. Thus, creepage and clearance need to be calculated, and insulation should be 

Table 7-2. Performance comparison between typical laser and water jet. 

 Thickness 

(inch) 

Min. size 

(inch) 

Tolerance 

(inch) 

Speed 

(inch/min) 
Smoothness Cleaning 

Cost 

($/h) 

Laser 0.12-0.4 0.006 0.002 20-70 High Easy 13-20 

Water 

jet 
0.4-2 0.02 0.008 1-15 Low Hard 15-30 
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designed and applied to the surface area between two layers, the edges and corners of the busbar, 

and the inner edge of the screw holes. 

Fig. 7-16 draws the side view of the laminated busbar with insulation. The insulation paper is 

used on the surface of the metal bars and for edge sealing. In addition, epoxy is applied to fill the 

inner edge of the screw hole and the outside edge of the busbar. It is also feasible not to seal the 

edge as long as the clearance and creepage distance can meet the requirement of the standard. 

7.5.2.1 Insulation Material Selection 

With the basic insulation design, it is critical to select the proper insulation materials. For 

insulation papers, the key properties are the dielectric capability and the operating temperature 

range. Four types of commonly used insulation papers are compared in Table 7-3. It is noted that 

Kapton has highest dielectric strength as well as widest temperature range. So Kapton is adopted 

in this dissertation, but other papers are also applicable if the dielectric and temperature 

performance can be guaranteed. 

Compared to insulation papers, the selection of epoxy materials is more complicated because 

it is not only related to the dielectric and temperature characteristics, but also dependent on the 

feasibility of implementation. The process of applying epoxy includes mixing, coating, vacuuming 

and curing, and the detailed procedure will be introduced in the next section. The key properties 

of three epoxy materials are listed in Table 7-4. The viscosity mainly influences the difficulty of 

vacuuming. If the epoxy compound is too viscous, it is more difficult to remove the air from the 

epoxy. Pot life is defined as the amount of time it takes for an initial mixed viscosity to double or 

quadruple. The processing should be completed, and the curing should start before the pot life ends.  

 



149 
 

Metal Paper Epoxy

Screw

Module
 

Fig. 7-16. Cross section of laminated busbar layers with insulation. 

 

Considering the required time for coating and vacuuming, it is not recommended to use the epoxy 

with very short pot life. Here the EPO-TEK 301-2 with moderate viscosity and pot life is selected. 

Table 7-3. Properties of commonly used insulation papers. 

Name Material Dielectric strength (kV/mil) Operating Temp. (oC) 

Tedlar Polyvinvl fluoride 3.5 -72~107 

Mylar Polyethylene terephthalate 7 -250~150 

Kapton Polyimide 7.7 -269~400 

Nomex Polyamide polymer 0.4 -196~250 

 

Table 7-4. Properties of epoxy materials. 

Name 

Dielectric 

strength 

(V/mil) 

Viscosity 

(cPs) 

Pot life 

(h) 

Curing 

time (h) 

Curing 

Temp. (oC) 

Max 

operating 

Temp. (oC) 

Stycast 2662 420 40000 24 3 150 230 

EPO-TEK 301-

1 
370 80-100 1-2 2 65 300 

EPO-TEK 301-

2 
410 225-425 8 3 80 300 
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7.5.2.2 Insulation Implementation 

The key of implementing insulation papers and epoxy is to remove the voids. Voids, namely 

dusts or air bubbles, can significantly deteriorate the dielectric capability and are the main source 

of causing partial discharge or even voltage breakdown. 

The implementation of insulation papers is straightforward and is like applying screen 

protectors to the screen of mobile phones. First, use a piece of soft cloth to clean the surface of the 

busbar with a mild solvent like eyeglass cleaner or alcohol. Second, gradually apply the sticky side 

of the insulation paper to the busbar surface. At the same time, use a card with hard edges to wipe 

the air out from under the paper. 

The implementation of epoxy requires four steps: mixing, coating, vacuuming and curing. 

First, fully mix the compounds of the epoxy in a container like a petri dish. Note that during this 

process, air is also mixed with the compounds even though it is difficult to directly observe it. 

Second, apply an adhesive sheet to one side of the busbar, and carefully fill the screw holes 

with the mixed epoxy compound from the other side.  

Third, put the busbar into a vacuum chamber and start deair. Fig. 7-17 shows the busbar inside 

the vacuum chamber. A large number of air bubbles occur and break. This whole process can last 

from several minutes to more than one hour depending on the epoxy characteristic and the ability 

of the vacuum chamber. The comparison of completed busbar sample with and without vacuuming 

is illustrated in Fig. 7-18. Apparently, many voids remain inside the epoxy if the vacuuming is not 

applied. 

Fourth, move the busbar to an oven and cure it under required temperature.   
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Fig. 7-17. Busbar under vacuuming inside vacuum chamber. 

 

Fig. 7-18. Comparison between epoxy with and without vacuum. 

 

7.5.3 Soldering 

Generally, it is difficult to solder on aluminum because the tough oxides on the metal surface 

prevent wetting [168]. Meanwhile, different aluminum alloys also show different solderability as 

listed in Table 7-5. When selecting the aluminum alloy for applications requiring soldering, alloys 

with high solderability like 1000 and 3000 series are preferred. Special solder and flux are also 

mandatory for soldering on aluminum. It has been proved that Zn based lead free solder such as 
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Sn91Zn9 cooperating with Superior No. 1260 flux can be used for aluminum [169]. Moreover, it 

is worth highlighting that the melting temperature of the solder should be lower than the operating 

temperature of the insulation paper and epoxy if soldering is done after the insulation 

implementation. Fig. 7-19 presents the solder joints for the DC-link capacitors on the busbar based 

on 3003 aluminum alloy. 

A laminated busbar following the process mentioned above is developed for a 500 kVA 3L-

ANPC converter. Fig. 7-20 shows the fabricated busbar of one phase leg, which follows the design 

in Fig. 7-14. 

7.6 Simulation and Experimental Results 

The designed busbar is simulated in Ansys Q3D to extract the parasitics. Fig. 7-21 illustrates 

the surface current density of the neutral bar at 20 MHz. Remarkably, the current does not flow 

along the shortest path A. Instead, it follows path B, which overlaps with the middle bars in Fig. 

7-14(b). 

Table 7-5. Solderability of aluminum alloys. 

Series Alloy Solderability 

1000 Pure Al High 

2000 Al, Cu Fair 

3000 Al, Mn High 

4000 Al, Si Low 

5000 Al, Mg Low 

7000 Al, Zn High 
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Fig. 7-19. Soldering joints of capacitors on aluminum busbar. 

 

Fig. 7-20. Bottom view of fabricated busbar for a 500 kVA 3L-ANPC converter phase leg. 
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A B

 

Fig. 7-21. Surface current density on neutral busbar. 

 

 

The equivalent circuit of the busbar with parasitics was extracted and simulated in Saber along 

with the SiC MOSFET module model. Fig. 7-22 shows the turn-on switching transient of the 

MOSFET drain-source voltage. The ringing frequency of the short loop is 34.5 MHz while that of 

the long loop is 18.9 MHz. Based on the output capacitance value from the SiC MOSFET datasheet, 

the parasitic inductances of the short and long loop can be calculated as 6.5 nH and 17.5 nH, 

respectively. 

Current sharing can be a potential issue for multiple paralleled DC-link capacitors. Fig. 7-23 

plots the simulated current waveforms of ten paralleled DC-link capacitors in one switching cycle. 

The current RMS value of each capacitor is about 9 A and the largest RMS difference among the 

capacitors is 0.6 A, which indicates good current balancing in capacitors. 
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53 ns vds_2H: 100 V/div

vds_3L: 100 V/div
29 ns

 

Fig. 7-22. Simulated switching transient waveform with module model and extracted busbar 

equivalent circuit. 

Current: 10 A/div

 

Fig. 7-23. Simulated current waveforms of ten paralleled DC-link capacitors during one 

switching cycle. 

 

With the fabricated busbar, the impedance analyzer E4990A from Keysight is used to measure 

the impedance of the busbar loops. From Fig. 7-24, the measured short and long loop inductances 

are 2.5 nH and 10 nH, respectively. Considering the inductance of one power switch Ls is around 

4 nH, the result can match with the simulation in Fig. 7-22. 
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Fig. 7-24. Measured impedance spectra of busbar. 

 

The fabricated busbar is tested with the 500 kVA 3L-ANPC converter shown in Section 6.4. 

Five line cycles are generated and the tested output line-to-line voltage and phase current 

waveforms at full voltage and load condition are plotted in Fig. 7-25.  

The tested switching transient waveforms are shown in Fig. 7-26. The ringing frequencies of 

the short and long loops are 35.7 MHz and 17.2 MHz, which are very close to the simulation result 

in Fig. 7-22. The peak drain-source voltage of S2H and S3L are 736 V and 754 V, respectively, 

which is lower than the voltage rating of the SiC MOSFET (900 V). No extra snubber circuit is 

required in the converter.  

Table 7-6 compares the loop inductances of the busbar in this dissertation and those in other 

NPC type converters. The proposed busbar achieves significantly lower parasitic inductances for 

both short loop and long loop. 
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iA: 400 A/div iC: 400 A/diviB: 400 A/div

vAB: 1 kV/div

200 µs/div
 

Fig. 7-25. Tested output waveforms of 3L-ANPC converter. 

    

(a)                (b) 

Fig. 7-26. Tested switching waveforms with fabricated busbar. 

 (a) One line cycle. (b) Switching transient. 

 

Table 7-6. Loop inductance comparison. 

 Proposed [74] [159] [98] [99] [100] [101]  

Power (kVA) 500 200 1000 750 N/A N/A 475 

DC voltage (kV) 1 1.2 2.4 2 N/A N/A 1.1 

Short loop (nH) 6.5 55 N/A 78 96 48 95 

Long loop (nH) 17.5 135 115 208 150 76 118 

N/A: Not available 

vds_1L: 100 V/div

vds_2H: 100 V/div

vds_3L: 100 V/div

50 µs/div

vds_1L: 100 V/div

vds_2H: 100 V/div

vds_3L: 100 V/div

40 ns/div

58 ns 28 ns
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7.7 Conclusion 

To shrink the parasitic inductance and reduce the device drain-source overvoltage, design 

criteria is introduced for three-level converter layout. Multiple commutation loops are taken into 

consideration, and the magnetic cancellation effect is utilized to minimize the loop inductance. 

Vertical and lateral layout are compared in a PCB based 3L-ANPC converter, which shows the 

superiority of the vertical loop design. 

Following the design criteria, a design example of a laminated busbar is given in detail for a 

500 kVA 3L-ANPC converter based on SiC MOSFET power modules. Two commutation loops 

in the converter are optimized with the placement of busbar parts. Moreover, distributed film 

capacitors with special placement are adopted to serve as the DC-link capacitors. Due to the low 

inductance, no extra decoupling capacitor is needed. 

In addition, the fabrication process of the laminated busbar based on aluminum is investigated. 

The insulation material selection and implementation is introduced in detail. In the meantime, 

soldering on aluminum is also discussed. 

Together with the SiC MOSFET power modules with low stray inductance, the overall 

parasitic inductances of the short and long loop in the converter are 6.5 nH and 17.5 nH, 

respectively. Compared to the high power NPC type converters in other references, the proposed 

busbar achieves at least 84% and 77% reduction in small and large loop inductances. The 

experimental results verified the performance of the busbar. 
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8 Cryogenically Cooled High Power Inverter with SiC MOSFETs 

Based on the analysis and methodology developed in previous chapters, the example of a high 

switching speed high power inverter based on SiC MOSFETs is presented in this chapter. 

According to the specifications given by NASA, the design of a MW-class cryogenically cooled 

inverter for aircraft application is developed. The characterization of SiC MOSFETs at cryogenic 

temperatures is introduced first as the basis for power converter design and optimization. The 

switching loss of the inverter is analyzed in detail with the technologies in previous chapters 

embedded. Then, the detailed inverter system design including converter layout, thermal 

management, filters, gate drive, busbar, and system integration are presented. The testing result of 

a single 500 kVA inverter is presented with experimental results.  

This part of work is published or accepted in the journal and conference papers [170-173]. 

8.1 Background and Specifications 

High power inverters will be a key enabler for future aircraft based on hybrid electric or turbo-

electric propulsion as envisioned by NASA and Boeing. A technological hurdle exists however, in 

that the components for power generation, distribution, and transformation are not currently 

available in the high-power ranges with the necessary efficiency and power density required for 

transport-class aircraft. 

 At the system level in aircraft applications, superconducting technologies such as 

motors/generators along with their supportive power systems will grow in importance. Integrating 

the associated power electronics into the superconductive motor/generator systems can avoid extra 

thermal insulation and temperature regulation system and reduce system complexity and improve 

the power density. However, many of the necessary power electronics to control and protect a 
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cryogenic system are not yet available. There are not many reports about power converter designs 

at cryogenic temperatures. According to recent literature [174-186], the maximum reported power 

level of a cryogenically cooled converter prototype was 2.5 kW. Moreover, there is no specific 

detailed cooling system design provided that would be suitable for high power electronics 

applications. 

Based on the above analysis, NASA released the “Research Opportunities in Aeronautics – 

2015 (ROA-2015)”, in which one of the objectives is to design, build, and test a technology 

demonstrator high efficiency/high specific power cryogenic MW-class inverter to meet the 

anticipated needs of aircraft electric propulsion drives. It is targeting specific vehicle concepts 

which exploit cryogenic cooling to gain system benefits. The key performance goals of the inverter 

are shown in Table 8-1, where efficiency is measured as the ratio of the output to input power at 

half-rated power at nominal bus voltage. The key specifications are continuous power rating ≥ 1 

MW; nominal bus voltage: 1 kV DC; peak output line to line RMS voltage: 600 V; peak line 

frequency: 3 kHz. 

8.2 Device Characterization at Cryogenic Temperatures 

In high power applications, Si IGBTs and SiC MOSFETs are two main candidates for power 

semiconductor devices. Due to the high power density and high efficiency requirement, SiC 

MOSFET power modules are preferred to achieve lower switching loss. To optimize the 

performance of the converter, it is desired to understand the device characteristics at cryogenic 

temperatures, which is normally not provided in device datasheets from the manufacturers. In 

addition, packaging is worth investigating to make sure the device can operate properly in cold 

environment. 
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A cryogenic chamber is used to serve as the container for the device under test (DUT) and 

provide the required cryogenic temperature. For the static characterization, the curve tracer 

B1505A from Keysight is connected with the DUT, and the Kelvin connection is used to guarantee 

the accuracy of the measurement as shown in Fig. 8-1(a). The picture of the testing platform is 

shown in Fig. 8-1(b). The temperature inside the chamber can be regulated, and the liquid nitrogen 

is injected from a dewar. A high accuracy diode based temperature sensor from Lakeshore is 

attached to the device to provide the temperature information. 

For the dynamic characterization, double pulse test (DPT) is adopted to get the switching 

performance. Fig. 8-2 illustrates the configuration and testing platform of the DPT. Not only the 

DUT, but also the gate drive, DC link capacitors, signal isolator and other auxiliary circuits are 

located inside the chamber at cryogenic temperature. This is due to the concern for high ringing 

and noise during fast switching transients caused by parasitics. Thus, putting the gate drive circuits 

close to the DUT can minimize the parasitics in the loop. Moreover, it can help mimic the real 

operating condition in a converter. 

SiC MOSFETs from three different manufacturers are tested in the range of room temperature 

to -200 oC (77 K), whose parameters at room temperature are listed in Table 8-2.  

 

Table 8-1. Key performance goals. 

Goals Specific Power (kW/kg) Specific Power (HP/lb) Efficiency (%) 

Min 17 10.4 99.1 

Target 26 15.8 99.3 

Stretch 35 21.3 99.4 
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(a)                                                                       (b) 

Fig. 8-1. Static characterization. (a) Configuration. (b) Setup. 
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(a)                                                                       (b) 

Fig. 8-2. Dynamic characterization. (a) Configuration. (b) Setup. 

Table 8-2. Parameters of tested SiC MOSFETs. 

Part C3M0075120K SCT3030KL SCT50N120 

Manufacturer Wolfspeed Rohm ST 

Vbr (V) 1200 1200 1200 

Id (A) 30 72 65 

Rds (mΩ) 75 30 52 

Rg (Ω) 10 5 1.9 
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Fig. 8-3 plots the tested on-resistance. Generally, the on-resistance increases as the 

temperature drops. There are two possible reasons that contribute to the trend. First, the carrier 

freeze-out phenomenon makes fewer carriers ionized at lower temperatures [187]. Second, the 

interface states density between SiC and SiO2 increases rapidly at lower temperatures, which 

results in more trapped electrons [188]. Note that the Wolfspeed device shows larger increase in 

on-resistance than the other two devices at cryogenic temperatures. This is possibly due to the 

different device structure they use. The Wolfspeed device is planar based while the other devices 

are trench based.    

Fig. 8-4 illustrates the relationship between breakdown voltage and temperature. It is observed 

that the Wolfspeed and Rohm devices have almost constant breakdown voltage throughout the 

whole temperature range while that of ST decreases a little but is still higher than 1.1 kV. Therefore, 

the SiC MOSFETs have relatively good breakdown performance compared with Si MOSFETs, 

whose breakdown voltage can drop by 25%- 35% from room temperature to 77 K [189]. This trend 

can also be explained by the carrier freeze-out, which mitigates the impact ionization and allows 

higher voltage across the drift region. 

The switching waveform of the Wolfspeed device at 500 V and 30 A with 1 Ω gate resistance 

is shown in Fig. 8-5. It is observed that the overlap time of current and voltage during the transient 

at cryogenic temperature is longer than that at room temperature, which means that the device 

switching speed is slower at cryogenic temperature. However, it should be noted that the voltage 

drops faster at the beginning of turn-on at 93 K then becomes flatter. This shape shrinks the overlap 

area of voltage and current and reduces the switching loss. 
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Fig. 8-3. Tested on-resistance at different temperatures. 

 

Fig. 8-4. Tested breakdown voltage at different temperatures. 

  

(a)                                                                       (b) 

Fig. 8-5. Tested switching waveforms of Wolfspeed device at 500 V and 30 A with 1 Ω gate 

resistance. (a) Turn-on. (b) Turn-off. 
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Fig. 8-6 plots the tested switching loss of the Wolfspeed and Rohm devices at different 

temperatures. For the Wolfspeed device, the switching loss first increases then decreases when the 

temperature drops. Meanwhile, the switching loss of the Rohm device keeps increasing as 

temperature decreases.  

Generally speaking, the SiC MOSFET is not suitable for cryogenic operation due to the loss 

increase. Moreover, silicone gel is used as the encapsulant in most power modules, which cannot 

survive at low temperatures. As a result, the operating temperature of the SiC MOSFET should be 

kept higher than -50 oC [190]. 

The SiC MOSFET module shown in Fig. 3-8 is adopted as the power devices in the converter 

due to its high current rating (>800 A), light weight (179 g), and the state-of-the-art die and 

packaging technology. The static characteristics of the module from -40 to 125 oC (235 to 400 K) 

are shown in Fig. 8-7. The trend of on-resistance follows the previous test with discrete devices, 

and the lowest point occurs at around 0 oC. The breakdown voltage keeps increasing as temperature 

drops. Although the device is rated at 900 V by the manufacturer, the tested breakdown voltage is 

always higher than 1.05 kV, which provides more room to increase the switching speed. 

With the DPT setup in Fig. 3-13, the switching loss with 1.3 Ω gate resistance at room 

temperature is obtained and illustrated in Fig. 8-8. 

8.3 Switching Loss Evaluation 

8.3.1 Switching Frequency Selection 

The selection of the switching frequency needs to consider both the power module operation 

and the EMI standard. From the SiC module point of view, higher switching frequency leads to 

higher loss and heat. In terms of EMI, the size and weight of the filter is also strongly related to  
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(a)                                                                       (b) 

Fig. 8-6. Tested switching loss at 500 V and different load current. (a) Wolfspeed. (b) Rohm. 

  

(a)                                                                         (b) 

Fig. 8-7. Tested characteristics of SiC power module. (a) On-resistance. (b) Breakdown voltage. 

 

Fig. 8-8. Tested switching loss of the SiC module at room temperature.  
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switching frequency. Fig. 8-9 shows the calculated relationship between the corner frequency of 

the filter and switching frequency. Generally, higher corner frequency means smaller size and 

weight of the filter. It is observed that the optimized point is 140 kHz. However, based on the DPT 

data, the switching loss is too high to meet the efficiency target. The second frequency candidate 

is 70 kHz, and the switching loss is acceptable. Nevertheless, the 2nd order harmonic sideband 

enters the EMI measurement range (starting at 150 kHz). To avoid the increased noise, the 

switching frequency is selected as 60 kHz. In the 3L-ANPC converter, the equivalent switching 

frequency is 30 kHz as the device only operates during half line cycle. 

8.3.2 Switching Loss Correction in 3L-ANPC Converter 

As has been analyzed in Section 6.2.1, there are multiple switching loops in 3L converters. It 

not only impacts the drain-source overvoltage, but also shows influence on switching loss. The 

simplified equivalent circuit of a 3L phase leg with major parasitics highlighted is drawn in Fig. 

8-10. The non-active switch Mp is paralleled with the active switch ML operating at high switching 

frequency.  

During the turn-on transient of ML, the current flowing through its channel ich consists of the 

following parts: the load current IL, the charging current of the drain-source capacitance from the 

upper device icdsH, the discharging current of the drain-source capacitance from the lower device 

icdsL, the discharging current of the transfer capacitance from the lower device icgdL, and the 

discharging current of the drain-source capacitance from the paralleled non-active device icdsP. 

Note that in a DPT current measurement, icdsL and icgdL are not included as they are inside the 

device. Compared with a 2L phase leg, there is additional icdsP, introducing higher turn-on 

switching loss as shown by the blue shaded area in Fig. 8-11. It is worth noting that the switching  
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Fig. 8-9. Relationship between filter corner frequency and switching frequency. 

id

Vdc

icdsH

CdsH

CdsL CdsP

CgdL

icgdL

icdsL

IL icdsP

ich

MH

ML
MP

Lmid

Ld

CgsLRg

 

Fig. 8-10. Typical equivalent circuit of 3L phase leg. 
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Fig. 8-11. Waveform of active switch considering paralleled non-active switch. 
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time is not increased according to the analysis in Section 6.3.4. The increased turn-on loss is purely 

caused by the extra capacitance energy from the paralleled non-active device. 

During the turn-off transient, all the currents change to opposite direction except the load 

current IL. In other words, the capacitance current should be deducted from the load current when 

calculating the device channel current. As a result, there are two possibilities when calculating the 

turn-off loss. 

In case 1 shown by the blue line in Fig. 8-11 from t4 to t6, when the switching speed is very 

fast or the load current is low, all the load current is used to charge/discharge the capacitances. As 

a result, no current flows through the device channel, leading to zero turn-off loss. The trajectory 

of the turn-off in such cases are plotted with blue lines in Fig. 8-12.  

In case 2, when the switching speed is not high enough, and under heavy load conditions, the 

load current is sufficient to charge/discharge the capacitances. The remaining current flows 

through the device channel, causing turn-off loss. From the red lines in Fig. 8-11, the extra 

capacitance from the paralleled non-active switch shares more current, leading to larger channel 

current drop, which is also plotted in Fig. 8-12. Therefore, the turn-off loss of the device in a 3L 

phase leg is lower than that in a 2L phase leg. Since the reduced loss is caused by charging the 

extra capacitance of the paralleled non-active switch, it compensates the increased loss during the 

turn-on transient. Thus, the total switching loss is the same for 2L and 3L phase leg under case 2. 

However, since there is no such compensation during the turn-off under case 1, the total switching 

loss in a 3L phase leg is higher than that in 2L. 
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Fig. 8-12. Trajectory during turn-off transient. 

 

With a fixed gate resistance, the switching speed is determined, and the difference of the loss 

between 3L and 2L phase leg is mainly caused by the load condition. During one AC line cycle, 

case 1 occurs near the zero crossing point, while case 2 occurs near the peak current. To better 

estimate the switching loss in an actual converter, the correction should be made based on the DPT 

result with a typical 2L phase leg. 

A simulation model based on the SiC module is established in Saber. The simulated switching 

loss with 2L and 3L phase leg under different load conditions are plotted in Fig. 8-13. The loss in 

2L phase leg can match well with the DPT result in Fig. 8-8, which suggests the accuracy of the 

simulation model. Comparing the 3L with 2L, case 1 changes to case 2 in 200-300 A load current. 

With the corrected loss curve, the switching loss of the inverter can be estimated. 

8.3.3 Switching Loss Estimation 

Fig. 8-14 shows the estimated switching loss of the inverter at full and half load conditions 

with different gate resistances. After the correction considering the effect of the 3L structure, the 
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Fig. 8-13. Simulated switching loss in 2L and 3L phase legs. 
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Fig. 8-14. Estimated switching loss with different gate resistances. (a) Full load. (b) Half load. 
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the same gate resistance, the loss difference between 2L and 3L inverters is larger at half load, 

which also matches with Fig. 8-13 where two loss curves have larger gap at lighter load conditions. 

With the proposed methods in Chapters 6 and 7, the switching loss can be significantly 

reduced. If the conventional modulation scheme is used, the gate resistance requires 2.5 Ω due to 

the higher overvoltage according to Section 6.4. As a result, the switching loss at full load is 3163 

W, which is 47.2% higher than using 1.3 Ω gate resistance. If the busbars from other references in 

Table 7-6 are adopted, the gate resistance has to be increased to at least 5 Ω based on the simulation 

results, and the switching loss is increased by 144.3%. With higher switching loss, the device 

temperature rises, leading to higher conduction loss. To keep the stable temperature, cooling 

system with larger size and weight has to be used, which decreases the power density of the system. 

8.4 System Development 

8.4.1 Overall Architecture 

According to the load requirement, two SiC power modules have to be paralleled to deliver 

the current, which can introduce dynamic current sharing issues. In practice, two 500 kW inverters 

are paralleled and interleaved with coupled inductors to achieve 1 MW power with reduced current 

ripple. Taking the device voltage rating (900 V) into consideration, the 3L-ANPC converter is 

utilized as the topology. The paralleled inverter system is drawn in Fig. 8-15, where both DC and 

AC side EMI filters are inserted to suppress EMI noise and meet DO-160 EMI standards.  

8.4.2 Filters 

Fabricated EMI filters and the coupled inductors are shown in Fig. 8-16. Liquid nitrogen can 

directly flow into the 3D-printing housing to cool the magnetic components and wires. The filters 

are characterized at cryogenic temperatures, which is not covered here as it is not the focus of this  
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Fig. 8-15. 1 MW converter system. 

       

(a)                                                                         (b) 

Fig. 8-16. Fabricated filters. (a) Coupled inductors. (b) CM choke. 

 

dissertation. The equivalent switching frequency of the converter is selected as 30 kHz considering 

the noise spectrum and filter weight optimization. 

8.4.3 Gate Drives and Busbars  

The gate drive follows the design in Section 3.1.3.2. For power devices operating at high 

current, it is important to provide sufficient protection to avoid device damage. The main 

protection that needs to be implemented is short circuit protection. Because of the high current 
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requirement in the 1 MW inverter, high DC-link capacitance is required to supply enough transient 

energy. Once the short circuit occurs, the energy stored in the capacitors is dissipated in the device, 

which can easily cause damage. Among the short-circuit protection circuits and control schemes, 

the de-saturation (de-sat) protection is a commonly used method for power semiconductor devices 

[191-193]. Basically, the drain-source or collector-emitter voltage of the device under test is 

detected when the device is on. Once the voltage exceeds a certain threshold, which indicates that 

the drain current is too high, the device is turned-off. 

The detailed de-sat protection circuit for a MOSFET is drawn in Fig. 8-17. The diode Dsat 

blocks the high drain-source voltage when the device is off and conducts when device is on. The 

de-sat voltage vsat is sensed with a RC network and compared with the threshold voltage Vth. The 

output of the comparator triggers the logic circuits and turns off the gate drive when the device 

saturation occurs. Notably, a soft turn-off circuit should be adopted to slow down the turn-off 

process so that the device is not damaged due to the overvoltage caused by the high di/dt during 

the switching transient. The soft turn-off resistance Rs is larger than the normal gate resistance Rg, 

and the detailed value should be selected based on the short-circuit testing results. 

The false triggering issue during normal switching transients requires special attention. The 

reverse recovery current of Dsat and the displacement current through the junction capacitance Cj 

of Dsat can result in voltage increase of vsat. To mitigate this effect, a SiC diode with small footprint 

is preferred for Dsat, while several diodes can be series connected to reduce the junction capacitance. 

In addition, the blanking capacitance Cb should be carefully designed to balance the false triggering 

immunity and the reaction speed.  

The waveform of short circuit current with de-sat protection test is shown in Fig. 8-18. It is 

observed that the peak total drain current of the SiC module is around 3 kA. From the start of the  
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Fig. 8-17. De-sat protection circuit. 
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Fig. 8-18. Short-circuit current with de-sat protection. 

 

short circuit to the moment when the drain current decreases to zero, the total time is less than 3 

μs, which is quick enough to protect the device. 

Another issue worth highlighting is cross-talk. As reviewed in Section 2.1.2, the displacement 

current on the transfer capacitance of the device caused by dv/dt during switching transients flows 

through the gate loop, which leads to a spurious gate voltage. If this voltage is high enough, it can 
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falsely turn-on the device, which significantly deteriorates the switching performance and the 

switching loss.  

One of the commonly used methods for cross-talk suppression is the gate impedance 

regulation. Fig. 8-19 presents the example of a cross-talk suppression circuit as well as its control 

schemes [37]. An impedance regulation branch is added which consists of a small MOSFET and 

a capacitor whose value is higher than 50-100 times of the main switch input capacitance. When 

the gate signal vg_L is applied to the lower main switch, the control signal of the upper small 

MOSFET va_H is also applied with a delay. It should be noted that the small MOSFET Ma_H should 

be turned-off after the lower main switch is off and before the upper main switch is on. Hence, the 

cross-talk of the upper main switch is mitigated, and its normal turn-on is not affected. Fig. 8-20 

shows the tested gate voltage waveform under full bus voltage and load current condition. The 

spurious voltage during the switching transient is less than 1 V, which is lower than the threshold 

voltage of the SiC MOSFET. 

With the busbar prototype in Chapter 7 verified in the lab, the busbar shown in Fig. 8-21 is 

fabricated by a manufacturer and used in the converter. 

8.4.4 Thermal Management 

Cryogenic thermal interface is essential and requires special design of the converter test in the 

lab. As mentioned in Section 8.2, SiC power modules cannot operate under -50 oC. On the other 

hand, over-heating should also be avoided. Therefore, a cooling system with the ability to 

dynamically adjust the operating temperature is needed, and the conventional liquid nitrogen 

cannot be directly used to cool the devices as the liquid temperature is too low and fixed. 
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Fig. 8-19. Circuit and control signals of cross-talk suppression. 
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Fig. 8-20. Gate voltage under full bus voltage and load current condition. 

 

Fig. 8-21. Fabricated busbar by manufacturer used in converter. 

 

The concept of the cooling system is illustrated in Fig. 8-22. The nitrogen gas flows through 

tube coils that are submerged into a liquid nitrogen bucket. By adjusting the height of the jack, the 

number of turns of the coils that are submerged into liquid nitrogen can be adjusted. As a result,  
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Fig. 8-22. Concept of converter cooling system. 

 

the cooling performance of gaseous nitrogen system can be controlled by adjusting the flow rate 

of the gas through a pressure regulator combined with adjusting the number of coil turns 

submerged in the liquid nitrogen. 

The cooled nitrogen gas flows into the coldplates, on top of which are the SiC power modules. 

The coldplate is designed by Boeing, with three independent channels and embedded fins for three 

modules on each phase leg of the 3L-ANPC converter. Therefore, each three-phase converter has 

three coldplates. To test the performance of the fabricated coldplates, resistor heaters are mounted 

on the coldplates as shown in Fig. 8-23. Power loss based on the estimated converter loss are 

generated from the heaters to mimic the operation of the converter. Due to the similar junction to 

case thermal resistance of the resistor heater and the power module, the temperature of the power 

modules can be estimated by sensing the case temperature of the heaters under the same load 

condition. Fig. 8-24 plots the measured temperature with the loss at full load condition. The 

maximum heater case temperature is slightly higher than 60 oC, which indicates that the cooling 

performance is good enough for full load operation. 
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Fig. 8-23. Cold plate testing setup with resistor heaters. 

 

Fig. 8-24. Cold plate testing result under full load condition. 

    

8.4.5 System Integration 

Due to the EHS (Environment, health and safety) requirement, the whole converter system is 

located inside an enclosure to avoid the potential icing and shock issues. With all the designed 

subsystems, the system integration is designed as Fig. 8-25. Note that all the liquid and gas nitrogen 

tubes, coldplates and filters are covered with Styrofoam (yellow parts) to reduce the thermal 

exchange between the coolant and the environment. 
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Fig. 8-25. Designed cryogenic system integration for two paralleled inverters. 

 

8.5 Experimental Results 

The established converter is first tested at room temperature. The testing setup is shown in 

Fig. 8-26. Water cooled coldplates are utilized to provide the cooling. Pure inductive load is used 

to achieve the required load current. Fig. 8-27 illustrates the tested continuous output current 

waveforms of the single converter at 1 kV input voltage. The peak value of the output current is 

292 A, which corresponds to 210 kVA power. There is a slight current unbalance among the three 

phases due to the load inductor unbalance and the open loop operation. The maximum measured 

temperature on the busbar is 41 °C.  

The testing setup at cryogenic temperatures is shown in Fig. 8-28. Six nitrogen cylinders are 

used to provide the gas for the coldplates. By changing the pressure at the outlet of the cylinder 

with the regulators, the gas velocity can be tuned to manage the temperature on the SiC MOSFET 

modules.  
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Fig. 8-26. Room temperature testing setup. 
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Fig. 8-27. Tested output current of single inverter at room temperature. 

 

Fig. 8-28. Cryogenic temperature testing setup. 
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The tested output current of a single inverter at full load condition is plotted in Fig. 8-29. The 

peak phase current reaches 680 A, which corresponds to 500 kVA power level.  

It is necessary to estimate the loss breakdown of the inverter, which is shown in Fig. 8-30 for 

the full load condition. It is observed that the dominant loss is from the power module as shown in 

the yellow area. The conduction and switching loss are almost 50% each of the total device loss. 

The total estimated loss corresponds to 99.0% efficiency.  

In the experiment, the conventional space vector modulation (SVM) is adopted. To reduce the 

switching loss, discontinuous modulation strategies can be used. Based on the simulation, the 

switching loss can be reduced from 2149 W to 1547 W with the discontinuous modulation, 

resulting in 0.12% increase in efficiency.  

Weight is the other main target of the inverter system. The weight breakdown of the 1 MW 

system as well as the sub-systems is shown in Fig. 8-31. Clearly, the filters dominate the total 

weight, and the heaviest part is the coupled inductor balancing the current between two paralleled 

inverters. The measured power density is 11.3 kW/kg. If the AC side has no EMI requirement, and 

only dv/dt filter is needed, the filter weight can be significantly reduced.  

8.6 Conclusion 

In this chapter, a 1 MW inverter based on SiC MOSFET power module is developed to operate 

at cryogenic temperature. SiC MOSFETs are first characterized at low temperatures with liquid 

nitrogen and a cryogenic chamber. The result indicates that the optimal operating temperature is 

around 0 oC.  
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Fig. 8-29. Tested output current of single inverter at full load condition. 

  

Fig. 8-30. Estimated loss breakdown under full load. 

 

The switching loss considering the effect of the paralleled non-active switch in the 3L phase 

leg is analyzed. With low load current, the switching loss increases compared with the typical 2L 

phase leg. The correction of the switching loss with the simulation model is made based on the 

DPT result of a 2L phase leg. By utilizing the technologies in previous chapters, the switching 

speed of the power module increases, and lower switching loss is achieved. 

Based on the characterized data, the inverter system is designed. Two 500 kVA inverters are 

connected in parallel with the coupled inductors. EMI filters are manufactured with 3D printing 

for low temperature operation. Gate drives are developed with de-sat protection and miller clamp 

function integrated. The busbar following the design in previous chapter is also utilized.  Two  
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(a) 

 

(b) 

Fig. 8-31. Weight breakdown inverter system. (a) 1 MW system. (b) Sub-systems. 

 

independent cooling systems are introduced with gas and liquid nitrogen for power modules and 

filters. An enclosure is used for EHS purpose. 

The developed inverter is first tested at room temperature with water cooling at half power 

condition. With the basic function verified, the inverter is tested with cryogenic cooling. The 

estimated efficiency of single inverter at full load condition is 99.0%, and the specific power of 

the 1 MW system is 11.3 kW/kg. The detailed loss and weight breakdown are provided, and the 

advantage in reducing switching loss with the methods in previous chapters is discussed.  
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9  Conclusions and Future Work 

Based on the work presented in chapters 1-8, the conclusions of this dissertation are 

summarized. The potential future research is also discussed in this chapter. 

9.1 Conclusions 

This dissertation investigates the methodology and solutions to improve the switching speed 

of SiC MOSFETs in hard switching applications. The main contributions of this dissertation are 

summarized as follows. 

The major impact factors that limit the switching speed of SiC MOSFETs are analyzed 

comprehensively with double pulse tests. By comparing a low current SiC discrete device with a 

high current SiC power module, it is concluded that the switching speed of the low current discrete 

device is mainly limited by the gate drives, which cannot provide sufficient gate current to improve 

the switching speed. On the other hand, the switching speed of the high current power module is 

difficult to increase because of the high overvoltage induced by the higher di/dt during the switching 

transient and the parasitic inductance in the power loop. Therefore, different solutions are required 

for SiC MOSFETs with different current ratings. 

1. For SiC MOSFETs with low current ratings, existing gate drive technologies are not enough 

to fully utilize the device switching speed capability. So the key point is to enhance the gate current 

during the switching transient.  

1.1. A current source gate drive is proposed that can mitigate the influence of the large internal 

gate resistance and maintain constant gate current during the switching transient. After the 

switching transient, it can be controlled back to a voltage source gate drive to avoid gate 

overcharging and energy waste. In comparison with the conventional voltage source gate drive, 
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the turn-on and turn-off time is shortened by 67% and 50% respectively, while the switching loss 

is shrunk by 68% with the proposed gate drive at full load condition. 

1.2. To overcome the drawback of the current source gate drive such as the required extra 

inductor and accurate timing control, a charge pump gate drive is proposed with simple structure. 

It can dynamically increase the gate drive output voltage during the turn-on switching transient to 

increase the switching speed of the SiC MOSFET. The gate drive voltage can automatically drop 

back to the normal value without additional control. The proposed gate drive can achieve 67.4% 

and 71.7% reduction for the turn-on switching time and loss. 

2. For SiC MOSFET power modules with high current ratings, the key to increase the 

switching speed is attenuating the overvoltage resulting from the parasitics. Different control 

modulations can change the overvoltage, while optimizing the layout design is a straightforward 

way to reduce the parasitics. 

2.1. The device drain-source overvoltage in 3L-ANPC converters is modeled for two 

modulation schemes with state space analysis. The coupling effect of the two commutation loops 

as well as the non-linear capacitance is considered. By turning off the non-active clamping switch, 

a modified modulation that builds an initial voltage across the line switching frequency device is 

developed, which helps the device output capacitance avoid the non-linear region and reduce the 

overvoltage. The overvoltage models for the conventional and the modified modulations are 

verified with a 500 kVA 3L-ANPC converter. With the modified modulation, 162 V and 176 V 

overvoltage reduction is achieved for the high and line switching frequency devices, which enables 

higher switching speed operation. 

2.2. To minimize the parasitic loop inductance in three-level converters, the layout design 

criteria are introduced. Multiple commutation loops are taken into consideration, and the magnetic 
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cancellation effect is utilized. Following the design criteria, a design example of a laminated busbar 

with distributed DC-link capacitors is given for a 500 kVA 3L-ANPC converter based on SiC 

MOSFET power modules. In addition, the fabrication process of the laminated busbar based on 

aluminum is investigated. The overall parasitic inductances of the short and long loop in the 

fabricated busbar are 6.5 nH and 17.5 nH, respectively. Compared to the high power NPC type 

converters in other references, the proposed busbar achieves at least 84% and 77% reduction in 

small and large loop inductances. 

3. A high power inverter based on SiC power module is developed for cryogenic applications. 

The detailed design for the sub-components in the inverter system is introduced. Taking into 

account the influence from the paralleled non-active switch in the 3L phase leg, a correction of the 

switching loss is made based on the DPT result of a 2L phase leg. By utilizing the proposed control 

and busbar, the switching speed of the power module increases, and lower switching loss is 

achieved. The inverter system is tested under room and low temperatures, achieving 99.0% 

estimated efficiency and 11.3 kW/kg power density. 

9.2 Main Contributions 

1. A novel current source gate drive is proposed that can provide constant gate current during 

the switching transient of the SiC MOSFET. The voltage fall time of the MOSFET is significantly 

decreased, and the switching loss is reduced. 

2. A novel charge pump gate drive is proposed with simple structure and without additional 

control. The supply voltage can be dynamically increased to enhance the gate charging process. 

The turn-on switching loss of the SiC MOSFET is reduced, and the switching speed can be 

regulated with high flexibility by changing the external gate resistance. 
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3. An analytical model to predict the device overvoltage in 3L-ANPC converters is proposed. 

Taking into account the multiple switching loops, the relationship between the overvoltage and 

loop inductances is established to help the converter design. 

4. A control scheme that can reduce the device overvoltage in 3L-ANPC converters is 

proposed. By avoiding the non-linear region of the device output capacitance, the drain-source 

overvoltage of the SiC MOSFET is reduced, which is beneficial for increasing switching speed. 

5. A layout design methodology is proposed to reduce the loop inductances in 3L converters. 

A laminated busbar is designed and fabricated following the methodology, achieving significantly 

lower loop inductances compared with the existing references. 

6. A high power inverter utilizing SiC power modules is established and tested for cryogenic 

applications. Special concerns are provided for low temperature operation. 

9.3 Future Work 

On the basis of the work presented in this dissertation, some recommended future work is 

discussed here: 

1. Active gate drive technology to balance switching loss and EMI noise 

The proposed current source gate drive and charge pump gate drive in this dissertation mainly 

focus on increasing the switching speed and reducing the switching loss. Although the overvoltage 

can be regulated, the EMI noise issue caused by the high dv/dt and oscillation on the drain-source 

voltage of the SiC MOSFET should be taken into consideration when implementing the gate drive. 

Hence, there should be a balance between the switching speed and EMI immunity according to the 

requirement of the applications. 
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One potential solution is to develop active gate drives with tunable dv/dt and di/dt during the 

device switching transient. This concept has already been proposed and developed for IGBTs such 

as by integrating a feedback unit to actively monitor the dv/dt or di/dt and adjust the switching 

speed. However, SiC MOSFETs switch much faster than IGBTs, making the bandwidth and 

execution time of such control a problem. In all, a gate drive with the ability to regulate the shaping 

of the device current and voltage during the switching transient should be beneficial for the 

operation of SiC MOSFETs. 

2. Intelligent gate drive for high voltage SiC MOSFET 

In this dissertation, the devices under test and analysis are mainly rated in the range of 900-

1200 V. Actually, there is a trend to develop SiC MOSFETs with higher breakdown voltage (e.g. 

10 kV) because of the superior voltage blocking ability of the SiC material, which raises higher 

requirement for gate drives. 

First, the gate drive should meet the requirement of voltage isolation and common mode 

transient immunity (CMTI). Smaller coupling capacitance between the primary and secondary side 

of the isolation is preferred, which needs special design of the layout and structure of the auxiliary 

power supply and signal isolator.  

Second, the gate drive should have the functions to monitor and control the SiC MOSFET 

completely. For example, the regulation of switching speed mentioned above needs to be included. 

Moreover, the online junction temperature monitoring, the lifetime estimation, and fast protection 

should all be realized. 

3. Packaging development with multi-level topology integrated 
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The existing power modules available are mainly based on 2L structure, either a simple half-

bridge or a three-phase six-pack inverter. With the wider adoption of 3L converters such as T-type 

or NPC type, several 2L power modules have to be combined to build the converter. As analyzed 

in the dissertation, large amount of effort is paid to design and optimize the layout for the 3L-

ANPC converter. If all the devices needed for a 3L converter phase-leg are integrated in one 

module, the switching loops are easier to be optimized, and the size of the converter can be reduced. 

In addition, the integrated module can make it more friendly for end users because the layout 

design in a PCB or busbar can be significantly simplified.  

4. Integration of traction inverter and motor 

In hard switching applications, there is always a trade-off between high switching speed and 

noise caused by high dv/dt. For traction inverters driving motors, the increased dv/dt not only 

influence the performance of the converter, but also impacts the electric machine. In most cases, 

motors are connected with converters through power cables. These cables increase the weight and 

size of the system. Moreover, they introduce higher voltage stress at the motor terminal due to 

voltage reflection phenomenon, resulting in insulation issues. In consequence, either the switching 

speed of SiC MOSFETs needs decreasing, or dv/dt filters are required before the motors. Therefore, 

even though the concept of integrating inverters with motors is not new, eliminating the power 

cable can help fully utilize the high switching speed capability of SiC MOSFETs [194]. 

The main challenge of such integration is the reliability. With integration, the overall room of 

the system is limited, which makes the thermal design more difficult. Also, the vibration caused 

by motors calls for more robust power electronics systems. 

5. Current source inverter 
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Current source inverters (CSIs) are far less popular than voltage source inverters (VSIs) 

mainly because they require power devices with reverse voltage blocking ability. With IGBTs or 

MOSFETs, two devices have to be connected in series, which significantly increases the 

conduction loss. Nevertheless, CSIs have some intrinsic superiorities over VSIs. For example, 

CSIs can operate at higher temperature by eliminating the large DC-link capacitors. Because of 

lower source voltage amplitude at high frequency domain as well as lower dv/dt, CSIs generate 

less conducted EMI and overvoltage. In addition, CSIs are much less vulnerable to short-circuit 

fault that is fatal for power semiconductors, especially WBG devices with less overcurrent 

withstand capability. 

With emerging WBG devices, the conduction loss can be significantly reduced compared to 

the conventional Si devices with the same chip size. As a result, same or less loss can be achieved 

even though more device numbers are required. Considering the advantages mentioned above, 

CSIs become more attractive when combining with WBG devices. 

6. Design interface for performance optimization 

In this dissertation, SiC discrete devices and power modules are analyzed separately as the 

representatives of devices with different current ratings. In reality, whether the switching speed of 

a device is limited by gate drive or by parasitics is highly dependent case by case. The question is 

how to select the right device in a specific application and design the layout so that the overall 

performance of the converter can meet the requirement of the application. 

To answer this question, a design interface should be developed. This is a systematic 

optimization tool that can generate the components and layout of the converter, and achieve good 

balance between efficiency, power density, EMI, cost and other aspects based on the specific 

requirement of the application. 
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