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ABSTRACT 

10 kV SiC MOSFETs are promising to substantially boost the performance 

of future medium voltage (MV) converters, ranging from MV motor drives to fast 

charging stations for electric vehicles (EVs). Numerous factors influence the 

switching performance of 10 kV SiC MOSFETs with much faster switching speed 

than their Si counterparts. Thorough evaluation of their switching performance is 

necessary before applying them in MV converters. Particularly, the impact of 

parasitic capacitors in the MV converter and the freewheeling diode is investigated 

to understand the switching performance more comprehensively and guide the 

converter design based on 10 kV SiC MOSFETs.   

A 6.5 kV half bridge phase leg based on discrete 10 kV/20 A SiC MOSFETs 

is designed and fully validated to operate continuously at rated voltage with dv/dt 

up to 80 V/ns. Based on the phase leg, the impact of parasitic capacitors brought 

by the load inductor and the heatsink on the switching transients and performance 

of 10 kV SiC MOSFETs is investigated. Larger parasitic capacitors result in more 

oscillations, longer switching transients, as well as higher switching energy loss 

especially at low load current. As for the freewheeling diode, the body diode of 10 

kV SiC MOSFETs is suitable to serve as the freewheeling diode, with negligible 

reverse recovery charge at various temperatures. The switching performance with 

and without the anti-parallel SiC junction barrier Schottky (JBS) diode is compared 

quantitatively. It is not recommended to add an anti-parallel diode for the 10 kV 

SiC MOSFET in the converter because it increases the switching loss. 
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CH 1. INTRODUCTION 

1.1 Medium Voltage Converters 

Nowadays, more and more power flow is controlled and processed by 

power electronics converters with high power conversion efficiency. Particularly, 

medium voltage (MV, from 1 to 35 kV AC) power converters are playing a crucial 

role in critical applications, including the modern grid and MV motor drives [1].  

MV power converters have a wide range of applications in the power grid. 

At the distribution level, various MV converters are needed to support the stable 

operation of the grid, such as solid state circuit breaker and fault current limiter for 

protection [2], [3], active power filter (APF) for improved power quality [4], static 

synchronous compensator (STATCOM), and unified power flow controller. As the 

capacity of the installed renewable energy sources keeps increasing, the efficient 

interface for renewable energy sources draws increasing attention. MV converters 

interface the renewable energy sources with the grid efficiently, with less stages 

and less complicated structure. MV DC system is promising in interfacing the 

utility-level solar farms to the grid with lower cost and higher efficiency, and 

enables the possibility for DC transmission at the medium voltage level. New MV 

converters have also been proposed to achieve smaller size and better 

controllability, such as solid state transformer [6] and continuously variable series 

reactor [7]. 

MV motor drives are indispensable driving forces in industrial, 

transportation, and military applications. Motors and their drives consume a large 
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percentage of electricity supplied to industry. With the same power rating, MV 

motor drives are able to achieve lower losses and higher power density compared 

to low voltage drives [8]. MV variable speed drives are installed to drive 

compressors in the oil and gas industry, high-power motors in mining and steel 

industry, and so on. Trains and naval electric ships with higher DC-link voltage also 

require MV drives [9]. 

Si-based power semiconductor devices dominate in current MV converters, 

including IGBTs, thyristors, gate turn-off thyristors (GTOs), and integrated gate-

commutated thyristors (IGCTs). The Si IGBT shown in Fig. 1(a) is prevalent in MV 

converters because of simple gate driver design and relatively high switching 

frequency. Thyristors, GTOs, and IGCTs are only considered for extremely high 

power applications, due to low conduction loss at large current. Si MOSFETs 

shown in Fig. 1(b), with lower switching loss than Si IGBTs, typically cannot be 

used in MV converters, otherwise the conduction loss is extremely large [10]. 

Fig. 1. Physical structure and current flow of IGBT and power MOSFET [10]. 
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However, Si IGBTs have gradually become the bottleneck in the 

development of high-performance MV converters. The limitations of Si IGBTs for 

MV applications include relatively low blocking voltage, high switching loss, and 

low switching frequency. Since the invention of IGBT in 1980s, the performance 

improvement of Si IGBTs has driven the development of high-performance MV 

converters. The design and fabrication process of Si IGBTs are mature and 

approaching the limit of Si material. Power semiconductor devices with higher 

blocking voltage are highly desirable, yet the voltage rating of Si IGBTs 

commercially available for MV applications is limited to 6.5 kV, due to the 

conduction losses. Also, because of current i2 in Fig. 1(a) that cannot be actively 

shut down and the resulting tail current, it is difficult to further reduce the switching 

loss of Si IGBTs [10]. The tail current during the turn-off transient contributes to a 

large percentage of the switching loss. This is why the switching frequency of MV 

converters based on 6.5 kV Si IGBTs is usually limited to 1 kHz. In summary, Si 

IGBTs with limited blocking voltage and low switching frequency are not suitable 

for future high-performance MV converters.  

Recently, the rapid development of the next-generation power 

semiconductor devices based on wide band-gap (WBG) materials has laid a solid 

foundation for the better power semiconductor devices for MV applications. With 

much wider band-gap than Si, WBG materials have superior material properties 

relevant to power electronics applications, such as critical electric field, saturated 

electron velocity, and thermal conductivity. Fig. 2 shows the comparison of material 
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Fig. 2. Summary of the material properties of Si, SiC, and GaN for power 
electronics applications [11]. 
 
 
properties of Si and two representative WBG materials, silicon carbide (SiC) and 

gallium nitride (GaN). Particularly, SiC has the best maturity in wafer processing 

and manufacturing as well as commercial availability of power semiconductor 

devices among all promising WBG materials [11]. SiC has several different 

polymorphic crystalline structures, each of which has different material properties. 

In this thesis, only 4H-SiC is considered and discussed because it has the best 

prospect in practical power electronics applications [12].  

Excellent material properties of SiC bring the SiC power semiconductor 

devices higher blocking voltage, higher operation temperature, and potential for 

higher switching frequency. Since the release of the first commercially available 

SiC Schottky barrier diode (SBD) in 2001, tremendous progress has been made 

in SiC power semiconductor devices, including both low voltage and high voltage 
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devices, both majority carrier devices and minority carrier devices. A wide range 

of high voltage SiC power semiconductor devices have been designed and 

produced for MV applications, including junction barrier Schottky (JBS) diode, 

bipolar junction transistor (BJT), junction gate field-effect transistor (JFET), 

MOSFET, IGBT, and thyristor [13]-[15]. Due to the ten times higher critical electric 

field of SiC material, high voltage SiC devices are able to achieve much higher 

voltage rating than their Si counterparts. With rated voltage ranging from 6.5 kV to 

20 kV, these emerging SiC devices leveraging the superior characteristics of SiC 

material are suitable for MV applications. 

1.2 10 kV SiC MOSFETs for MV Applications 

The 10 kV SiC MOSFET is one of the most promising high voltage SiC 

power semiconductor devices to replace 6.5 kV Si IGBTs in MV applications [16]-

[19]. The on-resistance of the SiC MOSFET with blocking voltage up to 15 kV is 

still acceptable, since SiC material tremendously reduces the drift layer resistance. 

Research and development efforts have been spent on the 10 kV SiC MOSFET 

for over a decade. As the leader in SiC power semiconductor devices, 

Wolfspeed/Cree has designed and fabricated three generations of 10 kV SiC 

MOSFETs, with the specific on-resistance reduced from 160 mΩ-cm2 to 100 mΩ-

cm2 at room temperature [16]-[19]. The latest 3rd generation 10 kV SiC MOSFET 

is studied in this thesis. Compared to Si IGBTs for MV applications, 10 kV SiC 

MOSFETs have higher voltage rating and operation temperature, lower switching 

loss, and faster switching speed, as shown in Fig. 3. These benefits at the device  
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Fig. 3. Summary of device-level benefits and converter-level benefits of 10 kV. 
 
 
level further facilitate comprehensive benefits at the converter level, such as 

simpler converter topology and design, higher efficiency, smaller size and weight, 

and higher control bandwidth, which are also summarized in Fig. 3. Therefore, 10 

kV SiC MOSFETs are promising to play a critical role in the future high-

performance MV converters. 

10 kV SiC MOSFETs have relatively low on-resistance because of low 

specific on-state resistance of SiC unipolar devices [20]. To achieve the same 

blocking voltage level, much thinner drift layer and much higher doping density can 

be used if Si wafer is replaced by SiC wafer. Therefore, the on-resistance of SiC 

majority carrier devices is significantly reduced compared to their Si-based 

counterparts at the same voltage level. Fig. 4 shows the comparison of the specific 

on-resistance and its theoretical limit of SiC and Si majority carrier devices [20].  
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Fig. 4. Specific on-resistance vs. breakdown voltage for Si and SiC [20]. 
 
 
The newest generation of 10 kV SiC MOSFETs has specific on-resistance close 

to its theoretical limit. 

Furthermore, 10 kV SiC MOSFETs have faster switching speed, >20X lower 

switching losses, and hence are able to switch at much higher frequency than 6.5 

kV Si IGBTs with similar current rating [14], [19]. Due to the lower specific on-

resistance shown in Fig. 4, SiC MOSFETs typically have small die size, including 

10 kV SiC MOSFETs. As a result, the parasitic capacitors are smaller, contributing 

to the faster switching speed. The high saturated electron velocity of SiC material 

also benefits the fast switching speed of 10 kV SiC MOSFETs. In the fundamental 

point of view, the 10 kV SiC MOSFET as a majority carrier device, has faster 

switching transients by eliminating the injection of minority charges and hence the 

turn-off tail current, which is also illustrated in Fig. 1 [10]. The body diode of 10 kV 

SiC MOSFETs also has much lower reverse recovery loss than Si PiN diodes, 
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which is attributed to the shorter minority carrier lifetime of SiC material [12].  

MV converters benefit comprehensively from the superior performance of 

10 kV SiC MOSFETs [17], [21]. The fast switching speed and low switching energy 

loss give rise to the low converter switching loss. The volume and weight of the 

cooling system could also be smaller. The switching frequency can be increased 

to tens of kilohertz to achieve smaller size of passive components and higher 

power density. The higher blocking voltage of 10 kV SiC MOSFETs reduces the 

number of required devices and simplify the converter topology and design. With 

10 kV SiC MOSFETs, two-level topologies can be adopted for MV drives with 4.16 

kV line-to-line voltage. In MV motor drives, high switching frequency enabled by 

10 kV SiC MOSFETs can support the high speed direct motor drives without the 

gearbox, leading to smaller footprint and higher system density [22], [23]. Simpler 

multi-level topologies can be used to directly interface the distribution grid by using 

10 kV SiC MOSFETs, without the series connection of switching devices. These 

benefits are also of great significance in emerging MV applications, such as electric 

vehicle (EV) fast charger and data center power supply [21], [24]. 

In addition to benefits, fast switching speed of 10 kV SiC MOSFETs brings 

new challenges. Generally these new challenges result from high dv/dt and high 

di/dt generated by the fast switching speed. For instance, the drain-to-source 

voltage Vds of the 10 kV SiC MOSFET typically falls from 6 kV to nearly 0 V within 

100 ns during the turn-on transient. The high dv/dt (>60 V/ns) lasts for much longer 

time than the dv/dt in low voltage (<6.5 kV) SiC MOSFETs. It is challenging to drive 
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the 10 kV SiC MOSFET while fully utilizing its fast switching speed. The gate driver 

should isolate high voltage with high dv/dt in power and signal transmission. The 

common-mode current and accelerated insulation degradation caused by high 

dv/dt should be tackled, and the cross-talk issue should be evaluated and 

addressed. Moreover, the fast switching speed makes the switching performance 

of 10 kV SiC MOSFETs more sensitive to the parasitics in the power stage, 

especially parasitic capacitors. It is still unknown what is these parasitic capacitors’ 

influence on the switching transients and performance of the 10 kV SiC MOSFETs.  

1.3 Motivation and Objective 

10 kV SiC MOSFETs are promising to boost the performance of MV 

converters substantially, including the footprint, power density, specific power, and 

efficiency. To apply the emerging advanced 10 kV SiC MOSFET in MV power 

conversion systems, its switching behavior and performance should be 

investigated and deeply understood. The investigation results are not only helpful 

in understanding the switching transients of 10 kV SiC MOSFETs, but also 

provides the switching energy loss data, design considerations, and guidelines for 

the MV converters based on 10 kV SiC MOSFETs. 

The half bridge phase leg is one of the most fundamental building blocks 

for MV converters. It is the building block for two-level DC-DC bidirectional 

converters, three-phase voltage source converters, and other MV converters. It 

has two identical switching devices, and each switching device should have a 

freewheeling diode to allow bi-directional current. The investigation results of half 
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bridge phase leg based on 10 kV SiC MOSFETs can be the foundation for the 

study and design of more complicated building blocks and converters. The device’s 

switching performance in the half bridge phase leg is widely accepted to guide the 

converter loss estimation and design. Hence, this thesis concentrates on the study 

of the half bridge phase leg based on 10 kV SiC MOSFETs. In this thesis, the 

phase leg is defined as the half bridge phase leg with two identical switches 

allowing bi-directional current. 

In previous study, the switching performance of 10 kV SiC MOSFET has 

been investigated with double pulse test (DPT), a commonly adopted method to 

study the switching behavior and performance of a power semiconductor device. 

With much faster switching speed than Si IGBTs, switching transients of 10 kV SiC 

MOSFETs are more sensitive to the parasitics in the converter. Particularly, 

parasitic capacitors in the power stage of the converter influence the switching 

energy loss and dv/dt significantly and bring more ringing during the switching 

transients. Nonetheless, the DPT setup for testing the 10 kV SiC MOSFETs is 

often designed and built to minimize the parasitics in the power stage, and hence 

have different characteristics from MV converters. In fact, the DPT setup usually 

does not have the capability to operate continuously as part of a converter. As a 

result, the conventional DPT setup is unable to identify and investigate the impact 

of parasitic capacitors in the power stage on the switching performance. The 

switching performance evaluation results with DPT sometimes deviate greatly from 
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what have been observed in converter operation, as reported in the study of low 

voltage SiC MOSFETs [25], [26]. 

A phase leg with continuous operation capability as part of a MV converter 

is an ideal platform to fully evaluate the switching performance of the 10 kV SiC 

MOSFET and investigate the impact of the parasitic capacitors. One essential 

issue in the phase leg design is how to design the robust gate driver for 10 kV SiC 

MOSFETs when the phase leg is operating continuously [15]. It is also challenging 

to test the phase leg and prove its continuous operation capability at dc-link voltage 

higher than 6 kV. The testing should be nondestructive and extremely cautious, 

because the 10 kV SiC MOSFET is expensive to produce and not commercially 

available. Protection under overcurrent/short circuit conditions is necessary in the 

gate driver to clear the fault before the MOSFET is damaged. In addition to the 

overcurrent protection, more design considerations should be recognized in the 

gate driver design to support the continuous operation. 

The freewheeling diode also impacts the switching performance of the 10 

kV SiC MOSFET in the phase leg, which can be implemented with body diode and 

the external anti-parallel JBS diode. Typically, the body diode of SiC MOSFET has 

small reverse recovery charge. Nonetheless, the reverse recovery performance of 

the body diode of low voltage SiC MOSFETs becomes much worse as junction 

temperature rises to 125 ˚C. Anti-parallel Schottky diode is recommended in 

converters based on low voltage SiC MOSFETs to reduce reverse recovery current 

and switching loss over a wide temperature range [11]. Regarding the 10 kV SiC 
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MOSFET, the impact of body diode and external anti-parallel JBS diode on the 

switching behavior and loss has not been explored in detail to determine whether 

to use anti-parallel diode in the converter. 

The first motivation of this work is to design and test a 6.5 kV phase leg 

based on 10 kV SiC MOSFET with continuous operation capability to serve as a 

building block of a MV converter. The considerations and challenges of the design 

and testing are explored. Then, the second motivation is to utilize the phase leg 

prototype to evaluate the influence of the parasitic capacitors in the converter 

power stage on the switching performance of 10 kV SiC MOSFETs with much 

higher dv/dt than Si IGBTs. The third motivation is to conduct the quantitative 

analysis about the impact of the freewheeling diode on the switching performance 

of 10 kV SiC MOSFETs in order to clearly demonstrate the difference that adding 

the anti-parallel JBS diode makes compared to using the body diode as the 

freewheeling diode.   

This thesis presents the detailed design and testing procedures of a 6.5 kV 

phase leg based on the discrete 10 kV/20 A SiC MOSFETs from Wolfspeed with 

continuous operation capability as a building block of a MV converter, with the 

design of a robust gate driver for continuous operation introduced in detail. The 

designed phase leg is utilized to evaluate the switching performance of the 10 kV 

SiC MOSFET. The impact of the parasitic capacitors due to the load inductor and 

the heatsink of the converter on the switching performance is investigated 

comprehensively. To have a more complete understanding of the switching 
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performance of the 10 kV SiC MOSFET, the impact of the body diode and the anti-

parallel JBS diode on the switching performance is also studied in depth. 

Meanwhile, the design principles are summarized to guide the MV converter 

design based on 10 kV SiC MOSFETs. 

1.4 Thesis Outline 

The goal of this thesis is to evaluate the switching performance of the 3rd 

generation 10 kV/20 A SiC MOSFET from Wolfspeed comprehensively, with the 

impact of parasitic capacitors in the power stage of a MV converter considered. To 

conduct the switching performance evaluation, a 6.5 kV half bridge phase leg is 

designed and built for continuous operation as a building block of a MV converter. 

The phase leg is fully tested and validated at 6.5 kV with the developed systematic 

testing procedures. 

Chapter 2 reviews the previous investigation of the switching performance 

of 10 kV SiC MOSFETs with DPT. The design and testing of the 10 kV SiC 

MOSFET based phase leg are also reviewed, focusing on the gate driver design 

and overcurrent protection scheme. To have a more comprehensive review, the 

progress in other high voltage SiC MOSFETs and IGBTs are also introduced. 

Chapter 3 introduces the design and testing of the 6.5 kV half bridge phase 

leg based on the discrete 10 kV/20 A SiC MOSFETs. The phase leg is designed 

and tested to be capable of operating continuously at 6.5 kV dc-link voltage with 

dv/dt up to 80 V/ns. Design considerations and challenges are presented in detail, 

as well as the developed systematic testing procedures and testing results. 
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Chapter 4 investigates the impact of the parasitic capacitors in the converter 

on the switching performance of the 10 kV SiC MOSFET with the DPT setup based 

on the phase leg introduced in Chapter 3. The influence of the parasitic capacitors 

caused by the load inductor and the heatsink on switching transients and losses is 

investigated in detail. 

Chapter 5 discusses the impact of the freewheeling diode on the switching 

performance of 10 kV SiC MOSFETs. Specifically, the influence of body diode and 

the added anti-parallel SiC JBS diode on the switching transients and losses is 

studied in depth. The reverse recovery performance of the body diode is analyzed 

over a wide temperature range. The switching performance with and without the 

anti-parallel JBS diode is compared quantitatively to study the impact of adding 

anti-parallel JBS diode. 

Chapter 6 concludes the work presented in this thesis, and the future work 

about the phase leg design and the switching performance investigation is 

presented. 
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CH 2. LITERATURE REVIEW  

Numerous efforts have been spent on the switching performance evaluation 

of 10 kV SiC MOSFETs and the design of 10 kV SiC MOSFET based phase leg 

recently, in order to apply this next-generation MOSFET in high-performance MV 

power conversion systems in the future. The freewheeling diode in the phase leg 

also attracts research interest, which can be the body diode or the added anti-

parallel JBS diode. In this chapter, the previous research efforts about the 10 kV 

SiC MOSFETs will be summarized, including the switching performance 

evaluation, phase leg design and test, and the selection of freewheeling diode. 

Since the literature studying 10 kV SiC MOSFETs is still limited, the research about 

other high voltage SiC devices (>6.5 kV) will also be reviewed. 

2.1 Switching Performance Evaluation of 10 kV SiC MOSFETs 

With fast switching speed, the switching performance of 10 kV SiC 

MOSFETs is sensitive to numerous impact factors. Switching performance 

evaluation should be conducted in detail to understand how to control the switching 

transients and improve the switching performance. Typically, the switching 

performance essential to the converter design is the research focus, especially the 

switching energy loss and dv/dt. Switching loss contributes to a large portion of the 

total converter loss in converters based on SiC devices with high switching 

frequency, and it has profound influence on the switching frequency selection and 

passive component design. The common mode noise caused by dv/dt poses great 

challenge to the gate driver design with the isolated power supply and the control 
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circuits and signals [15], [27]. In addition, insulation issues occur if the high 

blocking voltage also has high dv/dt [28]. 

The most common method to characterize the switching performance of a 

power semiconductor device is DPT with the clamped inductive load circuit [11], 

[29]. The basic operation principle of DPT is that the gate-to-source voltage Vgs of 

the device under test (DUT) has two short pulses for the characterization of both 

turn-on and turn-off transient in hard switching condition. Detailed working 

principles of DPT will not be covered in this thesis. The essential aspects of DPT 

include the control signal for DUT, the load inductor, the freewheeling path, and 

the measurement setup. Two circuit configurations are usually used in DPT for the 

switching performance characterization, depending on the complementary switch 

to conduct the current when DUT is off. As shown in Fig. 5, the switch/switch pair 

adopts the upper device which is always off to provide the current path when DUT 

is off. The upper device and the DUT are identical. This configuration is also called 

the phase leg configuration. In the switch/diode pair, a discrete diode with similar 

current and voltage rating to the DUT is used as the freewheeling diode. The two 

configurations are selected based on the purpose of DPT, and DPT configuration 

should be similar to the intended converter [11]. The DUT is usually the lower 

device because of its grounded source and the convenience in measurement. The 

upper device can be the DUT as well, as displayed in Fig. 6. Then, the differential 

voltage probe is required to measure the drain-to-source voltage of DUT. With a 

hotplate or oven, the junction temperature of the DUT can be regulated. 
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                              (a)                                                                  (b) 
Fig. 5. Two circuit configurations used in DPT: (a) switch/switch pair; (b) 
switch/diode pair. 
 
 

 

                           (a)                                                                     (b) 
Fig. 6. Two different kinds of DPT: (a) the lower device in the phase leg as the 
DUT; (b) the upper device in the phase leg as the DUT. 
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DPT has been commonly used to evaluate the switching performance of 

high voltage SiC devices, including both the switch/diode pair and switch/switch 

pair. The switching behavior and the impact of some factors have been revealed 

by analyzing the switching waveforms and data. In [30], the DPT setup with 

switch/diode pair is built to investigate the switching performance of the 15 kV SiC 

MOSFET under different gate resistances and junction temperatures. It is found 

that smaller gate resistance and higher junction temperature are able to accelerate 

the turn-on process. The turn-off transient is mainly capacitive charging process 

and hence is less dependent on gate driver parameters and the junction 

temperature. The switching performance of 15 kV SiC IGBTs have also been 

characterized with the switch/diode pair [30], [31], with both switching energy loss 

and dv/dt analyzed in detail. Generally, DPT with switch/diode pair is helpful in 

understanding the turn-on and turn-off transient and the influence of temperature 

and gate driver, and it only requires one high voltage SiC device. However, it is 

only suitable for evaluating the switching performance of the device in the 

unidirectional DC-DC converter and other converters requiring either high-side or 

low-side switch to be the diode, in terms of switching energy loss and dv/dt. DPT 

configuration should be the same as the devices’ configuration in the converter to 

have convincing evaluation of the switching performance. The data obtained in 

DPT with switch/diode pair are not accurate to indicate the dv/dt and switching loss 

of a two-level inverter or rectifier, whose fundamental building block is the phase 

leg with two identical switches. In fact, the two-level inverter/rectifier, three-phase 



 

19 
 

or single phase, is prevalent in MV and high power applications. Therefore, DPT 

with phase leg configuration in Fig. 5(a) is more preferable to evaluate the 

switching performance of high voltage SiC devices for MV applications. 

The 3rd generation 10 kV SiC MOSFET from Wolfspeed has been first 

characterized by Wolfspeed researchers with DPT in phase leg configuration [19], 

[32]. The influence of the gate resistance and the drain current on the switching 

performance is investigated in detail, as shown in Fig. 7, while the detailed analysis 

of the impact of the junction temperature is not provided. The large gate resistance 

slows down both turn-on and turn-off transient, and the gate resistance has strong 

control on the turn-on transient. Turn-on energy loss dominates the total switching 

energy loss. The investigation results coincide well with the conclusions in the 

investigation of 15 kV SiC MOSFETs with switch/diode pair in [30].  

The temperature-dependent switching performance of the 3rd generation 10 

kV SiC MOSFET is systematically studied in [33] with the switch/switch pair. A 

 
Fig. 7. Switching energy loss as a function of external gate resistance (left) and 
drain current (right) for the 3rd generation 10 kV SiC MOSFET at 150 ˚C [19]. 
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detailed device model in Fig. 8 is built to perform the systematic study of the 

switching behavior and performance. Generally temperature has slight impact on 

the turn-on transient and negligible effect on the turn-off transient, as indicated in 

the switching waveforms in Fig. 9 and Fig. 10 (Rgoff = 3 Ω and Rgon = 15 Ω). During 

the turn-off transient, the channel current drops to zero quickly due to low channel 

current (<20 A) and high dv/dt. The turn-off process is thereby mainly the 

charging/discharging of parasitic output capacitors of the MOSFETs, and dv/dt is 

hence higher at higher load current. The parasitic capacitors are independent of 

temperature. The junction temperature has little influence on the turn-off transient, 

and the measured turn-off loss is mainly the energy stored in the output capacitor 

of the DUT [33] [34].  

Turn-on transient is slightly impacted by the temperature. The turn-on dv/dt 

is higher at higher junction temperature due to the lower gate threshold voltage. 

Meanwhile, the overshoot in drain current Id increases because of the increased  

 
Fig. 8. Detailed device model of 10 kV SiC MOSFET [33]. 
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Fig. 9. Turn-on (right) and turn-off (left) waveforms of the 10 kV SiC MOSFET at 
25 ˚C [33]. 
 
 

 
Fig. 10. Turn-on (right) and turn-off (left) waveforms of the 10 kV SiC MOSFET at 
125 ˚C [33]. 
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displacement current in the parasitic capacitors. The turn-on loss reduces slightly 

at higher temperature. Generally, junction temperature only slightly impacts the 

switching transients of the 3rd generation 10 kV SiC MOSFET, and higher junction 

temperature makes the turn-on transient faster. Such temperature-dependent 

switching behaviors of 15 kV SiC MOSFETs have also been reported [35], [36]. 

In summary, DPT with both switch/switch pair and switch/diode pair has 

been adopted to characterize the switching performance of 10 kV SiC MOSFETs 

and other high voltage SiC devices. Characterization results show that the junction 

temperature only has slight influence on the switching performance. The turn-on 

transient of 10 kV SiC MOSFETs is mainly controlled by the gate driver 

parameters, while the turn-off transient is mainly determined by the parasitic 

capacitors since the channel current decreases to zero quickly. 

Nevertheless, most previous studies have not investigated the impact of 

parasitic capacitors in the MV converter on the switching performance of high 

voltage SiC devices. The conventional DPT setup used in previous investigation is 

designed to minimize the circuit parasitics, hence different from the real converters 

with parasitics from numerous sources. For instance, the load inductor in 

conventional DPT setup typically only has single-layer winding to reduce the 

parasitic capacitor as much as possible, which is often not the case in MV 

converters [31], [33]. In fact, the fast switching speed of SiC devices makes their 

switching transients sensitive to the parasitic capacitors [37], [38]. If the parasitic 

capacitors are negligible in DPT setup, the switching transients and losses 
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obtained in DPT could deviate significantly from experimental results in real 

converters based on SiC devices. The switching loss in real converters could be 

significantly higher than what is estimated based on DPT results [25], [26]. 

Therefore, it is necessary to investigate the impact of parasitic capacitors in the 

converter on the switching performance of 10 kV SiC MOSFETs. To achieve this 

target, the conventional DPT setup is not a suitable setup. 

2.2 Design and Test of 10 kV SiC MOSFET Based Phase Leg 

Half bridge phase leg is the fundamental building block for a variety of MV 

converters. To have continuous operation capability, the phase leg usually consists 

of two MOSFETs, the gate driver for MOSFETs, the busbar, and the heatsink. High 

required voltage and high dv/dt bring numerous challenges in the design of the 

phase leg, especially in the gate driver design and overcurrent protection design. 

It is also challenging to determine how to test the phase leg comprehensively, 

considering the high dc-link voltage and the expensive MOSFETs. 

2.2.1 Gate Driver Design 

The function of gate driver for the 10 kV SiC MOSFET is to drive the 

MOSFET based on the PWM signal from the controller and protect the MOSFET 

in short circuit/overcurrent conditions. The input of gate driver is the PWM signal 

generated by the controller, and then in normal operation the gate driver follows 

the input signal to output appropriate driving voltage and current for the turn-on 

and turn-off of the device.  When the short circuit or overcurrent happens, the gate 

driver should be able to detect the fault and turn off the device safely to prevent 
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the device failure. For better clarity, the study of protection design will be reviewed 

in the next subsection. 

Fig. 11 displays the basic block diagram of a gate driver for the MOSFET. 

The gate driver consists of signal isolator, gate drive IC, buffer circuit, and the 

isolated power supply grounded at the source terminal of the MOSFET. The signal 

isolator isolates the control circuit from the power loop. The function of gate drive 

IC and buffer is to drive the device with the designed voltage level and sufficient 

current with low switching losses and acceptable switching speed. The isolated 

power supply provides the power for the gate driver. For 10 kV SiC MOSFETs, the 

isolated power supply should have an insulation voltage of 20 kV DC. The isolated 

power supply with such high voltage isolation capability is not within scope of this 

thesis, and hence will not be reviewed in this chapter.  

Signal isolator is required to transfer the signal with isolation, negligible 

distortion, and low propagation delay. In the phase leg based on 10 kV SiC      

 
Fig. 11. Basic functional diagram of a gate driver for a power MOSFET. 
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MOSFETs, the signal isolator in the gate driver for the upper MOSFET should 

withstand the voltage bouncing periodically between 0 and dc-link voltage with high 

dv/dt. The main challenge is to have high isolation voltage (>7 kV) and high 

common mode transient immunity (CMTI) (>100 V/ns) simultaneously. The 

propagation delay and maximum frequency range are not critical for the signal 

isolator for 10 kV SiC MOSFETs with switching frequency typically lower than 80 

kHz [21], [24]. 

Several kinds of off-the-shelf digital isolators are commercially available 

with good CMTI and adopted in the gate drivers for low voltage SiC MOSFETs, 

including capacitive solution, transformer-based solution, and opto-coupler. 

However, none of them achieves the continuous isolation voltage of over 7 kV. 

Furthermore, the clearance and creepage requirement should be satisfied in the 

digital isolator. The clearance for 10 kV is 50 mm for the external traces in PCB 

according to IPC-2221B standard [39]. 

Signal isolator solutions with over 7 kV isolation voltage for high voltage SiC 

devices include the solutions based on planar transformer [40], coreless 

transformer [41], and fiber optics. Among these solutions, the solution with fiber 

optic transmitter and receiver has become the dominant solution. The isolation 

voltage and CMTI of this solution can be extremely high if the power supplies in 

each side offer sufficient isolation. With fiber optic cable, the clearance and 

creepage requirements are easily satisfied. The typical propagation delay of the 

transmitter and receiver is 30 ns. The total delay in signal isolation is less than 80 
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ns. The high signal rate (50 MBd) of the fiber optic transmitter and receiver ensures 

the accurate transfer of PWM signals [42]. 5 V TTL logic is preferred with better 

noise immunity, compared to 3.3 V TTL logic.  

The gate drive IC and buffer operate together with gate resistors and other 

auxiliary circuitry to drive the switching device and control the switching speed. 

The buffer is optional and only adopted to increase the driving current. The gate 

drive voltage and gate resistors are selected by considering the static 

characteristics, switching performance, and short circuit performance. The off-

state gate voltage Vg,off  for 10 kV SiC MOSFETs usually ranges from -6 V and -1 

V. The negative Vg,off  is implemented to ensure the reliable turn-off. For 10 kV SiC 

MOSFETs, gate drive voltage in on state Vg,on ranges from 15 V to 20 V to have 

low on-state resistance. Actually the on-resistance only has slight difference as 

Vg,on increases from 15 V to 20 V [33], yet higher Vg,on increases the short circuit 

current, leading to stricter requirement on the response time of the protection [43] 

[44]. 

After Vg,on and Vg,off  are selected, gate resistors are tuned to achieve the 

desired switching transients and losses. Different gate resistors can be designed 

for turn-on and turn-off transients. In the case of 10 kV SiC MOSFETs, gate 

resistors are selected based on the trade-off between switching loss and switching 

speed, especially during the turn-on transient. Then, the required peak driving 

current can be calculated, in which the internal gate resistance should be 

considered. 
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  𝐼𝑠𝑜𝑢𝑟𝑐𝑒 =
𝑉𝑔,𝑜𝑛−𝑉𝑔,𝑜𝑓𝑓

𝑅𝑔,𝑜𝑛
 (𝑇𝑢𝑟𝑛 − 𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡) (1) 

 𝐼𝑠𝑖𝑛𝑘 =
𝑉𝑔,𝑜𝑛−𝑉𝑔,𝑜𝑓𝑓

𝑅𝑔,𝑜𝑓𝑓
 (𝑇𝑢𝑟𝑛 − 𝑜𝑓𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡) (2) 

The selection of gate drive IC should particularly consider the peak driving 

current, rise/fall time, and propagation delay. The peak source/sink drive current 

of the gate drive IC should be higher than the required current, otherwise the buffer 

is needed. The buffer can be IC with high driving current or BJT-based current 

boosters in parallel [45], [46]. Short rise/fall time and propagation delay time are 

required to fully utilize the fast switching speed of the 10 kV SiC MOSFETs.   

The cross-talk issue should also be evaluated and tackled in the gate driver 

design for high voltage SiC devices. In one half bridge phase leg, if dv/dt is too 

high during the turn-on transient, the spurious gate voltage in the other device 

could be higher than the gate threshold voltage with the current through the Miller 

capacitor (gate-to-drain capacitor), resulting in partial shoot-through and higher 

losses [47]. The cross-talk often sets the limit for the turn-on dv/dt of SiC 

MOSFETs, if it is not addressed. The partial shoot-through has been reported in 

the phase leg based on high voltage SiC MOSFETs when the turn-on gate 

resistance is low [35]. 

Active Miller clamping is a common method to suppress the cross-talk 

without sacrificing the switching speed [48], [49]. The gate driver for 10 kV/10 A 

SiC MOSFET in [48] adopts an active Miller clamping design to maintain the off-

state of the MOSFET. When high dv/dt occurs during the turn-on transient of one 

MOSFET, the gate driver for the other MOSFET in off state provides a low 
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impedance path for Miller capacitive current and clamps the gate voltage to ensure 

the reliable turn-off. The clamping circuit is only activated when device is off.  

Analytical analysis of cross-talk in low voltage SiC MOSFETs is also 

effective in the evaluation of cross-talk of high voltage SiC devices. In fact, 

previous analysis shows that cross-talk is not serious in some high voltage SiC 

devices. After evaluating the cross-talk of 3rd generation 10 kV/20 A SiC MOSFET, 

it is concluded that specific anti-cross-talk design is not necessary in the gate driver 

[33]. The excellent performance in cross-talk is attributed to the much larger input 

capacitance of the 10 kV/20 A SiC MOSFET, compared to its Miller capacitance. 

The calculated maximum increase in Vgs is 5.0 V in the worst case when all Miller 

capacitive current charges the input capacitor of MOSFET. Therefore, partial 

shoot-through does not occur when Vg,off   is below -4 V. DPT results of 10 kV SiC 

MOSFETs show that the cross-talk has little impact on the turn-on transient and 

loss (15 Ω turn-on gate resistor).  Yet the spurious gate voltage is not measured 

to provide the direct evidence. 

In summary, the previous gate driver design for high voltage SiC devices 

usually focuses on realizing fast switching speed and reliable isolation. Signal 

isolation is typically achieved by fiber optics. The selection of components 

emphasizes the driving capability and low delay. Cross-talk in the 3rd generation 

10 kV SiC MOSFET is significantly alleviated by its large input capacitance, yet it 

is an issue for some high voltage SiC devices with lower ratio between input 

capacitor and Miller capacitor, such as 15 kV SiC MOSFETs from Wolfspeed [47]. 



 

29 
 

With emphasis on the fast switching speed, most gate driver design for high 

voltage SiC devices in the literature has not paid enough attention to the 

continuous operation. During the continuous operation, the controller usually does 

not know the status of the communication and the gate driver. The feedback signal 

sent back to the controller only reports the overcurrent fault. Considering the higher 

cost and less robustness of high voltage SiC devices, more efforts can be spent 

on the continuous operation of the gate driver and the high voltage SiC device. 

2.2.2 Overcurrent Protection Design   

One critical function of the gate driver is the protection in overcurrent or 

short circuit conditions. The protection is more crucial in MV and high power 

applications, in which power semiconductor devices are more expensive. The 

protection scheme should have fast response, good noise immunity, and easy 

implementation. With smaller die and higher current density, SiC devices have 

shorter short circuit withstand time than Si IGBTs and MOSFETs. Fast response 

time is hence required, which inherently contradicts the strong noise immunity. The 

fast switching transients of SiC devices makes it more challenging to achieve fast 

response with sufficient noise immunity. Short response time is also desirable as 

it benefits the long-term reliability. In this subsection, overcurrent protection 

schemes for SiC MOSFETs are reviewed.  

Desaturation (Desat) protection scheme commonly adopted for the 

overcurrent protection of Si IGBTs has been successfully implemented in a variety 

of SiC MOSFETs with fast response and strong noise immunity [49]-[51]. The 
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design shown in Fig. 12 for 1.2 kV SiC MOSFET has achieved a fast response 

time of 210 ns [50]. Desat protection monitors the drain-to-source voltage drop Vds, 

and the protection is triggered once the monitored Vds exceeds the threshold. The 

desat diode with the same voltage rating as the MOSFET is necessary to isolate 

the high voltage in the drain terminal. In desat protection, the blanking time is 

needed to screen the voltage fall period during the turn-on transient and avoid the 

false triggering, which accounts for a large percentage of the response time. 

The threshold current of desat protection is determined by the device’s 

output characteristic and the set threshold voltage. With the same drain current, 

SiC MOSFETs have significantly higher Vds at higher junction temperature. Thus, 

desat protection for SiC MOSFETs has different threshold currents as junction 

temperature varies. The threshold current is higher at lower junction temperature. 

Also, the drain current does not have hard saturation in SiC MOSFETs. In the 

overcurrent or short circuit fault condition, the drain current continues rising 

drastically during the delay time of desat protection, leading to the peak current 

much higher than the threshold current. The current rise during the response time 

should be taken into account when determining the threshold current.   

Other overcurrent protection schemes for SiC MOSFETs have been 

proposed by evaluating the current in a way independent of the output 

characteristic of the MOSFET. The stray inductance in series with the source 

terminal of the SiC MOSFET can be used as a sensor to derive the current and 

serve for the protection, with the carried di/dt information [50], [51]. It is difficult to   
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Fig. 12. The implementation of desat protection for SiC MOSFETs [50]. 
 
 
implement this method for SiC MOSFETs with different packages and ensure high 

noise immunity. A sufficient, but not too large, parasitic inductance with readily 

connectible terminals is needed to implement this method. Then debugging in the 

lab is necessary to measure the stray inductance for the threshold selection and 

check the noise immunity. Protection schemes based on the current sensor are 

also investigated. It is concluded that Rogowski coil has excellent overall 

performance in terms of accuracy, bandwidth and linearity among numerous 

current sensing methods, such as shunt resistor, Hall sensor, and current 

transducer [52]-[54]. 

High-bandwidth Rogowski coil sensor with active integrator has been 

demonstrated in the protection of SiC discrete devices and modules [53], [55]-[58]. 

PCB-based Rogowski coil stands out due to low profile, integration capability, and 

repeatability. The protection scheme based on Rogowski coil detects the fault 
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within 100 ns, regardless of the short circuit type and the junction temperature. The 

total response time is short and constant in different conditions, so the threshold 

current can be easily selected. Nonetheless, the active integrator has to be reset 

periodically when the device is off to overcome the difficulty of Rogowski coil in 

measuring DC current, otherwise the sensor error keeps increasing [57], [58]. To 

ensure the accuracy of the sensor and the protection, the device should be turned 

off periodically with the off-state longer than a minimum length. The method is also 

expensive and complicated, and requires more space for devices with large 

package [55]-[58].   

Among the reviewed overcurrent protection schemes, desat protection and 

the protection based on PCB-based Rogowski coil are suitable for SiC MOSFETs, 

with excellent overall performance, in terms of implementation, response time, and 

noise immunity. Desat protection provides effective overcurrent protection for SiC 

MOSFETs with low cost and easy implementation. The design process should 

consider the variance of the threshold current in different conditions. Protection 

based on Rogowski coil has constant threshold current in different conditions and 

shorter response time, yet requires complicated implementation and high cost to 

ensure sufficient sensor accuracy and noise immunity. The two methods should 

be selected based on the specifications of the application. 

2.2.3 Testing of the Phase Leg 

The phase leg should be fully tested to validate its capability to operate 

continuously at rated voltage and function as part of a MV converter. Continuous 
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test is hence required. The testing should be designed and implemented to make 

sure that all components in the phase leg are fully validated at rated voltage. 

Meanwhile, it is challenging to design the test procedures to endeavor to avoid the 

damage of expensive high voltage SiC devices. Incremental testing steps should 

be taken to qualify the components, especially the expensive SiC devices, before 

the final continuous test.  

How to test the phase leg or the converter based on high voltage SiC 

devices comprehensively has received little discussion in previous literature. DPT 

and short circuit test are usually conducted before the continuous test to validate 

the SiC devices and the gate driver. MV converters based on high voltage SiC 

devices have been designed and tested at rated voltage and power, yet the 

detailed incremental testing steps are not covered. In [59], comprehensive testing 

and qualification of the gate driver and its isolated power supply for high voltage 

SiC MOSFETs and IGBTs are discussed in detail, including DPT, short circuit test, 

and continuous test. The testing focuses on validating the gate driver’s thermal 

performance and its performance in suppressing common mode current, including 

the continuous test as the buck-boost converter with high common-mode voltage 

magnitude. Nonetheless, the sequence of the testing is not clearly defined, and 

only DC-DC continuous test is designed.  

In summary, the testing of the phase leg based on high voltage SiC devices 

has still not been fully discussed, although converters based on high voltage SiC 

devices have been demonstrated at full power and voltage. The challenge is to 
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fully test the phase leg at rated voltage and meanwhile endeavor to minimize the 

risk of damaging the expensive SiC devices during the test. 

2.3 Freewheeling Diode for 10 kV SiC MOSFETs 

It is required that every switch in the phase leg should provide the 

freewheeling diode in voltage source converters and numerous DC-DC converters. 

The freewheeling diode provides the conduction path for the load current when 

both switches are off in the phase leg. In hard switching condition, the impact of 

the freewheeling diode on the switching performance of Si devices and low voltage 

SiC MOSFETs in the phase leg have been deeply understood. Considerations in 

selecting the freewheeling diode are well explained. The reverse recovery of the 

freewheeling diode with PN junction increases the current overshoot and energy 

loss during the turn-on transient [10]. SiC MOSFETs have their own body diode 

with small reverse recovery charge that can serve as the freewheeling diode [12]. 

Meanwhile, an external anti-parallel SiC Schottky diode with negligible external 

reverse recovery charge can be added to function as the freewheeling diode during 

the dead time. 

Anti-parallel Schottky diode is recommended in converters based on low 

voltage SiC MOSFETs to achieve stable switching energy loss at different junction 

temperatures [11], [60]. This is because the body diode of the low voltage SiC 

MOSFET has significantly worse reverse recovery performance as junction 

temperature rises [60], [61]. The parasitic output capacitor of the Schottky diode 

also causes increase in the switching loss. Hence, the SiC Schottky should be 
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selected to ensure that the reduction in switching loss due to improved reverse 

recovery performance is more substantial than the increase in switching loss 

brought by its parasitic capacitor [11], [60].  

10 kV SiC JBS diode can be added as the anti-parallel diode to improve the 

reverse recovery in the phase leg based on 10 kV SiC MOSFETs. Experimental 

results have revealed that the anti-parallel 10 kV SiC JBS diode has nearly zero 

reverse recovery charge at various temperatures [62]. Currently, the body diode of 

10 kV SiC MOSFET is sufficiently reliable to function as the freewheeling diode 

[63], [64]. In fact, several years ago, most 10 kV SiC MOSFETs available for 

switching performance evaluation have an anti-parallel JBS diode inside the 

package, because the MOSFET will degrade if body diode conducts current [65]. 

With the anti-parallel JBS diode inside the package, the JBS diode conducts a 

major portion of the freewheeling current, and it is thereby difficult to study the 

reverse recovery performance of the body diode and the impact of the body diode 

or the external JBS diode on the switching transients and performance of 10 kV 

SiC MOSFETs over a wide temperature range. 

The reverse recovery performance of a diode is also commonly 

characterized with DPT with a setup similar to the DPT setup for MOSFETs, as 

drawn in Fig. 13. If the body diode of a MOSFET is under test, the channel of that 

MOSFET is always kept off. With one terminal grounded, the diode under test is in 

parallel with the load inductor. When the upper switch S turns on, the diode current 

is forced to commutate to the upper switch, and the reverse recovery performance 
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can be evaluated by measuring the diode current. With DPT, researchers at 

Wolfspeed have characterized the body diode of the 3rd generation 10 kV/20 A SiC 

MOSFET, revealing that the body diode has the reverse recovery charge of 1.2 μC 

and 1.8 μC at 25 ˚C and 150 ˚C, respectively [14]. The measured reverse recovery 

current, however, also includes the displacement current in parasitic capacitor Cj 

which is charged during the turn-on process of the upper switch. Because of the 

high dv/dt of the upper switch, the 10 kV SiC MOSFET in this case, the capacitive 

current accounts for a large portion of the measured reverse recovery current. 

The substantial effect of the capacitive current on the reverse recovery 

characterization of 10 kV SiC diodes is demonstrated in [66]. After eliminating the 

effect of the capacitive current, the calculated reverse recovery current Irr of the 

body diode in 10 kV/10 A SiC MOSFET is lower than 2 A at 25 ˚C and 125 ˚C. The 

reverse recovery charge of the body diode is not calculated. It is concluded that 

the body diode of the 10 kV SiC MOSFET has small reverse recovery current at 

different temperatures.  

 
Fig. 13. Circuit diagram of DPT for diode reverse recovery characterization. 
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In summary, the freewheeling diode in the phase leg plays an essential role 

in the switching transients of 10 kV SiC MOSFETs, especially the turn-on transient. 

The reverse recovery characterization of the freewheeling diode for 10 kV SiC 

MOSFETs should consider the effect of the capacitive current due to the parasitic 

capacitor of the diode. The reverse recovery current of the body diode in 10 kV/10 

A SiC MOSFET is lower than 2 A at 25 ˚C and 125 ˚C, but the reverse recovery 

charge is not calculated. What is the impact of the reverse recovery of body diode 

on the switching performance is still unknown at different temperatures. Neither is 

the outcome after adding the anti-parallel JBS diode with nearly zero reverse 

recovery charge. 

2.4 Summary 

Previous work on the switching performance evaluation of 10 kV SiC 

MOSFETs and other high voltage SiC devices and the design of the phase leg 

based on high voltage SiC devices is reviewed in this chapter. First, the switching 

performance evaluation with DPT is reviewed together with the impact factors of 

the switching performance. Then, the existing work on the design and validation of 

the phase leg based on the high voltage SiC devices is presented, especially the 

gate driver design with overcurrent protection and the testing of the phase leg. In 

the end, freewheeling diode candidates for the phase leg based on 10 kV SiC 

MOSFETs and the study of their reverse recovery performance are reviewed, 

including the body diode and the anti-parallel SiC JBS diode.  
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CH 3. DESIGN AND TEST OF A 10 KV SIC MOSFET BASED 

PHASE LEG 

The design of a half bridge phase leg based on 10 kV SiC MOSFETs with 

continuous operation capability is introduced in this chapter, which is validated in 

the continuous test at 6.5 kV dc-link voltage with dv/dt up to 80 V/ns. The design 

target of the phase leg is the continuous operation as one building block of a MV 

power conversion system. To achieve the target, the design considerations and 

details of the high-speed gate driver and overcurrent protection for the 10 kV SiC 

MOSFET are discussed, and the testing procedures and results of the phase leg 

are presented in detail.  

3.1 Overview of the Phase Leg 

3.1.1 10 kV SiC MOSFET 

The half bridge phase leg is based on 10 kV/20 A discrete SiC MOSFETs 

from Wolfspeed (XPM3-10000-0350B). The device has a non-isolated package 

with the large drain plate also for heat dissipation, as shown in Fig. 14. Gate 

terminal and source terminal are on the top of the package. Inside the package is 

one 3rd generation 10 kV/350 mΩ SiC MOSFET die. The die only has one wire 

bond for the connection with the gate terminal, forming a weak connection point in 

the package.  

Characterization results with a curve tracer show that the 10 kV SiC 

MOSFETs available for the phase leg construction have almost the same on-

resistance in forward conduction and reverse conduction with the same gate 
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voltage and junction temperature. The 3rd generation 10 kV/350 mΩ SiC MOSFET 

does not have the degradation issue during the body diode conduction [63], [64]. 

Therefore, the body diode is used as the freewheeling diode, and external anti-

parallel JBS diode is not needed in the phase leg. The body diode conducts 

reverse current and serves as the freewheeling diode during the dead time. Gate-

to-source voltage Vgs has little influence on the on-resistance as long as it exceeds 

15 V, as indicated in Fig. 14. As the junction temperature increases from 25 ˚C to 

150 ˚C, the on-resistance keeps increasing to over 0.8 Ω. 

3.1.2 Architecture of the Phase Leg 

The designed 6.5 kV half bridge phase leg consists of two MOSFETs, two 

isolated power supplies, the gate driver, the heatsink, the PCB busbar, and the dc-

link capacitor. The architecture of the phase leg is shown in Fig. 15(a). Such 

architecture is designed to ensure that the phase leg has the capability to operate 

as a building block for a modular MV converter. The communication interface 

Fig. 14. Discrete 10 kV SiC MOSFET in the half bridge phase leg (left) and its 
forward characteristic at room temperature (right). 
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marked in green in Fig. 15(a) communicates with the controller via fiber optics with 

reliable signal isolation. Four terminals are available for connection, including DC+, 

DC-, midpoint of DC-link, and midpoint of the half bridge phase leg. The phase leg 

has an 8.75 μF dc-link capacitor, realized by placing four 1.9 kV/35 µF film 

capacitors in series. The rated dc-link voltage of the phase leg is 6.5 kV, with 1.1 

kV margin for overvoltage during the switching transients. 

The detailed three-dimensional (3D) design of the phase leg is drawn in Fig. 

15(b). A gate driver board is placed above the two MOSFETs to drive the devices, 

powered by two isolated power supplies. Part of the power loop is realized in the 

gate driver board. To connect the drain plate in the bottom of the device package, 

high voltage wires are utilized. The PCB busbar finally finishes the power loop by 

connecting the dc-link capacitor with the MOSFETs. FR4 is the insulation material 

in the PCB busbar, and better material can be adopted for more reliable insulation. 

   

                                 (a)                                                       (b)       
Fig. 15. Half bridge phase leg based on 10 kV SiC MOSFETs: (a) Architecture of 
the phase leg; (b) Detailed 3D model of the phase leg. 
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Each MOSFET in the phase leg has a separate floating heatsink for heat 

dissipation. The heatsink is not isolated from the MOSFET, hence the heatsink has 

the same potential as the drain plate of the MOSFET it is connected to. During the 

continuous operation, a fan is used to cool devices and heatsinks. 

3.2 Gate Driver Design 

The gate driver for the 10 kV/20 A SiC MOSFETs is designed to realize fast 

switching speed and robust continuous operation of the MOSFET. To achieve the 

target, especially in continuous operation condition, specifications of the gate 

driver are developed and summarized in Table 1. The main challenges are high 

voltage insulation and high dv/dt. The gate driver board is designed to meet the 

clearance and creepage requirement for 10 kV to achieve robust insulation [39]. 

The dead time function in the gate driver is desirable to prevent the shoot-through, 

regardless of the input gate signal. Feedback signal sent back to the controller in 

every switching cycle, as shown in Fig. 15, is necessary for the controller to monitor 

the status of the communication and gate driver during the continuous operation. 

If a short circuit or overcurrent fault is detected, a fault signal is sent back to the 

controller via a feedback signal.  

The specifications in Table 1 have been successfully achieved in the 

designed gate driver, which is composed of signal transfer and feedback stage, 

gate driving stage, and overcurrent protection stage. The block diagram of the gate 

driver is shown in Fig. 16, in which three stages in the gate driver are marked with 

different colors. 
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Fig. 16. Block diagram of the designed gate driver for 10 kV SiC MOSFETs in the 
phase leg. 
 
 
Table 1. Specifications of the designed gate driver. 

Specification Target Design result 

Driving voltage 
range 

Maximum: +20 V 
Minimum: -5 V 

-5 V for off state;  
15 V for on state 

Peak driving 
current 

> 8 A 9 A 

Rise and fall 
times 

< 30 ns 22 ns rise time;  
15 ns fall time 

Short circuit 
protection  

< 1.5 us response time with soft 
turn-off 

< 1.3 us response time with 
soft turn-off 

Status 
feedback 

Status feedback signal sent 
back to controller in every 
switching cycle 

Feedback signal (stay 
LOW for 500 ns) generated 
for every rising or falling 
edge in gate signal 

Dead time Dead time realized in the gate 
driver with hardware 

500 ns dead time realized 
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3.2.1 Signal Transfer and Feedback Stage 

Signal transfer and feedback stage is responsible for the communication 

between the controller and the gate driver during the continuous operation. The 

communication is realized with fiber optics to provide ample signal isolation 

between the controller and the gate driver with high voltage and high dv/dt. The 

gate driver has one receiver for input PWM signal and one transmitter for feedback 

signal sent back to controller, as can be seen in Fig. 16.  

The dead time function is implemented with a delay IC in this stage. The 

delay IC (DS1100Z-500+ from Maxim) generates the signal with 500 ns delay. With 

a AND logic IC and the delay IC, the dead time is realized by applying 500 ns delay 

to the rising edge of the initial gate signal and zero delay to the falling edge. The 

updated gate signal becomes the final gate signal for gate drive IC if overcurrent 

fault is not detected. The final gate signal is always LOW if the overcurrent 

protection is triggered until it is reset. The generation of the gate signal sent to the 

gate drive IC is summarized in Fig. 17.   

The feedback signal sent from the gate driver is essential in the continuous 

operation. In most gate drivers for SiC power devices reported in the literature, the 

feedback signal is only designed to transmit the overcurrent fault signal. In this 

case, the controller knows nothing about the status of the gate driver and 

communication. For example, if the fiber optic receiver in the gate driver fails, the 

controller will not know that it actually loses control of the state of the MOSFET. 

The controller is not notified until the overcurrent happens. Such delay is not 

acceptable in a MV converter. Hence, a feedback signal sent back to the controller 
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Fig. 17. Diagram of the generation of final gate signal sent to gate drive IC with 
500 ns dead time realized in gate driver. 
 
 
is desirable to monitor the status of communication and gate driver in every 

switching cycle.  

To realize this target, a simple feedback scheme is designed to generate a 

feedback signal acknowledging every rising edge and falling edge in the received 

gate signal. The feedback scheme utilizes the delay IC in the dead time unit and a 

XOR logic gate, as can be seen in Fig. 18. The final feedback signal is also able 

to report the overcurrent fault. After the gate signal from the controller has a rising 

edge or falling edge, the feedback signal should stay LOW for 500 ns. Since the 

overcurrent fault signal lasts for a much longer time, the overcurrent fault is notified 

if the feedback signal remains LOW for over 600 ns.  

Several considerations should be recognized in the selection of the length 

of the signal to acknowledge the rise or falling edge in the received gate signal. 
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This feedback scheme requires the conduction time of the 10 kV SiC MOSFET to 

be longer than the signal for the acknowledgement. Long feedback signal for 

acknowledgement limits the duty cycle when the MOSFET operates at higher 

frequency. The discrete 10 kV SiC MOSFETs have the switching frequency up to 

80 kHz in soft-switching converters [21], [24]. The long feedback signal for the 

acknowledgement also leads to long delay time for the controller to identify the 

overcurrent fault based on the received feedback signal. The feedback signal for 

the edge acknowledgement should also not be too short for the controller to read. 

In this case, it could be overwhelmed by the highly unpredictable noise in the 

feedback signal. Finally, the feedback signal for the edge acknowledgement is 

determined to be 500 ns LOW to have strong noise immunity, and it only requires 

the duty cycle higher than 4% at 80 kHz switching frequency. 

 
Fig. 18. Diagram of the generation of final feedback signal sent back to controller. 
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The designed feedback scheme can monitor the status of fiber optic 

communication and numerous components in the gate driver. If any of the gate 

driver components inside the green box in Fig. 19 fails, the feedback signal will not 

be correct.  The delay IC in the dead time unit is also monitored, since it is utilized 

for feedback signal generation. If the feedback signal does not turn LOW within 

200 ns after the rising or falling edge in the gate signal, the fault is detected by the 

controller. Therefore, the designed feedback signal is helpful in monitoring the 

status of the fiber optic communication and the gate driver and is able to quickly 

detect the fault.  

3.2.2 Gate Driving Stage 

The core of the gate driving stage is the gate drive IC. Signal isolation is not 

required in the gate drive IC since the fiber optics provide ample isolation for the 

input PWM signal. The gate drive IC is selected based on the developed 

specifications in Table 1. The main considerations are peak driving current, rise/fall 

 
Fig. 19. Components in the gate driver which are monitored through the feedback 
signal sent back to the controller (inside the green box). 
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time, and propagation delay. Table 2 lists the potential gate drive IC candidates 

with sufficient driving voltage range and large driving current. The desat protection 

function in gate drive IC is not considered due to its low threshold voltage, and 

more details are introduced in the design of overcurrent protection stage. The peak 

driving current of the gate drive IC should be higher than 8 A, otherwise a buffer is 

needed which further increases the propagation delay. IXDD609SI with 9 A peak 

driving current is selected due to the short propagation delay and rise/fall time. 

 The on-state and off-state driving voltage are 15 V and -5 V, respectively. 

The typical on-state driving voltage for 10 kV SiC MOSFETs ranges from 15 V to 

20 V. 15 V is adopted to achieve lower current in short circuit condition and better 

short circuit performance. -5 V for off-state ensures the reliable turn-off of the 

device. 15 V is provided by a linear dropout regulator (LDO), and -5 V is from a 

switched-mode power supply. Local decoupling capacitors reduce the gate loop 

inductance and provide the high frequency current during the transients. The turn- 

Table 2. Survey results of commercial gate drive ICs. 

Mfg. Part No. Ipeak Propagation 
delay 

Rise/fall 
time 

Vdesat(th) 

Toshiba TLP5214 4 A 85 ns, 90 ns 32 ns, 
18 ns 

6.5 V 

STMicro-
electronics 

STGAP1AS 5 A 100 ns 25 ns 3~10 V 

IXYS IXDD609SI 9 A 40 ns, 42 ns 22 ns, 
15 ns 

No desat 
protection 

IXYS IXDD614SI 14 A 90 ns 50 ns, 
40 ns 

No desat 
protection 

Infineon 1EDI60H12AH 10 A source, 
9.4 A sink 

120 ns 10 ns No desat 
protection 
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on and turn-off gate resistance are 15 Ω and 3 Ω, respectively, to achieve the 

trade-off between switching speed and switching loss. 

With -5 V Vgs in off state, active Miller clamp circuit to prevent cross-talk is 

not necessary for the 3rd generation 10 kV/20 A SiC MOSFET, thanks to its large 

ratio between input capacitance and Miller capacitance [33]. The 15 Ω turn-on 

resistance and 3 Ω turn-off resistance are also helpful in limiting the turn-on dv/dt 

to 80 V/ns and the spurious gate voltage [67]. Two transient voltage suppression 

(TVS) diodes are added between the gate and the source to clamp Vgs at 16 V and 

-5.4 V when there is abnormal oscillations in the gate. 

3.2.3 Overcurrent Protection Stage 

Among the several overcurrent protection schemes for SiC MOSFETs, 

desat protection scheme stands out in the protection of the discrete 10 kV/20 A 

SiC MOSFETs. Desat protection has relatively easy implementation to achieve 

fast response time, high noise immunity, and effective protection in different cases. 

Other methods, such as protection based on Rogowski coils, require much more 

efforts in design and testing to guarantee high noise immunity.  

The designed desat protection scheme protects the 10 kV SiC MOSFET in 

short circuit/overcurrent condition with a response time of less than 1.3 μs. After 

the fault is detected, soft turn-off is applied with a gate resistance of 47 Ω to safely 

turn off the MOSFET, and the fault is reported to the controller via the feedback 

signal. The short circuit withstand time of the 3rd generation 10 kV/20 A SiC 

MOSFETs typically range from 2 μs to 10 μs. Such a wide range of short circuit 
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performance is reasonable since the device is still under in R&D stage and not 

mature enough for commercial applications. Wolfspeed has also reported the 3rd 

generation 10 kV SiC MOSFET with enhanced short circuit performance and over 

13.6 μs short circuit withstand time at 5 kV [14]. Therefore, the protection should 

respond within 1.5 μs after a short circuit or overcurrent fault occurs to safely 

protect the MOSFET. Considering the tolerance of components and other non-

ideal factors, the specification for the response time is 1.3 μs. 

The threshold voltage of desat protection is determined based on the output 

characteristic of the 10 kV/20 A SiC MOSFET, which is heavily influenced by the 

junction temperature, as illustrated in Fig. 20. The threshold current is lower at 

higher temperature due to the higher on-state voltage drop. The threshold voltage 

is selected based on the output characteristic at 125 ̊ C to avoid the false triggering 

during the normal operation at lower junction temperature. The threshold current 

should be set as low as possible, since the drain current of the SiC MOSFET still 

increases rapidly in active region. In other words, the drain current of the SiC 

MOSFET stills rises significantly during the response time, and the drain current 

cannot be clamped by the MOSFET, which further increases the short circuit 

energy loss. At 125 ˚C, the selected threshold current is 20 A, the rated current of 

the 10 kV SiC MOSFET. Taking into account slight variances in the output 

characteristic among different devices, the threshold voltage is 15 V, leading to 

42.85 A threshold current at 25 ˚C. The specifications of the designed desat 

protection are summarized in Table 3. 
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Table 3. Specifications of the designed desat overcurrent protection. 

Specification Detail  

Response time <1.3 μs 
 

Threshold current 20 A at 125 ˚C 
42.85 A at 25 ˚C 

Soft turn-off Turn-off with 47 Ω gate resistance 
 

Output signal to controller Always low signal via fiber optics if triggered 
 

Voltage rating of desat diode  >10 kV 

 
Fig. 20. Output characteristic of the 10 kV /20 A SiC MOSFET under different 
temperatures.  
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In addition, the voltage drop on the desat diode should be considered when 

determining the threshold voltage. The desat diode blocks the dc-link voltage when 

the MOSFET is in off state to protect the desat protection circuitry. The rated 

voltage of the desat diode should be the same as that of the MOSFET to achieve 

good reliability. The desat diode with 10 kV blocking voltage is implemented with 

four 3.3 kV SiC Schottky diodes (GAP3SLT33-220FP) in series together with 

balancing resistors. The pads in PCB for the 3.3 kV diode are coated with insulation 

material (Konform SR). Such design ensures good commercial availability and 

robustness. Also, the parasitic capacitance in parallel with the desat diode and the 

displacement current are reduced effectively, which significantly benefits the noise 

immunity of the protection. Still, the implementation with four diodes introduces 4 

V total voltage drop [68]. Thus, the eventual selected threshold voltage is 19 V for 

the desat protection. 

 Desat protection can be implemented by either the gate drive IC with desat 

protection function or the circuitry based on discrete components. The gate drive 

IC with desat protection usually requires large blanking capacitor to suppress the 

noise in high dv/dt conditions, leading to long response time. Also, the 19 V 

threshold voltage for the 10 kV/20 A SiC MOSFET is much higher than the 

threshold of desat protection provided by the gate drive IC. With better flexibility to 

achieve strong noise immunity, the circuitry based on discrete components is 

hence designed to realize desat protection, and the details are shown in Fig. 21, 

in which the parasitic capacitors marked in red should be considered in the design.  
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Fig. 21. Implementation of desat protection in the gate driver for 10 kV SiC 
MOSFETs. 
 
 
Resistors R1, R2, and blanking capacitor Cblk together realize the blanking time 

which prevents the false triggering during the turn-on transient when the drain-to-

source voltage Vds drops quickly to on-state voltage. The clamping diode Dblk limits 

the voltage Vdesat to 21 V to protect the comparator. The comparator and the logic 

control circuit are grounded at -5 V. Resistor Rcla (20 Ω) and MOSFET Mcla clamps 

Vdesat at -5 V when the 10 kV SiC MOSFET is shut off, and they prevent the false 

triggering due to the high dv/dt during the turn-off transient. 

 The response time of desat protection is mainly determined by the blanking 

time. The blanking time should not be over until the drain-to-source voltage Vds 

drops to on-state voltage without ringing. If blanking time is too short, Vdesat will be 

charged to exceed the threshold before it is clamped by Ddesat. It is necessary to 

check the turn-on transients of the 10 kV SiC MOSFET to set a suitable blanking 

time. Preliminary DPT results show that required blanking time is longer if the load 



 

53 
 

current is higher. According to the DPT results at 6.25 kV/20 A with the same gate 

driver parameters (see Fig. 22), it takes 480 ns for Vds to reach steady state, after 

Vgs starts to rise. The junction temperature has little influence on the length of this 

time interval. Considering the delay in gate drive IC, the blanking time should be 

longer than 550 ns to avoid the false triggering of the protection when the 10 kV 

SiC MOSFET turns on normally. The minimum response time that can be achieved 

by the designed desat protection is 600 ns with enough noise immunity. 

High noise immunity during the turn-off transient with positive dv/dt is 

necessary for desat protection. The displacement current through the parasitic 

capacitor of the desat diode charges Cblk and increases Vdesat during the turn-off 

transient with positive dv/dt, and the protection can be falsely triggered. The 

oscillation owing to the high dv/dt makes the situation worse. To damp the ringing 

 
Fig. 22. Turn-on transient of the 10 kV SiC MOSFET at 6.25 kV/20 A. 
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due to high dv/dt, a small resistor R2 (47 Ω) is added. Rcla and Mcla are designed 

to clamp Vdesat before high turn-off dv/dt occurs. In other words, the clamp should 

be effective within the turn-off delay time. If the gate signal has a falling edge, Vdesat 

is pulled down to -5 V after 80 ns delay. Vdesat is solidly clamped at -5 V before the 

positive dv/dt occurs during the turn-off transient. A RC circuit is added in the gate 

of Mcla to realize the 80 ns delay and suppress the noise at the gate of Mcla. During 

the turn-on transient, Vdesat is also clamped at -5 V for 80 ns before it starts to rise. 

Hence, the 80 ns delay in the gate of Mcla is part of the blanking time.  

The blanking time is tuned by changing R1 and Cblk. The blanking time is 

indeed the time it takes to charge Vdesat from -5 V to the 19 V threshold voltage Vth. 

Hence, all parasitic capacitors between Vdesat and -5 V should be considered, 

including nonlinear parasitic capacitors from Dblk and Mcla as well as the capacitor 

due to the PCB layout. The blanking time is calculated with the following equations. 

 𝑡𝑏𝑙𝑘 = 𝜏 𝑙𝑛 (
𝑉𝑐𝑐+5

𝑉𝑐𝑐−𝑉𝑡ℎ
) (3) 

 𝜏 = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑅1 + 𝑅2) (4) 

In the equations, Ctotal is the total capacitance between Vdesat and -5 V. A large Cblk 

is preferred to suppress the noise in Vdesat and achieve better noise immunity. 

Finally, 6.49 kΩ R1 and 75 pF Cblk are selected to provide 1.2 μs blanking time and 

strong noise suppression. In one prototype of the gate driver, the distribution of 

1.26 μs total response time is shown in Table 4, determined by the experiment in 

the initial test at 0 V dc-link voltage. The parasitic capacitors account for 44.3% of  
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Table 4. Distribution of the total response time in one gate driver prototype. 

Total 
response time 

Comparator 
and control 
delay 

Blanking time 
due to Cblk 

Blanking time 
due to all 
parasitic caps 

Blanking time 
due to delay in 
the gate of Mcla 

1.26 μs 0.04 μs 0.6 μs 0.54 μs 0.08 μs 

 
 
the total blanking time (1.22 μs). The shorter response time is achievable by 

reducing R1 and parasitic capacitor due to Dblk and Mcla as well as layout. Blanking 

capacitor Cblk should only be reduced slightly. By choosing 4 kΩ R1 and 56 pF Cblk, 

the response time will be reduced to 730 ns. 

3.3 Testing of the Phase Leg 

The designed half bridge phase leg should be tested comprehensively to 

be qualified for a building block for a MV converter. The continuous test at 6.5 kV 

is required. Considering high dc-link voltage together with high dv/dt and the 

immaturity of the MOSFETs, the testing becomes more important and challenging 

[69]. The cautious testing procedures should be designed to quickly identify any 

issues and prevent the damage of the expensive 10 kV SiC MOSFETs. The 

developed systematic testing procedures and testing results of the phase leg will 

be presented. 

3.3.1 Testing Procedures 

Detailed and systematic testing procedures have been developed to 

standardize the testing. Generally, the testing is designed to be nondestructive and 

reduce the risk of damage of the expensive MOSFETs. Before the testing at phase 

leg level, each part is tested individually. The testing of the phase leg is conducted  
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Table 5. Details of four steps in the systematic testing of the phase leg. 

Step Name Purposes 

No. 1 Initial test 1. Electrical connection check; 2. Gate drive 
function and protection at 0 V 

No. 2 Double pulse 
test (DPT) 

Fundamental test of MOSFETs and the phase 
leg up to 6.5 kV/ 20 A 

No. 3 Short circuit test Desat protection of the gate driver at 6.5 kV 
dc-link voltage 

No. 4 Continuous test Continuous operation of the half bridge phase 
leg at 6.5 kV dc-link voltage 

 
 
step by step with four steps in total, as listed in Table 5. The testing steps should 

be conducted in sequence. Only after the phase leg operates well in the previous 

step could the testing move on to the next. 

In the initial test, it is necessary to check the electrical connection between 

the 10 kV SiC MOSFET and the gate driver board. Particularly, the connection of 

gate terminal is a concern, since the wire bond for the gate is a weak point. The 

gate-to-source voltage Vgs is measured and checked with the PWM gate signal 

applied, especially the rising edge and falling edge. The rising time and falling time 

of Vgs are measured and compared with the estimated value. If the rising or falling 

time is too short, the gate region of the die is not well connected with the gate 

driver board. Desat protection together with soft turn-off is examined by 

disconnecting the desat diode from the drain terminal and feeding in the gate 

signal. In addition to the soft turn-off, attention should be paid to the response time 

and feedback signal. In summary, this step checks the gate loop and the circuitry 

for desat protection and soft turn-off. 

The next step is DPT of both the upper MOSFET and lower MOSFET. DPT 
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is the fundamental electrical test for the MOSFETs and the phase leg, including 

the functionality and insulation capability of all components. Even if the insulation 

failure occurs, the damage is still limited. DPT of the upper MOSFET also provides 

the preliminary test of the capability of the gate driver and the isolated power supply 

to withstand high common mode voltage with high dv/dt. DPT of the lower 

MOSFET is conducted first with the body diode of the upper MOSFET as the 

freewheeling diode. The results of DPT at lower dc-link voltage are checked before 

conducting DPT at higher dc-link voltage, especially the switching transients. The 

DPT is conducted up to 6.5 kV/20 A. Then, the DPT test setup is reconfigured for 

the DPT of the upper MOSFET conducted also up to 6.5 kV/20 A.  

The short circuit test is conducted for the upper and lower MOSFETs as the 

No. 3 step to make sure that the overcurrent protection is able to protect the 

MOSFET at rated dc-link voltage. Two types of short circuit tests are commonly 

conducted, including the hard switching fault (HSF) and fault under load (FUL) [70]-

[72]. HSF is the short circuit occurring during the turn-on transient, while FUL is 

the short circuit fault during the on-state. The desat protection has shorter 

response time and lower energy loss in FUL fault due to the positive dv/dt in the 

drain-to-source voltage, and the dv/dt results in negligible increase in Vgs and the 

short circuit current of the 10 kV/20 A SiC MOSFET [50], [71]. Therefore, only HSF 

short circuit test is conducted, which is the worst case for the designed desat 

protection. The testing results at lower dc-link voltage are examined before the 

HSF test at higher dc-link voltage. After the short circuit test of the lower MOSFET 
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is finished, the test setup is reconfigured to test the desat protection for the upper 

MOSFET. The HSF short circuit test also tests if the designed overcurrent 

protection is fast enough to protect the MOSFET and turn it off safely. 

Continuous test is the last step to test the continuous operation capability 

of the phase leg at 6.5 kV rated voltage. In the continuous test, the half bridge 

phase leg is configured as a half bridge inverter with inductive load (175 mH), as 

shown in Fig. 23. The continuous test as an inverter enables both MOSFETs in the 

phase leg to conduct time-varying and bi-directional current in one line cycle. It is 

thereby a more comprehensive test than the continuous test as a DC-DC 

converter.  

175 mH is the highest inductance that can be realized with the high voltage 

inductive load in the laboratory, and the rated peak current for continuous 

operation is 9 A. 300 Hz fundamental frequency is chosen to further increase the 

impedance of the inductive load and limit the magnitude of output AC current. The 

active power is the power loss in the test setup. The continuous test adopts bipolar 

SPWM modulation to regulate output sinusoidal current, with the switching 

frequency of 10 kHz. The peak value of the output AC current Iout is calculated with 

the following equation. 

 𝐼𝑜𝑢𝑡 =
0.5𝑚𝑉𝑖𝑛

2𝜋𝑓𝑙𝑖𝑛𝑒𝐿𝑙𝑜𝑎𝑑
 (5) 

The modulation index m regulates the magnitude of the output AC current as the 

dc-link voltage Vin increases. Lload is 175 mH, and fline is 300 Hz, the fundamental 

frequency of the test. 
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Fig. 23. Circuit diagram of the continuous test of the designed phase leg. 
 
 

The continuous test should last for at least five minutes. In reality, multiple-

pulse test lasting for several line cycles (<20 ms) is conducted as the preliminary 

stage of the continuous test. The multiple-pulse test is helpful in checking the 

hardware setup and control signal of the continuous test. Once the phase leg 

operates well in the multiple-pulse test at 6.5 kV, the test setup and the control 

signal are ready for the continuous test. The continuous test is also conducted at 

lower dc-link voltage first, and the results are carefully evaluated before the test at 

higher dc-link voltage. The success in such continuous test proves that the phase 

leg is a qualified building block for both DC-DC and AC-DC MV converter. 

3.3.2 Testing Results 

The built half bridge phase leg has been tested by following the developed 

testing procedures. Other than step No. 1, all testing procedures should be 

conducted with the designed high voltage test platform. The test platform is 
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equipped with high voltage DC power supply from Spellman, different high voltage 

load inductors, the input capacitor, the controller with fiber optic interface, and so 

on. Therefore, the test platform can be easily configured for DPT, short circuit test 

for both lower and upper MOSFET, and the continuous test. The half bridge phase 

leg prototype in the test platform can be seen in Fig. 24, in which some components 

of the test platform are not shown. The 7 mH air core inductor serves as the load 

inductor in DPT, and the fan is only for the continuous test. 

Testing results have shown that the designed phase leg is capable of 

operating continuously at 6.5 kV rated dc-link voltage, with satisfactory 

performance in all testing procedures. Results of the short circuit test and the 

continuous test will be discussed in detail. The DPT results are not shown in this 

chapter, since DPT results and switching performance will be studied in depth in 

Chapters 4 and 5. 

 
Fig. 24. Half bridge phase leg prototype in the high voltage test platform. 
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Short circuit test results explicitly prove that the designed protection is able 

to protect the 10 kV SiC MOSFET at 6.5 kV. As shown in the HSF test waveform 

of the lower MOSFET in Fig. 25, the soft turn-off with a di/dt of 0.57 A/ns is 

triggered after the 1.27 μs response time, leading to negligible overvoltage under 

160.8 A peak current. The MOSFET is safely turned off at 6.5 kV rated voltage. 

The HSF test results of the upper MOSFET at 6.5 kV is displayed in Fig. 26, and 

the MOSFET is safely turned off with 1.2 μs response time. The peak current is 

still lower than 20X rated current of the MOSFET. Vgs of the upper MOSFET cannot 

be measured due to the high common voltage, still the di/dt and voltage overshoot 

indicate the soft turn-off. The response time of desat protection for both MOSFETs 

meets the 1.3 μs specification, and the slight difference is caused by the 

components’ tolerances.  

Fig. 25. HSF short circuit test waveform of the lower device in the phase leg. 
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The continuous test of the phase leg has been conducted with the dc-link 

voltage up to 6.5 kV. The continuous test as a half bridge inverter outputs the 

sinusoidal load current, as can be seen in the continuous test waveform at 6 kV in 

Fig. 27. With a modulation index of 0.6, the maximum load current is 6.5 A. The 

high frequency component in the load current during the switching commutation is 

due to the displacement current in the parasitic capacitor of the load inductor. This 

can be seen clearly in the zoom-in waveform of the switching transient in Fig. 28. 

 The upper window in Fig. 28 shows the overview waveform at 6.5 kV, and 

the main window features the turn-off transient of the lower MOSFET as the 

synchronous rectifier with 5.5 A load current. The body diode of the lower MOSFET 

still conducts after its channel is shut off, so Vds of the lower device is nearly zero 

Fig. 26. HSF short circuit test waveform of the upper device in the phase leg. 
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Fig. 27. Waveform of the continuous test of the phase leg at 6 kV.  
 
 

 
Fig. 28. Zoom-in waveform of the continuous test of the phase leg at 6.5 kV. 
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until the upper MOSFET turns on. Vds of the lower MOSFET is measured with a 

high voltage differential probe, and Vgs of the lower MOSFET is monitored with a 

1 GHz passive voltage probe. Without any anti-cross-talk circuit, Vgs of the lower 

MOSFET increases slightly due to high dv/dt (>70 V/ns), yet the margin between 

its peak and the gate threshold voltage is still large. This waveform demonstrates 

that the cross-talk is not a serious issue in the 10 kV/20 A SiC MOSFETs due to 

high input capacitance compared to Miller capacitance. The designed phase leg 

also has good thermal performance. Fig. 29 displays the thermal image of the 

phase leg at 6 kV/6 A, in which the peak temperature is less than 60 ˚C. 

3.4 Summary 

Based on the discrete 10 kV/20 A SiC MOSFETs, the 6.5 kV half bridge 

phase leg is designed to serve as a building block of a modular MV converter. The 

phase leg has two MOSFETs, two isolated power supplies with 20 kV isolation 

capability, the gate driver, the heatsink, the PCB busbar, and the dc-link capacitor. 

The designed gate driver fully utilizes the fast switching speed of 10 kV SiC 

MOSFETs and supports the robust continuous operation of the 6.5 kV phase leg, 

with overcurrent protection, dead time function, and status feedback in every 

switching cycle. The designed desat protection clears the fault with a response 

time of less than 1.3 μs with strong noise immunity. The feedback signal from the 

gate driver helps the controller monitor the status of the fiber optic communication 

and gate driver in every switching cycle.  
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Fig. 29. Thermal image of the continuous test of the phase leg at 6 kV. 
 

Systematic testing procedures are developed to test the phase leg and its 

continuous operation capability at 6.5 kV, including DPT, HSF short circuit test, 

and AC-DC continuous test. With strict sequence, the testing procedures are able 

to test the phase leg comprehensively and endeavor to minimize the risk of device 

damage. Testing results show that the designed overcurrent protection responds 

within 1.3 μs in short circuit condition, and the peak current is lower than 200 A, 

10X rated current of the MOSFET. The continuous operation capability of the 

phase leg is validated by the continuous test at 6.5 kV as a half bridge inverter. 

 
 

  



 

66 
 

CH 4. IMPACT OF PARASITIC CAPACITORS ON SWITCHING 

PERFORMANCE 

The parasitic capacitors in the power stage of 10 kV SiC MOSFET-based 

converters and their influence on the switching performance are investigated in 

this chapter. With the capability to operate as part of a MV converter, the phase 

leg introduced in Chapter 3 is a suitable platform to study the impact of parasitic 

capacitors in the converter on the switching performance of 10 kV SiC MOSFETs. 

In this chapter, the half bridge phase leg in Chapter 3 is fully leveraged in the DPT 

setup for the switching performance evaluation. The parasitic capacitors in the 

power stage are mainly caused by the heatsink, the anti-parallel SiC JBS diode, 

and the load inductor, as summarized in Fig. 30. The effect of the external anti-

parallel JBS diode will be discussed in detail in Chapter 5. This chapter addresses 

the influence of parasitic capacitors caused by the load inductor and the heatsink 

design (shown in Fig. 30(b) and (c)) on the switching performance. 

 
Fig. 30. Three major sources of the parasitic capacitor in the power stage. 
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When investigating the effective parallel capacitor (EPC) of the load 

inductor, the parasitic inductance of the cable or wire connecting the load inductor 

with the phase leg (Ls in Fig. 30) should be considered. The effect of parasitic 

capacitors due to the heatsink for the phase leg is determined by the thermal 

design and the grounding scheme of the heat sink. The half bridge phase leg with 

two thermal designs introducing different parasitic capacitors is tested to discuss 

the effect of parasitic capacitors caused by the heatsink. 

4.1 Experimental Setup 

The circuit diagram of DPT based on the designed half bridge phase leg is 

shown in Fig. 31. A large input capacitor is added in parallel with the dc-link 

capacitor to serve as energy storage capacitor during DPT. Before DPT, the dc-

link voltage is charged to the desired voltage level by a 15 kV/800 mA high voltage 

DC power supply from Spellman. The negative terminal of the DC power supply is 

required to be solidly grounded. Then, the power supply is shut down, so DPT is 

completed by using the energy stored in the dc-link capacitor and input capacitor. 

The two auxiliary power supplies for the gate driver board and the oscilloscope are 

grounded at the grounding point of the half bridge phase leg. A 100 kΩ resistor is 

inserted between the grounding point of the phase leg and the grounding point of 

the DC power supply, which makes the DPT setup a single point grounded system 

during DPT. DPT based on the designed phase leg is conducted at room 

temperature. Since the switching performance of 10 kV SiC MOSFETs is only  
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Fig. 31. Circuit diagram of the DPT based on the designed half bridge phase leg. 
 
 

slightly influenced by the junction temperature, DPT at room temperature is 

sufficient for the investigation. 

The compact half bridge phase leg design poses a challenge to the accurate 

measurement of the fast switching transient of the drain current Id and the drain-

to-source voltage Vds of DUT, which is the lower device in the half bridge phase 

leg. The voltage measurement is conducted with a 75 MHz high voltage passive 

probe from Tektronix through Kelvin connection. Commercial Rogowski coil and 

current probe are the two current measurement methods commonly used in the 

DPT of high voltage SiC MOSFETs. Commercial Rogowski coil current transducer 

is preferable in the current measurement of the compact phase leg due to its 

flexibility, but it only has a bandwidth of 30 MHz. Also, the measurement results of 

Rogowski coil are easily interfered by fast switching transients with high dv/dt [55]. 

Experimental results show that Rogowski coil (CWT Ultra mini from PEM) has 

significant noise in the measurement result if it is placed near the current 
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measurement point. During the switching transient shown in Fig. 32, the magnitude 

of noise in Ch2 (Rogowski coil without any current passing through the coil) 

reaches 2.15 A as Vds rises with a dv/dt of 25.44 V/ns. 

Therefore, current probe (TCP0030A from Tektronix) is selected for current 

measurement due to its higher bandwidth (120 MHz) and better noise immunity. 

An additional wire is inserted in the power loop of the phase leg to accommodate 

the current probe, resulting in an increase of 72 nH in the power loop inductance. 

The inserted wire can be eliminated if high-bandwidth current measurement is not 

necessary. Table 6 summarizes the adopted measurement setup for DPT. In 

addition, common mode chokes are used to reduce the impact of common mode 

current on the measurement. The test setup together with the measurement setup 

can be seen in Fig. 33. The probes are connected with a high-speed oscilloscope 

on the top layer of the cabinet, which is solidly grounded. 

Fig. 32. Noise in the measurement result of commercial Rogowski coil (Ch2) 
without any current passing through the coil. 
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Fig. 33. DPT test setup based on the designed half bridge phase leg together 
with measurement setup. 
 
 
Table 6. Summary of the selected measurement setup for the DPT. 

Measurement Drain current Drain-to-source 
voltage 

Gate-to-source 
voltage 

Probe Tektronix 
TCP0030A 

Tektronix 
P6015A 

Tektronix 
TPP1000 

Bandwidth 120 MHz 75 MHz 1 GHz 
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4.2 Impact of Parasitic Capacitor in Load Inductor 

The load inductor in practical applications has non-negligible EPC, hence 

introducing considerable parasitic capacitance in the converter. EPC of the load 

inductor is charged or discharged during the switching transients, and hence 

should not be neglected when investigating the switching performance. To study 

the impact of the EPC of the load inductor on the switching performance of the 10 

kV SiC MOSFET, the 85 mH inductor manufactured by Control Transformer for 15 

kV distribution grid applications is used as the load inductor in the DPT setup, 

which passes the hipot test at 31 kV. With vacuum pressure impregnation (VPI) 

process [73], the inductor has the capability to maintain the insulation in harsh 

conditions and serve in practical MV applications. The size of the inductor is 508 

mm × 266.7 mm × 444.5 mm. Keysight E4990A impedance analyzer shows that it 

has a parasitic EPC of 35.1 pF.   

High voltage wire or cable is needed to connect the load inductor with the 

switching devices, bringing parasitics in series with the load. Usually the distance 

between the load and the switching devices of the MV converter is considerable. 

In the experimental setup, high voltage (15 kV) AWG 12 wire is used for the 

connection between the phase leg and the inductor, since the high voltage cable 

is expensive and not available in the laboratory. The high voltage wire with a length 

of 19.4 feet (5.92 m) in the experimental setup can be modeled as a 6.46 μH in 

series with a small resistance, since its parasitic capacitance is negligible. The 

parasitic inductance Ls in Fig. 30 is thus 6.46 μH, and should be taken into account 

in the analysis. In fact, MV converters for industrial applications use MV cables for 
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the connection, and MV cables also effectively increase EPC of load due to the 

shielding layer. The EPC of load inductor can be adjusted by adding the external 

EPC in parallel with the high voltage load inductor, as can be seen in Fig. 34. Two 

capacitors (27 pF and 106 pF) have been used as the external capacitor to 

increase EPC of the load inductor. Considering the MV cables’ significant impact 

on EPC of load in practical converters, such increase in EPC by adding external 

capacitors is reasonable.  

DPT results at 6.25 kV reveal that the larger parasitic EPC in the load 

inductor slows down both turn-on and turn-off transient of the 10 kV SiC MOSFET 

and results in higher total switching energy loss. The turn-on energy loss increases 

as the parasitic EPC of the load increases, while the turn-off energy loss 

decreases, as shown in the DPT results as load current varies from 4 A to 20 A in 

 
Fig. 34. High voltage load inductor with external capacitor to increase its EPC. 
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Fig. 35. Larger EPC in the load inductor results in higher total switching energy 

loss because the turn-on energy loss dominates. An increase of 106 pF in the EPC 

(4X EPC) results in 16% increase in total switching energy loss at 4 A and 11.1% 

increase at 20 A. As load current increases from 4 A to 20 A, the percentage 

increase in total switching energy loss due to increase of EPC becomes lower. 

The increase in turn-on energy loss is mainly attributed to the increased 

current overshoot and longer voltage fall time in the turn-on transient. With 

increased EPC in the load inductor, a larger effective capacitance needs to be 

charged from 0 V to 6.25 kV during the turn-on transient. The current overshoot 

during the turn-on of the 10 kV SiC MOSFET is higher, since its turn-on current 

overshoot is dominated by the charging current of capacitors in parallel with the 

synchronous device [66]. The longer voltage fall time leads to lower turn-on dv/dt, 

as indicated in Fig. 36. In the switching transient analysis, dv/dt is calculated as 

the average dv/dt when Vds changes from 90% to 10% of the dc-link voltage. 

Meanwhile, the turn-off energy loss decreases as EPC of the load inductor 

becomes larger. The turn-off transient becomes slower with longer voltage rise 

time if the load inductor has a larger EPC. In fact, the turn-off transient is slowed 

down more substantially than the turn-on transient. The drain current of DUT drops 

more quickly, and meanwhile its Vds rises more slowly, as shown in the switching 

waveform in Fig. 37. The measured turn-off loss of the 10 kV SiC MOSFET 

consists of the loss due to the overlap between Vds and the channel current and 

the energy stored in the output capacitor of DUT. The overlap loss decreases, 
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Fig. 35. Turn-on and turn-off energy loss at 6.25 kV when the load inductor has 
different EPCs. 

 
 

 
Fig. 36. Turn-on dv/dt and turn-off dv/dt at 6.25 kV when the load inductor has 
different EPCs. 
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Fig. 37. Turn-off transient waveform at 6.25 kV/4 A when the load inductor has 
different EPCs. 
 
 
while the energy stored in the capacitor remains the same. Therefore, the turn-off 

energy loss benefits from the increased EPC in the load inductor. 

The switching transients are heavily shaped by the resonance between the 

parasitic inductance Ls and EPC of the load inductor, which results in ringing load 

current during switching transients. The turn-off transient, particularly, is influenced 

which counts on the load current to charge the output capacitor of DUT. The impact 

of the resonance on the turn-off transient is easily observed at lower load current 

when the turn-off time is longer (see Fig. 37). Drain current has significant ringing 

during the current fall time, resulting in the slight ringing in Vds. The ringing is 

attributed to the considerable oscillation in the load current owing to the large Ls 

from the wire. At higher current, the turn-off dv/dt changes dramatically during the 
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voltage rise time, as can be seen in Fig. 38. The low instantaneous dv/dt period is 

caused by the slower discharge of the EPC in the load inductor and hence the 

negative di/dt in the load current. Then, the instantaneous dv/dt becomes high 

again since the load current rises as the resonance continues. Fig. 38 also 

illustrates that larger EPC in the load inductor leads to longer voltage rise time and 

lower average dv/dt, but the peak dv/dt is still almost the same.  

In summary, the resonance between the parasitic inductance Ls and EPC 

brings oscillation in the load current and hence the ringing in Vds and Id, especially 

during the turn-off transient. Larger EPC in the load inductor results in higher turn-

on energy loss, lower turn-off energy loss, and higher total switching energy loss. 

Larger EPC in the load also slows down both the turn-on and turn-off transient and 

reduces average dv/dt, but it does not necessarily alleviate the peak dv/dt stress. 

 
Fig. 38. Turn-off transient waveform at 6.25 kV/20 A when the load inductor has 
different EPCs. 
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4.3 Impact of Parasitic Capacitors Due to Heatsink 

The heatsink is also able to cause non-negligible parasitic capacitors in the 

converter. Parasitic capacitors brought by the heatsink design and their impacts 

on the switching transients are complicated, depending on the heatsink design and 

grounding scheme of the heatsink [37] [74].  In this work, DPT is conducted in the 

phase leg with two different thermal designs to analyze the effect of the parasitic 

capacitor due to the heatsink on the switching performance of the 10 kV SiC 

MOSFET. 

Two thermal designs have been implemented in the half bridge phase leg, 

as summarized in Fig. 39. Thermal design A with two separate heatsinks for two 

MOSFETs is the thermal design for the half bridge phase leg introduced in Chapter 

3. The two heatsinks are not grounded, and their potentials follow the potential of 

the drain plate they are connected to. Thermal design B has only one grounded 

heatsink for the two MOSFETs. The thermal pad with high voltage insulation 

capability is added between the devices’ drain plates and the grounded heatsink. 

Therefore, two considerable parasitic capacitors between the drain plate and the 

heatsink, Cp1, and Cp2, are generated. Cp1 is in parallel with the lower MOSFET 

since its source is also grounded. Cp2 between the dc-link and the ground can be 

neglected when analyzing the switching transients of DUT. In terms of parasitic 

capacitance, thermal design A is a better design, in which the parasitic capacitance 

due to heatsink is too small to consider, yet the heatsink for the lower MOSFET 

has high dv/dt during switching transients. The parasitic capacitance between the 

two heatsinks in thermal design A is less than 0.3 pF. 
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Fig. 39. Two thermal designs implemented in the half bridge phase leg. 
 
 

In reality, the phase leg with thermal design B utilizes a grounded hotplate 

as the heatsink, and a 3.4 mm ceramic layer with 20.8 kV/mm insulation capability 

is placed between the MOSFETs and the grounded hotplate for insulation. The 

calculated capacitance of Cp1 is 29.7 pF, which is small due to the thick ceramic 

layer. In fact, the parasitic capacitance is likely to be so small in MV converters 

using 10 kV SiC MOSFET power modules instead of the discrete device with the 

large drain plate. The thermal design can be easily switched between thermal 

design A and thermal design B. An air core inductor with single-layer winding is 

used as the load inductor to reduce the impact of parasitics from the load. 

Measurement setup for DPT is the same as Table 6.   

DPT results at 6.25 kV show that the parasitic capacitor generated in 

thermal design B significantly slows down the turn-off transient and increases the 

turn-off loss. With thermal design B, the turn-off transient of the DUT is significantly 

slower with lower turn-off dv/dt and increased turn-off loss. The slower turn-off 

transient can be explained by the existence of Cp1 which effectively increases the 

output capacitance of the DUT. A significant part of the measured turn-off loss of 
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the 10 kV SiC MOSFET is the energy stored in the output capacitor of the DUT. 

Thus, as shown in Fig. 40, the increase in turn-off loss with thermal design B, ~0.65 

mJ, is approximately the same as the energy stored in Cp1 from 0 V to 6.25 kV. 

Since Cp1 is small in the implemented phase leg with thermal design B, there is 

little difference in the turn-on transient of the DUT in the phase leg with thermal 

design A and thermal design B, as can be seen in Fig. 40 and Fig. 41. With a 29.7 

pF increase in the output capacitance of the DUT, the total switching energy loss 

at 6.25 kV increases by 13.4% at 4 A, and it only has 4.8% increase at 20 A load 

current.  

The large drain plate of the discrete 10 kV SiC MOSFET for heat extraction 

makes it easy to form large parasitic capacitor due to the heatsink. With thermal 

 
Fig. 40. Comparison of turn-on and turn-off energy loss between the thermal 
design A and B at 6.25 kV. 
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Fig. 41. Comparison of turn-on and turn-off dv/dt between the thermal design A 
and B at 6.25 kV. 
 
 
design B, Cp1 could be larger than 29.7 pF since the thermal pad between the 

device and the heatsink is usually thinner than 1.5 mm for low thermal resistance. 

For instance, assuming the adoption of the insulated thermal pad SARCON 100X-

m with a thickness of 1 mm, Cp1 will be 53.9 pF. To investigate the influence of a 

larger Cp1 caused by thermal design B, an external capacitor (106 pF) is added in 

parallel with the lower device in the phase leg with thermal design A, which is 

shown as the external capacitor in Fig. 33. 

Test results show that a large parasitic capacitor caused by the thermal 

design B also slows down the turn-on transient and results in significantly 

increased switching energy loss. The influence of the external 106 pF capacitor on 

the switching performance of DUT is summarized in Fig. 42. The switching energy 

loss and dv/dt data are normalized based on test results with thermal design A,  
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Fig. 42. Impact of the 106 pF parasitic capacitor due to heatsink on the switching 
energy loss and dv/dt (Normalized based on data from thermal design A). 
 
 
which can be seen in Fig. 40 and Fig. 41. Typically the turn-on energy loss 

increases by ~10% after the 106 pF capacitor is added. Meanwhile, the total 

switching energy loss has a percentage increase of 44.5% and 20.1%, at 4 A and 

20 A, respectively, which is mainly contributed by the increased turn-off loss. 

Hence, the total switching loss of the converter based on the discrete 10 kV SiC 

MOSFET has over 20% increase if a 106 pF parasitic capacitor is caused by the 

grounded heatsink. The impact of the considerable parasitic capacitor caused by 

thermal design B on the converter switching loss is more significant at light load. 

4.4 Summary  

The designed half bridge phase leg based on the 10 kV SiC MOSFET has 

been utilized to perform DPT to study the impact of the parasitic capacitor in the 
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MV converter on the switching performance. The larger EPC in the load inductor 

makes both the turn-on and turn-off transient slower, leading to increased total 

switching energy losses. An increase of 106 pF in EPC (4X EPC) results in 16% 

increase in total switching energy loss at 4 A and 11.1% increase at 20 A. The 

large parasitic inductance in series with the load causes more ringing during the 

switching transients, especially the turn-off transient. The larger EPC in the load 

inductor extends the duration of switching transients and reduces average dv/dt, 

but not necessarily reduces peak dv/dt. 

Two different thermal designs with different parasitic capacitors have been 

implemented in the phase leg. The 106 pF parasitic capacitor that could be caused 

by the large drain plate of MOSFET and the grounded heatsink, slows down both 

turn-on and turn-off transient significantly, leading to around 40% increase in total 

switching energy loss when load current is lower than 10 A. The best heatsink 

design for the 10 kV SiC MOSFETs with non-isolated package is to have a floating 

heatsink for each MOSFET, in order to minimize the resulting parasitic capacitor. 

At the converter level, parasitic capacitors in the power stage result in higher 

percentage increase in switching loss when converter operates at lighter load. 

  



 

83 
 

CH 5. IMPACT OF BODY DIODE AND ANTI-PARALLEL JBS 

DIODE ON SWITCHING PERFORMANCE 

The impact of the body diode and the anti-parallel JBS diode on the 

switching performance of the 3rd generation 10 kV SiC MOSFET from Wolfspeed 

(CPM3-10000-0350-ES) is investigated in detail at various junction temperatures. 

The 10 kV SiC MOSFET module with an anti-parallel JBS diode in each switch, as 

shown in Fig. 43, provides a suitable platform for the investigation. The switching 

performance of three device configurations for one switch is tested and compared, 

by which the impact of the body diode and the anti-parallel JBS diode can be 

quantitatively analyzed. The investigation also guides the 10 kV SiC MOSFET 

based converter design in the selection of the freewheeling diode. 

5.1 Device under Test and Experimental Setup 

 The 10 kV SiC MOSFETs are packaged in a module (H-bridge) by Danfoss 

 
Fig. 43. 10 kV SiC MOSFET module (H-bridge) packaged by Danfoss. 
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Fig. 44. Three device configurations for one switch available in the 10 kV SiC 
MOSFET module. 
 
 
Silicon Power, as displayed in Fig. 43. Every MOSFET in the module has a 10 

kV/20 A anti-parallel SiC JBS diode (CPW3-10000-Z015B-ES from Wolfspeed). 

The detailed configuration of one switch in the module is drawn as Configuration 

A in Fig. 44. In addition to the 10 kV SiC MOSFET and JBS diode, a low voltage 

Si Schottky diode is added in every switch which is able to prevent reverse current 

flowing through the body diode of MOSFET. Both the Si Schottky diode and JBS 

diode could be bypassed with a designed interface board. 

The switching performance of three different device configurations can be 

tested, as shown in Fig. 44. The three device configurations have different 

combinations of freewheeling diodes during switching commutation. The diode in 

red serves as the freewheeling diode. For example, the current commutates 

between the channel of the MOSFET and the anti-parallel JBS diode in 

Configuration A, while the switching commutation occurs between the channel of 

the MOSFET and the body diode in Configuration C. With the high voltage DPT 

setup, the performance of different device configurations can be quantitatively 
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compared, and the impact of the body diode and the anti-parallel JBS diode on the 

switching transients can be investigated in detail.  

DPT setup is established for the switching performance investigation under 

various temperatures. The setup is similar to that introduced in Chapter 4, so only 

the differences are introduced. The 10 kV SiC MOSFET module is connected with 

the interface board and gate driver board through vertical pins. The Si Schottky 

diode and the anti-parallel JBS diode can be bypassed with the switches in the 

interface board. Hence, the reconfiguration between different device 

configurations can be easily realized. The turn-on and turn-off gate resistance are 

22 Ω and 11 Ω, respectively. The gate drive IC outputs 20 V/-5 V to drive the 

MOSFET.  The grounded hotplate (H0909AA from Wenesco) under the module 

regulates the device junction temperature. A thermal pad is applied for electrical 

insulation between the module and the hotplate.  The thermal pad also results in 

a temperature difference of several degree Celsius between the MOSFET and the 

hotplate. The temperature difference can be obtained and compensated with an 

offline test. The only difference in measurement setup is the drain current 

measurement with the Rogowski coil (CWT Ultra mini from PEM). The compact 

module design makes it difficult to accommodate the high-bandwidth current probe 

to measure the drain current. When placing the Rogowski coil in the experimental 

setup, the positions close to the switch node with high dv/dt should be avoided. 

The DPT setup can be seen in Fig. 45, in which the 10 kV SiC MOSFET module 

is placed between the gate driver board and the grounded hotplate. 



 

86 
 

 
Fig. 45. Picture of the DPT setup to evaluate the impact of body diode and anti-
parallel JBS diode. 
 
 

5.2 Impact of Body Diode 

Configuration C with only the body diode is suitable for the evaluation of the 

impact of the body diode on the switching performance. Switching performance of 

the phase leg with Configuration C from 25 ˚C to 125 ˚C is investigated. The turn-

on energy loss decreases as the junction temperature increases. This 

phenomenon is different from what has been reported in low voltage SiC 

MOSFETs [11], [61]. The body diode of the 1.2 kV SiC MOSFET causes a 

significant increase of turn-on energy loss at higher temperature due to the rapid 

increase of reverse recovery charge as temperature rises. As for the 10 kV SiC 

MOSFET, the switching loss decreases with the increasing temperature, indicating 

stable reverse recovery performance of the body diode as temperature changes. 

The current overshoot during the turn-on transient increases at higher temperature 
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due to larger displacement current caused by higher dv/dt. Still, the faster switching 

speed and higher dv/dt makes the turn-on loss lower at higher temperature, as 

shown in Fig. 46 and Fig. 47. At 3 kV/20 A, the turn-on loss decreases by 16% 

from 25 ˚C to 125 ˚C. For the 10 kV SiC MOSFET, utilizing the body diode as 

freewheeling diode leads to lower switching energy loss as temperature rises. 

Switching performance comparison of Configuration A and B affirms that 

the reverse recovery of the body diode has little impact on the switching transients 

of the DUT. Experimental results show that the switching performance of 

Configuration A is almost the same as that of Configuration B, as shown in data 

obtained at 3 kV and 125 ˚C in Table 7. Detailed switching transients displayed in 

Fig. 48 also indicate the almost identical switching performance between 

Configuration A and B, which is tested at 75 ˚C. Since Configuration A and B have 

almost the same switching performance, the reverse recovery performance of the 

body diode is almost as good as that of the JBS diode. Considering the nearly zero 

reverse recovery charge of the SiC JBS diode [62], the reverse recovery of the 

body diode of the 10 kV SiC MOSFET is also negligible.  

The excellent reverse recovery performance of the body diode is originally 

due to the negligible excess carrier injection in on-state of the body diode. Output 

characteristic of the body diode indicates the impact of excess carrier injection and 

its reverse recovery performance. When the body diode has large on-state current, 

the conductivity modulation due to injection of excessive minority carriers 

effectively reduces the resistance of the body diode, but also results in reverse 
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Fig. 46. Switching energy loss vs. temperature (Configuration C, 3 kV/20 A). 
 

 

 
Fig. 47. Turn-on and turn-off dv/dt vs. temperature (Configuration C, 3 kV/20 A). 



 

89 
 

   
Fig. 48. Switching transient waveforms of Configuration A and B at 75 ˚C (3 kV, 
10 A). 
 
 
Table 7. Switching performance of Configuration A and B at 3 kV, 125 ˚C. 

Load current Parameter Configuration A Configuration B 

10 A 

dv/dt (OFF) 22.6 V/ns 22.0 V/ns 

Loss (OFF) 0.76 mJ 0.72 mJ 

dv/dt (ON) 54.5 V/ns 50.0 V/ns 

Loss (ON) 2.71 mJ 2.87 mJ 

20 A 

dv/dt (OFF) 48.0 V/ns 46.1 V/ns 

Loss (OFF) 0.76 mJ 0.82 mJ 

dv/dt (ON) 51.1 V/ns 49.0 V/ns 

Loss (ON) 4.06 mJ 4.49 mJ 
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recovery current since they should be swept out during the turn-off transient. 

Therefore, the minority carrier injection and reverse recovery of the body diode can 

be evaluated by investigating the on-resistance of the body diode as a function of 

the on-state current. Table 8 lists the measured resistance of the body diode as a 

function of the conduction current at different temperatures, based on measured 

output characteristic of the body diode. At 125 ˚C, the body diode resistance only 

drops by 6.67% as current increases from 5 A to 25 A. Resistance of the body 

diode is almost constant as current increases, indicating the slight impact of excess 

carrier injection. It can be concluded that the body diode of the 3rd generation 10 

kV SiC MOSFET has excellent reverse recovery performance over a wide 

temperature range. 

5.3 Impact of Anti-parallel JBS Diode 

 In terms of the switching performance, outcomes of adding external anti-

parallel SiC JBS diode are studied to provide a guideline for converter design. 

Configuration B is achieved by adding an anti-parallel JBS diode in Configuration  

C. The effect of adding a 10 kV anti-parallel JBS diode is hence analyzed with the 

comparison of the switching performance between Configuration B and C. 

 Fig. 49 shows the switching transient waveforms of the phase leg based on 

Configuration B and C at 3 kV/20 A, 125 ˚C. Configuration C without anti-parallel 

diode during turn-off has higher dv/dt, shorter turn-off time, and lower measured 

turn-off energy loss. Meanwhile, adding external anti-parallel JBS diode only has 

slight impact on the turn-on transient. Table 9 illustrates the impact of the anti- 
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Fig. 49. Switching transient waveforms of Configuration B and C at 125 ˚C. 
 
 
Table 8. Measured resistance of body diode at different temperatures. 

Current 5 A 10 A 15 A 20 A 25 A 

Resistance of 
body diode at 
25 ˚C 

372.3 mΩ 352.2 mΩ 342.5 mΩ 337.2 mΩ 335.9 mΩ 

Resistance of 
body diode at 
75 ˚C 

549 mΩ 530 mΩ 513.7 mΩ 508 mΩ 504.4 mΩ 

Resistance of 
body diode at 
125 ˚C 

741 mΩ 722 mΩ 709.6 mΩ 697.7 mΩ 691.6 mΩ 

 
 
Table 9. Switching performance comparison between Configuration B and C at 3 
kV/20 A. 

Configuration Parameter At 25 ˚C At 75 ˚C At 125 ˚C 

Configuration B 

(W/ anti-parallel 

JBS diode) 

dv/dt (OFF) 48 V/ns 48 V/ns 46.15 V/ns 

Loss (OFF) 0.83 mJ 0.83 mJ 0.824 mJ 

dv/dt (ON) 36.2 V/ns 46.2 V/ns 48.98 V/ns 

Loss (ON) 5.32 mJ 4.86 mJ 4.49 mJ 

Configuration C 

(W/O anti-parallel 

JBS diode) 

dv/dt (OFF) 57.14 V/ns 60 V/ns 58.54 V/ns 

Loss (OFF) 0.513 mJ 0.47 mJ 0.485 mJ 

dv/dt (ON) 35.82 V/ns 45.3 V/ns 50 V/ns 

Loss (ON) 5.15 mJ 4.54 mJ 4.33 mJ 
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parallel JBS diode on the switching performance of the 10 kV SiC MOSFET at 

different temperatures tested at 3 kV/20 A, including dv/dt and switching energy 

loss. The anti-parallel JBS diode also increases the turn-on energy loss slightly. 

The turn-off transient is significantly slower after adding the anti-parallel JBS diode, 

leading to about 70% increase in turn-off energy loss. At 25 ˚C and 75 ˚C, the total 

switching energy loss increases by 8.6% and 13.6% at 3 kV/20 A, respectively, 

after adding the JBS diode. In terms of the switching performance, adding the anti-

parallel diode increases the switching loss of the 10 kV SiC MOSFET and 

significantly slows down its turn-off transient. 

 The external anti-parallel JBS diode influences the reverse recovery and 

adds a nonlinear capacitor across the drain and source of the MOSFET, from the 

perspective of the switching performance evaluation. The body diode of the tested 

10 kV SiC MOSFET has excellent reverse recovery performance over a wide 

temperature range. The benefit of JBS diode in the reverse recovery is thus 

negligible. Then, in the switching transient analysis, adding the anti-parallel JBS 

diode can be modeled by adding a small nonlinear capacitor in parallel with the 

MOSFET. Nonlinear characteristic of the capacitor caused by the added anti-

parallel JBS diode is displayed in Fig. 50, according to the datasheet from 

Wolfspeed. The non-linear capacitor has an equivalent capacitance of 64.97 pF in 

terms of the energy at 3 kV. 

With the anti-parallel JBS diode, the added nonlinear capacitor slows down 

the turn-off transient, which is dominated by the capacitive charging process. The  
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Fig. 50. Nonlinear output capacitor of the anti-parallel SiC JBS diode. 
 
 
increase in the output capacitance of the device results in longer voltage rise time 

and lower turn-off dv/dt. The measured turn-off loss increases since the capacitor 

caused by the anti-parallel diode also stores energy during the turn-off transient, 

which will be dissipated in the channel during the next turn-on transient in hard-

switching condition. The energy stored in the output capacitor of the JBS diode at 

3 kV is calculated as follows. 

 𝐸𝐽𝐵𝑆,3𝑘𝑉 = ∫ 𝐶𝐽𝐵𝑆𝑣𝑑𝑣
3𝑘𝑉

0
= 0.292 𝑚𝐽 (6) 

The energy stored in the output capacitor of the JBS diode is only slightly lower 

than the increased turn-off loss after adding the anti-parallel diode. 

In terms of the turn-on transient, the influence of the nonlinear capacitor 

caused by the anti-parallel diode is limited. The turn-on transient is mainly 

influenced by gate drive parameters and temperature [5], [6]. The added nonlinear 
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capacitor is not the dominant factor during the voltage fall time. The larger output 

capacitance of the MOSFET due to the anti-parallel diode results in higher current 

overshoot during the turn-on transient. As shown in Fig. 49, Configuration B with 

the anti-parallel JBS diode has slightly higher current spike because of larger 

output capacitance and displacement current. The displacement current 

contributing to the turn-on current spike in Configuration B is calculated as follows. 

 𝐼𝑑𝑖𝑠 = (𝐶𝑜𝑠𝑠 + 𝐶𝐽𝐵𝑆)
𝑑𝑣

𝑑𝑡
 (7) 

Coss is the output capacitance of the upper MOSFET, and CJBS is the output 

capacitance of the anti-parallel JBS diode. In Configuration B, CJBS effectively 

increases the displacement current and hence the current overshoot during the 

turn-on transient. Thereby, the turn-on energy loss is also slightly higher after 

adding the anti-parallel JBS diode, as can be seen in Table 9. 

5.4 Summary 

The impact of the body diode and the anti-parallel SiC JBS diode on the 

switching performance of the 3rd generation 10 kV SiC MOSFET from Wolfspeed 

is investigated in detail. The investigation and analysis are based on experimental 

results of three different device configurations of one switch with different 

freewheeling diodes. The reverse recovery of the body diode of the 10 kV SiC 

MOSFET is negligible at various temperatures. Using its body diode as the 

freewheeling diode, the 10 kV SiC MOSFET has lower switching loss as junction 

temperature rises. Adding the anti-parallel JBS diode does not benefit the reverse 

recovery performance and introduces the parasitic nonlinear capacitor, which 
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increases the switching loss of the 10 kV SiC MOSFET (>8.6% at 3 kV/20 A) and 

significantly slows down its turn-off transient. It is not recommended to add the 

anti-parallel JBS diode in the converter based on 10 kV SiC MOSFETs. 
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CH 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

10 kV SiC MOSFETs are prospective power semiconductor devices for 

future MV converters with higher power density and efficiency. To apply them in 

MV power conversion systems, their switching transients and performance should 

be investigated and understood comprehensively. Numerous factors have 

significant impact on the switching performance of fast-switching 10 kV SiC 

MOSFETs, including parasitic capacitors and the freewheeling diode.  

A 6.5 kV half bridge phase leg based on 10 kV SiC MOSFETs is designed 

for the continuous operation as a building block of a MV converter. With 

overcurrent protection, dead time function, and status feedback function, the 

designed high-speed gate driver is critical for the robust continuous operation of 

the phase leg. Systematic step-by-step testing procedures are developed to 

comprehensively test the phase leg, which finally validates the phase leg design 

with AC-DC continuous test at 6.5 kV.  

The designed phase leg provides a suitable platform to quantitatively study 

the impact of parasitic capacitors in the power stage of the converter on the 

switching performance of 10 kV SiC MOSFETs, including EPC of load inductor and 

the parasitic capacitor caused by the heatsink. The larger EPC of load inductor 

makes both the turn-on and turn-off transient slower, leading to lower measured 

turn-off loss and higher total switching energy loss. The resonance due to the large 

EPC and parasitic inductance in series with the load causes more oscillations 
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during the switching transients, especially the turn-off transient. The parasitic 

capacitor caused by the heatsink also extends the duration of switching transitions 

and increases the switching loss. The 106 pF parasitic capacitor that could be 

caused by the grounded heatsink, slows down turn-on and turn-off transient, 

leading to around 40% increase in total switching energy loss when load current is 

lower than 10 A. Generally, parasitic capacitors in the converter result in higher 

percentage increase in converter switching loss at lighter load, and they slow down 

the turn-off transient more significantly, compared to turn-on transient. 

With negligible reverse recovery charge at various temperatures, the body 

diode of 10 kV SiC MOSFETs is suitable to serve as the freewheeling diode. 

Adding the anti-parallel JBS diode is not recommended for 10 kV SiC MOSFETs, 

since it only introduces the parasitic nonlinear capacitor, resulting in slower turn-

off transients and higher switching losses. 

6.2 Future Work 

In terms of the phase leg design, the gate driver in this work is specifically 

designed to support the robust continuous operation of the 10 kV/350 mΩ SiC 

MOSFET. The size of the gate driver board can be smaller by further optimizing 

the design and introducing a microcontroller, such as CPLD. With the 

microcontroller and more added functions, the intelligent gate driver for 10 kV SiC 

MOSFETs has better support of the reliable long-term operation of 10 kV SiC 

MOSFETs. Also, the desat protection with discrete components for protection in 

short circuit conditions still has drawbacks, including the relatively large footprint 



 

98 
 

and the response time limited by the blanking time. The desat protection circuitry 

can be further optimized, and other overcurrent protection methods can be 

explored to achieve easy implementation, fast response time (<500 ns), and strong 

noise immunity at the same time. 

With much higher dv/dt and di/dt than Si IGBTs, switching transients of 10 

kV SiC MOSFETs are sensitive to parasitics in the converter, including both 

parasitic capacitance and parasitic inductance. Only parasitic capacitance’s 

impact on the switching transients is studied in this work, since the parasitic 

inductance does not play an essential part in the switching transient of the 10 kV/20 

A SiC MOSFET with low current rating.  However, parasitic inductance, especially 

the power loop inductance, could cause much more significant ringing, higher 

overvoltage, and higher losses in10 kV SiC MOSFET modules [75] with higher 

current rating, and hence should be investigated in the future work. 

In this work, the impact of parasitic capacitance caused by the load inductor 

and the heatsink design on the switching energy loss and transients is investigated 

with the experiments, but no analytical model has been derived. The analytical 

model can be built based on the DPT results and theoretical analysis, incorporating 

the impact of load current, dc-link voltage, parasitic capacitance. The analytical 

model is helpful in estimating the additional switching energy loss caused by the 

parasitic capacitance and predicting the converter switching loss with better 

accuracy. 
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