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ABSTRACT 

10 kV SiC MOSFETs are one of the most promising power semiconductor devices 

for next-generation high-performance modular medium voltage (MV) converters. With 

extraordinary device characteristics, 10 kV SiC MOSFETs also bring a variety of 

challenges in the design and test of MV converters. To tackle these inherent challenges, 

this dissertation focuses on a robust half bridge (HB) phase leg based on 10 kV SiC 

MOSFETs for modular MV converters. A baseline design and test of the phase leg is 

established first as the foundation of the research in this dissertation. 

Thorough evaluation of 10 kV SiC MOSFETs’ switching performance in a phase 

leg is necessary before applying them in MV converters. The impact of parasitic 

capacitances and the freewheeling diode is investigated to understand the switching 

performance more extensively and guide the converter design.   

One non-negligible challenge is the flashover fault resulting from the premature 

insulation breakdown, a short circuit fault with extremely fast transients. A device model 

is established to thoroughly analyze the behavior of 10 kV SiC MOSFETs when the fault 

occurs in a phase leg. Subsequently, the gate driver and protection design considerations 

are summarized to achieve lower short circuit current and overvoltage and ensure the 

survival of the MOSFET that is in ON state when the fault happens. 

Furthermore, it is challenging to design the overcurrent/short circuit protection with 

fast response and strong noise immunity under fast switching transients for 10 kV SiC 

MOSFETs. The noise immunity of the desaturation (desat) protection is studied 

quantitatively to provide design guidelines for noise immunity enhancement. Then, an 
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improved desat protection scheme with digital blanking time is developed with <350 ns 

response time, which is validated with short circuit tests at 6.5 kV. Based on the 

investigation results of the noise immunity, the strong noise immunity of the developed 

protection is also successfully validated. A desat protection scheme with ultrafast response 

is also proposed after considering the high negative dv/dt during the turn-on transient of  

10 kV SiC MOSFETs. The ultrafast response (<160 ns response time) and the strong noise 

immunity are validated with short circuit tests and ac-dc continuous test at 6.5 kV.   

In addition, a simple test scheme is proposed and validated experimentally, in order 

to qualify the HB phase leg based on the 10 kV SiC MOSFET comprehensively for the 

modular MV converter applications. The test scheme includes the ac-dc continuous test 

with two phase legs in series to create the testing condition similar to what is generated in 

a modular MV converter, especially the high dv/dt. The test scheme can fully test the 

capability of the phase leg to withstand high dv/dt and its resulting noise. 
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CHAPTER 1. INTRODUCTION 

This chapter provides an overview of the research presented in this dissertation, 

including the background, motivations, objectives, and outline of this dissertation. It should 

be noted that part of the content in this chapter is from the author’s Master’s thesis titled 

Design and Switching Performance Evaluation of a 10 kV SiC MOSFET Based Phase Leg 

for Medium Voltage Applications [1]. 

1.1 Modular Medium Voltage Converters 

Nowadays, power electronics converters with high power conversion efficiency are 

playing an indispensable part as the essential infrastructure for our society. Particularly, 

medium voltage (MV, from 1 to 35 kV AC) power converters with high power rating are 

required to support numerous critical and fundamental applications, including MV motor 

drives [2] and the modern grid.  

MV motor drives are indispensable driving forces in industrial, transportation, and 

military applications. With the same power rating, MV motor drives achieve lower losses 

and higher power density compared to low voltage drives [3]. Motors and their drives 

consume a large percentage of electricity supplied to the industry, hence MV drives with 

higher efficiency and better performance are promising to make a profound difference in 

terms of reducing the manufacturing cost and accelerating decarbonization of the industry 

all over the world. 

MV power converters have a wide range of applications in the modern power grid. 

Various MV converters are needed to support grid operation, such as solid state circuit 

breaker and fault current limiter for protection [4], [5], active power filter (APF) for 

https://trace.tennessee.edu/cgi/viewcontent.cgi?article=6872&context=utk_gradthes
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=6872&context=utk_gradthes
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improved power quality [6], static synchronous compensator (STATCOM), and unified 

power flow controller [7]. New MV converters for grid applications have also been 

developed to achieve more advanced functions, such as solid-state transformer [8] and 

continuously variable series reactor [9]. MV converters can interface renewable energy 

sources with the grid efficiently due to fewer stages and less complicated structure, hence 

drawing increasing attention as the capacity of the installed renewable energy sources 

keeps soaring. MV dc transmission system enabled by MV converters is promising in 

interfacing utility-level solar farms and offshore wind farms to the grid with lower cost and 

higher efficiency [1], [10]. MV power conditioning system (PCS) is essential to realize 

novel system configurations in distribution grids, including working as the interface of a 

microgrid to form an asynchronous microgrid, which benefits the microgrid on dynamic 

decoupling, resilience promotion, and other aspects [11]-[13]. Besides asynchronous 

microgrids, the MV PCS can be applied in combined heat and power system, flexible 

manufacturing plants to improve the system flexibility and assist renewable energy 

integration [14].   

Among various MV converters, modular MV converters with modular topology 

stand out due to reduced complexity in converter design and debugging and easy extension 

to higher voltage level. Modular multi-level converter (MMC), cascaded H-bridge 

converter, and other modular topologies composed of many identical modules, have been 

gaining increasing popularity in MV converters [11], [15]. In MV applications with 

relatively high voltage and high power rating, topologies which are not modular, such as 

flying capacitor multi-level converter and neutral point clamped multilevel converter, are 
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less competitive compared to modular MV converters. With reduced complexity and 

inherent scalability, modular MV converters have extraordinary potential to benefit a great 

variety of MV applications at different voltage levels [16]. 

Si-based power semiconductor devices dominate in current MV converters, 

including IGBTs, thyristors, integrated gate-commutated thyristors (IGCTs), and gate turn-

off thyristors (GTOs) [1]. The Si IGBT shown in Fig. 1-1 is prevalent in MV converters 

because of simple gate driver design and relatively high switching frequency. Thyristors, 

GTOs, and IGCTs are usually only considered for extremely high power applications, due 

to their low conduction loss at large current. Si MOSFETs shown in Fig.1-1, typically with 

lower switching loss than Si IGBTs, are not suitable in MV converters, suffering from 

exceptionally large conduction loss [1], [17]. 

However, Si IGBTs have gradually become the bottleneck in the development of 

high-performance MV converters [1]. The limitations of Si IGBTs for MV applications 

include relatively low blocking voltage, high switching loss, and low switching frequency 

[1]. The design and fabrication process of Si IGBTs are mature and approaching the limit 

of Si material. Power semiconductor devices with higher blocking voltage are highly 

desirable, yet the voltage rating of Si IGBTs commercially available for MV applications 

is limited to 6.5 kV, due to the conduction loss. Also, because of current i2 in Fig. 1-1(a) 

that cannot be actively shut down and the resulting tail current, it is difficult to further 

reduce the switching loss of Si IGBTs [17]. Therefore, the switching frequency of MV 

converters based on 6.5 kV Si IGBTs is usually limited to 1 kHz. In summary, Si IGBTs  
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Fig. 1- 1. Physical structure and current flow of IGBT and power MOSFET [1], [17]. 
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with limited blocking voltage and low switching frequency are not suitable for future high-

performance MV converters [1].  

Recently, the rapid development of silicon carbide (SiC) material for power 

electronics applications has laid a solid foundation for better power semiconductor devices 

for MV applications. As displayed in Table 1, with much wider bandgap than Si, SiC has 

superior material properties relevant to power electronics applications, such as electric 

breakdown field, saturated electron drift velocity, and thermal conductivity [1], [18], [19]. 

SiC has several different polymorphic crystalline structures, and only 4H-SiC is considered 

and discussed in this dissertation because it has the best prospect in practical power 

electronics applications [20].  

Excellent material properties of SiC bring the SiC power semiconductor devices 

higher blocking voltage, higher operation temperature, and potential for higher switching 

frequency. Tremendous progress has been made in SiC power semiconductor devices, 

resulting in a wide range of high voltage (>3.3 kV) SiC power semiconductor devices 

designed and produced for MV applications, including junction barrier Schottky (JBS) 

diode, MOSFET, IGBT, thyristor, etc [1], [21]-[25]. Due to the ten times higher critical 

electric field of SiC material, high voltage SiC devices can achieve much higher voltage 

rating than their Si counterparts [23]. With rated voltage ranging from 6.5 kV to 20 kV, 

these emerging SiC devices leveraging the superior characteristics of SiC material provide 

an unprecedented opportunity to expand what can be accomplished with MV converters. 

1.2 10 kV SiC MOSFETs for MV Applications 

The 10 kV SiC MOSFET is one of the most promising high voltage SiC power 
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Table 1. Material properties of Si and SiC for power electronic applications. 

Properties Silicon (Si) Silicon Carbide (SiC) 

Bandgap 1.12 eV 

 

3.26 eV 

Electric breakdown field 0.3 MV/cm 2.0 MV/cm 

Thermal conductivity 1.5 W/cm-K 4.9 W/cm-K 

Electron mobility 1500 cm2/V-s 950 cm2/V-s (along a-axis) 

1190 cm2/V-s (along c-axis) 

Saturated electron drift velocity 1.0 x 107 cm/s 1.0 x 107 cm/s 

Dielectric constant 11.8 10.0 
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semiconductor devices to replace Si IGBTs in MV applications [1], [26]-[29]. As the leader 

in SiC power semiconductor devices, Wolfspeed has designed and fabricated three 

generations of 10 kV SiC MOSFETs, with the specific on-resistance reduced from 160 

mΩ-cm2 to 100 mΩ-cm2 at room temperature [26]-[29]. Compared to Si IGBTs for MV 

applications, 10 kV SiC MOSFETs have higher voltage rating and operation temperature, 

lower switching loss, and faster switching speed, as shown in Fig. 1-2 [1]. These benefits 

at the device level further facilitate comprehensive benefits at the converter level, such as 

simpler converter topology and design, higher efficiency, smaller size and weight, and 

higher control bandwidth [1]. Therefore, 10 kV SiC MOSFETs are one of the prospective 

building blocks of the future high-performance MV converters. 

10 kV SiC MOSFETs have relatively low on-resistance because of low specific on-

state resistance of SiC unipolar devices [30]. To achieve the same blocking voltage level, 

much thinner drift layer and much higher doping density can be used if Si wafer is replaced 

by SiC wafer [1]. Therefore, the on-resistance of SiC majority carrier devices is 

tremendously reduced compared to their Si-based counterparts at the same voltage level. 

Fig. 1-3 shows the comparison of the specific on-resistance and its theoretical limit of SiC 

and Si majority carrier devices [30]. The newest generation of 10 kV SiC MOSFETs has 

specific on-resistance close to its theoretical limit.  

Furthermore, 10 kV SiC MOSFETs have faster switching speed, >20X lower 

switching losses, and hence are able to switch at much higher frequency than 6.5 kV Si 

IGBTs with similar current rating [22], [29]. Due to the lower specific on-resistance shown 

in Fig. 1-3, SiC MOSFETs typically have small die size, including 10 kV SiC MOSFETs.  
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Fig. 1- 2. Device-level and converter-level benefits of 10 kV SiC MOSFETs [1]. 

 

 

 

 

 

Fig. 1- 3. Specific on-resistance vs. breakdown voltage for Si and SiC [30]. 
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As a result, the parasitic capacitances are smaller, contributing to the faster switching 

speed. The high saturated electron velocity of SiC material reinforces the fast switching 

speed of 10 kV SiC MOSFETs. From a fundamental standpoint, the 10 kV SiC MOSFET 

as a majority carrier device, has faster switching transients by eliminating the injection of 

minority charges and hence the turn-off tail current, as illustrated in Fig. 1 [17]. Because 

of the shorter minority carrier lifetime of SiC material [20], the body diode of 10 kV SiC 

MOSFETs also has much lower reverse recovery loss than Si-based PiN diodes, which also  

supports high switching frequency capability of 10 kV SiC MOSFETs. 

MV converters benefit from the superior performance of 10 kV SiC MOSFETs in 

numerous aspects [27], [31]. The fast switching speed and low switching energy loss give 

rise to the low converter switching loss and reduced volume and weight of the cooling 

system. The switching frequency can be increased to tens of kilohertz to achieve smaller 

size of passive components and higher power density. The high blocking voltage of 10 kV 

SiC MOSFETs decreases the number of required power semiconductor devices and 

simplifies the converter topology and design [11]. With 10 kV SiC MOSFETs, two-level 

topologies can be adopted for MV drives with 4.16 kV line-to-line voltage.  

High switching frequency enabled by 10 kV SiC MOSFETs can support the high-

speed direct motor drives without the gearbox, leading to MV drives with smaller footprint 

and higher system density [32], [33]. Simpler multi-level topologies can be used to directly 

interface the distribution grid by using 10 kV SiC MOSFETs, without the series connection 

of switching devices. Moreover, high control bandwidth enabled by 10 kV SiC MOSFETs 

is capable of supporting more advanced control functions for grid-connected MV 
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converters. For instance, the transformerless PCS based on 10 kV SiC MOSFETs designed 

for 13.8 kV asynchronous microgrid can achieve APF function to filter 19th order 

harmonics (1140 Hz) in the distribution grid [13]. These benefits from 10 kV SiC 

MOSFETs are also of great significance in some emerging critical applications, such as 

electric vehicle (EV) fast charger and data center power supply [31], [34]-[36]. 

In addition to benefits, superior device-level characteristics of 10 kV SiC 

MOSFETs bring new challenges. For instance, the drain-to-source voltage Vds of the 10 kV 

SiC MOSFET typically falls from 6 kV to nearly 0 V within 100 ns during the turn-on 

transient. Because of high blocking voltage, the high dv/dt lasts for much longer time than 

the high dv/dt generated by low voltage (<3.3 kV) SiC MOSFETs. It is challenging to 

design MV power conversion systems based on the 10 kV SiC MOSFET while fully 

utilizing its device-level benefits. The gate driver should isolate high voltage with high 

dv/dt in power and signal transmission. The common-mode (CM) current caused by high 

dv/dt should be tackled, and the cross-talk issue should be evaluated and addressed [24]. 

Not only can the high PWM voltage coupled with high dv/dt and switching frequency lead 

to accelerated insulation degradation, but also the premature insulation failure hence 

becomes a more serious issue which should be taken into consideration in MV converter 

design based on 10 kV SiC MOSFETs [37]-[39]. Moreover, the fast switching speed makes 

the switching transients of 10 kV SiC MOSFETs more sensitive to the parasitics in the 

power stage, especially parasitic capacitances. It is important to address these challenges 

in order to fully leverage the comprehensive benefits of 10 kV SiC MOSFETs. 
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1.3 Motivation and Objective 

The half bridge (HB) phase leg is one of the most fundamental building blocks for 

modular MV converters [1]. It can function as the basic building block of MMCs and other 

topologies based on MMC. Two HB phase legs can form a full bridge or H-bridge, the 

fundamental building block of various MV converters, such as the cascaded H-bridge 

converter. The investigation results of the HB phase leg based on 10 kV SiC MOSFETs 

are the foundation for the study and design of modular MV converters. The device’s 

switching performance in a HB phase leg is also widely accepted to guide the converter 

loss estimation and design. Hence, this dissertation concentrates on the study of the HB 

phase leg based on 10 kV SiC MOSFETs. In this dissertation, the phase leg is defined as 

the HB phase leg with two identical switches allowing bi-directional current. To support 

the bi-directional current flow, each switching device should have a freewheeling diode. 

The premier motivation of this work is to design and build a robust 10 kV SiC 

MOSFET based HB phase leg for modular MV converters and tackle the challenges 

brought by the intrinsic characteristics of 10 kV SiC MOSFETs. The challenges are 

summarized in Fig. 1-4.  

With much faster switching speed than Si IGBTs, switching transients of 10 kV 

SiC MOSFETs are more sensitive to the parasitics in the converter. Particularly, parasitic 

capacitances in the MV converter heavily influence the switching energy loss and dv/dt 

[31]. Nonetheless, the test setup used to test 10 kV SiC MOSFETs is often designed and 

built to minimize the parasitics in the power stage, and hence have different characteristics 

from MV converters. As a result, the previous study is unable to identify and investigate  
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Fig. 1- 4. Summary of challenges brought by 10 kV SiC MOSFETs. 
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the impact of parasitic capacitances in the power stage on the switching performance, 

leading to inaccurate switching performance evaluation results. The freewheeling diode 

also impacts the switching performance of the 10 kV SiC MOSFET in the phase leg, which 

can be implemented with body diode and an external anti-parallel JBS diode. Adding the 

external anti-parallel JBS diode also introduces additional parasitic capacitance. Therefore, 

this dissertation aims to investigate how switching transients and performance of 10 kV 

SiC MOSFETs are impacted by the parasitic capacitances and the freewheeling diode. 

10 kV SiC MOSFETs can generate PWM voltage with high magnitude, switching 

frequency, and dv/dt. As a result, insulation design is more difficult and challenging in the 

phase leg, and there is higher risk of premature insulation failure [39]. The insulation 

failure can generate a flashover fault, the most serious type of short circuit fault in MV 

converters [37]. In this dissertation, it is defined that the flashover fault happens because 

protective insulation fails resulting in a shorted component, such as the MOSFET package, 

the isolated power supply, or the voltage sensor. Thereby, this dissertation aims to take the 

flashover fault into account and endeavor to reduce the damage if a flashover fault happens 

in the phase leg design. 

With small chip area and high current density, 10 kV SiC MOSFETs possess worse 

short-circuit ruggedness than Si IGBTs. It is hence challenging to design the protection 

which is required to have faster response to turn off the MOSFET safely under short 

circuit/overcurrent conditions. Now that the flashover fault is one type of short circuit fault 

that should be considered in the phase leg based on 10 kV SiC MOSFETs, the requirement 

for the overcurrent/short circuit protection becomes even stricter.  
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The high dv/dt and di/dt generated by 10 kV SiC MOSFETs also result in stronger 

noise which disturbs the normal operation of the phase leg. Particularly, the 

overcurrent/short circuit protection with fast response could be falsely triggered due to the 

strong noise interference. It is of profound significance to analyze the interference 

mechanism of the noise and address the noise immunity problem of the overcurrent/short 

circuit protection. Hence, one objective of this dissertation is to design the 

overcurrent/short circuit protection with fast response and strong immunity simultaneously 

after fully understanding how the noise interferes with the protection. 

The comprehensive testing and qualification of the HB phase leg based on 10 kV 

SiC MOSFETs are necessary to ensure robust operation of the modular MV converter. It 

is desirable to test the phase leg comprehensively so that problems can be found at the 

phase leg level before assembling and testing the full converter, which is much more 

complex than one phase leg. The qualification of phase legs based on 10 kV SiC MOSFETs 

is more crucial and challenging compared to their counterparts based on Si IGBTs, 

considering the higher dc voltage and much higher dv/dt and hence much more challenging 

insulation and noise immunity design. Meanwhile, the qualification should not be too 

complicated and time-consuming. One target of this dissertation is to develop a simple and 

comprehensive test scheme to fully qualify the HB phase leg based on 10 kV SiC 

MOSFETs.  

1.4 Dissertation Outline 

The focus of this dissertation is a robust 10 kV SiC MOSFET based phase leg which 

can function as a building block of a modular MV converter. The robust phase leg should 



 

15 

 

be able to make full use of the benefits of fast-switching 10 kV SiC MOSFETS and realize 

normal long-term operation without any insulation and noise issue under the high dv/dt 

generated by 10 kV SiC MOSFETs. Moreover, the robust phase leg should be able to safely 

protect 10 kV SiC MOSFETs in the phase leg from various overcurrent and short circuit 

faults, including the worst type of short circuit fault, the flashover fault. 

To address these challenges summarized in Fig. 1-4, the research of the phase leg 

in this dissertation is conducted from three perspectives: switching performance 

investigation, design, and testing. A detailed outline of this dissertation is as follows. 

Chapter 2 reviews the previous switching performance investigation of 10 kV SiC 

MOSFETs. The previous study about the design and testing of the 10 kV SiC MOSFET 

based phase leg is also reviewed.   

Chapter 3 introduces the baseline design and testing of the 6.5 kV HB phase leg 

based on the discrete 10 kV/20 A SiC MOSFETs.  

Chapter 4 investigates the impact of parasitic capacitances in the MV converter on 

the switching performance of the 10 kV SiC MOSFET. How the added anti-parallel SiC 

JBS diode and the body diode impact switching transients and losses is also studied in 

depth. The switching performance with and without the anti-parallel JBS diode is compared 

quantitatively to demonstrate the different that the added JBS diode can make. 

Chapter 5 studies the behavior of the 10 kV SiC MOSFET under a flashover fault 

due to insulation failure, the worst short circuit fault in MV converters with extremely fast 

transients. Gate driver design considerations are discussed from the standpoint of a 

flashover fault.  
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Chapter 6 focuses on the desat protection designed to protect 10 kV SiC MOSFETs 

from short circuit/overcurrent conditions with fast response and strong noise immunity 

simultaneously. Noise immunity of the desat protection for high voltage SiC MOSFETs is 

analyzed thoroughly to support the noise immunity improvement under high dv/dt. A desat 

protection scheme with ultrafast protection response is also proposed for 10 kV SiC 

MOSFETs, which can also be adopted for other high voltage SiC MOSFETs.  

Chapter 7 introduces a simple test scheme to test the HB phase leg based on 10 kV 

SiC MOSFETs comprehensively, which in particular can fully test the phase leg’s 

capability of operating under high dv/dt and the resulting noise.  

Chapter 8 concludes the research presented in this dissertation, and the future work 

about the phase leg design and the switching performance investigation is presented in 

detail.  
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CHAPTER 2. LITERATURE REVIEW  

Numerous efforts have been spent on the HB phase leg based on 10 kV SiC 

MOSFETs recently in order to apply the 10 kV SiC MOSFET in high-performance MV 

power conversion systems in the future. In this chapter, the previous research efforts with 

10 kV SiC MOSFETs will be summarized, including switching performance evaluation, 

phase leg design, and comprehensive test and assessment. Since the literature about 10 kV 

SiC MOSFETs is still limited, the research about other high voltage SiC devices will also 

be reviewed. It should also be noted that part of the content in Chapter 2 is from the author’s 

Master’s thesis [1]. 

2.1 Switching Performance Evaluation 

With fast switching speed, the switching performance of 10 kV SiC MOSFETs is 

sensitive to numerous influencing factors. Switching performance evaluation should be 

conducted in detail in order to understand how to control the switching transients and 

improve the switching performance. The switching performance essential to the MV 

converter design is the research focus, especially the switching energy loss and dv/dt. 

Switching loss contributes to a large portion of the total converter loss in converters based 

on SiC power semiconductor devices with high switching frequency, and it has profound 

influence on the switching frequency selection and passive component design. The noise 

caused by the high dv/dt generated by 10 kV SiC MOSFETs poses great challenge to the 

gate driver design with an isolated power supply, its associated control circuits and signals 

as well as the protection design with strong noise immunity [23], [24].  
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2.1.1 Characterization and Influencing Factors of Switching Performance 

The most common method used to characterize the switching performance of a 

power semiconductor device is DPT with the clamped inductive load circuit [18], [40]. The 

basic operation principle of DPT is that the gate-to-source voltage Vgs of the device under 

test (DUT) has two short pulses for the characterization of both turn-on and turn-off 

transient in hard switching condition. Detailed working principles of DPT will not be 

covered in this dissertation. The essential aspects of DPT include the control signal for the 

DUT, the load inductor, the freewheeling path, and the measurement setup.  

Two circuit configurations are usually used in DPT for the switching performance 

characterization, depending on the complementary switch which conducts the load current 

when the DUT is OFF. As shown in Fig. 2-1, the phase leg configuration is one of them, 

in which the upper device is always OFF. Yet the body diode of the upper device can 

provide the current path when the DUT is turned off. The other circuit configuration is the 

switch/diode pair, where a discrete diode with similar current and voltage rating to the DUT 

is used as the freewheeling diode. The DUT is usually the lower device because of its 

grounded source and the convenience in measurement. With a hotplate or oven, the 

junction temperature of the DUT can be regulated. 

The HB phase leg can be easily reconfigured as a phase leg configuration for DPT 

with the purpose of switching performance evaluation. Although the data obtained in DPT 

with switch/diode pair are not accurate to indicate the dv/dt and switching loss of a phase 

leg applied in a converter, DPT with switch/diode pair is helpful in understanding the turn- 

on and turn-off transient and the influence of temperature and gate driver on the switching 

performance. Therefore, the switching performance evaluation with the switch/diode pair 
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                              (a)                                                                  (b) 

Fig. 2- 1. Two circuit configurations used in DPT: (a) phase leg configuration; (b) 

switch/diode pair. 
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will also be reviewed. 

Numerous researchers have used DPT to evaluate the switching performance of 

high voltage SiC devices. The switching behavior and the impact of some factors have been 

revealed by analyzing the switching waveforms and data. In [41], the DPT setup with 

switch/diode pair is built to investigate the switching performance of the 15 kV SiC 

MOSFET under different gate resistances and junction temperatures. It is found that 

adopting a smaller turn-on gate resistance leads to faster turn-on transient with higher dv/dt 

and lower energy loss. The turn-on process can also be accelerated with lower turn-on loss 

and faster transients by increasing the junction temperature. The turn-off transient is mainly 

dominated by capacitive charging process and hence is less dependent on gate driver 

parameters and the junction temperature. The switching performance of 15 kV SiC IGBTs 

has also been characterized with the switch/diode pair [41], [42], with both switching 

energy loss and dv/dt analyzed in detail.  

The 3rd generation 10 kV SiC MOSFET from Wolfspeed has been first 

characterized by Wolfspeed researchers with DPT in phase leg configuration [29], [43]. 

The influence of the gate resistance and the drain current on the switching performance is 

investigated in detail, as shown in Fig. 2-2, while the detailed analysis of the impact of the 

junction temperature is not provided. The large gate resistance slows down both turn-on 

and turn-off transient. Especially, the larger gate resistance leads to a substantial increase 

in the measured turn-on energy loss. Turn-on energy loss dominates the total switching 

energy loss. The investigation results coincide well with the conclusions in the 

investigation of 15 kV SiC MOSFETs with switch/diode pair in [41].  
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Fig. 2- 2. Switching energy loss as a function of external gate resistance (left) and drain 

current (right) for the 3rd generation 10 kV SiC MOSFET at 150 ˚C [29]. 
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The temperature-dependent switching performance of the 3rd generation 10 kV SiC 

MOSFET is systematically studied in [44] in a HB phase leg. A detailed device model in 

Fig. 2-3 is built to perform the systematic study of the switching behavior and performance. 

Temperature has slight impact on the turn-on transient and negligible effect on the turn-off 

transient, as indicated in the switching waveforms in Fig. 2-4 and Fig. 2-5 (Rg,off = 3 Ω, 

Rg,on = 15 Ω). During the turn-off transient, the channel current drops to zero quickly due 

to low channel current (< 20 A) and high dv/dt. The turn-off process is thereby mainly the 

charging/discharging process of parasitic output capacitances of the MOSFETs, and dv/dt 

is higher at higher load current. The parasitic capacitances are independent of temperature. 

The junction temperature has little influence on the turn-off transient, and the measured 

turn-off loss is mainly the energy stored in the output capacitance of the DUT [44], [45].  

Turn-on transient is slightly impacted by the temperature. The turn-on dv/dt is 

higher at higher junction temperature due to the lower gate threshold voltage. Meanwhile, 

the overshoot in drain current Id increases because of the increased displacement current in 

the parasitic capacitances. The turn-on loss reduces slightly at higher temperature. 

Generally, junction temperature only slightly impacts the switching transients of the 3rd 

generation 10 kV SiC MOSFET, and higher junction temperature makes the turn-on 

transient faster. Such temperature-dependent switching behaviors of 15 kV SiC MOSFETs 

have also been reported [46], [47]. 

In summary, characterization results show that the junction temperature only has 

slight influence on the switching performance. The turn-on transient of 10 kV SiC 

MOSFETs is mainly controlled by the gate driver parameters, while the turn-off transient 
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Fig. 2- 3. Detailed device model of 10 kV SiC MOSFET [44]. 

 

 

 

 

 

 

Fig. 2- 4. Turn-on and turn-off waveforms of the 10 kV SiC MOSFET at 25 ˚C [44]. 
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Fig. 2- 5. Turn-on and turn-off waveforms of the 10 kV SiC MOSFET at 125 ˚C [44]. 
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is mainly determined by the parasitic capacitances and the load current since the channel 

current decreases to zero quickly. 

Nevertheless, most previous investigation has not investigated the impact of 

parasitic capacitances in the MV converter on the switching performance of high voltage 

SiC devices. The conventional DPT setup used in previous investigation is designed to 

minimize the circuit parasitics and is hence different from the real converters with 

parasitics from numerous sources. For instance, the load inductor in conventional DPT 

setup typically has a single-layer winding to reduce the parasitic capacitance as much as 

possible, which is often not the case in MV converters [42], [44]. In fact, the fast switching 

speed of SiC devices makes their switching transients sensitive to the parasitic capacitances 

[1], [48], [49]. If the parasitic capacitance is negligible in DPT setup, the switching 

transients and losses obtained in DPT could deviate significantly from experimental results 

in real converters based on SiC devices. The switching loss in real converters could be 

significantly higher than what is estimated based on DPT results [50]. Therefore, it is 

necessary to investigate the impact of parasitic capacitances in the converter on the 

switching performance of 10 kV SiC MOSFETs.  

2.1.2 Impact of Freewheeling Diode on Switching Performance 

It is required that every switch in the phase leg should provide the freewheeling 

diode in voltage source converters. The freewheeling diode provides the conduction path 

for the load current when both switches are turned off in the HB phase leg. The 

freewheeling diode is also one of the influencing factors of the switching performance that 

should not be neglected. 
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In terms of SiC MOSFETs, their own body diode with small reverse recovery 

charge can serve as the freewheeling diode [20]. Meanwhile, an external anti-parallel SiC 

Schottky diode with negligible reverse recovery charge can be added to function as the 

freewheeling diode. Anti-parallel Schottky diode is recommended in converters based on 

low voltage (< 3.3 kV) SiC MOSFETs to achieve stable switching energy loss at different 

junction temperatures [18], [51]. This is because the body diode of the low voltage SiC 

MOSFET has significantly worse reverse recovery performance as junction temperature 

rises [51], [52]. The SiC Schottky diode should be selected to ensure that the reduction in 

switching loss due to improved reverse recovery performance is more substantial than the 

switching loss increase brought by its output capacitance [18], [51].  

10 kV SiC JBS diode can be added as the anti-parallel diode to improve the loss 

due to reverse recovery in the phase leg based on 10 kV SiC MOSFETs. Experimental 

results have revealed that the anti-parallel 10 kV SiC JBS diode has nearly zero reverse 

recovery charge at various temperatures [53]. Currently, the body diode of 10 kV SiC 

MOSFET is sufficiently reliable to function as the freewheeling diode [54], [55]. Several 

years ago, most 10 kV SiC MOSFETs available for switching performance evaluation 

possess an anti-parallel JBS diode inside the package, because the MOSFET will degrade 

if its body diode conducts current [56]. With the anti-parallel JBS diode inside the package, 

the JBS diode conducts a major portion of the freewheeling current, and it is thereby 

difficult to study the reverse recovery performance of the body diode and the impact of the 

body diode or the external JBS diode on the switching transients and performance of 10 

kV SiC MOSFETs over a wide temperature range. 
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The reverse recovery performance of a diode is also commonly characterized with 

a setup similar to the DPT setup for MOSFETs, as drawn in Fig. 2-6. If the body diode of 

a MOSFET is under test, the channel of that MOSFET is always kept off. When the upper 

switch S turns on, the diode current is forced to commutate to the upper switch, and the 

reverse recovery performance can be evaluated by measuring the diode current. With DPT, 

researchers at Wolfspeed have characterized the body diode of the 3rd generation 10 kV/20 

A SiC MOSFET, revealing that the body diode has a reverse recovery charge of 1.2 μC 

and 1.8 μC at 25 ˚C and 150 ˚C, respectively [22]. The measured reverse recovery current, 

however, also includes the displacement current in parasitic capacitance Cj which is 

charged during the turn-on process of the upper switch. Because of the high dv/dt of the 

upper switch, the 10 kV SiC MOSFET in this case, the capacitive current accounts for a 

large portion of the measured reverse recovery current. 

The substantial effect of the capacitive current on the reverse recovery 

characterization of 10 kV SiC diodes is demonstrated in [57]. After eliminating the effect 

of the capacitive current, the calculated reverse recovery current Irr of the body diode in 10 

kV/10 A SiC MOSFET is lower than 2 A at 25 ˚C and 125 ˚C. The reverse recovery charge 

of the body diode is not calculated. It is concluded that the body diode of the 10 kV SiC 

MOSFET has small reverse recovery current at different temperatures.  

In summary, the freewheeling diode in the phase leg plays an essential role in the 

switching transients of 10 kV SiC MOSFETs, especially the turn-on transient. The reverse 

recovery characterization of the freewheeling diode for 10 kV SiC MOSFETs should 

consider the effect of the capacitive current due to the parasitic capacitance of the diode. 
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Fig. 2- 6. Circuit diagram of DPT for diode reverse recovery characterization. 
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The reverse recovery current of the body diode in 10 kV/10 A SiC MOSFET is lower than 

2 A at 25 ˚C and 125 ˚C. The detailed impacts of the reverse recovery of the body diode 

on the switching performance are still unknown at different temperatures. Neither is the 

outcome after adding the anti-parallel JBS diode with nearly zero reverse recovery charge, 

which should be investigated to provide a guideline about the freewheeling diode selection. 

2.2 Design of 10 kV SiC MOSFET Based Phase Leg 

As illustrated in Fig. 1-4, device-level characteristics of 10 kV SiC MOSFETs bring 

numerous challenges in the design of the phase leg, especially in the gate driver design and 

overcurrent protection design. The relevant previous work about the gate driver and 

overcurrent protection design is reviewed in this section. The literature about the flashover 

fault, an emerging topic in SiC-based MV converters, is also covered in this section. 

2.2.1 Gate Driver Design 

The basic function of a gate driver is to drive the MOSFET with appropriate driving 

voltage and current and protect the MOSFET in short circuit/overcurrent conditions [1].  

When a short circuit or overcurrent fault happens, the gate driver should be able to detect 

the fault and turn off the device safely. Particularly, the study of protection design will be 

reviewed in the next subsection. 

Fig. 2-7 displays the basic block diagram of a gate driver for the MOSFET. The 

gate driver consists of signal isolator, gate drive IC, buffer circuit, and the isolated power 

supply grounded at the source terminal of the MOSFET. The signal isolator isolates the 

control circuit from the power loop. The function of gate drive IC and buffer is to drive the 

device with the designed voltage level and sufficient current with low switching losses and  



 

30 

 

 

Fig. 2- 7. Basic function diagram of a gate driver for a power MOSFET [1]. 
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acceptable switching speed. The isolated power supply is not within scope of this 

dissertation, and hence will not be reviewed in this chapter.  

In the phase leg based on 10 kV SiC MOSFETs and other high voltage SiC devices, 

the signal isolator should withstand high PWM voltage coupled with high dv/dt. The main 

challenge is to have high isolation voltage and high common mode transient immunity 

(CMTI) (>100 V/ns) simultaneously [1]. The signal isolator for high voltage SiC devices 

is dominated by the solution with fiber optic transmitter and receiver. The isolation voltage 

and CMTI of this solution can be extremely high if the power supplies in each side offer 

sufficient isolation [1]. With fiber optic cable, the clearance and creepage requirements are 

easily satisfied.  

The gate drive IC and buffer operate together with gate resistors and other auxiliary 

circuitry to drive the MOSFET and control the switching speed. The buffer is optional and 

only adopted to boost the driving current. The gate drive voltage and gate resistors are 

selected based on the static characteristics, switching performance, and short circuit 

performance. The off-state gate voltage Vg,off  for 10 kV SiC MOSFETs usually ranges from 

-6 V and -1 V to ensure reliable turn-off. For 10 kV SiC MOSFETs, gate drive voltage in 

on state Vg,on ranges from 15 V to 20 V. The on-resistance of the 10 kV SiC MOSFET only 

has slight difference as Vg,on increases from 15 V to 20 V [44], yet higher Vg,on leads to 

significantly higher short circuit current and energy loss, and hence stricter requirement on 

the response time of the protection [58], [59]. 

After Vg,on and Vg,off  are selected, gate resistances are tuned to achieve the desired 

switching transients and losses. Different gate resistances can be designed for turn-on and 
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turn-off transients. In the case of 10 kV SiC MOSFETs, gate resistances are selected based 

on the trade-off between switching loss and switching speed, especially during the turn-on 

transient. Then, the required peak driving current can be calculated as follows. 

𝐼𝑠𝑜𝑢𝑟𝑐𝑒 =
𝑉𝑔,𝑜𝑛 − 𝑉𝑔,𝑜𝑓𝑓

𝑅𝑔,𝑜𝑛
(2.1) 

𝐼𝑠𝑖𝑛𝑘 =
𝑉𝑔,𝑜𝑛 − 𝑉𝑔,𝑜𝑓𝑓

𝑅𝑔,𝑜𝑓𝑓
(2.2) 

The selection of gate drive IC should particularly consider the peak driving current, 

rise/fall time, and propagation delay. The peak source/sink drive current of the gate drive 

IC should be higher than the required current, otherwise a buffer is needed. The buffer can 

be a IC with high driving current or BJT-based current boosters in parallel [60], [61]. Short 

rise/fall time and propagation delay time are required to fully utilize the fast switching 

speed of the 10 kV SiC MOSFETs.   

The cross-talk issue should also be evaluated and tackled in the gate driver design 

for high voltage SiC devices. In a half bridge phase leg, if dv/dt is too high during the turn-

on transient, the spurious gate voltage in the other switching device could be higher than 

the gate threshold voltage due to the Miller current, resulting in partial shoot-through and 

higher losses [62]. The cross-talk issue will set the upper limit for the turn-on dv/dt of SiC 

MOSFETs, if it is not addressed. The partial shoot-through has been reported in the phase 

leg based on high voltage SiC MOSFETs when the turn-on gate resistance is low [46]. 

Active Miller clamping is a common method to suppress the cross-talk without 

sacrificing the switching speed significantly [63]-[65]. The gate driver for 10 kV/10 A SiC 

MOSFET in [63] adopts an active Miller clamping design. When high dv/dt occurs during 

the turn-on transient of one MOSFET, the gate driver for the other MOSFET in off state 
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provides a low impedance path for the Miller current and clamps Vgs to ensure reliable turn-

off. The clamping circuit is only activated when the device is turned off.  

Analytical analysis of cross-talk in low voltage SiC MOSFETs is also effective in 

the evaluation of cross-talk of high voltage SiC devices. In fact, previous analysis shows 

that cross-talk is not serious in some high voltage SiC devices. After evaluating the cross-

talk of 3rd generation 10 kV/20 A SiC MOSFET from Wolfspeed, it is concluded that 

specific anti-cross-talk design is not necessary in the gate driver [44]. The excellent 

performance in cross-talk is attributed to the much larger input capacitance of the  

10 kV/20 A SiC MOSFET, compared to its Miller capacitance. The calculated maximum 

increase in Vgs is 5.0 V in the worst case when all Miller capacitive current charges the 

input capacitance of the MOSFET. Therefore, partial shoot-through does not occur when 

Vg,off   is below -4 V. DPT results of 10 kV SiC MOSFETs show that cross-talk has little 

impact on the turn-on transient and loss (15 Ω turn-on gate resistance).  Yet the spurious 

gate voltage is not measured to provide the direct evidence. 

In summary, the previous gate driver design for high voltage SiC devices usually 

focuses on realizing fast switching speed and reliable isolation. Signal isolation is typically 

achieved by fiber optics. The selection of components emphasizes the driving capability 

and low delay. Cross-talk in the 3rd generation 10 kV SiC MOSFET is significantly 

alleviated by its large input capacitance, yet it is an issue for some high voltage SiC devices 

[65]. With emphasis on the fast switching speed, most gate driver design for high voltage 

SiC devices in the literature has not focused continuous operation. The feedback signal 

sent back to the controller only reports the overcurrent fault. Considering the higher cost 
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of high voltage SiC devices, more efforts can be spent on the continuous operation of the 

gate driver and the device. Also, the impact of a flashover fault on gate driver design has 

not been fully discussed in MV converters based on high voltage SiC devices, which will 

be reviewed in Subsection 2.2.3. 

2.2.2 Overcurrent Protection Design   

The overcurrent/short circuit protection function in the gate driver plays a more 

crucial part in MV converters, in which power semiconductor devices are more costly. The 

overcurrent/short circuit protection scheme should have fast response, good noise 

immunity, and simple implementation for both discrete devices and power modules [1]. 

Featuring smaller die, lower thermal capacitance, and higher current density, SiC devices 

have shorter short circuit withstand time than Si IGBTs and MOSFETs. Fast response to 

clear the fault is thereby desired, which often contradicts the strong noise immunity. The 

noise resulting from fast switching transients of SiC devices makes it more challenging to 

achieve fast response with satisfactory noise immunity. Short response time is also 

desirable as it benefits the long-term reliability of SiC MOSFETs. In this subsection, 

overcurrent protection schemes for SiC MOSFETs are reviewed.  

Desaturation (Desat) protection scheme dominating the overcurrent protection of 

Si IGBTs has been successfully implemented in a variety of SiC MOSFETs, including  

10 kV SiC MOSFETs [60], [66], [67]. Desat protection monitors Vds of the MOSFET, and 

the protection is triggered once the monitored Vds exceeds the threshold. The desat diode 

with the same voltage rating as the MOSFET is necessary to isolate the high voltage in the 
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drain terminal. The design shown in Fig. 2-8 for 1.2 kV SiC MOSFET has achieved a 

response time of 210 ns [66]. 

Desat protection possesses numerous salient advantages, which give rise to its 

popularity in the gate drivers for Si IGBTs and SiC MOSFETs. Desat protection is effective 

in detecting all kinds of overcurrent and short circuit faults, although it does not directly 

measure the device current. Desat protection features simple implementation for both 

discrete devices and modules, and usually only off-the-shelf components are required. 

Some gate driver ICs with desat protection function make it even simpler to implement the 

protection. Satisfactory noise immunity can be achieved, although it is often realized at the 

cost of increasing response time.  

In desat protection, the blanking time is required to disable the protection during 

the turn-on transient until Vds reaches steady state. Usually the response speed of desat 

protection is limited by the blanking time. In the design practices, the response time is also 

often sacrificed to enhance noise immunity. In terms of the desat protection for 10 kV SiC 

MOSFETs and other high voltage SiC MOSFETs, some methods are introduced to avoid 

false triggering during the turn-on and turn-off transient, yet the relationship between noise 

immunity and response time has never been thoroughly investigated. It is still unknown 

how fast the desat protection can be with noise immunity not sacrificed. 

The threshold current of desat protection is determined by the device’s output 

characteristic and the threshold voltage. With the same drain current, SiC MOSFETs have 

significantly higher Vds at higher junction temperature. Thus, desat protection for SiC 

MOSFETs has different threshold currents as junction temperature varies. The threshold  
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Fig. 2- 8. Implementation of desat protection for SiC MOSFETs [66]. 
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current is higher at lower junction temperature. Also, since the drain current of SiC 

MOSFETs does not have hard saturation, the current rise during the response time should 

be taken into account when determining the threshold current.   

Other overcurrent protection schemes for SiC MOSFETs have been proposed by 

evaluating the current in a way independent of the I-V characteristic of the MOSFET to 

obtain a constant threshold current. The stray inductance in series with the source terminal 

of the SiC MOSFET can be used as a sensor to derive the current and serve for the 

protection, with the carried di/dt information [66], [67]. It is difficult to implement this 

method for SiC MOSFETs with different packages and ensure high noise immunity. A 

sufficient, but not too large, parasitic inductance with readily connectible terminals is 

indispensable to implement this method. Then debugging and testing are necessary to 

measure the stray inductance for the threshold selection and check the noise immunity. 

Protection schemes based on the current sensor are also investigated. It is concluded that 

Rogowski coil has excellent overall performance in terms of accuracy, bandwidth and 

linearity among numerous current sensing methods, such as shunt resistor, Hall sensor, and 

current transducer [68]-[70]. 

High-bandwidth Rogowski coil sensor with an active integrator has been 

demonstrated in the protection of SiC discrete devices and modules [69], [71]-[76]. PCB-

based Rogowski coil stands out due to low profile, integration capability, and repeatability. 

The protection scheme based on Rogowski coil detects the fault within 100 ns, regardless 

of the short circuit type and the junction temperature. The total response time is short and 

constant in different conditions, so the threshold current can be easily selected. 
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Nonetheless, the active integrator has to be reset periodically when the device is off to 

overcome the difficulty of Rogowski coil in measuring DC current, otherwise the sensor 

error keeps increasing [73], [74]. To ensure the accuracy of the sensor and the protection, 

the device should be turned off periodically with the off-state longer than a minimum 

length. It is generally complicated and expensive to implement this method in order to 

achieve good accuracy and noise immunity [71]-[76].   

The protection scheme based on the air-gapped current transformer has been 

adopted to protect discrete 10 kV SiC MOSFETs [37]. By measuring the device current 

directly with a current transformer in the source path of the MOSFET, the protection 

scheme with ultrafast response can clear the short circuit fault within 150 ns. However, 

when using this scheme to protect a 10 kV SiC MOSFET module with a half-bridge 

configuration or other configurations, the current of the top device can only be measured 

at its drain terminal, leading to the high isolation voltage between primary winding and 

secondary winding of the current transformer for the top device. Higher cost and more 

complicated implementation are hence necessary to achieve reliable insulation between the 

primary side and the secondary side. The clearance and creepage requirements also 

increase the size of the current transformer. It is hence difficult to implement this protection 

scheme based on current transformer in 10 kV SiC MOSFET modules. It is a competitive 

solution for the discrete SiC MOSFETs, but not suitable for SiC MOSFET modules. 

In addition, the protection method based on the measured gate charge and Vgs during 

the turn-on transient has been reported [77]. The response speed is fairly acceptable, but it 
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is only demonstrated that it can clear one kind of short circuit fault. Its response to other 

kinds of short circuit and overcurrent cases is still uncertain. 

In summary, desat protection and the protection based on Rogowski coil sensor are 

the two methods suitable for protecting both the SiC discrete devices and modules with 

excellent overall performance. With fast response, the method based on Rogowski coil 

sensor requires complicated and high-cost implementation to realize sufficient sensor 

accuracy and noise immunity when protecting SiC MOSFETs with fast transients and both 

conducted and radiated EMI noise. Desat protection is hence more competitive thanks to 

its simple implementation and adoption of off-the-shelf components. Yet the relatively 

long response time of desat protection due to blanking time and noise immunity 

consideration may prevent its usage in some cases. The trade-off between response time 

and noise immunity of desat protection should be examined carefully to maintain strong 

noise immunity while speeding up the response. 

2.2.3 Impact of Flashover Fault on Gate Driver Design 

In MV converters based on 10 kV SiC MOSFETs and other high voltage SiC 

devices, the flashover fault due to insulation breakdown becomes a much more serious issue 

compared to traditional MV converters utilizing Si IGBTs, due to high PWM voltage 

coupled with high switching frequency (>5 kHz) and dv/dt (>20 V/ns) [37]-[39]. The 

insulation design of MV converters based on 10 kV SiC MOSFETs is faced with 

unprecedented challenges, and there is a higher risk of premature breakdown in the 

insulation of some essential components of the MV converter, which subsequently generates 

a flashover fault with extremely fast transients. 
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In the last decade, increasing research efforts have been spent in investigating the 

relationship between the PWM voltage with semi-square shape and the accelerated 

degradation of the insulation material. The insulation materials widely adopted in the power 

electronics applications are selected as the test samples for the research, including 

Polyethylenterephtalat (PET) insulation foil [39], Polyimide (PI) films [78], ethylene 

propylene rubber (EPR) [38], and other materials. It is concluded that if partial discharge 

(PD) is initiated inside the insulation material, the total PD charge and its detrimental impact 

on the insulation material increases as the magnitude, dv/dt, and switching frequency of the 

applied PWM voltage become higher, leading to accelerated insulation failure and shorter 

lifetime [39], [79].  

In fact, it is difficult to accurately determine the real partial discharge inception 

voltage (PDIV) of the insulation material exposed to the PWM-type voltage, since a typical 

PD tester can only output 50/60 Hz sinusoidal voltage, resulting in higher measured PDIV. 

In practical applications, the real PDIV of the insulation material inside MV converters can 

be further reduced in harsh operating conditions, which makes it even tougher to achieve 

PD-free insulation design [78]. Moreover, high dv/dt and switching frequency exacerbate 

the overvoltage and dielectric loss inside the insulation material, both of which can also 

cause premature insulation breakdown [39], [80]. Therefore, premature insulation failure 

and the resulting flashover fault are one of the crucial challenges that should be tackled 

when designing MV converters based on 10 kV SiC MOSFETs. 

The issue brought by premature insulation breakdown and the flashover fault can be 

addressed from two perspectives. This issue can be tackled by enhancing the insulation 
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design to minimize the risk of premature insulation breakdown. The research in this field is 

out of the scope of this dissertation. The other perspective involves the gate driver and 

protection design to achieve better performance of the 10 kV SiC MOSFET and reduce the 

damage caused by a flashover fault. The flashover fault with extremely high dvds/dt  

(> 1 kV/ns) and di/dt (>30 A/ns) particularly poses a great threat to the 10 kV SiC MOSFET 

already in ON state, which should be protected from damage, unless the insulation inside 

its own package fails [37]. 

So far the flashover fault has received little attention in the design of a MV phase 

leg or converter based on high voltage SiC devices. The flashover fault in a HB phase leg 

based on 10 kV SiC MOSFETs is analyzed partially in [37]. It is demonstrated that the short 

circuit protection successfully protects the MOSFET that is in ON state when the flashover 

fault happens. However, the behavior of the 10 kV SiC MOSFET with Kelvin source is not 

analyzed thoroughly, and the gate driver and protection design considerations are not 

comprehensively studied and summarized after considering the flashover fault. Therefore, 

comprehensive study about the behavior and gate driver design considerations of 10 kV SiC 

MOSFETs under a flashover fault is of great significance, but still absent in the literature. 

2.3 Testing of 10 kV SiC MOSFET Based Phase Leg 

The phase leg should be fully tested to validate its capability to operate 

continuously at rated voltage and power and function as a robust module of a modular MV 

converter. The thermal performance, insulation design, and the capability to withstand high 

dv/dt and its resulting noise of the phase leg should be thoroughly tested and qualified.  
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Testing and debugging the phase leg is much less challenging than testing the whole 

modular MV converter. Thus, the phase leg testing should be carefully designed so that all 

issues of the phase leg can be pinpointed and solved before assembling and testing a 

modular MV converter, which will make the converter testing more efficient.  Continuous 

test of the phase leg is hence indispensable, which should create conditions similar to the 

real condition in a modular MV converter. The testing should be designed and implemented 

to make sure that all components in the phase leg are fully validated at the rated condition, 

including insulation voltage, CM voltage, dv/dt, device current, etc. Particularly high dv/dt 

and the resulting high CM current could generate strong noise and lead to the malfunction 

of the gate driver and the phase leg. Achieving the dv/dt that will occur in the modular MV 

converter should be one of the focuses when devising the continuous test. 

How to test the HB phase leg or the converter based on high voltage SiC devices 

comprehensively has not received much discussion in previous literature. DPT and short 

circuit test are usually conducted before the continuous test to validate the SiC device and 

the gate driver. MV converters based on high voltage SiC devices have been designed and 

tested at rated voltage and power, yet the detailed incremental testing steps are not covered 

[31],[34]. In [81], comprehensive testing and qualification of the gate driver and its isolated 

power supply for high voltage SiC MOSFETs and IGBTs are discussed in detail, including 

DPT, short circuit test, and continuous test. The testing focuses on validating the gate 

driver’s thermal performance and its performance in withstanding the CM voltage and 

current, instead of the performance of the HB phase leg. The dc-dc continuous test as the 

buck-boost converter is adopted since it can generate CM voltage with high magnitude. 
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Nonetheless, the dc-dc continuous test generates the dv/dt different from that which occurs 

in the phase leg when it functions as part of a modular MV converter, especially when the 

converter is used in dc/ac applications. 

In [65], a detailed testing methodology is developed to fully qualify a HB phase leg 

based on the 10 kV SiC MOSFET module, which is built to serve as the building block of 

a MMC converter. In the system-level testing of the phase leg, the continuous test with 

pump-back configuration is required in both dc-dc and dc-ac mode. The continuous test 

involves two identical HB phase legs. One phase leg draws the power from the dc source, 

and the other phase leg pumps the power back to the source. However, the pump-back test 

setup is different from the MMC converter and other modular MV converters with multiple 

modules connected in series, where the phase leg can experience much higher dv/dt and 

hence CM current than those in the continuous test with pump-back configuration. For 

example, the phase leg in one MMC can experience ≥2X dv/dt of a single high voltage SiC 

device. In terms of the capability of withstanding high dv/dt and CM voltage, the phase leg 

cannot be fully qualified with the testing method in [65]. In [82], the developed three-phase 

pump back continuous test for the HB phase leg also has this issue, which cannot fully 

qualify the phase leg in terms of high dv/dt and CM voltage. 

In summary, the testing of the phase leg based on high voltage SiC devices has not 

received much attention, although many MV converters based on high voltage SiC devices 

have been demonstrated. The continuous test setups developed to test the phase leg in the 

literature are not able to fully qualify the phase leg for modular MV converter applications, 

in which the thorough qualification of phase leg’s capability to withstand high dv/dt and 
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its resulting noise cannot be provided. Test setups in the literature can only generate the 

dv/dt of a single high voltage SiC device, but the phase leg can experience much higher 

dv/dt in a modular MV converter. 

2.4 Summary 

Previous work on the switching performance evaluation of 10 kV SiC MOSFETs 

and other high voltage SiC devices as well as the design and testing of the phase leg based 

on high voltage SiC devices is reviewed in this chapter. The switching performance 

evaluation with DPT is reviewed together with influencing factors of the switching 

performance. Two influencing factors that have not been investigated in detail include the 

parasitic capacitance and the freewheeling diode, which can be realized by the body diode 

or adding an external anti-parallel JBS diode.  

Existing work on the design and testing of the HB phase leg is summarized, 

especially the gate driver design together with the overcurrent protection. Among the 

reviewed overcurrent protection methods, desat protection stands out in the protection for 

10 kV SiC MOSFETs, because of its excellent overall performance in terms of response 

speed, noise immunity, and ease of implementation. Desat protection is not as fast as other 

methods based on Rogowski coil and current transformer, which may prevent its usage in 

some occasions. It is still challenging to design the desat protection with faster response 

while maintaining excellent noise immunity. In addition, the premature insulation 

breakdown and the resulting flashover fault become non-negligible in MV converters based 

on 10 kV SiC MOSFETs. Yet the gate driver design after taking the flashover fault into 

account are still not studied comprehensively. 
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In terms of testing, the comprehensive testing of the phase leg has not attracted 

much attention yet in the research community. The main drawback of the test methods in 

the literature is their inability to fully test the phase leg’s capability to withstand high dv/dt 

and the resulting noise. This drawback is non-negligible because the phase leg could 

experience much higher dv/dt and hence stronger noise interference in a modular MV 

converter.  
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CHAPTER 3. BASELINE DESIGN AND TEST OF A 10 KV SIC 

MOSFET BASED PHASE LEG 

A baseline design of a HB phase leg based on 10 kV SiC MOSFETs with 

continuous operation capability is introduced in this chapter, which is validated by an ac-

dc continuous test at 6.5 kV dc-link voltage. The target of the baseline design is that the 

phase leg can operate as a building block of a modular MV converter. Thus, the baseline 

design serves as the foundation for the research about switching performance evaluation 

and phase leg design. Baseline testing procedures and results of the phase leg are also 

presented in detail.  

It should also be noted that part of the content in this chapter is from the author’s 

Master’s thesis [1]. Also, part of the content in this chapter is from the author’s paper 

published in IEEE ECCE 2019 conference [83] and the author’s paper published in IEEE 

APEC 2020 conference [84]. 

3.1 Overview of the Phase Leg 

3.1.1 10 kV SiC MOSFET 

The half bridge phase leg is based on 10 kV/20 A discrete SiC MOSFETs from 

Wolfspeed (XPM3-10000-0350B). The device has a non-isolated package with a large 

drain plate also for heat dissipation, as shown in Fig. 3-1. Inside the package is one 3rd 

generation 10 kV/350 mΩ SiC MOSFET die [29]. Due to an issue in device package 

design, mechanical and electrical connection between the wire bond and the gate terminal 

of the package is not robust. 
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Characterization results with a curve tracer show that the 10 kV SiC MOSFETs 

available for the phase leg construction have almost the same on-resistance in forward 

conduction and reverse conduction with the same gate-to-source voltage and junction 

temperature. The 3rd generation 10 kV/350 mΩ SiC MOSFET from Wolfspeed does not 

have the degradation issue during the body diode conduction [54], [55]. Therefore, the 

body diode is used as the freewheeling diode, and external anti-parallel JBS diode is not 

needed in the phase leg. Gate-to-source voltage Vgs has little influence on the on-resistance 

as long as it exceeds 15 V, as indicated in Fig. 3-1.  

3.1.2 Architecture of the Phase Leg 

The designed 6.5 kV half bridge phase leg consists of two MOSFETs, two isolated 

power supplies, the gate driver, the heatsink, the PCB busbar, and the dc-link capacitor. 

The architecture of the phase leg is shown in Fig. 3-2(a). Such architecture is designed to 

ensure that the phase leg has the capability to operate as a building block for a modular 

MV converter. The communication interface marked in green in Fig. 3-2(a) communicates 

with the controller via fiber optics. Four terminals are available for connection, including 

DC+, DC-, midpoint of dc-link, and midpoint of the half bridge phase leg. The phase leg 

has an 8.75 μF dc-link capacitor, realized by four 1.9 kV film capacitors in series. The rated 

dc-link voltage of the phase leg is 6.5 kV, with 1.1 kV margin for overvoltage during the 

switching transients. 

The detailed three-dimensional (3D) design of the phase leg is drawn in Fig. 3-2(b). 

A gate driver board is placed above the two MOSFETs to drive the devices, powered by 

two isolated power supplies. The PCB busbar finally finishes the power loop by connecting 
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Fig. 3- 1. Discrete 10 kV SiC MOSFET in the half bridge phase leg (left) and its forward 

characteristic at room temperature (right). 

 

 

 

   

                                 (a)                                                             (b)       

Fig. 3- 2. Half bridge phase leg based on 10 kV SiC MOSFETs: (a) Architecture of the 

phase leg; (b) Detailed 3D model of the phase leg. 
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the dc-link capacitor with the MOSFETs. FR4 is the insulation material in the PCB busbar, 

and better material can be adopted for more reliable insulation in the future. 

Each MOSFET in the phase leg has a separate floating heatsink for heat dissipation. 

The heatsink is not isolated from the MOSFET, hence the heatsink has the same potential 

as the drain plate of the MOSFET it is connected to. During continuous operation, a fan is 

used to cool devices and heatsinks. In the design, clearance distance requirements in IPC-

2221B standard and creepage requirements in UL 60950-1 standard are followed to ensure 

reliable insulation [85], [86].  

3.2 Gate Driver Design 

The gate driver for the 10 kV/20 A SiC MOSFETs is designed to realize fast 

switching speed and continuous operation of the MOSFET. To achieve the target, 

specifications of the gate driver are developed and summarized in Table 2. The main 

challenges are high voltage insulation and high dv/dt. The gate driver board is designed to 

meet the clearance and creepage requirement for 10 kV to achieve robust insulation [39]. 

The dead time function is desirable to prevent shoot-through. Feedback signal sent back to 

the controller in every switching cycle is necessary for the controller to monitor the status 

of the communication and gate driver during continuous operation. If a short circuit or 

overcurrent fault is detected, a fault signal is sent back to the controller via a feedback 

signal.  

The specifications in Table 2 have been successfully achieved in the designed gate 

driver, which is composed of signal transfer and feedback stage, gate driving stage, and 

overcurrent protection stage. The block diagram of the gate driver is shown in Fig. 3-3. 
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Fig. 3- 3. Block diagram of designed gate driver for 10 kV SiC MOSFETs. 

 
 
 
 

Table 2. Specifications of the designed gate driver. 

Specification Requirement Design result 

Driving 

voltage range 

Minimum: -5 V; 

Maximum: +20 V 

-5 V for off state;  

15 V for on state 

Peak driving 

current 

> 8 A 9 A 

Rise and fall 

times 

< 30 ns 22 ns rise time;  

15 ns fall time 

Short circuit 

protection  

< 1.5 µs response time with 

soft turn-off 

< 1.3 µs response time with soft turn-

off 

Status 

feedback 

Status feedback signal sent 

back to controller in every 

switching cycle 

Feedback signal generated for every 

rising or falling edge in gate signal 

Dead time Dead time realized in the 

gate driver with hardware 

500 ns dead time realized 
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3.2.1 Signal Transfer and Feedback Stage 

Signal transfer and feedback stage is responsible for the communication between 

the controller and the gate driver during continuous operation. The communication is 

realized with fiber optics to provide ample signal isolation between the controller and the 

gate driver.  

The dead time function is implemented with a delay IC in this stage. With an AND 

logic IC and the delay IC, the dead time is realized by applying 500 ns delay to the rising 

edge of the initial gate signal and zero delay to the falling edge. The updated gate signal 

becomes the final gate signal for gate drive IC if overcurrent fault is not detected. The final 

gate signal is always LOW if the overcurrent protection is triggered until it is reset. The 

generation of the gate signal sent to the gate drive IC is summarized in Fig. 3-4.   

The feedback signal sent from the gate driver is essential during continuous 

operation. In most gate drivers for SiC MOSFETs reported in the literature, the feedback 

signal is only designed to transmit the overcurrent fault signal. In this case, the controller 

knows nothing about the status of the gate driver and communication until the overcurrent 

or short circuit fault happens. Such delay is not acceptable in a MV converter based on  

10 kV SiC MOSFETs. Hence, a feedback signal sent back to the controller is desirable to 

monitor the status of communication and gate driver in every switching cycle. In fact, this 

function is provided by numerous commercial gate drivers from Power Integrations, but 

the circuit design details are not disclosed. 

To realize this target, a simple feedback scheme is designed to generate a feedback 

signal acknowledging every rising edge and falling edge in the received gate signal. As can 

be seen in Fig. 3-5, the feedback scheme utilizes the delay IC in the dead time unit and a 
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Fig. 3- 4. Diagram of the generation of final gate signal sent to gate drive IC with 500 ns 

dead time realized in gate driver. 

 

 

  

 

Fig. 3- 5. Diagram of the generation of final feedback signal sent back to controller. 
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XOR logic gate. The final feedback signal is also able to report the overcurrent fault. After 

the gate signal from the controller has a rising edge or falling edge, the feedback signal 

should stay LOW for 500 ns. Since the overcurrent fault signal lasts for a much longer 

time, the overcurrent fault is recognized by the controller if the feedback signal remains 

LOW for over 600 ns.  

Several considerations should be recognized in the selection of the length of the 

signal to acknowledge the rising or falling edge in the received gate signal. This feedback 

scheme requires the conduction time of the 10 kV SiC MOSFET to be longer than the 

signal for the acknowledgement. Long feedback signal for the acknowledgement limits the 

duty cycle when the MOSFET operates at higher frequency. Discrete 10 kV SiC MOSFETs 

have switching frequency up to 80 kHz in soft-switching converters [31], [34]. The long 

feedback signal for the acknowledgement also leads to long delay time for the controller 

to identify the overcurrent fault based on the received feedback signal. The feedback signal 

for the edge acknowledgement should not be too short for the controller to read. In this 

case, it could be overwhelmed by the highly unpredictable noise in the feedback signal. 

Finally, the feedback signal for the edge acknowledgement is determined to be 500 ns 

LOW to achieve strong noise immunity, and it only requires the duty cycle higher than 4% 

at 80 kHz switching frequency. 

The simple feedback scheme can monitor the status of fiber optic communication 

and some components of the gate driver. If the feedback signal does not turn LOW within 

200 ns after the rising or falling edge in the gate signal, a fault is detected by the controller. 

However, the simple feedback scheme cannot confirm that the gate signal is properly 



 

54 

 

transformed to the correct Vgs of MOSFET. If the gate driver IC fails, the status feedback 

signal will not report the fault in time. An updated feedback scheme is developed to 

overcome this drawback by generating the feedback signal based on the measured Vgs. 

Details of updated feedback scheme are displayed in Fig. 3-6, including the 

designed circuit. The measured gate voltage from the voltage divider is compared with the 

gate threshold voltage to check if the MOSFET is turned on or off. The voltage divider and 

the comparator are grounded at -5 V which should be the same as -5 V for the gate loop, 

and DGND has the same potential as the source of MOSFET. Threshold voltage of the 

comparator is selected so that the comparator outputs HIGH when Vgs is higher than +3 V, 

the gate threshold voltage of the 10 kV SiC MOSFET at 100 ˚C [44]. The selected voltage 

divider ratio is 1/5, and the comparator threshold voltage is -3.4 V. Then, the comparator 

output signal is sent to a XOR logic gate together with the initial gate signal to generate 

status feedback signal. The length of status feedback signal is 550 ns, which is slightly 

longer than 500 ns with the purpose of simplifying circuit design. As illustrated in Fig. 3-

7(a), benchtop test results show that the final feedback signal coincides well with the design 

in Fig. 3-6(b). Fig. 3-7 also demonstrates that the feedback signal can monitor the status of 

the gate driver during the ac-dc continuous test of the phase leg in every switching cycle.  

3.2.2 Gate Driving Stage 

The gate drive IC is selected based on the developed specifications in Table 2. The 

main considerations are peak driving current, rise/fall time, and propagation delay. The 

desat protection function in gate drive IC is not considered, and more details are introduced 

in the design of overcurrent protection stage. Signal isolation is also not required since the  
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                                    (a)                                                                 (b)       

Fig. 3- 6. (a) Designed circuit for the update scheme to realize status feedback function; 

(b) Generation of final feedback signal with the updated feedback scheme. 

 

 

 

 

 

 

 

                                    (a)                                                                 (b)       

Fig. 3- 7. Experimental waveforms of final feedback signal with the updated feedback 

scheme: (a) 0 V dc bus voltage; (b) 3 kV ac-dc continuous test of phase leg. 
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fiber optics provide ample isolation. The peak driving current of the gate drive IC should 

be higher than 8 A, otherwise a buffer is needed which further increases the propagation 

delay. Among numerous candidates, IXDD609SI from IXYS with 9 A peak driving current 

is selected due to its short propagation delay and rise/fall time. 

The on-state and off-state driving voltage are 15 V and -5 V, respectively. 15 V is 

adopted to achieve lower current and energy loss in short circuit condition. -5 V for off-

state ensures reliable turn-off of the device. The turn-on and turn-off gate resistance are 15 

Ω and 3 Ω, respectively, to achieve the trade-off between switching speed and switching 

loss. With -5 V Vgs in off state, active Miller clamping circuit to prevent cross-talk is not 

necessary for the 10 kV/20 A SiC MOSFET, thanks to its large ratio between input 

capacitance and Miller capacitance [44]. The 15 Ω turn-on resistance and 3 Ω turn-off 

resistance are also helpful in limiting the turn-on dv/dt to 100 V/ns and the spurious gate 

voltage.  

3.2.3 Overcurrent Protection Stage 

Among the several overcurrent protection schemes for SiC MOSFETs, desat 

protection scheme is selected to protect the discrete 10 kV/20 A SiC MOSFETs. Desat 

protection requires relatively easy implementation to achieve satisfactory response time, 

good noise immunity, and effective protection in different cases. In this chapter, the 

response time is defined as the time interval between the starting point of the short circuit 

fault and the moment when the short circuit current reaches the peak value. 

The designed desat protection scheme protects the 10 kV SiC MOSFET in short 

circuit/overcurrent condition with a response time of less than 1.3 μs. After the fault is 
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detected, soft turn-off is applied with a gate resistance of 47 Ω to safely turn off the 

MOSFET, and the fault is reported to the controller via the feedback signal. The short 

circuit withstand time of the 10 kV/20 A SiC MOSFETs typically ranges from 2 μs to  

10 μs. Such a wide range of short circuit performance is reasonable since the device is still 

in R&D stage and not mature enough for commercial applications. Wolfspeed has also 

reported the 3rd generation 10 kV SiC MOSFET with enhanced short circuit performance 

and over 13.6 μs short circuit withstand time at 5 kV [22]. Therefore, the protection should 

respond within 1.5 μs after a short circuit or overcurrent fault occurs to safely protect the 

MOSFET. Considering the tolerance of components and other non-ideal factors, the 

specification for the response time is 1.3 μs. 

The threshold voltage of desat protection is determined based on the I-V 

characteristic of the 10 kV/20 A SiC MOSFET, which is heavily influenced by the junction 

temperature, as illustrated in Fig. 3-8. The threshold current is lower at higher junction 

temperature due to the higher on-state voltage drop. The threshold voltage is selected based 

on the I-V characteristic at 125 ˚C, otherwise the protection might be falsely triggered 

during the normal operation at higher junction temperature. The threshold current should 

be set as low as possible, since the drain current of the SiC MOSFET still increases rapidly 

in active region as the drain-to-source voltage Vds keeps increasing during the short circuit 

fault. At 125 ˚C, the selected threshold current is 20 A, the rated current of the 10 kV SiC 

MOSFET. Taking into account slight variances in the I-V characteristic among different 

devices, the selected threshold voltage is 15 V, leading to 42.85 A threshold current at 25 

˚C. The specifications of the designed desat protection are summarized in Table 3. 
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Table 3. Specifications of the designed desat overcurrent protection. 

Specification Detail 

Response time <1.3 μs 

 

Threshold current 20 A at 125 ˚C 

42.85 A at 25 ˚C 

Soft turn-off Turn-off with 47 Ω gate resistance 

 

Output signal to controller Always LOW signal via fiber optics if triggered 

 

Voltage rating of desat diode  >10 kV 

 

 

Fig. 3- 8. Output characteristic of the 10 kV /20 A SiC MOSFET under different 

temperatures. 
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In addition, the voltage drop on the desat diode should be considered when 

determining the threshold voltage. The desat diode blocks the dc-link voltage when the 

MOSFET is in OFF state to protect the desat protection circuitry. The rated voltage of the 

desat diode should be the same as that of the MOSFET to achieve good reliability. The 

desat diode with 10 kV blocking voltage is implemented with four 3.3 kV SiC Schottky 

diodes (GAP3SLT33-220FP) in series together with balancing resistors. The pads in PCB 

for the 3.3 kV diode are coated with insulation material (Konform SR). With the capability 

to block voltage up to 13 kV, such design ensures robust insulation between the drain 

terminal of the MOSFET and the protection circuitry. Selecting 3.3 kV SiC diode makes 

the design more robust in terms of commercial availability, compared to the solution based 

on a 10 kV SiC diode which is difficult to purchase. Also, the parasitic capacitance in 

parallel with the desat diode is reduced effectively, which significantly benefits the noise 

immunity of the protection under high dv/dt. Still, the implementation with four diodes 

introduces 4 V total voltage drop [87]. Thus, the eventual selected threshold voltage is  

19 V for the desat protection. 

 Desat protection can be implemented by either the gate driver IC with integrated 

desat protection function or the circuitry based on discrete components. The gate driver IC 

with desat protection function typically requires a large blanking capacitor to suppress the 

noise, leading to long response time. Also, the 19 V threshold voltage for the 10 kV/20 A 

SiC MOSFET is much higher than the threshold voltage of desat protection provided by 

the gate drive ICs available in the market. The circuitry based on discrete components is 
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hence designed to realize desat protection, whose details are shown in Fig. 3-9, in which 

the parasitic capacitances marked in red should be considered in the design.  

Resistors Rblk, Rdamp, and blanking capacitor Cblk together realize the blanking time 

which prevents the false triggering during the turn-on transient when the drain-to-source 

voltage Vds drops quickly to on-state voltage. The clamping diode Dblk is installed to clamp 

Vdesat and prevent the input voltage of the comparator from exceeding the allowed input 

voltage range. The comparator and the logic control circuit are grounded at Vclamp (-5 V). 

Resistor Rcla (20 Ω) and MOSFET Mcla clamp Vdesat at Vclamp (-5 V) when the 10 kV SiC 

MOSFET is shut off, and they prevent false triggering due to the high positive dv/dt during 

the turn-off transient of the 10 kV SiC MOSFET. 

 The response time of desat protection is mainly determined by the blanking time. 

The blanking time should be in effect until the drain-to-source voltage Vds drops to on-state 

voltage without ringing. If blanking time is too short, Vdesat can exceed the threshold voltage 

before it is clamped by Ddesat. It is necessary to check the turn-on transients of the 10 kV 

SiC MOSFET to set a suitable blanking time. Preliminary DPT results show that required 

blanking time is longer if the load current is higher. According to the DPT results at  

6.25 kV/20 A with the same gate driver parameters in Fig. 3-10, it takes 480 ns for Vds to 

reach steady state, after Vgs starts to rise. The junction temperature has little influence on 

the length of this time interval. Considering the delay in gate drive IC, the blanking time 

should be longer than 550 ns to avoid false triggering of the protection when the 10 kV SiC 

MOSFET turns on normally. Avoiding false triggering during the turn-off transient with 

positive dv/dt is also necessary for desat protection. The displacement current through the  
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Fig. 3- 9. Implementation of desat protection in the gate driver for 10 kV SiC MOSFETs. 

 
 
 
 

 

Fig. 3- 10. Turn-on transient of the 10 kV SiC MOSFET at 6.25 kV/20 A. 
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parasitic capacitance of Ddesat charges Cblk and increases Vdesat during the turn-off transient 

with high dv/dt, and the protection can be falsely triggered. The oscillation excited by the 

high positive dv/dt makes the situation worse. To dampen the oscillation, a small resistor 

Rdamp (47 Ω) is added [66]. Rcla and Mcla are designed to clamp Vdesat before high positive 

dv/dt occurs [66]. In other words, the clamp should be effective within the turn-off delay 

time. Once the gate signal has a falling edge, Mcla will start to turn on to clamp Vdesat after 

a delay of 80 ns. Vdesat is clamped at -5 V before the positive dv/dt occurs during the turn-

off transient. A RC circuit is added in the gate of Mcla to realize the 80 ns delay and suppress 

the noise at the gate of Mcla.  

The blanking time is tuned by changing Rblk and Cblk. The blanking time is the time 

it takes to charge Vdesat from Vclamp to the 19 V threshold voltage Vdesat,th. Hence, all parasitic 

capacitances between Vdesat and -5 V Vclamp should be considered, including nonlinear 

parasitic capacitances from Dblk and Mcla as well as the parasitic capacitances due to the 

PCB layout. The blanking time is calculated with the following equation, in which the 

effect of the voltage divider connected with Vdesat is neglected. 

𝑡𝑏𝑙𝑘 = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑅𝑏𝑙𝑘 + 𝑅𝑑𝑎𝑚𝑝)ln⁡(
𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝

𝑉𝑐𝑐 − 𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ
) (3.1) 

In the equation, Ctotal is the total capacitance between Vdesat and -5 V. A large Cblk is 

preferred to suppress the noise in Vdesat and achieve better noise immunity. Finally,  

6.49 kΩ Rblk and 75 pF Cblk are selected to provide 1.2 μs blanking time and strong noise 

suppression. In one prototype of the gate driver, the distribution of 1.26 μs total response 

time is shown in Table 4, determined by the experiment in the initial test at 0 V dc-link 

voltage. The parasitic capacitances account for 44.3% of the total blanking time (1.22 μs). 
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Table 4. Distribution of the total response time in one gate driver prototype. 

Total response time 1.26 μs 

Comparator and control delay 0.04 μs 

Blanking time due to the 

installed Cblk (75 pF) 

0.6 μs 

Blanking time due to all 

parasitic capacitances 

0.54 μs 

Blanking time due to delay in 

the gate of Mcla 

0.08 μs 
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The shorter response time is achievable by reducing Rblk and parasitic capacitance brought 

by Dblk and Mcla as well as PCB layout. By choosing 4 kΩ Rblk and 56 pF Cblk, the response 

time will be reduced to 730 ns. 

3.3 Baseline Test of the Phase Leg 

The designed half bridge phase leg should be tested comprehensively to be 

qualified for a building block of a modular MV converter. The ac-dc continuous test at 

rated voltage is thus required. Considering high dc-link voltage together with high dv/dt 

and the immaturity of the MOSFETs, the testing becomes more important and challenging. 

The cautious testing procedures should be designed to quickly identify any issues and 

prevent damage of the expensive 10 kV SiC MOSFETs. In this section, the baseline testing 

procedures and testing results of the phase leg will be presented. 

3.3.1 Testing Procedures 

Detailed and systematic testing procedures have been developed to standardize the 

testing. Generally, the baseline test is designed to be nondestructive and reduce the risk of 

damage of the expensive and fragile MOSFETs. Before the testing at phase leg level, each 

part is tested individually. The testing of the phase leg is conducted step by step with four 

steps in total, as listed in Table 5. The testing steps should be conducted in sequence. Only 

after the phase leg operates well in the previous step could the testing move on to the next 

step. 

In the initial test, it is necessary to check the electrical connection between the 

MOSFET die and the gate driver board. Particularly, the connection of gate terminal is a 

concern, since the wire bond for the gate is a weak point. The gate-to-source voltage Vgs 
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Table 5. Details of four steps in the systematic testing of the phase leg. 

Step Name Purposes 

No. 1 Initial test 1. Electrical connection check; 2. Gate drive 

function and protection at 0 V 

No. 2 Double pulse test 

(DPT) 

Fundamental test of MOSFETs and the phase leg 

up to 6.5 kV/ 20 A 

No. 3 Short circuit test Desat protection of the gate driver at 6.5 kV dc-

link voltage 

No. 4 Continuous test Continuous operation of the half bridge phase leg 

at 6.5 kV dc-link voltage 
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is measured and checked with the PWM gate signal applied, especially the rising edge and 

falling edge. The rising time and falling time of Vgs are measured and compared with the 

estimated value. If the rising or falling time is too short, the gate region of the die is not 

well connected with the gate driver board. Desat protection together with soft turn-off is 

examined by disconnecting the desat diode from the drain terminal and feeding in the gate 

signal. In addition to the soft turn-off, attention should be paid to the response time and 

feedback signal. In summary, this step checks the gate loop and the circuitry for desat 

protection and soft turn-off. 

The next step is DPT of both the upper MOSFET and lower MOSFET. DPT is the 

fundamental electrical test for the MOSFETs, including the functionality and insulation 

capability of all components. Even if the insulation failure occurs in this step, the damage 

is still limited. DPT of the upper MOSFET also provides the preliminary test of the 

capability of the gate driver and the isolated power supply to withstand high common mode 

voltage with high dv/dt.  

The short circuit test is conducted for the upper and lower MOSFETs as the No. 3 

step to make sure that the overcurrent protection can protect the MOSFET at rated dc-link  

voltage. Two types of short circuit tests are commonly conducted: hard switching fault 

(HSF) and fault under load (FUL) [88]-[90]. The desat protection has shorter response time 

and lower energy loss under FUL due to the positive dv/dt in the drain-to-source voltage, 

and the dv/dt results in negligible increase in Vgs and short circuit current of the 10 kV/20 

A SiC MOSFET [66], [90]. Therefore, only HSF short circuit test is conducted. After the 
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HSF short circuit test of the lower MOSFET is finished, the test setup is reconfigured to 

test the desat protection for the upper MOSFET.  

Continuous test is the last step to test the continuous operation capability of the 

phase leg at 6.5 kV rated voltage. In the ac-dc continuous test, the half bridge phase leg is 

configured as a half bridge inverter with inductive load (175 mH), as shown in Fig. 3-11. 

The continuous test as an inverter enables both MOSFETs in the phase leg to conduct time-

varying and bi-directional current in one line cycle. It is thereby a more comprehensive test 

than the continuous test as a dc-dc converter.  

175 mH is the highest inductance that can be realized with the high voltage 

inductive load in the laboratory, and the rated peak current for continuous operation is 9 A. 

300 Hz fundamental frequency is chosen to further increase the impedance of the inductive 

load and limit the magnitude of output sinusoidal current. The active power is the power 

loss in the test setup. The continuous test adopts bipolar SPWM modulation to regulate 

output sinusoidal current, with the switching frequency of 10 kHz. The peak value of the 

fundamental component of the output AC current Iout is calculated with the equation below.  

𝐼𝑜𝑢𝑡 =
0.5𝑚𝑉𝑖𝑛

2𝜋𝑓𝑙𝑖𝑛𝑒𝐿𝑙𝑜𝑎𝑑
(3.2) 

The modulation index m regulates the magnitude of the output ac current as the dc-

link voltage Vin increases. Lload is 175 mH, and fline is 300 Hz, the fundamental frequency 

of the test. The continuous test should last for at least five minutes. The continuous test is 

also conducted at lower dc-link voltage first, and the results are carefully evaluated before 

the test at higher dc-link voltage. 

 



 

68 

 

 

Fig. 3- 11. Circuit diagram of the continuous test of the designed phase leg. 
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3.3.2 Testing Results 

The built half bridge phase leg has been tested by following the developed testing 

procedures. Other than step No. 1, all testing procedures should be conducted with the 

designed high voltage test platform. The test platform is equipped with high voltage dc 

power supply from Spellman, different high voltage load inductors, the input capacitor, the 

controller with fiber optic interface, and so on. Therefore, the test platform can be easily 

configured for DPT, short circuit test for both lower and upper MOSFET, and the 

continuous test. The half bridge phase leg prototype in the test platform can be seen in  

Fig. 3-12(a). The 7 mH air core inductor serves as the load inductor in DPT, and the fan is 

only used for the continuous test. 

Testing results have shown that the designed phase leg is capable of operating 

continuously at 6.5 kV rated dc-link voltage, with satisfactory performance in all testing 

procedures. Results of the short circuit test and the continuous test will be discussed in 

detail. The DPT results are not shown in this chapter, since DPT results and switching 

performance will be studied in depth in Chapter 4. 

Short circuit test results explicitly prove that the designed protection is able to 

protect the MOSFET at 6.5 kV. As shown in the HSF test waveform of the lower MOSFET 

in Fig. 3-13(a), the soft turn-off with a di/dt of 0.57 A/ns is triggered after the 1.27 μs 

response time, leading to negligible overvoltage under 160.8 A peak current. The MOSFET 

is safely turned off at 6.5 kV rated voltage. The HSF test result of the upper MOSFET at 

6.5 kV is displayed in Fig. 3-13(b), and the MOSFET is safely turned off with 1.2 μs 

response time. The peak current is still lower than 20X rated current of the MOSFET. Vgs 

of the upper MOSFET cannot be measured due to the high common mode voltage, still the  
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                          (a)                                                               (b) 

Fig. 3- 12. (a) Phase leg prototype in the high voltage test platform; (b) Thermal image of 

the phase leg prototype during 6 kV ac-dc continuous test. 

 

 

 

  

                                      (a)                                                                    (b) 

Fig. 3- 13. HSF short circuit test waveforms: (a) Lower device in the phase leg; (b) Upper 

device in the phase leg. 
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di/dt and voltage overshoot indicate the soft turn-off. The response time of desat protection 

for both MOSFETs meets the 1.3 μs specification, and the slight difference is caused by 

the components’ tolerances. 

The ac-dc continuous switching test of the phase leg has been conducted with the 

dc-link voltage up to 6.5 kV. The continuous switching test as a half bridge inverter outputs 

the sinusoidal load current, as can be seen in the top window of the continuous test 

waveform at 6.5 kV in Fig. 3-14. With a modulation index of 0.5, the maximum load 

current is ~6 A. The high frequency component in the load current during the switching 

commutation is due to the displacement current in the parasitic capacitance of the load 

inductor.  

The main window of the waveform features the turn-off transient of the lower 

MOSFET as the synchronous device with 5.5 A load current. The body diode of the lower 

MOSFET still conducts after its channel is shut off, so Vds of the lower device is nearly 

zero until the upper MOSFET turns on. Vds of the lower MOSFET is measured with a high 

voltage differential probe, and Vgs of the lower MOSFET is monitored with a 1 GHz passive 

voltage probe. Without any anti-cross-talk circuit, Vgs of the lower MOSFET increases 

slightly due to high positive dv/dt (>70 V/ns), yet the margin between its peak and the gate 

threshold voltage is still large. This waveform demonstrates that the cross-talk is not a 

serious issue in the 10 kV/20 A SiC MOSFETs due to their high input capacitance 

compared to Miller capacitance. The designed phase leg also has good thermal 

performance. Fig. 3-12(b) displays the thermal image of the phase leg during the ac-dc 

continuous test at 6 kV/6 A, in which the peak temperature is less than 60 ˚C. 
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Fig. 3- 14. Zoom-in waveform of the continuous test of the phase leg at 6.5 kV. 
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3.4 Summary 

Based on the discrete 10 kV/20 A SiC MOSFETs from Wolfspeed, the baseline 

design and test of the 6.5 kV half bridge phase leg are presented in this chapter. The 

designed gate driver fully utilizes the fast switching speed of 10 kV SiC MOSFETs and 

supports the continuous operation of the phase leg, with overcurrent protection, dead time 

function, and status feedback signal in every switching cycle. The feedback signal from the 

gate driver helps the controller monitor the status of the fiber optic communication and 

gate driver in every switching cycle.  

Baseline testing procedures are developed to test the phase leg, including DPT, HSF 

short circuit test, and ac-dc continuous switching test. With strict sequence, the testing 

procedures are designed to endeavor to minimize the risk of device damage. Testing results 

show that the designed protection responds within 1.3 μs under the conventional short 

circuit conditions, and the peak current is lower than 10X rated current of the MOSFET. 

Yet the influence of a flashover fault is not considered in the baseline design and test. The 

continuous operation capability of the phase leg is validated by the continuous test at  

6.5 kV as a half bridge inverter. In general, the HB phase leg presented in this chapter 

provides an ideal platform for the investigation and improvement covered in next chapters 

of this dissertation to make the phase leg more robust. 
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CHAPTER 4. SWITCHING PERFORMANCE EVALUATION 

The parasitic capacitances in the power stage of 10 kV SiC MOSFET-based 

converters and their influence on the switching performance of the HB phase leg are 

investigated in this chapter. The baseline phase leg design in Chapter 3 is leveraged in the 

DPT setup for the switching performance evaluation. The parasitic capacitances are mainly 

caused by the heatsink, the anti-parallel SiC JBS diode, and the load inductor, as 

summarized in Fig. 4-1 [1]. In this chapter, the impact of the parasitic capacitances from 

the three sources on the switching behavior and performance will be evaluated in detail. 

It should also be noted that part of the content in this chapter is from the author’s 

Master’s thesis [1]. In addition, some of the content in this chapter is from the author’s 

conference paper published in 2018 IEEE WiPDA [91]and the author’s paper published in 

2018 IEEE ECCE [92]. 

The circuit diagram of a DPT setup based on the HB phase leg introduced in 

Chapter 3 is shown in Fig. 4-2. A large input capacitor is added in parallel with the dc-link 

capacitor to serve as the energy storage capacitor during the DPT. Before DPT, the dc-link 

voltage is charged to the desired voltage level by a 15 kV/800 mA high voltage dc power 

supply from Spellman. It is required that the negative terminal of the DC power supply is 

solidly grounded. Then, the power supply is shut down, so DPT is completed by using the 

energy stored in the dc-link capacitor Cdc and the input capacitor Cin. The two auxiliary 

power supplies for the gate driver board and the oscilloscope are grounded at the grounding 

point of the half bridge phase leg. A 100 kΩ resistor is inserted between the grounding 

point of the phase leg and the grounding point of the dc power supply, which makes the 
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Fig. 4- 1. Three major sources of the parasitic capacitance in the power stage [1]. 

 

 

 

Fig. 4- 2. Circuit diagram of the DPT based on the designed half bridge phase leg.  
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DPT setup a single point grounded system during DPT.  

The compact HB phase leg design poses a challenge to the accurate measurement 

of the fast switching transient of the drain current Id and the drain-to-source voltage Vds of 

the DUT, which is the lower device in the HB phase leg. The voltage measurement is 

conducted with a 75 MHz high voltage passive probe through Kelvin connection. 

Commercial Rogowski coil and current probe are the two current measurement methods 

commonly used in the DPT of high voltage SiC MOSFETs. The commercial Rogowski 

coil current transducer is preferable in the current measurement of the compact phase leg 

due to its flexibility, but it has a low bandwidth of 30 MHz. Also, the measurement results 

of Rogowski coil are easily interfered by fast switching transients with high dv/dt [71]. 

Therefore, a current probe (TCP0030A from Tektronix) is selected due to its higher 

bandwidth (120 MHz) and better noise immunity under high dv/dt. An additional wire is 

inserted in the power loop of the phase leg to accommodate the current probe, resulting in 

an increase of 72 nH in the power loop inductance. Table 6 summarizes the adopted 

measurement setup for the DPT. In addition, common mode chokes are used to suppress 

the impact of CM current on the measurement. The test setup together with the 

measurement setup can be seen in Fig. 4-3. The probes are connected with a high-speed 

oscilloscope on the top layer of the cabinet in which the high voltage test platform is 

established. The cabinet is solidly grounded at the grounding point of the phase leg. 

4.1 Impact of Parasitic Capacitance in Load Inductor 

The load inductor in practical applications has non-negligible equivalent parallel 

capacitance (EPC), hence introducing considerable parasitic capacitance in the converter.  
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Fig. 4- 3. DPT test setup based on the designed half bridge phase leg together with 

measurement setup. 

 
Table 6. Summary of the selected measurement setup for the DPT. 

Measurement Drain current Drain-to-source 

voltage 

Gate-to-source 

voltage 

Probe Tektronix 

TCP0030A 

Tektronix 

P6015A 

Tektronix 

TPP1000 

Bandwidth 120 MHz 75 MHz 1 GHz 
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EPC of the load inductor is charged or discharged during the switching transients, and 

hence should not be neglected when investigating the switching performance. To evaluate 

the impact of EPC of the load inductor, an 85 mH inductor manufactured by Control 

Transformer for 15 kV distribution grid applications is used as the load inductor in the DPT 

setup, which passes the hipot test at 31 kV and can serve in practical MV applications. 

Keysight E4990A impedance analyzer shows that it has a parasitic EPC of 35.1 pF.   

High voltage wire or cable is needed to connect the load inductor with the switching 

devices, bringing parasitics in series with the load. Usually the distance between the load 

and the switching devices of the MV converter is considerable. In the experimental setup, 

high voltage (15 kV) AWG 12 wire is used for the connection between the phase leg and 

the inductor, since the high voltage cable is expensive and not available in the laboratory. 

The high voltage wire with a length of 5.92 m in the DPT setup can be modeled as a  

6.46 μH inductor in series with a small resistance, since its parasitic capacitance is 

negligible. The parasitic inductance Ls in Fig. 4-1 is thus 6.46 μH and should be considered 

in the analysis. MV converters for industrial applications use MV cables for the connection, 

which effectively increases EPC of load due to its shielding layer. In the DPT setup, the 

EPC of load inductor can be adjusted by adding the external EPC in parallel with the load 

inductor, as can be seen in Fig. 4-4. Two capacitors (27 pF and 106 pF) have been used to 

increase EPC of the load inductor. Considering MV cables’ significant impact on EPC of 

load in practical converters, such increase in EPC by adding external capacitors is 

reasonable.  

DPT results at 6.25 kV reveal that the larger parasitic EPC in the load inductor  
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Fig. 4- 4. High voltage load inductor with external capacitor to increase its EPC. 
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slows down both turn-on and turn-off transient of the 10 kV SiC MOSFET and results in 

higher total switching energy loss. The turn-on energy loss increases as the parasitic EPC 

of the load increases, while the turn-off energy loss decreases, as shown in the DPT results 

as load current varies from 4 A to 20 A in Fig. 4-5. Larger EPC in the load inductor results 

in higher total switching energy loss because the turn-on energy loss dominates. An 

increase of 106 pF in the EPC (4X EPC) results in 16% increase in total switching energy 

loss at 4 A and 11.1% increase at 20 A. As load current increases from 4 A to 20 A, the 

percentage increase in total switching energy loss becomes lower. 

The increase in turn-on energy loss is mainly attributed to the increased current 

overshoot and longer voltage fall time during the turn-on transient. With increased EPC in 

the load inductor, a larger effective capacitance needs to be charged from 0 V to 6.25 kV 

during the turn-on transient. The current overshoot during the turn-on process of the 10 kV 

SiC MOSFET is higher, since its turn-on current overshoot is dominated by the charging 

current of parasitic capacitances in parallel with the synchronous device [57]. The longer 

voltage fall time leads to lower turn-on dv/dt, as indicated in Fig. 4-6. In the switching 

transient analysis, the dv/dt is calculated as the average dv/dt when Vds of the MOSFET 

changes between 90% and 10% of the dc-link voltage. 

Meanwhile, the turn-off energy loss decreases as EPC of the load inductor becomes 

larger. The turn-off transient becomes slower with longer voltage rise time if the load 

inductor has a larger EPC. In fact, the turn-off transient is slowed down more substantially 

than the turn-on transient. The drain current of DUT drops more quickly, and meanwhile 

its Vds rises more slowly, as shown in the switching waveform in Fig. 4-7. The measured  
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Fig. 4- 5. Turn-on and turn-off energy loss at 6.25 kV when load inductor has different 

EPCs. 

 

 

Fig. 4- 6. Turn-on and turn-off dv/dt at 6.25 kV when the load inductor has different 

EPCs. 
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Fig. 4- 7. Turn-off transient waveform at 6.25 kV when load inductor has different EPCs. 
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turn-off loss of the 10 kV SiC MOSFET consists of the loss due to the overlap between Vds 

and the channel current and the energy stored in the output capacitance of the DUT. The 

overlap loss decreases, while the energy stored in the capacitance remains the same. 

Therefore, the measured turn-off loss benefits from the increased EPC in the load inductor. 

The switching transients are heavily shaped by the resonance between the parasitic 

inductance Ls and EPC of the load inductor, which results in considerable ringing in the 

load current during switching transients. The turn-off transient, particularly, is influenced 

which counts on the load current to charge the output capacitance of the DUT. The impact 

of the resonance on the turn-off transient is easily observed at lower load current when the 

turn-off time is longer (see Fig. 4-7). Drain current has significant ringing during the 

current fall time, resulting in the slight ringing in Vds. The ringing is attributed to the 

considerable oscillation in the load current owing to the large Ls. At higher load current, 

the slew rate of Vds changes dramatically during the turn-off transient, as can be seen in 

Fig. 4-8. The low instantaneous dv/dt period is caused by the slower discharge of the EPC 

in the load inductor and hence the negative di/dt in the load current. Then, the instantaneous 

dv/dt becomes high again since the load current rises as the resonance continues. Fig. 4-8 

also illustrates that larger EPC in the load inductor leads to longer voltage rise time and 

lower average dv/dt, but the peak dv/dt is still almost the same.  

In summary, the resonance between the parasitic inductance Ls and EPC brings 

oscillation in the load current and hence the ringing in Vds and Id, especially during the turn-

off transient. Larger EPC in the load inductor results in higher turn-on energy loss, lower 

turn-off energy loss, and higher total switching energy loss. Higher EPC in the load also  
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Fig. 4- 8. Turn-off transient waveform at 6.25 kV/20 A when the load inductor has 

different EPCs. 
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slows down both the turn-on and turn-off transient and reduces the average dv/dt, but it 

does not necessarily alleviate the peak dv/dt stress. In this case, both the peak dv/dt and the 

average dv/dt should be focused on in the switching performance evaluation. 

4.2 Impact of Parasitic Capacitances Due to Heatsink 

The heatsink is also able to cause non-negligible parasitic capacitances in the 

converter. Parasitic capacitances brought by the heatsink design and their impacts on the 

switching transients are complicated, depending on the heatsink design and grounding 

scheme of the heatsink [48], [93].  In this work, DPT is conducted in the phase leg with 

two different thermal designs to analyze the effect of the parasitic capacitance due to the 

heatsink on the switching performance of the 10 kV SiC MOSFET. 

Two thermal designs have been implemented in the HB phase leg, as summarized 

in Fig. 4-9. Thermal design A with two separate heatsinks for two MOSFETs is the thermal 

design for the half bridge phase leg introduced in Chapter 3. The two heatsinks are not 

grounded, and their potentials follow the potential of the drain plate they are connected to. 

Thermal design B has only one grounded heatsink for the two MOSFETs. The thermal pad 

with high voltage insulation capability is added between the devices’ drain plates and the 

grounded heatsink. Therefore, two considerable parasitic capacitances between the drain 

plate and the heatsink, Cp1, and Cp2, are generated. Cp1 is in parallel with the lower 

MOSFET since its source is also grounded. Cp2 between the dc-link and the ground can be 

neglected when analyzing the switching transients of the DUT. In terms of parasitic 

capacitance, thermal design A is a better design, in which the parasitic capacitance due to 

heatsink is too small to consider, yet the heatsink for the lower MOSFET has high dv/dt  
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Fig. 4- 9. Two thermal designs implemented in the half bridge phase leg. 
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during switching transients. The parasitic capacitance between the two heatsinks in thermal 

design A is less than 0.3 pF. 

In reality, the phase leg with thermal design B utilizes a grounded hotplate as the 

heatsink, and a 3.4 mm ceramic layer with 20.8 kV/mm insulation capability is placed 

between the MOSFETs and the grounded hotplate for insulation. The calculated 

capacitance of Cp1 is 29.7 pF, which is small due to the thick ceramic layer. In fact, the 

parasitic capacitance is likely to be so small in MV converters using 10 kV SiC MOSFET 

power modules instead of the discrete device with the large drain plate. The thermal design 

can be easily switched between thermal design A and thermal design B. An air core 

inductor with single-layer winding is used as the load inductor to reduce the impact of 

parasitics from the load. Measurement setup for DPT is the same as Table 6.   

DPT results at 6.25 kV show that the parasitic capacitance generated in thermal 

design B significantly slows down the turn-off transient and increases the turn-off loss. 

With thermal design B, the turn-off transient of the DUT is significantly slower with lower 

turn-off dv/dt and increased turn-off loss. The slower turn-off transient can be explained 

by the existence of Cp1 which effectively increases the output capacitance of the DUT. A 

significant part of the measured turn-off loss of the 10 kV SiC MOSFET is the energy 

stored in the output capacitance of the DUT. Thus, as shown in Fig. 4-10, the increase in 

turn-off loss with thermal design B, ~0.65 mJ, is approximately the same as the energy 

stored in Cp1 from 0 V to 6.25 kV. Since Cp1 is small in the implemented phase leg with 

thermal design B, there is little difference in the turn-on transient of the DUT in the phase 

leg with thermal design A and thermal design B, as can be seen in Fig. 4-10 and Fig. 4-11.  
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Fig. 4- 10. Comparison of turn-on and turn-off energy loss between the thermal design A 

and B at 6.25 kV. 

 

 

Fig. 4- 11. Comparison of turn-on and turn-off dv/dt between thermal design A and B at 

6.25 kV. 
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With a 29.7 pF increase in the output capacitance of the DUT, the total switching energy 

loss at 6.25 kV increases by 13.4% at 4 A, and it only has 4.8% increase at 20 A load 

current. Therefore, thermal design A is a better design in terms of switching loss. 

The large drain plate of the discrete 10 kV SiC MOSFET for heat extraction makes 

it easy to form large parasitic capacitances due to the heatsink. With thermal design B, Cp1 

could be larger than 29.7 pF since the thermal pad between the device and the heatsink is 

usually thinner than 1.5 mm for low thermal resistance. For instance, assuming the 

adoption of the insulated thermal pad SARCON 100X-m with a thickness of 1 mm, Cp1 

will be 53.9 pF. To investigate the influence of a larger Cp1 caused by thermal design B, an 

external capacitor (106 pF) is added in parallel with the lower device in the phase leg with 

thermal design A, which is shown as the external capacitor in Fig. 4-3. 

Test results show that a large parasitic capacitance caused by the thermal design B 

also slows down the turn-on transient and results in significantly increased switching 

energy loss. The influence of the external 106 pF capacitor on the switching performance 

of the DUT is summarized in Fig. 4-12. The switching energy loss and dv/dt data are 

normalized based on test results with thermal design A, which can be seen in Fig. 4-10 and 

Fig. 4-11. Typically the turn-on energy loss increases by ~10% after the 106 pF capacitor 

is added. Meanwhile, the total switching energy loss has a percentage increase of 44.5% 

and 20.1%, at 4 A and 20 A, respectively, which is mainly contributed by the increased 

turn-off loss. Hence, the total switching loss of the converter based on the discrete 10 kV 

SiC MOSFET increases by >20% if a 106 pF parasitic capacitance is introduced by the  
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Fig. 4- 12. Impact of the 106 pF parasitic capacitance due to heatsink on the switching 

energy loss and dv/dt (Normalized based on data from thermal design A). 
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grounded heatsink. The impact of the considerable parasitic capacitance caused by thermal 

design B on the converter switching loss is more significant at light load. 

4.3 Impact of Body Diode and Anti-parallel JBS Diode 

In this section, the impact of the body diode and the anti-parallel JBS diode on the 

switching performance of the 3rd generation 10 kV SiC MOSFET from Wolfspeed (CPM3-

10000-0350-ES) is investigated in detail at various junction temperatures. The 10 kV SiC 

MOSFET module with an anti-parallel JBS diode in each switch, as shown in Fig. 4-13, 

provides a suitable platform for the investigation. The switching performance of three 

device configurations for one switch is tested and compared, by which the impact of the 

body diode and the anti-parallel JBS diode can be quantitatively analyzed. The 

investigation can also guide the 10 kV SiC MOSFET based converter design in the 

selection of the freewheeling diode. 

4.3.1 Device under Test and Experimental Setup 

 The 10 kV SiC MOSFETs are packaged in a module (H-bridge) by Danfoss Silicon 

Power, as displayed in Fig. 4-13. Each MOSFET in the module has a 10 kV/20 A anti-

parallel SiC JBS diode (CPW3-10000-Z015B-ES from Wolfspeed). The detailed 

configuration of one switch in the module is drawn as Configuration A in Fig. 4-14. In 

addition to the 10 kV MOSFET and JBS diode, a low voltage Si Schottky diode is added 

in each switch which can prevent reverse current flowing through the body diode. Both the 

Schottky diode and JBS diode could be bypassed with a designed interface board. The body 

diode can handle the reverse current up to 20 A without any thermal issue, although its 

conduction loss is slightly higher than the JBS diode (11% higher at 15 A, 125 ˚C) [92]. 
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Fig. 4- 13. 10 kV SiC MOSFET module (H-bridge) packaged by Danfoss. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4- 14. Three device configurations for one switch available in the 10 kV SiC 

MOSFET module. 
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The switching performance of three different device configurations can be tested, 

as shown in Fig. 4-14. The three device configurations have different combinations of 

freewheeling diodes during switching commutation. The diode in red serves as the 

freewheeling diode. For example, the current commutates between the channel of the 

MOSFET and the anti-parallel JBS diode in Configuration A, while the switching 

commutation occurs between the channel of the MOSFET and the body diode in 

Configuration C. With the high voltage DPT setup, the performance of different device 

configurations can be quantitatively compared, and the impact of the body diode and the 

anti-parallel JBS diode on the switching transients can be investigated in detail.  

DPT setup is established for the switching performance investigation under various 

temperatures. The setup is similar to that introduced in Section 4.1, so only the differences 

are introduced. The 10 kV SiC MOSFET module is connected with the interface board and 

gate driver board through vertical pins. The Si Schottky diode and the anti-parallel JBS 

diode can be bypassed with the switches in the interface board [1]. Hence, the 

reconfiguration between different device configurations can be easily realized. The turn-

on and turn-off gate resistance are 22 Ω and 11 Ω, respectively. The gate drive IC outputs 

20 V/-5 V to drive the MOSFET.  The grounded hotplate (H0909AA from Wenesco) under 

the module regulates the device junction temperature. A thermal pad is applied for 

electrical insulation between the module and the hotplate.  The thermal pad also results in 

a temperature difference of several degree Celsius between the MOSFET and the hotplate. 

The temperature difference can be obtained and compensated with an offline test. The only 

difference in measurement setup is the drain current measurement with the Rogowski coil 
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(CWT Ultra mini from PEM). The compact module design makes it difficult to 

accommodate a high-bandwidth current probe to measure the drain current. When placing 

the Rogowski coil in the experimental setup, the positions close to the switch node with 

high dv/dt should be avoided [1]. The DPT setup can be seen in Fig. 4-15, in which the  

10 kV SiC MOSFET module is placed between the gate driver board and the grounded 

hotplate. 

Configuration C with only the body diode is suitable for the evaluation of the 

impact of the body diode on the switching performance. Switching performance of the 

phase leg with Configuration C from 25 ˚C to 125 ˚C is investigated. The turn-on energy 

loss decreases as the junction temperature increases, as shown in Fig. 4-16. This 

phenomenon is different from what has been reported in low voltage SiC MOSFETs [18], 

[52]. The body diode of the 1.2 kV SiC MOSFET causes a significant increase of turn-on 

energy loss at higher temperature due to the rapid increase of reverse recovery charge as 

temperature rises. As for the 10 kV SiC MOSFET, the switching loss decreases with the 

increasing temperature, indicating stable reverse recovery performance of the body diode 

as temperature changes. The current overshoot during the turn-on transient increases at 

higher temperature due to larger displacement current caused by higher dv/dt. Still, the 

faster switching speed and higher dv/dt makes the turn-on loss lower at higher temperature, 

as shown in Fig. 4-16 and Fig. 4-17. At 3 kV/20 A, the turn-on loss decreases by 16% as 

the junction temperature increases from 25 ˚C to 125 ˚C. For the 10 kV SiC MOSFET, 

utilizing the body diode as freewheeling diode leads to lower switching energy loss as 

temperature rises. 
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Fig. 4- 15. Picture of DPT setup to evaluate the impact of body diode and anti-parallel 

JBS diode. 

 

 

 

 

 

 

Fig. 4- 16. Switching energy loss vs. temperature (Configuration C, 3 kV/20 A). 
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Fig. 4- 17. Turn-on and turn-off dv/dt vs. temperature (Configuration C, 3 kV/20 A). 
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Switching performance comparison of Configuration A and B affirms that the 

reverse recovery of the body diode has little impact on the switching transients of the DUT. 

Experimental results show that the switching performance of Configuration A is almost the 

same as that of Configuration B, as shown in data obtained at 3 kV and 125 ˚C in Table 7. 

Detailed switching transients displayed in Fig. 4-18 also indicate the almost identical 

switching performance between Configuration A and B, which is tested at 75 ˚C. Since 

Configuration A and B have almost the same switching performance, the reverse recovery 

performance of the body diode is almost as good as that of the JBS diode. Considering the 

nearly zero reverse recovery charge of the SiC JBS diode [53], the reverse recovery of the 

body diode of the 10 kV SiC MOSFET is also negligible.  

The excellent reverse recovery performance of the body diode is originally due to 

the negligible minority carrier injection in on-state of the body diode. Output characteristic 

of the body diode indicates the impact of excess carrier injection and its reverse recovery 

performance. When the body diode has large on-state current, the conductivity modulation 

due to injection of excessive minority carriers effectively reduces the resistance of the body 

diode, but also results in reverse recovery current since they should be swept out during 

the turn-off transient. Therefore, the minority carrier injection and reverse recovery of the 

body diode can be evaluated by investigating the on-resistance of the body diode as a 

function of the on-state current. Table 8 lists the measured resistance of the body diode as 

a function of the conduction current at different temperatures, based on measured output 

characteristic of the body diode. At 125 ˚C, the body diode resistance only drops by 6.67% 

as current increases from 5 A to 25 A. Resistance of the body diode is almost a constant as  
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Fig. 4- 18. Switching transient waveforms of Configuration A and B at 75 ˚C (3 kV,  

10 A). 

 
 
 
 
 
 

Table 7. Switching performance of Configuration A and B at 3 kV, 125 ˚C. 

Load current Parameter Configuration A Configuration B 

10 A 

dv/dt (OFF) 22.6 V/ns 22.0 V/ns 

Loss (OFF) 0.76 mJ 0.72 mJ 

dv/dt (ON) 54.5 V/ns 50.0 V/ns 

Loss (ON) 2.71 mJ 2.87 mJ 

20 A 

dv/dt (OFF) 48.0 V/ns 46.1 V/ns 

Loss (OFF) 0.76 mJ 0.82 mJ 

dv/dt (ON) 51.1 V/ns 49.0 V/ns 

Loss (ON) 4.06 mJ 4.49 mJ 
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Table 8. Measured resistance of body diode at different temperatures. 

Current 5 A 10 A 15 A 20 A 25 A 

Resistance of 

body diode at 

25 ˚C 

372.3 mΩ 352.2 mΩ 342.5 mΩ 337.2 mΩ 335.9 mΩ 

Resistance of 

body diode at 

75 ˚C 

549 mΩ 530 mΩ 513.7 mΩ 508 mΩ 504.4 mΩ 

Resistance of 

body diode at 

125 ˚C 

741 mΩ 722 mΩ 709.6 mΩ 697.7 mΩ 691.6 mΩ 
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the current increases, indicating the slight impact of excess carrier injection. It can be 

concluded that the body diode of the 3rd generation 10 kV SiC MOSFET has excellent 

reverse recovery performance over a wide temperature range. 

4.3.3 Impact of Anti-parallel JBS Diode 

 In terms of the switching performance, outcomes of adding external anti-parallel 

SiC JBS diode are studied to provide a guideline for MV converter design. Configuration 

B is achieved by adding an anti-parallel JBS diode in Configuration C. The effect of adding 

a 10 kV anti-parallel JBS diode is hence analyzed with the comparison of the switching 

performance between Configuration B and C. 

 Fig. 4-19 shows the switching transient waveforms of the phase leg based on 

Configuration B and C at 3 kV/20 A, 125 ˚C. Configuration C without anti-parallel diode 

during turn-off has higher dv/dt, shorter turn-off time, and lower measured turn-off energy 

loss. Meanwhile, adding external anti-parallel JBS diode only has slight impact on the turn-

on transient. Table 9 illustrates the impact of the anti-parallel JBS diode on the switching 

performance of the 10 kV SiC MOSFET at different temperatures tested at 3 kV/20 A, 

including dv/dt and switching energy loss. The anti-parallel diode also increases the turn-

on energy loss slightly. The turn-off transient is significantly slower after adding the anti-

parallel JBS diode, leading to about 70% increase in turn-off energy loss. At 25 ˚C and  

75 ˚C, the total switching energy loss increases by 8.6% and 13.6% at 3 kV/20 A, 

respectively, after adding the JBS diode. In terms of the switching performance, adding the 

anti-parallel diode increases the switching loss of the 10 kV SiC MOSFET and significantly 

slows down its turn-off transient. 
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Fig. 4- 19. Switching transient waveforms of Configuration B and C at 125 ˚C. 

 
 
 
 
 
 
 
 
Table 9. Switching performance comparison between Configuration B and Configuration 

C at 3 kV/20 A. 

Configuration Parameter At 25 ˚C At 75 ˚C At 125 ˚C 

Configuration B 

(W/ anti-parallel 

JBS diode) 

dv/dt (OFF) 48 V/ns 48 V/ns 46.15 V/ns 

Loss (OFF) 0.83 mJ 0.83 mJ 0.824 mJ 

dv/dt (ON) 36.2 V/ns 46.2 V/ns 48.98 V/ns 

Loss (ON) 5.32 mJ 4.86 mJ 4.49 mJ 

Configuration C 

(W/O anti-parallel 

JBS diode) 

dv/dt (OFF) 57.14 V/ns 60 V/ns 58.54 V/ns 

Loss (OFF) 0.513 mJ 0.47 mJ 0.485 mJ 

dv/dt (ON) 35.82 V/ns 45.3 V/ns 50 V/ns 

Loss (ON) 5.15 mJ 4.54 mJ 4.33 mJ 
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The external anti-parallel JBS diode influences the reverse recovery and adds a 

nonlinear capacitor across the drain and source of the MOSFET, from the perspective of 

the switching performance evaluation. The body diode of the tested 10 kV SiC MOSFET 

has excellent reverse recovery performance over a wide temperature range. The benefit of 

JBS diode in the reverse recovery is thus negligible. Then, in the switching transient 

analysis, adding the anti-parallel JBS diode can be modeled by adding a nonlinear capacitor 

in parallel with the MOSFET. The nonlinear capacitor introduced by the anti-parallel JBS 

diode has an equivalent capacitance of 64.97 pF in terms of the energy at 3 kV [92]. 

With the anti-parallel JBS diode, the added nonlinear capacitor slows down the 

turn-off transient, which is dominated by the capacitive charging process. The increase in 

the output capacitance of the device results in longer voltage rise time and lower turn-off 

dv/dt. The measured turn-off loss increases since the parasitic capacitance caused by the 

anti-parallel diode also stores energy during the turn-off transient, which will be dissipated 

in the channel during the next turn-on transient in hard-switching condition. The energy 

stored in the output capacitance of the JBS diode at 3 kV is calculated as follows. 

𝐸𝐽𝐵𝑆,3𝑘𝑉 = ∫ 𝐶𝐽𝐵𝑆𝑣
3𝑘𝑉

0

𝑑𝑣 = 0.292⁡𝑚𝐽 (4.1) 

The energy stored in the output capacitance of the JBS diode is only slightly lower than the 

increased turn-off loss after adding the anti-parallel diode. 

In terms of the turn-on transient, the influence of the nonlinear capacitance caused 

by the anti-parallel diode is limited. The turn-on transient is mainly influenced by gate 

driver parameters and temperature [44], [45]. The added nonlinear capacitance is not the 

dominant factor during the voltage fall time. The larger output capacitance of the MOSFET 
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due to the anti-parallel diode results in higher current overshoot during the turn-on 

transient. As shown in Fig. 4-19, Configuration B with the anti-parallel JBS diode has 

slightly higher current spike because of larger output capacitance and displacement current. 

Thereby, the turn-on energy loss is also slightly higher after adding the anti-parallel JBS 

diode, as can be seen in Table 9. 

4.4 Summary 

The HB phase leg prototype developed with the baseline design in Chapter 3 has 

been utilized to perform DPT to study the impact of the parasitic capacitances in the MV 

converter on the switching performance of 10 kV SiC MOSFETs.  

Higher EPC in the load inductor makes both the turn-on and turn-off transient 

slower, leading to increased total switching energy loss. An increase of 106 pF in EPC (4X 

EPC) results in 16% increase in total switching energy loss at 4 A and lower percentage 

increase (11%) at 20 A. The detailed impact on dv/dt is also studied, which is a more 

important parameter in MV converters, compared to low voltage converters. The parasitic 

inductance in series with the load causes ringing during the switching transients, especially 

the turn-off transient. As a result, higher EPC in the load inductor reduces the average 

dv/dt, but not necessarily reduces the peak dv/dt.  

When designing a SiC-based MV converter, the EPC of the load inductor should 

be minimized, which will increase the switching loss and cannot be counted on to reduce 

the peak dv/dt stress. Meanwhile, the influence of the EPC on the switching loss and dv/dt 

should be considered in gate driver design and loss calculation. Because the average dv/dt 



 

104 

 

can be different from the peak dv/dt due to the EPC and other parasitics, both the peak dv/dt 

and the average dv/dt should be examined when designing the gate driver. 

Two different thermal designs bringing different parasitic capacitances have been 

implemented in the phase leg. The 106 pF parasitic capacitance that could be caused by the 

grounded heatsink, slows down both turn-on and turn-off transient significantly, leading to 

around 40% increase in total switching energy loss when load current is lower than 10 A. 

In terms of switching loss, the best heatsink design for the 10 kV SiC MOSFET with non-

isolated package is to have a floating heatsink for each MOSFET, in order to minimize the 

resulting parasitic capacitance. At the converter level, parasitic capacitances result in 

higher percentage increase in switching loss when converter operates at lighter load. 

The influence of the body diode and the anti-parallel SiC JBS diode on the 

switching performance of the 10 kV SiC MOSFET is also investigated in detail. The 

investigation and analysis are based on experimental results of three different device 

configurations of one semiconductor switch with different freewheeling diodes. The 

reverse recovery of the body diode is negligible at various temperatures. Using its body 

diode as the freewheeling diode, the 10 kV SiC MOSFET has lower switching loss as 

junction temperature rises. Adding the anti-parallel JBS diode does not benefit the reverse 

recovery performance and introduces additional parasitic capacitance, which increases the 

switching loss (>8.6% at 3 kV/20 A) and significantly slows down its turn-off transient. 

The body diode has satisfactory reverse recovery performance and conduction 

characteristic at different temperatures to serve as the freewheeling diode for the 10 kV 

SiC MOSFET. 
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CHAPTER 5. ANALYSIS AND GATE DRIVER CONSIDERATIONS 

OF 10 KV SIC MOSFETS UNDER FLASHOVER FAULT 

The short circuit performance of 10 kV SiC MOSFETs under HSF and FUL has 

been investigated [59]. Nonetheless, it is also essential to study the behavior of 10 kV SiC 

MOSFETs under a flashover fault, the most serious type of short circuit fault in MV 

converters [37]. In fact, a flashover fault can be regarded as the most extreme case of FUL 

with exceptionally fast transients (>1 kV/ns dvds/dt and >30 A/ns di/dt). 

The flashover fault poses a great threat to the 10 kV SiC MOSFET already in ON 

state [37]. When a flashover fault happens, the MOSFET that is already in ON state should 

be protected from damage, unless the insulation inside its own package fails. A detailed and 

comprehensive analysis of 10 kV SiC MOSFETs under a flashover fault is necessary for 

protection design and survival of the MOSFET from a flashover fault. 

This chapter focuses on the analysis of 10 kV SiC MOSFETs under a flashover fault 

to provide guidelines for gate driver design from the perspective of the flashover fault. A 

simplified model of a 10 kV SiC MOSFET is established, with the focus on its behavior in 

the active region. Both 10 kV SiC MOSFETs with and without Kelvin source are analyzed 

in terms of their behavior under a flashover fault, and gate driver design considerations are 

discussed accordingly. Section 5.4 compares the energy loss generated by a flashover fault 

and HSF as well as FUL fault and discusses the protection design, followed by the summary 

of this chapter. 

It should also be mentioned that part of the content in this chapter is from the 

author’s conference paper published in IEEE ECCE 2020 [94]. 
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5.1 Model of 10 kV SiC MOSFET 

The 10 kV SiC MOSFET investigated in this chapter is the 3rd generation 10 kV 

SiC MOSFET from Wolfspeed [29]. The 10 kV/20 A SiC MOSFET with only one die is 

studied as an example, as shown in Fig. 3-1. Power modules with higher current rating are 

realized by paralleling multiple dies with 20 A current rating. In order to study the behavior 

of 10 kV SiC MOSFETs under a flashover fault, a simplified model of the 10 kV/20 A SiC 

MOSFET is established. Fig. 5-1 displays the equivalent circuit of the MOSFET model. 

The established model of a 10 kV SiC MOSFET is based on the classic quadratic 

model of a MOSFET [95] and the model in [44]. The 10 kV SiC MOSFET model is 

composed of two parts, which model the bare die and the package, respectively. As shown 

in Fig. 5-1, components inside the red box are used to model the bare die. The MOSFET 

channel is modeled with a controlled current source dependent on internal gate-to-source 

voltage Vgs,int, gate threshold voltage Vg,th, transconductance factor kp, and internal drain-to-

source voltage Vds,int. The channel current ich is always zero when the MOSFET operates in 

cutoff mode. 

𝑖𝑐ℎ = 0⁡(𝑉𝑔𝑠,𝑖𝑛𝑡 − 𝑉𝑔,𝑡ℎ < 0) (5.1) 

In the ohmic region, where 𝑉𝑔𝑠,𝑖𝑛𝑡 − 𝑉𝑔,𝑡ℎ is higher than 𝑉𝑑𝑠,𝑖𝑛𝑡, Vds,int increases as 

channel current rises, which can be described with the following equation. 

𝑖𝑐ℎ = 𝑘𝑝 [(𝑉𝑔𝑠,𝑖𝑛𝑡 − 𝑉𝑡ℎ)𝑉𝑑𝑠,𝑖𝑛𝑡 −
𝑉𝑑𝑠,𝑖𝑛𝑡

2

2
]⁡ (5.2) 
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Fig. 5- 1. Equivalent circuit of the established 10 kV SiC MOSFET model.  
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As Vds,int  keeps increasing and exceeds 𝑉𝑔𝑠,𝑖𝑛𝑡 − 𝑉𝑔,𝑡ℎ, which is still higher than 0 V, 

the MOSFET operates in the active region, and the channel current will gradually saturate, 

as described in (5.3). 

𝑖𝑐ℎ =
𝑘𝑝

2
(𝑉𝑔𝑠,𝑖𝑛𝑡 − 𝑉𝑔,𝑡ℎ)

2
⁡(5.3) 

Gate threshold voltage Vg,th of the 10 kV SiC MOSFET is a function of junction 

temperature and Vds,int, but it is dominated by Vds,int as Vds,int keeps increasing in the active 

region due to the short channel effect [96]. Higher Vds,int reduces Vg,th and hence leads to 

higher saturation current of the channel, based on (5.3). kp can be extracted with a curve 

tracer, and it is almost independent of junction temperature.  

In the established model of the MOSFET channel, kp is 2.02 A/V2. Vg,th is a function 

of junction temperature and the internal drain-to-source voltage Vds,int. Considering the 

extremely fast transient during the flashover fault, the junction temperature indeed soars 

rapidly to eventually over 400 ˚C, so the impact of initial junction temperature before the 

flashover fault is negligible. The influence of initial junction temperature is hence neglected 

to simplify the model. As Vds,int increases, the depletion layer becomes thicker leading to 

decreased Vg,th. Once Vds,int exceeds 4 kV, the depletion layer starts to occupy the N+ 

substrate region, and its thickness saturates, so Vg,th remains the same as long as Vds,int is 

higher than 4 kV. According to [59], the saturation current increases with a coefficient of 

0.111/kV as Vds,int rises from 500 V to 4000 V. When Vds,int is lower than 500 V, Vg,th is  

2.85 V in the MOSFET model in this chapter, which is the extracted Vg,th at 125 ˚C. Based 

on (5.3) and the saturation current at different Vds,int, the gate threshold voltage at different 

Vds,int from 500 V to 4 kV can be calculated accordingly. 
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Also, base resistance Rbase due to the thick N- base region is not considered since it 

models the N- base resistance when the MOSFET operates in the ohmic region. When the 

MOSFET stays in the active region, the impact of N- base region is considered by the 

channel model with short channel effect and the nonlinear Cds model. The body diode is 

modeled with a resistor in series with its forward voltage drop, based on the measured I-V 

characteristic.  

Parasitic capacitances of the 10 kV SiC MOSFET are also modeled based on 

extracted data with the curve tracer. Gate-to-source capacitance Cgs is modeled with a linear 

capacitor of 5.4 nF. Both gate-to-drain capacitance Cgd and drain-to-source capacitance Cds 

are a nonlinear function of the internal drain-to-source voltage Vds,int. Both Cds and Cgd are 

realized by a variable capacitor model, which is determined by a look-up table established 

with the curve tracer data. The look-up table should include as many data points as possible, 

especially in the highly nonlinear region where Cgd and Cds decrease dramatically as Vds,int 

rises slightly. The parasitic capacitance in parallel with Cds contributed by such external 

components as heatsinks is not considered in this chapter. 

Internal module parasitics of the MOSFET package should also be carefully 

modeled. So, the model for the MOSFET with and without Kelvin source is slightly 

different in Fig. 5-1. Common source inductance Lss is 1 nH for discrete 10 kV SiC 

MOSFETs without Kelvin source [6]. With a Kelvin source, Lss can be reduced drastically, 

and Ls represents the parasitic inductance in the source terminal that is exclusively in the 

power loop. Ld is the parasitic inductance in the drain terminal. Internal gate resistance Rg,int 

(2 Ω) and internal gate loop inductance Lgs,int (1 nH) model the parasitic resistance and 
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inductance in the gate loop inside the device package, which are caused by mechanical 

connectors, the bond wire, etc. Ld and Ls typically have negligible impact on the short 

circuit performance of the 10 kV SiC MOSFET, since it only increases the power loop 

inductance slightly. Nonetheless, Ld, Ls, and Lss result in the difference between the internal 

drain-to-source voltage Vds,int and the measured drain-to-source voltage Vds,m. In fact, Lss, 

together with Rg,int and Lgs,int also makes the measured gate-to-source voltage Vgs,m different 

from the internal gate-to-source voltage Vgs,int. 

5.2 10 kV SiC MOSFET under Flashover Fault 

In this section, the 10 kV SiC MOSFET under a flashover fault is analyzed with the 

circuit model in Fig. 5-2, which models a typical flashover fault in a HB phase leg. The 

flashover fault happens when the low-side MOSFET under investigation is already turned 

on. In order to model the insulation breakdown, the ideal switch, high-side switch in the 

phase leg, is shorted and generates the flashover fault [37]. Due to the extremely high di/dt 

in the power loop, common source inductance Lss plays an essential role in the behavior of 

the 10 kV SiC MOSFET under a flashover fault. Therefore, both the 10 kV SiC MOSFET 

with Kelvin source and without Kelvin source are evaluated in this section. 

5.2.1 Flashover Fault and Simulation Model 

The flashover fault due to insulation failure in MV converters can be devastating 

because of its extremely fast dynamics. The circuit model used to simulate a flashover fault 

is shown in Fig. 5-2. According to simulation and experimental results in [37], generating 

a flashover fault by closing an ideal switch in the phase leg is a valid method to simulate a 

flashover fault, and it is not necessary to add more parasitics in the ideal switch.  In this  
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Fig. 5- 2. Circuit model of the 10 kV SiC MOSFET in ON state under flashover fault 

modeled by closing an ideal switch. 
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case, the main discrepancy between simulation and experimental results is caused by the 

MOSFET model which cannot model all nonlinear effects in short circuit conditions, 

instead of the flashover fault model [37]. Before the fault happens, the MOSFET is fully 

ON with 15 V Vgs,int . In summary, the simulation model can effectively model a flashover 

fault in a real HB phase leg. 

The simulation model in Fig. 5-2 is established in PLECS. The phase leg has a 

power loop inductance Lp of 80 nH and a dc-link capacitance of 8.75 µF. The 10 kV SiC 

MOSFET gate driver has a gate loop inductance Lgs of 5 nH, and the decoupling capacitor 

Cdec is 2.18 µF. Vdriver is always 15 V in the simulation. 

5.2.2 10 kV SiC MOSFET without Kelvin Source 

In 10 kV SiC MOSFETs without Kelvin source, the gate loop is heavily influenced 

by extremely fast voltage and current transients due to the flashover fault. High di/dt 

disturbs the gate loop by inducing a high voltage across Lss. Meanwhile, high dv/dt and 

Miller capacitance Cgd introduce the Miller current. The simulation waveforms at 7 kV are 

displayed in Fig. 5-3, in which turn-on gate resistance Rg,on and turn-off gate resistance Rg,off  

are 15 Ω and 2.5 Ω, respectively. The fault occurs at t=50 ns.  

The high di/dt resulting from the flashover fault induces a high positive voltage 

across Lss, leading to -16.2 A instantaneous gate current Igate and reduced Vgs,int, as shown 

in Fig. 5-3(b). The channel current decreases accordingly. Meanwhile, the drain current is 

not allowed to change rapidly because of the power loop inductance, hence Cds is 

effectively charged, leading to high dv/dt and a large overshoot in Vds,int. Vgs,int and drain 

current effectively decrease as the oscillation continues, since the gate current discharging  
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      (a)                                                      (b) 

Fig. 5- 3. Simulation waveforms of flashover fault at 7 kV with 1 nH common source 

inductance Lss, 15 Ω Rg,on, and 2.5 Ω Rg,off: (a) Waveforms of Vds,int, Id, and Vgs,int; (b) 

Waveforms of Vgs,m and gate current Igate. 
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Cgs is higher because the selected Rg,off  is 1/6 of Rg,on. After the oscillation ends, it takes 

~300 ns for Vgs,int to rise back to 15 V, and then the drain current reaches the saturation 

current. In this case, the risk of device damage due to overvoltage is considerable. 

The Miller current from Cgd counteracts the effect of voltage across Lss on Vgs,int and 

channel current. With asymmetrical gate resistance, the negative spike of Igate is more 

substantial than its positive spike, and Vgs,int continues decreasing until the oscillation ends. 

This phenomenon is slightly alleviated by the Miller current. When positive di/dt occurs, 

the voltage drop across Lss generates current to discharge Cgs. Meanwhile the Miller current 

due to the positive dv/dt (>1 kV/ns) enters the gate loop and effectively increases Vgs,int.  

In addition, if the asymmetry in gate resistance becomes worse with a smaller Rg,off, 

the effect of the voltage across Lss completely dominates. If Rg,off  is 0 Ω, Vgs,int drops rapidly 

to 0 V within 30 ns once a flashover fault happens, as displayed in Fig. 5-4(a). The 

tremendous decline in Vgs,int is attributed to the gate current Igate with high negative peaks 

shown in Fig. 5-4(b) due to asymmetrical gate resistance. Such “self turn-off” behavior is 

also reported in [37]. It results in smaller short circuit current and energy loss, but the 

disadvantage is the extremely high peak voltage (15.85 kV) in Vds,int. The channel is 

effectively shut off for a short time, and severe ringing (77 MHz) occurs in Vds,int due to the 

resonance between the 80 nH Lp and 48 pF Cds (when Vds,int > 3  kV).  

5.2.3 10 kV SiC MOSFET with Kelvin Source 

With a Kelvin source in the 10 kV SiC MOSFET, extremely fast transients under a 

flashover fault are mainly coupled to the gate loop via the Miller capacitance Cgd. If Lss  
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    (a)                                                     (b) 

Fig. 5- 4. Flashover fault simulation results at 7 kV with 1 nH Lss, 15 Ω Rg,on, and 0 Ω 

Rg,off: (a) Waveforms of Vds,int, Id, and Vgs,int; (b) Waveforms of Vgs,m and Igate. 

 

 

 

 

 

 

 

 

 

      (a)                                                      (b) 

Fig. 5- 5. Simulation waveforms of flashover fault at 7 kV with 0.15 nH Lss and 15 Ω 

Rg,on: (a) 0 Ω Rg,off. (b) 2.5 Ω Rg,off. 
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is negligible, the flashover fault induces positive voltage spike in Vgs,int and high device 

current and energy loss, according to simulation waveforms in Fig. 5-5. To simulate this 

case, it is assumed that Lss is 0.15 nH with an 85% reduction compared to the MOSFET 

without Kelvin source. 

With negligible Lss, the significant oscillations in the gate loop and power loop are 

eliminated. In this case, the extremely high dv/dt  and the nonlinear Miller capacitance 

result in a substantial spike in Vgs,int. Vgs,int increases by 45% to 21.8 V with  15 Ω Rg,on, and 

2.5 Ω Rg,off. The peak drain current is higher than 2X saturation current of the channel ( 

211 A), leading to high short circuit energy loss. On the other hand, the overvoltage in 

Vds,int is reduced compared to the case without Kelvin source, because of increasing Vgs,int 

and channel current at the early stage of a flashover fault. The MOSFET damage due to 

overvoltage is not likely in this case, which is obviously a major concern for the MOSFET 

without a Kelvin source. However, the device damage due to high energy loss and junction 

temperature is the concern that should be tackled in gate driver design. 

5.3 Gate Driver Design Considerations 

This section discusses how to improve the performance of the 10 kV SiC MOSFET 

and reduce the risk of device damage under a flashover fault from the perspective of gate 

driver design. The design target is to lower peak Vds,int and Id,peak under a flashover fault. 

Gate driver design guidelines are provided for gate resistance selection, gate loop 

inductance, and whether to add an external capacitor across gate and source terminal. The 

short circuit energy loss and the impact of a flashover fault on short circuit protection 

design are not covered in this section, since both are investigated in detail in Section 5.4. 
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5.3.1 10 kV SiC MOSFET without Kelvin Source 

Without a Kelvin source available in device package, a relatively high turn-off gate 

resistance should be selected. The small Rg,off  and significant asymmetry in gate loop result 

in reduced Vgs,int and substantial voltage overshoot that could damage the MOSFET at the 

beginning of a flashover fault. Such asymmetrical gate resistance should be avoided in the 

10 kV SiC MOSFET gate driver. As shown in Fig. 5-3, Fig. 5-4, and Fig. 5-6(a), as Rg.off  

keeps increasing from 0 Ω to 7.5 Ω (with 15 Ω Rg,on), the peak value of Vds,int decreases 

from 15.85 kV to 9.42 kV. Hence, higher Rg,off  is preferred to reduce the voltage stress 

when a flashover fault happens. In fact, increasing Rg,off from 0 Ω to 7.5 Ω has negligible 

impact on the turn-off loss and dv/dt of the 10 kV/20 A SiC MOSFET during the normal 

operation, because the current of the MOSFET channel drop to zero very quickly [44]. 

Adding an external capacitor across gate and source terminal of the MOSFET 

suppresses oscillations in the gate loop and reduces voltage overshoot in Vds,int during the 

flashover fault, as can be seen in Fig. 5-6(b). With 15 Ω Rg,on and 2.5 Ω Rg,off. , the peak 

Vds,int reduces from 12.17 kV to 9.46 kV after adding a 500 pF external capacitor between 

gate and source terminal of the MOSFET. Adding a larger external capacitor is not 

recommended since the capacitor will result in higher converter switching loss. A smaller 

capacitor only increases switching loss slightly, yet it will be less effective in reducing the 

overvoltage of Vds,int. Generally, the best solution to suppressing overvoltage in Vds,int is a 

relatively large Rg,off  to achieve lower Rg,on/Rg,off, although a small external capacitor is also 

effective.  

In addition, a small gate loop inductance Lgs is desirable from the perspective of 

flashover fault. A large gate loop inductance Lgs causes higher Vgs,int  and device current 
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      (a)                                                      (b) 

Fig. 5- 6. Simulation waveforms of flashover fault at 7 kV with 1 nH Lss: (a) 15 Ω Rg,on 

and 7.5 Ω Rg,off, (b) 15 Ω Rg,on and 2.5 Ω Rg,off. as well as a 500 pF external capacitor. 
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and energy loss during the flashover fault, since the large impedance of Lgs alleviates the 

asymmetric impedance in the gate loop and hence the effect of Lss. On the other hand, larger 

Lgs strengthens the effect of Miller current, and a larger portion of Miller current flows to 

Cgs. Compared to the case in Fig. 5-3(a), the peak device current surges from 367 A to 435 

A when Lgs rises from 5 nH to 30 nH. Hence a large gate loop inductance should be avoided 

in PCB layout. 

5.3.2 10 kV SiC MOSFET with Kelvin Source 

If Lss is negligible, a smaller turn-off gate resistance and gate loop inductance are 

preferable to reduce current and energy loss during a flashover fault. To suppress positive 

voltage spike in Vgs,int due to Miller current, it is crucial to reduce the gate loop impedance 

when the gate current is negative. Rg,off as well as Lgs thereby should be as small as possible, 

while Rg,on should still be determined by the switching performance during the normal 

operation. As displayed in Fig. 5-7, a large Rg,off (7.5 Ω) causes 7.9 V spike in Vgs,int and 

12.2% increase in peak current compared to the case with 0 Ω Rg,off (5.2 V spike in Vgs,int, 

466 A peak short circuit current), and the 523 A peak device current is 2.5X device 

saturation current, which will be increased further to 539 A with 30 nH Lgs due to poor 

PCB layout. 

With negligible Lss, adding an external capacitor across the gate and source terminal 

is not recommended because it only reduces the peak current slightly. With a 1 nF external 

capacitor, the peak current only drops by 2.9% compared to 492.5 A in Fig. 5-5(b). Because 

of 2 Ω Rg,int and 1 nH Lgs,int inside the device package, it is not likely that a small external 

capacitor can reduce device current under the flashover fault substantially. 
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Fig. 5- 7. Simulation waveforms of flashover fault at 7 kV with 0.15 nH Lss, 15 Ω Rg,on, 

and 7.5 Ω Rg,off. 
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5.3.3 Summary 

The 10 kV SiC MOSFET gate driver design guidelines are summarized in Table 

10, to achieve lower device damage risk and better performance under a flashover fault. 

5.4 Short Circuit Energy Loss and Protection Design 

A flashover fault usually generates high energy loss, because Vds,int and Id soar 

rapidly to reach dc-link voltage and saturation current, respectively. In this section, the 

energy loss of the 10 kV SiC MOSFET under a flashover fault is investigated 

quantitatively, which is essential in short circuit protection design. Nonetheless, the 

response time of short circuit protection is typically determined based on short circuit 

performance under HSF and FUL, instead of the flashover fault. As a result, the designed 

protection may not be fast enough to safely turn off the MOSFET under a flashover fault. 

A fair comparison between the flashover fault and the FUL fault as well as the HSF fault 

is made to quantitatively show how much higher energy loss a flashover fault produces. 

Response time required to safely clear the flashover fault is provided to guide short circuit 

protection design. 

5.4.1 Simulation of FUL and HSF 

The same 10 kV SiC MOSFET model in the simulation of a flashover fault is 

adopted in the simulation of FUL in order to make a fair comparison. To emulate a FUL, 

the ideal switch in Fig. 5-2 should be replaced by a power semiconductor device with much 

higher saturation current so that the 10 kV SiC MOSFET eventually withstands complete 

dc-link voltage during the fault. 

When simulating a FUL, the ideal switch is replaced by a 10 kV SiC MOSFET 

module composed of three identical 10 kV/20 A dies in parallel. Such implementation 
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Table 10. Gate driver design considerations from the standpoint of flashover fault 

10 kV SiC MOSFET w/ Kelvin source w/o Kelvin source 

Gate loop inductance Lgs Reduce Lgs in layout Reduce Lgs in layout 

Turn-off gate resistance 

Rg,off 

Select a relatively 

small Rg,off 

Select a larger Rg,off  to 

avoid high Rg,on /Rg,off 

External capacitor across 

gate and source 

Adding an external 

capacitor is not 

effective 

Adding an external 

capacitor is effective but 

not recommended 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

123 

 

ensures sufficiently high saturation current and makes full use of the established 10 kV SiC 

MOSFET model in Section 5.1. The gate resistance of the 10 kV SiC MOSFET module is 

selected to ensure fast turn-on process to emulate the short circuit in the load side. The 

power loop inductance and dc-link capacitance are the same as those in the flashover fault 

simulation. 

In the simulation of a HSF, the ideal switch in the HB phase leg in Fig. 5-2 is 

completely shorted. CDC and Lp are not changed. The HSF occurs once the 10 kV SiC 

MOSFET is turned on. During the fault, Vds,int remains close to the dc-link voltage, so gate 

threshold voltage Vg,th is not dominated by Vds,int any more. Instead, Vg,th decreases 

dramatically as device junction temperature Tj rises rapidly under the HSF fault. Vg,th in the 

model of the MOSFET channel should hence be modified for more accurate simulation 

result under the fault. An empirical model of Vg,th as a function of Tj is derived based on 

the experimental data of the 10 kV/20 A SiC MOSFET under a HSF. The nonlinear model 

of Vg,th is realized with a look-up table in PLECS. The instantaneous Tj during the fault is 

estimated with the energy loss and thermal capacitance of the drift region of the device, 

which is 6.4 mJ/K [59]. Other parts of the MOSFET model in Section 5.1 remain 

unchanged to make a fair comparison. 

5.4.2 Comparison between Flashover and FUL Fault 

Common source inductance Lss makes a difference in the behavior of the 10 kV SiC 

MOSFET under the flashover fault. A large Lss reduces Vgs,int and device current in the early 

stage of a flashover fault. However, as displayed in Fig. 5-8, a large Lss is only able to 

significantly reduce short circuit energy loss as Rg,off  approaches zero, inevitably giving  
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Fig. 5- 8. Short circuit energy loss under flashover fault at 7 kV with different gate 

resistances and common source inductance. 
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rise to huge spike in Vds,int which can damage the MOSFET. Therefore, it is not realistic to 

take advantage of a large Lss to reduce energy loss during a flashover fault. In summary, if 

gate resistance is correctly selected to prevent device damage from overvoltage under a 

flashover fault, common source inductance has little influence on the energy loss during a 

flashover fault. 

Simulation waveforms of the 10 kV SiC MOSFET under both the flashover and the 

FUL fault at 7 kV are displayed in Fig. 5-9, both of which last for 1.5 µs. The gate driver 

for the 10 kV SiC MOSFET with Kelvin source has 15 Ω Rg,on, and 2.5 Ω Rg,off. Compared 

to a flashover fault, a FUL results in much slower transient. After the FUL fault occurs, it 

takes 760 ns for Vds,int and Id to reach their saturation levels. Vds,int rises slowly with an 

average dv/dt of 13.6 V/ns.  In fact, there is a 230 ns delay before Vds,int starts to increase 

with a high slew rate. The slow transient contributes to lower energy loss under the FUL 

fault than that under a flashover fault, with details shown in Fig. 5-10. In the first 500 ns, 

the energy loss under the FUL is 0.1 J, while the flashover fault has a 0.77 J energy loss. 

After 1.5 µs, the flashover fault produces 49.5% higher energy loss than the FUL.  

With 49.5% higher device energy loss under the flashover fault than the FUL, a 

shorter response time is required in the short circuit protection design to prevent device 

damage due to high energy loss. In fact, after Vds,int and Id reach steady state, the energy loss 

difference between FUL and flashover fault is ~0.74 J. The energy loss difference is mainly 

established in the first 500 ns of the fault. For instance, based on Fig. 5-10, the energy loss 

under the flashover fault reaches 1.5 J at t=1 µs, while the energy loss under the FUL   
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Fig. 5- 9. Simulation waveforms of FUL and flashover fault at 7 kV with 0.15 nH Lss,  

15 Ω Rg,on, and 2.5 Ω Rg,off. 

 
 
 
 

 

Fig. 5- 10. Short circuit energy loss comparison between FUL and flashover fault at 7 kV 

with 0.15 nH Lss, 15 Ω Rg,on, and 2.5 Ω Rg,off. 
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reaches 1.5 J at t=1.5 µs. From the perspective of critical energy, in order to achieve the 

same margin, the short circuit response time under a flashover fault should be ~500 ns 

shorter than that under a FUL. 

5.4.3 Comparison between Flashover Fault and HSF Fault 

Similar analysis can be conducted to compare the performance of the 10 kV SiC 

MOSFET under the flashover fault and the HSF, with details displayed in Fig. 5-11 and 

Fig. 5-12. Under both faults, Lss is 0.15 nH, and the MOSFET is driven with 15 Ω Rg,on, 

and 2.5 Ω Rg,off. Fig. 5-11 displays the typical behavior of the 10 kV SiC MOSFET under a 

HSF. Vds,int  has a small dip and subsequently climbs back to the dc-link voltage (7 kV) 

quickly, and the device always operates in the active region.  

After 1.5 µs, the flashover fault produces 29.5% higher energy loss than a HSF. 

The 0.51 J energy loss difference between the two kinds of faults is mainly due to the short 

circuit current during the first 800 ns. The device current under the flashover fault soars 

immediately with a huge overshoot, while the short circuit current under the HSF rises 

slowly with an average di/dt of 0.223 A/ns. After the device current saturates, the 

instantaneous power loss under the two faults is almost the same. 

Based on the simulation result, in order to limit the energy loss to the same level, 

the short circuit response time under the flashover fault should be ~350 ns shorter than that 

under the HSF. For example, if 1.5 J critical energy is assumed, the flashover fault should 

be cleared within 997 ns, and the HSF fault should be cleared within 1.348 µs to guarantee 

the same margin in short circuit protection. 
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Fig. 5- 11. Simulation waveforms of HSF and flashover fault at 7 kV with 0.15 nH Lss,  

15 Ω Rg,on, and 2.5 Ω Rg,off. 

 

 

 

 

 

 

Fig. 5- 12. Short circuit energy loss comparison between HSF fault and flashover fault at 

7 kV with 0.15 nH Lss, 15 Ω Rg,on, and 2.5 Ω Rg,off. 
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5.5 Summary 

The 10 kV SiC MOSFET under a flashover fault due to insulation failure is analyzed 

comprehensively, where dv/dt, di/dt, and energy loss are higher than those under FUL and 

HSF short circuit fault. Extremely fast transients impact the gate loop via common source 

inductance and Miller capacitance. In order to reduce the risk of device damage under a 

flashover fault, a relatively higher Rg,off  is suggested for 10 kV SiC MOSFETs without 

Kelvin source to avoid a large Rg,on/Rg,off , while a relatively small Rg,off  is recommended for 

the MOSFET with Kelvin source. Design guidelines for gate loop inductance or adding an 

external capacitor across gate and source terminal are also provided to achieve better device 

performance under a flashover fault.  

Short circuit performance under a flashover fault, FUL, and HSF is compared at  

7 kV and 15 V gate-to-source voltage. With 49.5% higher energy loss under the flashover 

fault, the required response time to clear the flashover fault should be ~500 ns shorter than 

that designed to clear the FUL. The response time to clear the flashover fault should be  

~350 ns shorter than the response time determined by the HSF. In terms of future work, 

more accurate short circuit model of the MOSFET and experimental results are needed to 

make the analysis results more accurate.  
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CHAPTER 6. OVERCURRENT PROTECTION DESIGN WITH 

STRONG NOISE IMMUNITY AND FAST RESPONSE 

This chapter is aimed at further accelerating the response of the desat protection for 

10 kV SiC MOSFETs and other high voltage (> 3.3 kV) SiC MOSFETs. To pursue desat 

protection with faster response, the noise immunity of the desat protection under high dv/dt 

is examined carefully, which yields systematic design guidelines to improve the noise 

immunity significantly. An improved desat protection scheme is introduced with much 

faster response than the desat protection in the baseline design in Section 3.2, and strong 

noise immunity is maintained. Last but not least, a desat protection scheme with ultrafast 

response is proposed and successfully validated with excellent noise immunity and ultrafast 

protection response (<160 ns response time) at the same time. 

It should also be mentioned that part of the content in this chapter is from the 

author’s paper published in IEEE APEC 2020 [84] and the author’s another paper published 

in IEEE APEC 2021 [97]. 

6.1 Noise Immunity Analysis and Enhancement of Desat Protection 

When pursuing desat protection with faster response for high voltage SiC 

MOSFETs, there is a concern that its noise immunity will be sacrificed. The desat 

protection could be falsely triggered. Therefore, the noise immunity of the desat protection 

circuitry should be thoroughly evaluated in order to realize desat protection with fast 

response.  

This section comprehensively analyzes desat protection for high voltage (>3.3 kV) 

SiC MOSFETs, and especially how to build in noise immunity under high dv/dt. The study 
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aims to lay a solid foundation to identify the better trade-off between noise immunity and 

response speed of desat protection. Both positive dv/dt and negative dv/dt are investigated. 

Analysis results reveal that the high dv/dt with long duration caused by high voltage SiC 

MOSFETs’ switching results in strong noise interference in the desat protection circuitry. 

The impact of numerous influencing factors is investigated analytically, such as parasitic 

capacitances, parasitic inductance, damping resistance, and clamping impedance. Under 

high positive dv/dt, extremely small parasitic capacitances (<0.01 pF) between the drain 

terminal and protection circuitry could still compromise noise immunity of the desat 

protection circuitry that has a high-impedance voltage divider. Comprehensive design 

guidelines are summarized to boost the noise immunity, including circuit design, 

component selection, and PCB layout. The noise immunity margin under the positive dv/dt 

is also derived quantitatively to guide the noise immunity improvement. The noise 

immunity analysis results and developed noise immunity improvement methods are 

validated with simulation and experimental results.    

6.1.1. Overview of Desat Protection Circuitry 

Desat protection for high voltage SiC MOSFETs can be implemented with circuitry 

composed of discrete components or with a gate driver IC with an integrated desat 

protection function, as illustrated in Fig. 6-1. The gate driver IC with desat protection 

function (MC33153 and FOD8318 from On Semiconductor, STGAP1AS from 

STMicroelectronics, etc) enables more compact layout, yet leads to too low of a threshold 

current for some high voltage SiC MOSFETs due to its low threshold voltage (<10 V) for 

desat protection [60], [61], [98]. With a voltage divider and a discrete comparator, desat  
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(a) 

 

(b) 

Fig. 6- 1. Two implementations of desat protection for high voltage SiC MOSFETs: (a) 

Based on discrete components; (b) Realized with gate driver IC. 
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protection based on discrete components has better flexibility to achieve a desired response 

time and threshold current for various high voltage SiC MOSFETs. In this section, noise 

immunity of both implementations will be analyzed in detail. 

6.1.2 Noise Immunity Analysis 

The noise interference and spurious triggering of desat protection are mainly caused 

by high dvds/dt generated by high voltage SiC MOSFETs. High dv/dt can disturb the 

operation of the desat protection circuitry via the parasitic capacitance Cdesat of the desat 

diode Ddesat, including both implementations in Fig. 6-1. Fig. 6-2 and Fig. 6-3 illustrate the 

influence of high dv/dt and the resulting displacement current on the desat protection 

circuitry based on discrete components. In addition to Cdesat, the parasitic inductance Ldesat 

should also be considered. A well-known mechanism of spurious triggering is caused by 

interference from high dvds/dt that results in the blanking capacitor voltage Vdesat or the 

comparator input voltage Vcomp rising substantially and then exceeding the comparator 

threshold voltage Vth [59], [66]. 

Positive dvds/dt results in a positive spike in Vdesat and hence heavily impacts the 

noise immunity of the desat protection circuitry. Traditionally, Rdamp is added to damp the 

oscillation. In the protection circuitry composed of discrete components, Rcla and a 

transistor Mcla are installed to clamp Vdesat [66]. As illustrated in Fig. 6-2, Rcla and Mcla are 

introduced with the purpose of absorbing the displacement current of Cdesat due to the high 

positive dvds/dt, without which Vdesat will increase dramatically and could lead to spurious 

triggering. Rcla and Mcla are necessary if the output voltage of the gate driver IC cannot 

serve as Vcc since the magnitude of Vcc is required to be higher than the on-state gate voltage  
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Fig. 6- 2. Displacement current due to Cdesat and positive dvds/dt in desat protection 

circuitry.  

 

 

 

 

 

Fig. 6- 3. Displacement current caused by Cdesat and negative dvds/dt in desat protection 

circuitry.  
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Vgs,on. This is often the case when designing desat protection for high voltage SiC 

MOSFETs requiring relatively high desat threshold voltage. As for the desat protection 

circuitry realized by the gate driver IC, the discharge switch Sdis can absorb the 

displacement current from Cdesat. Still, there will be positive spikes and oscillations in Vdesat 

due to high positive dvds/dt, which will be studied in this section. 

With the interference of negative dvds/dt generated by high voltage SiC MOSFETs, 

usually the comparator will not be falsely triggered. Instead, Vdesat and Vcomp could 

experience a voltage dip if the displacement current of Cdesat is much higher than the current 

from Vcc or Icc. As shown in Fig. 6-3, Cblk will be discharged to contribute to the 

displacement current of Cdesat, and Vdesat and Vcomp will decline during the voltage fall time 

of Vds. In this case, the voltage dip in Vdesat or Vcomp could falsely trigger some comparators 

and hence the desat protection, due to the mechanism named phase reversal or phase 

inversion because the comparator input voltage is lower than the allowed minimum input 

voltage [99]-[101]. To alleviate the impact of the negative dv/dt, the clamping diode Dblk 

(as shown in Fig. 6-1) is often added. 

In this section, the desat protection designed for the 10 kV/20 A SiC MOSFET used 

to build the phase legs in this dissertation is studied as an example for noise immunity 

analysis. Parameters of the desat protection circuitry are shown in Fig. 6-4, and the circuit 

model is established in PLECS. Although the study example is a desat protection circuitry 

implemented with discrete components, the study results will also benefit noise immunity 

analysis of the desat protection realized by the gate driver IC. Thus, noise immunity of the 

desat protection realized by the gate driver IC will also be examined in detail. 
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Fig. 6- 4. Desat protection for 10 kV/20 A SiC MOSFET from Wolfspeed. 
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Parasitic capacitance of the desat diode Cdesat is nonlinear and decreases rapidly as 

Vds increases. Meanwhile, the resulting displacement current does not change significantly 

since dvds/dt is low when the parasitic capacitance of the desat diode is large. The nonlinear 

Cdesat of the diode (three 3.3 kV SiC Schottky diodes in series) is hence modeled with its 

charge-equivalent linear capacitance (2.3 pF) [87], [102]. 

6.1.2.1 Analysis of Blanking Capacitor Voltage Vdesat 

In this subsection, Vdesat under the negative dv/dt will not be discussed in detail. The 

worst voltage dip in Vdesat under negative dv/dt happens when Dblk enters the conduction 

mode. In such case, the voltage dip is simply determined by the forward voltage drop of 

Dblk, Vdiode. The maximum positive spike in Vdesat under negative dv/dt cannot be higher 

than that under positive dv/dt. Thus, this subsection focuses on how positive dv/dt shapes 

Vdesat. The analysis of Vdesat will benefit the noise immunity analysis of both hardware 

implementations shown in Fig. 6-1. 

Under a constant dv/dt of +100 V/ns as Vds rises from 0 to 7 kV, simulation 

waveforms of Vdesat are displayed in Fig. 6-5. Because of Mcla and Rcla (Rcla << Rblk), Vdesat 

is clamped to Vclamp (-5 V) before Vds starts to rise at t = 20 ns. This is a reasonable 

assumption because Vdesat should be clamped at Vclamp before high positive dv/dt is 

generated, no matter whether the high voltage SiC MOSFET is the active switch or the 

synchronous switch. During the 70 ns voltage rise time trise, Vdesat reaches steady state after 

the oscillation is damped. At steady state, the spike of Vdesat is proportional to Rcla, Cdesat, 

and dvds/dt, all of which heavily influence noise immunity. 
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(a) 

 

(b) 

Fig. 6- 5. Simulation waveforms of desat protection for 10 kV/20 A SiC MOSFETs: (a) 

Cblk=56 pF; (b) Cblk=20 pF. 
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The peak value of Vdesat during the voltage rise time of Vds is determined by the 

oscillations at the early stage of voltage rise time. According to simulation waveforms in 

Fig. 6-5, higher Ldesat leads to higher peak value of Vdesat. If Cblk is decreased from 56 pF to 

20 pF, the oscillations caused by high positive dvds/dt will result in higher peak in Vdesat. A 

larger Rdamp is effective in suppressing the oscillations and positive spike in Vdesat, 

especially when the circuitry has a large Ldesat and/or a small Cblk. 

High frequency oscillation of Vdesat at the beginning of trise can be analyzed via 

circuit analysis in the frequency domain. The simplified circuit model used to analyze Vdesat 

is drawn in Fig. 6-6. Because Mcla is fully on with low impedance before high dv/dt is 

generated, Rblk and the voltage divider formed by Rd1 and Rd2 with high impedance can be 

neglected. The difference between Vclamp (-5 V) and 0 V (defined as potential of the source 

of the 10 kV SiC MOSFET) is also neglected to simplify the analysis.  

The relationship between Vds and Vdesat can be expressed as: 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑠)

𝑉𝑑𝑠(𝑠)
=

𝑠𝐶𝑑𝑒𝑠𝑎𝑡𝑅𝑐𝑙𝑎

𝑠3𝐿𝐶𝑑𝑒𝑠𝑎𝑡𝑅𝑐𝑙𝑎𝐶𝑏𝑙𝑘 + 𝑠2(𝐿𝐶𝑑𝑒𝑠𝑎𝑡 + 𝑅𝑑𝑎𝑚𝑝𝐶𝑑𝑒𝑠𝑎𝑡𝑅𝑐𝑙𝑎𝐶𝑏𝑙𝑘) + 𝑠(𝐶𝑑𝑒𝑠𝑎𝑡𝑅𝑐𝑙𝑎 + 𝐶𝑏𝑙𝑘𝑅𝑐𝑙𝑎 + 𝐶𝑑𝑒𝑠𝑎𝑡𝑅𝑑𝑎𝑚𝑝) + 1
(6.1) 

Based on the Bode plot of Vdesat(s)/Vds(s) in Fig. 6-7, the peak magnitude is reached at the 

resonance frequency 𝜔𝑟 =
1

√𝐿𝑑𝑒𝑠𝑎𝑡𝐶𝑑𝑒𝑠𝑎𝑡
. 𝜔𝑟  is the oscillation frequency of Vdesat in 

simulation waveforms in Fig. 6-5. Because Vds has high dv/dt, it is rich with high frequency 

components, and those components can excite an oscillation at the resonance frequency. 

The peak magnitude of Vdesat(s)/Vds(s), Vd,pk, can be expressed as follows. 

𝑉𝑑,𝑝𝑘 =
𝑅𝑐𝑙𝑎

√(𝑅𝑐𝑙𝑎 + 𝑅𝑑𝑎𝑚𝑝)
2
+
(𝑅𝑐𝑙𝑎𝑅𝑑𝑎𝑚𝑝𝐶𝑏𝑙𝑘)

2

𝐿𝑑𝑒𝑠𝑎𝑡𝐶𝑑𝑒𝑠𝑎𝑡

(6.2)
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Fig. 6- 6. Simplified circuit model for the analysis of Vdesat. 

 

 

 

 

 

 

 

 

Fig. 6- 7. Bode plot of Vdesat(s)/Vds(s) as Ldesat increases (parameters in Fig. 6-4). 
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Vd,pk is an important indicator of the peak value of Vdesat during the voltage rise time. 

Higher Ldesat results in slightly higher Vd,pk and thus higher spike in Vdesat caused by the 

oscillations. Based on Fig. 6-7, the resonance frequency 𝜔𝑟  becomes lower as Ldesat 

increases. According to Fourier analysis of Vds, the magnitude of 𝑉𝑑𝑠(𝑗𝜔𝑟) increases as 

𝜔𝑟becomes lower and lower. This is another reason why a higher Ldesat makes Vdesat 

oscillate with higher peak value. 

The effect of Rdamp on the peak value of Vdesat can also be explained by the analysis 

of the peak magnitude of Vdesat(s)/Vds(s). As indicated in Fig. 6-8, Vd,pk declines 

substantially with a higher Rdamp selected. If Rdamp is 0 Ω, Vd,pk will reach the maximum 

value of 0 dB. A low Rcla effectively shields Vdesat from the influence of high positive 

dvds/dt, which reduces both Vd,pk and the steady state level of Vdesat during the voltage rise 

time. According to (6.2), increasing Cblk also reduces Vd,pk and the high frequency 

oscillations in Vdesat, which is demonstrated in simulation waveforms in Fig. 6-5.  

Also, the analysis of Vdesat in this subsection is applicable for the desat protection 

realized with a gate driver IC with integrated desat protection function in Fig. 6-1(b), in 

which Vdesat determines the comparator output. In this case, Vdesat can also be analyzed with 

the circuit model in Fig. 6-6, since the current source Icc can be neglected due to its high 

impedance. Rcla is mainly dominated by the on-state resistance of the discharge switch Sdis, 

which is turned on as the high voltage SiC MOSFET is in OFF state. As a result, Rcla is 

only determined by the gate driver IC.  
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Fig. 6- 8. Bode plot of Vdesat(s)/Vds(s) as Rdamp increases (Ldesat=3 µH). 

 

  



 

143 

 

6.1.2.2 Analysis of Comparator Input Voltage Vcomp under Positive dv/dt 

In the desat protection based on discrete components, Vcomp plays a more critical 

role in noise immunity than Vdesat. According to Fig. 6-5, there are no high frequency 

oscillations in Vcomp, because the voltage divider and Cd caused by the comparator and PCB 

layout form an effective low pass filter. 

However, extremely small parasitic capacitances between the drain terminal and 

PCB traces or polygons of the protection circuitry should be considered. As drawn in  

Fig. 6-9, these parasitic capacitances (< 0.1 pF) are critical due to the high positive dv/dt 

with considerable voltage rise time trise generated by high voltage SiC MOSFETs. Cp1 and 

Cp2 effectively increase the value of Cdesat. Particularly, Cp3 coupled with the voltage 

divider results in a substantial positive spike in Vcomp. 

To simplify the study, it is assumed that Vds rises with a constant dv/dt. The 

displacement current of Cp3 can hence be modeled by a constant dc current source Ip3. 

During the voltage rise time trise, Vdesat can be modeled as a constant dc voltage source after 

neglecting the voltage divider, Rblk, and high frequency oscillations in Vdesat. Before high 

positive dv/dt occurs, Vcomp is already clamped to Vclamp. With superposition theorem, Vcomp 

in s domain can be calculated as:   

𝑉𝑐𝑜𝑚𝑝(𝑠) = 𝑉𝑑𝑒𝑠𝑎𝑡(𝑠)
𝑅𝑑2

𝑠𝐶𝑑𝑅𝑑1𝑅𝑑2 + 𝑅𝑑2 + 𝑅𝑑1
+ 𝐼𝑝3(𝑠)

𝑅𝑑1𝑅𝑑2
𝑠𝐶𝑑𝑅𝑑1𝑅𝑑2 + 𝑅𝑑1 + 𝑅𝑑2

(6.3) 

In the equations in this section, the reference point of Vdesat and Vcomp is Vclamp  

(-5 V), unless their reference point is explicitly noted. Vdesat(s) is mainly determined by the 

displacement current flowing through Cdesat, Cp1, and Cp2, which are named Idesat, Ip1, and 

Ip2, respectively. The equation of Vdesat(s) is expressed as (6.4). 
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Fig. 6- 9. Desat protection circuitry considering parasitic capacitances between drain and 

protection circuitry. 
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𝑉𝑑𝑒𝑠𝑎𝑡(𝑠) = (𝐼𝑑𝑒𝑠𝑎𝑡(𝑠) + 𝐼𝑝1(𝑠) + 𝐼𝑝2(𝑠))
𝑅𝑐𝑙𝑎

1 + 𝑠𝐶𝑏𝑙𝑘𝑅𝑐𝑙𝑎
(6.4) 

In equation (6.4), the effect of the voltage divider and Rblk is neglected because of their 

high impedance. The high frequency oscillation in Vdesat is also neglected. Once the high 

dv/dt is generated, Vdesat rises to a constant value quickly thanks to the extremely small time 

constant RclaCblk, which is usually much smaller than trise. Hence, Vdesat can be modeled as 

a dc voltage source during the voltage rise time. Vdesat is rewritten as: 

𝑉𝑑𝑒𝑠𝑎𝑡 = 𝑅𝑐𝑙𝑎(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)
𝑑𝑣

𝑑𝑡
(6.5) 

Meanwhile, 𝐼𝑝3 can also be modeled as a constant dc current source due to the constant 

dv/dt assumption. The peak voltage spike Vspike of Vcomp, can be derived with (6.6), which 

is the value of Vcomp(t) at the end of the voltage rise time trise. The reference point of Vspike 

is also Vclamp (-5 V).  

𝑉𝑠𝑝𝑖𝑘𝑒 = 𝑉𝑐𝑜𝑚𝑝(𝑡𝑟𝑖𝑠𝑒) = [𝑅𝑑1𝐶𝑝3 + 𝑅𝑐𝑙𝑎(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)]
𝑅𝑑2

𝑅𝑑1 + 𝑅𝑑2

𝑑𝑣

𝑑𝑡
[1 − 𝑒

−𝑡𝑟𝑖𝑠𝑒
𝐶𝑑(𝑅𝑑1//𝑅𝑑2)] (6.6) 

High dv/dt with long voltage rise time generated by high voltage SiC MOSFETs 

can make the desat protection circuitry vulnerable to noise and spurious triggering.  

Fig. 6-10 shows that 0.004 pF Cp3 induces a sufficiently high spike in Vcomp which can 

falsely trigger the protection for 10 kV SiC MOSFETs in Fig. 6-4, which is 60% higher 

than that in 1.7 kV SiC MOSFETs with the same dv/dt and much shorter trise. In the 

simulation, Cp1, Cp2, and Cp3 are 0 pF, 0 pF, and 0.004 pF, respectively, and Cdesat is still 

modeled with a 2.3 pF capacitor.  

With the established model of Vspike in (6.6), the impact of the voltage rise time trise 

can be analyzed quantitively, as plotted in Fig. 6-10(b). Longer trise results in higher spike 

in the comparator input voltage Vcomp, making the protection more susceptible to spurious  
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(a) 

 
(b) 

Fig. 6- 10. (a) Simulation results of Vdesat and Vcomp with 0.004 pF Cp3 and 1 pF Cd 

considered for 10 kV and 1.7 kV SiC MOSFETs with 100 V/ns dv/dt; (b) Calculation 

result of Vspike as a function of trise. 
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triggering. As trise becomes longer, Vspike starts to increase more slowly and eventually 

saturate. The maximum value of Vspike can be expressed as: 

𝑉𝑠𝑝𝑖𝑘𝑒,𝑚𝑎𝑥 = [𝑅𝑑1𝐶𝑝3 + 𝑅𝑐𝑙𝑎(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)]
𝑅𝑑2

𝑅𝑑1 + 𝑅𝑑2

𝑑𝑣

𝑑𝑡
(6.7) 

Fig. 6-10 also illustrates that the measured Vspike in simulation waveforms coincides 

well with the calculation result based on (6.6). However, if trise is not considerably longer 

than the time constant RclaCblk, Vdesat cannot be modeled by a constant dc voltage source, 

and the expression of Vspike is modified as (6.8).  

𝑉𝑠𝑝𝑖𝑘𝑒 = [𝑅𝑑1𝐶𝑝3 + 𝑅𝑐𝑙𝑎(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2) (1 − 𝑒
−𝑡𝑟𝑖𝑠𝑒

𝐶𝑏𝑙𝑘𝑅𝑐𝑙𝑎)]
𝑅𝑑2

𝑅𝑑1 + 𝑅𝑑2

𝑑𝑣

𝑑𝑡
[1 − 𝑒

−𝑡𝑟𝑖𝑠𝑒
𝐶𝑑(𝑅𝑑1//𝑅𝑑2)] (6.8) 

Based on (6.8), the magnitude of Vspike as a function of voltage rise time and dv/dt is 

evaluated in Fig. 6-11, in which Cp1, Cp2, Cp3, and Cd are still 0 pF, 0 pF, 0.004 pF, and  

1 pF, respectively. In terms of generating high Vspike in the desat protection circuitry based 

on discrete components, the worst case occurs when high dv/dt and long voltage rise time 

appear simultaneously. Thus, the desat protection of high voltage (> 3.3 kV) SiC 

MOSFETs with high dv/dt and longer duration is more vulnerable to noise generated by 

dv/dt, compared to other power semiconductor devices such as lower voltage (< 3.3 kV) 

SiC MOSFETs or 3.3 kV, 4.5 kV, and 6.5 kV Si IGBTs which are currently dominant in 

MV applications, as shown in Fig. 6-11. 

6.1.2.3 Analysis of Comparator Input Voltage Vcomp under Negative dv/dt 

When negative dv/dt is generated, Vcomp will also be shaped heavily by the 

displacement currents from parasitic capacitances, especially Cdesat and Cp3. Different from 
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Fig. 6- 11. Contour plot of Vspike as a function of dv/dt and voltage rise time trise. 
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the case with positive dv/dt, Vcomp is not necessarily clamped to Vclamp before negative dv/dt 

is generated, leading to different initial conditions. Yet, Vcomp can still be analyzed with the 

analytical method used to study Vcomp under high positive dv/dt. 

To analyze Vcomp, Vdesat under negative dv/dt should be examined first to eliminate 

the nonlinearity brought by Dblk. The influence of Cp3 on Vdesat can be neglected, because 

Cp3 is much smaller than Cdesat. If zero voltage switching (ZVS) can be achieved with the 

high voltage SiC MOSFET, Mcla is already fully ON to clamp Vcomp at Vclamp before negative 

dvds/dt occurs, and Mcla always has low impedance during the voltage fall time tfall. In this 

case,⁡𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞), the final value of Vdesat at the end of voltage fall time, is derived as 

follows, assuming tfall is infinitely long. 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) =
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑐𝑙𝑎

𝑅𝑐𝑙𝑎 + 𝑅𝑏𝑙𝑘
+ (𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)

𝑑𝑣

𝑑𝑡
𝑅𝑐𝑙𝑎 (6.9) 

If the high voltage SiC MOSFET switches without any soft switching, Mcla will 

have high impedance during the entire voltage fall time, and 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞)  can be 

calculated as below. 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) = 𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝 + (𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)
𝑑𝑣

𝑑𝑡
𝑅𝑏𝑙𝑘 (6.10) 

In either case, Vdesat will decline quickly and be clamped by the diode Dblk after the 

negative dv/dt is generated if 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞)  is much lower than zero due to the 

sufficiently high displacement current. In both cases, with the requirement in (6.11) 

satisfied, Vdesat can be modeled as a constant dc voltage source, -Vdiode, during the voltage 

fall time. 

−(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)
𝑑𝑣

𝑑𝑡
⁡≫ ⁡

𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝

𝑅𝑏𝑙𝑘
(6.11) 
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where 
𝑑𝑣

𝑑𝑡
 in the equation is negative. The minimum negative spike in Vcomp at the end of 

the voltage fall time, Vspike,n, can be calculated with the following equations. 

𝑉𝑠𝑝𝑖𝑘𝑒,𝑛 = 𝑉𝑛,𝑚𝑎𝑥 + (𝑉𝑖𝑛𝑖 − 𝑉𝑛,𝑚𝑎𝑥)𝑒
−𝑡𝑓𝑎𝑙𝑙

𝐶𝑑(𝑅𝑑1//𝑅𝑑2) (6.12) 

𝑉𝑛,𝑚𝑎𝑥 =
𝑅𝑑2

𝑅𝑑1 + 𝑅𝑑2
(𝑅𝑑1𝐶𝑝3

𝑑𝑣

𝑑𝑡
− 𝑉𝑑𝑖𝑜𝑑𝑒) (6.13) 

Vini is the initial value of Vcomp when the voltage fall time starts. The reference point 

of Vspike,n and Vini is also Vclamp. In the cases where ZVS can be achieved, Vini is 0 V. In the 

hard switching cases, Vini is usually slightly higher than 0 V. With analysis based on 

parameters in Fig. 6-4 and 0 V Vini, as shown in Fig. 6-12, the negative voltage spike 

becomes more substantial as the voltage fall time increases. As can be seen in (6.12) and 

(6.13), Cp3 together with high negative dv/dt contributes to a large portion of the negative 

spike in Vcomp, which makes Vcomp much lower than the ground potential of the comparator 

during the voltage fall time. The duration of the negative spike increases as the voltage fall 

time becomes longer. The analytical results of Vspike,n in Fig. 6-12 match well with the 

simulation results in Fig. 6-13. Simulation results also show that adding Dblk is not effective 

in reducing the negative spike in Vcomp caused by the displacement current from Cp3. In 

general, higher negative dv/dt together with longer duration of dv/dt generates stronger 

interference on the comparator input voltage. 

Therefore, high negative dv/dt with long duration generated by high voltage SiC 

MOSFETs leads to long negative transient input voltage in the desat comparator and poses 

a substantial challenge to the comparator’s ability to withstand negative input voltage. To 

avoid false triggering due to the negative dv/dt, the phase reversal issue of the desat 

comparator must be tackled and is covered in the next subsection. 
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Fig. 6- 12. Calculation result of Vspike,n under the negative dv/dt (-50 V/ns). 

 

 

 

Fig. 6- 13. Simulation results of Vdesat and Vcomp with 0.004 pF Cp3 and 1 pF Cd. 
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6.1.3 Noise Immunity Improvement  

Positive dvds/dt can falsely trigger desat protection by generating positive voltage 

spikes in Vdesat and Vcomp. On the other hand, negative dvds/dt can falsely trigger the 

comparator and the desat protection by the phase reversal mechanism. Based on the two 

mechanisms of false triggering, this subsection discusses how to improve the noise 

immunity of the desat protection for high voltage SiC MOSFETs. 

6.1.3.1 Desat Protection Realized with Gate Driver IC 

To improve noise immunity under negative dvds/dt,  a Schottky diode with low 

forward voltage drop should be selected for Dblk. The gate driver IC should be selected 

accordingly to ensure it can withstand Vdesat without any phase reversal issue when Dblk is 

in conduction mode. 

The analysis of Vdesat in the previous subsection lays a solid foundation for noise 

immunity improvement under the positive dvds/dt. The peak positive spike in Vdesat should 

be reduced during the voltage rise time. The design guidelines for better noise immunity 

are summarized in Table 11. The design guidelines in Table 11 have little influence on the 

protection response speed. Among the guidelines in Table 11, the top priority is to 

implement the desat diode with lower parasitic capacitance to suppress the displacement 

current. Then, the oscillations in Vdesat can be alleviated by reducing Ldesat and adding Rdamp. 

After reducing Cdesat and Ldesat and adding Rdamp, strong noise immunity should be achieved 

in most cases, unless the selected gate driver IC leads to a large Rcla. Selecting a gate driver 

IC with low Rcla is highly recommended, yet it is difficult to know Rcla based on the 

manufacturer’s datasheet. Although increasing Cblk is also effective in reducing the peak  
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Table 11. Summary of design guidelines to improve noise immunity of desat protection 

realized by a gate driver IC 

Guideline Detailed guideline Design trade-off 

Reduce 

Cdesat 

Select or implement desat diode with as 

low parasitic capacitance as possible 

Increasing cost and perhaps 

size 

Reduce 

Ldesat 

Achieve lower parasitic inductance in 

PCB layout and connection 

Case by case 

Add Rdamp Use slightly higher Rdamp if Ldesat is more 

considerable; 

Requirement: Rdamp << Rblk 

No considerable trade-off; 

little impact on response 

time 
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of Vdesat during the voltage rise time, it is not recommended to use a large Cblk to suppress 

oscillation in Vdesat because that will lead to a long response time. 

6.1.3.2. Desat Protection Based on Discrete Components 

In the desat protection circuitry based on discrete components, we also readily 

improve noise immunity under the influence of negative dv/dt. One essential guideline is 

to select comparators without the phase reversal issue to avoid false triggering due to the 

negative spike in Vcomp. In case it is uncertain whether the selected comparator can prevent 

phase reversal, a Schottky diode can also be installed to suppress a negative voltage spike 

in Vcomp. Phase reversal is not an uncommon issue in comparators with traditional PNP-

transistor input stage [101]. Nowadays, several comparators have a CMOS input stage and 

are designed to prevent phase reversal. On the other hand, op-amps and comparators with 

phase reversal issue should not be used in SiC-based MV converters with high dv/dt. 

In terms of noise immunity improvement under positive dv/dt, the noise immunity 

margin Vmargin in Vcomp can be quantitatively calculated as follows.  

𝑉𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑉𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑠𝑝𝑖𝑘𝑒 (6.14) 

Vth is the threshold voltage of the comparator. Vth-Vclamp is closely coupled with the 

threshold voltage of desat protection Vdesat,th and the voltage divider design. The reference 

point of Vth and Vdesat,th is 0 V. The quantitative analysis is as follows.  

𝑉𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝 = (𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝)
𝑅𝑑2

𝑅𝑑1 + 𝑅𝑑2
(6.15) 

Vspike can be calculated with (6.6), since high voltage SiC MOSFETs usually have long trise. 

Then, the expression of Vmargin can be rewritten as: 

𝑉𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑅𝑑2

𝑅𝑑1+𝑅𝑑2
(𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝 − [𝑅𝑑1𝐶𝑝3 + 𝑅𝑐𝑙𝑎(𝐶𝑑𝑒𝑠𝑎𝑡 + 𝐶𝑝1 + 𝐶𝑝2)]

𝑑𝑣

𝑑𝑡
(1 − 𝑒

−𝑡𝑟𝑖𝑠𝑒
𝐶𝑑(𝑅𝑑1//𝑅𝑑2))) (6.16)  
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Noise immunity under high positive dv/dt can be improved by achieving a higher 

Vth-Vclamp and reducing Vspike. Since Vdesat,th is determined by the I-V characteristic and 

threshold current of the MOSFET, elevating 𝑉𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝will lead to a higher voltage 

divider ratio 
𝑅𝑑2

𝑅𝑑1+𝑅𝑑2
 and a higher Vmargin. Comparators’ capability of supporting a high Vth-

Vclamp is critical when selecting the desat comparator. Hence, comparators with higher 

power supply voltage can support higher 𝑉𝑡ℎ − 𝑉𝑐𝑙𝑎𝑚𝑝 and noise immunity margin. For 

example, 5 V comparators are more preferable than 3.3 V comparators. Also, comparators 

with rail-to-rail input voltage range are suggested so that Vth-Vclamp can be as close to the 

power supply voltage of the comparator as possible.  

Also, comparators with longer propagation delay contribute to better noise 

immunity of the desat protection, which aids in the comparator to not respond to the 

extremely short spikes in Vcomp. Longer propagation delay of the comparator requires Vcomp 

to maintain above comparator threshold voltage for a longer time in order to trigger the 

comparator. In other words, longer propagation delay leads to higher equivalent 

comparator threshold voltage. The voltage reference used as threshold voltage of the 

comparator should also be stable and immune from the impact of high dv/dt. The selection 

and design guidelines about the comparator are summarized in Table 12 to improve the 

noise immunity of the desat protection. 

To reach higher noise immunity margin, Vspike can be suppressed by reducing Rcla, 

the parasitic capacitances, the voltage divider impedance, and increasing Cd. If Rcla is 

reduced from 20 Ω to 2 Ω in the desat protection design in Fig. 6-4, Vspike is decreased to 

4.1 V with 14% reduction. The reduction is not significant because the noise immunity  
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Table 12. Summary of selection and design guidelines for the comparator for noise 

immunity improvement 

Parameter  Selection or design guideline 

Power supply voltage Higher power supply voltage is preferred 

Input voltage range Higher input voltage range is preferred 

Propagation delay Slightly longer propagation delay is preferred; 

Trade-off: longer delay leads to desat protection with 

slower response 

Threshold voltage  Higher threshold voltage preferred; 

Filter capacitor added to stabilize threshold voltage 

Phase reversal Comparators without phase reversal issue should be 

selected; 

If not sure about phase reversal issue, a Schottky diode 

can be added to clamp Vcomp 

Pull-up resistance 

(only for comparators with 

open drain output) 

Pull-up resistance should be small for better noise 

immunity 
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margin in this case is dominated by the displacement current from Cp3, instead of the 

displacement current from the desat diode. Therefore, if the voltage divider impedance is 

reduced by 67%, as shown in Fig. 6-14, Vspike can be reduced from 4.76 V to 2.1 V. If Cp3 

is suppressed to 0.001 pF, Vspike will be reduced to 1.8 V, with details shown in Fig. 6-15. 

Increasing Cd can also lower Vspike and improve the noise immunity. Fig. 6-10(b) 

demonstrates that Vspike is brought down to 3.6 V with 24% reduction by increasing Cd from 

1 pF to 5 pF. Increasing Cd is more effective in improving noise immunity when trise is 

shorter, as indicated in the contour plot of Vspike in Fig. 6-16. With a long trise, a large Cd is 

needed to achieve significant reduction in Vspike, which will slow down the response of 

desat protection. When increasing Cd, the trade-off between response time and noise 

immunity should be considered.  

Ac-dc continuous test of the half bridge phase leg based on 10 kV/20 A SiC 

MOSFETs is utilized to validate noise immunity methods based on discrete components 

[1]. Parameters of the desat protection implemented in the phase leg are displayed in  

Fig. 6-4. Voltage signals of the desat protection for the lower MOSFET are measured with 

a 1 GHz TPP1000 probe (3.9 pF input capacitance) [103]. Powered by 0 V and -5 V rails, 

ADCMP600 from Analog Devices is selected as the comparator based on the guidelines in 

Table 12 [104]. The comparator does not have a phase reversal issue and features an input 

common-mode voltage range beyond the power supply rails. So, the desat comparator will 

not be falsely triggered due to the interference of the negative dvds/dt.   

Continuous test results at 6 kV dc link voltage in Fig. 6-17 show that the peak 

positive spike in Vcomp is 2.56 V with an ideal Vmargin of 1.44 V under the positive dv/dt. 
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(a) 

 

(b) 

Fig. 6- 14. Calculation result of Vspike as a function of trise: (a) Impact of Rcla; (b) Impact 

of voltage divider impedance. 
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Fig. 6- 15. Contour plot of Vspike as a function of dv/dt and trise (0.001 pF Cp3). 

 

 

Fig. 6- 16. Contour plot of Vspike as a function of Cd and trise (0.004 pF Cp3; 100 V/ns 

dv/dt). 
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Fig. 6- 17. Waveforms of 6 kV continuous ac-dc test of a phase leg based on 10 kV SiC 

MOSFETs with desat protection in Fig. 6-4. 
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Selecting higher Rcla will reduce Vmargin significantly. As shown in Fig. 6-18, the desat 

protection for the lower MOSFET is falsely triggered by the positive dv/dt (~65 V/ns) 

during the 6 kV ac-dc continuous test, with Rcla increased from 20 Ω to 90 Ω. The measured 

spike Vspike in Vcomp which falsely triggers the protection is 3.8 V. The equivalent Cd is  

5.3 pF with the input capacitance of the passive probe considered. From (6.3), we can see 

that Vcomp is composed of two components. The measured peak voltage spike in Vdesat is 

11.2 V, which generates a positive spike of 1.55 V at Vcomp. The remaining 2.25 V of the 

3.8 V spike in Vcomp is due to the displacement current from Cp3. 

Rd1 in the desat protection circuitry shown in Fig. 6-4 is implemented with two 

resistors in series, as illustrated in Fig. 6-19. Therefore, the drain terminal is coupled with 

the voltage divider via two parasitic capacitances, Cp3,a and Cp3,b. Cp3,a and Cp3,b are mainly 

caused by the large drain plate of the 10 kV SiC MOSFET and the heatsink with the same 

potential as the drain plate [1], [91]. The finite element analysis in Ansys Q3D reveals that 

Cp3,a and Cp3,b are 0.0031 pF and 0.00131 pF, respectively. Based on the analysis in the 

previous subsection, the additional spike in Vcomp due to Cp3,a and Cp3,b can be calculated as 

1.54 V, which is slightly lower than the measured result, 2.25 V. The discrepancy is mainly 

because the Ansys Q3D analysis only extracts the parasitic capacitance caused by the drain 

plate and the heatsink. Other objects in the phase leg which have the same potential as the 

drain terminal of the MOSFET are not included in the Q3D model. In other words, the 

finite element analysis results still underestimate the capacitive coupling between the 

voltage divider and the drain terminal of the MOSFET. 
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(a) 

 

(b) 

Fig. 6- 18.Waveforms of 6 kV continuous ac-dc test of a phase leg based on 10 kV SiC 

MOSFETs with 90 Ω Rcla. (a) Waveform of Vcomp when desat protection is falsely 

triggered. (b) Waveform of Vdesat. 
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Fig. 6- 19. Details of capacitive coupling between the voltage divider in the desat 

protection circuitry and the drain terminal of the 10 kV SiC MOSFET. 
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To suppress the capacitive coupling between the protection circuitry and the drain 

terminal, an external copper shielding layer connected with the source of the MOSFET is 

installed beneath the desat protection circuitry, since the drain plate of the MOSFET and 

the heatsink are under the gate driver board. With 90 Ω Rcla, the copper shielding reduces 

the peak voltage spike in Vcomp from 3.8 V to 2.2 V, and false triggering of desat protection 

is eliminated, as shown in Fig. 6-20. The experimental results also demonstrate that the 

parasitic capacitances caused by the drain plate and the heatsink result in 1.6 V spike in 

Vcomp, which coincides well with the calculated value, 1.54 V. The role played by Cp3,a and 

Cp3,b in the generation of a positive voltage spike in Vcomp is hence demonstrated. Shielding 

is also shown to be an effective method to suppress the noise propagated to desat protection 

circuitry via extremely small parasitic capacitances. 

Based on the analysis and experimental results, a new iteration of desat protection 

circuitry is designed to further boost its noise immunity under high positive dv/dt. 

Numerous methods are adopted simultaneously in PCB layout and component selection. 

Compared to the design in Fig. 6-4, Rd1 and Rd2 are reduced by 66.7%, and Rd1 is 

implemented by a single 20 kΩ resistor. Rcla is reduced from 20 Ω to 10 Ω. All components 

of the desat protection circuitry are placed on the top layer of the PCB, and thereby 

completely shielded by large grounding planes in the inner layers of the PCB. This PCB 

design not only significantly suppresses the influence from parasitic capacitances Cp1, Cp2, 

and Cp3, but also leads to parasitic capacitance which effectively increases Cd. According 

to Q3D analysis, the extracted Cp3 is 0.82 fF, and inner shielding layers results in an  
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Fig. 6- 20. Waveforms of 6 kV continuous ac-dc test of a phase leg with 90 Ω Rcla and an 

external shielding layer installed.  
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increase of 1.3 pF in Cd. Further decreasing Rcla will benefit the noise immunity margin, 

but Rcla and Mcla could be damaged due to high instantaneous current if they are not selected 

carefully. According to the analytical model, the new iteration should achieve much higher 

noise immunity margin under +65 V/ns dv/dt, with Vspike reduced to 0.42 V. 

Ac-dc continuous test results of the new desat protection design in Fig. 6-21 show 

that the spike in Vcomp is significantly reduced. The measured peak spike in Vcomp under the 

dv/dt of +65 V/ns is 0.5 V, which coincides well with the calculated result, 0.42 V. The 

voltage spike in Vcomp is mainly caused by displacement current from the desat diode. 

Compared to the original design in Fig. 6-4, the noise immunity margin Vmargin increases 

by 143%. The waveform of Vcomp during 7 kV ac-dc continuous test reaffirms the 

substantial improvement of the new design in noise immunity. 

Based on the theoretical analysis and experimental results, design guidelines to 

realize better noise immunity of the desat protection are summarized in Table 13. The 

design guidelines in Table 13 do not have substantial impact on the response speed of the 

desat protection, although some may slightly slow the protection response. Similar to the 

desat protection realized by a gate driver IC, it is not recommended to select larger Cblk to 

improve noise immunity of the desat protection based on discrete components. So, strong 

noise immunity and fast response do not contradict with each other. By following the 

design guidelines in Table 13, the response speed of the desat protection based on discrete 

components should only be limited by the blanking time requirement. 

Fundamentally speaking, the noise coupled with the voltage divider usually plays 

a more dominant role, which has the capability of generating considerable voltage spike  
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                                      (a)                                                                    (b) 

Fig. 6- 21. Waveforms of Vcomp of new desat protection board with improved noise 

immunity: (a) 6 kV ac-dc continuous test; (b) 7 kV ac-dc continuous test. 

 

 

Table 13. Summary of design guidelines to improve noise immunity of desat protection 

based on discrete components 

Design guideline Detailed guideline Design trade-off 

Reduce Cp1, Cp2, 

and Cp3 

Design shielding layer and/or box 

when doing PCB layout 

Slightly slower response 

due to slightly higher Cd 

Reduce Rd1 Reduce voltage divider impedance Slightly higher loss and 

slightly slower protection 

response 

Reduce Cdesat Select or implement desat diode 

with as low parasitic capacitance as 

possible 

Increasing cost and 

perhaps size 

Reduce Rcla Select a low Rcla  Rcla and Mcla need to 

handle higher pulse 

current 

Reduce Ldesat Achieve lower parasitic inductance 

in PCB layout and connection 

Case by case 

Add Rdamp Use slightly higher Rdamp if Ldesat is 

relatively large 

Requirement: Rdamp << Rblk 

No considerable trade-

off; little impact on 

response time 

Increase Cd Add a small external capacitor (<10 

pF) to increase Cd 

Slightly slower 

protection response 

 



 

168 

 

via extremely small parasitic capacitances (<0.01 pF) that are common in numerous MV 

phase legs and converters with different topologies. So, among the design guidelines in 

Table 13, two design guidelines related to the voltage divider are effective for numerous 

MV converters based on high voltage SiC MOSFETs and have a higher priority, including 

reducing voltage divider impedance and reducing Cp3 by adding a shielding layer or box. 

Because of the high dv/dt with long duration, it is important to reduce Cp3 as much as 

possible in MV converters based on high voltage SiC MOSFETs, even when it is already 

smaller than 0.01 pF. 

6.1.4 Summary 

Noise immunity of the desat protection for high voltage SiC MOSFETs is analyzed 

in this section. Two mainstream implementations of the desat protection are studied, 

including the desat protection circuitry based on discrete components and the 

implementation with a gate driver IC with integrated desat protection function. The desat 

protection can be falsely triggered by both high positive dvds/dt and negative dvds/dt 

generated by high voltage SiC MOSFETs. Because of the long duration of the high dv/dt 

generated by high voltage SiC MOSFETs, the extremely small parasitic capacitance  

(< 0.01 pF) coupled with the voltage divider could have large influence on the noise 

induced into the desat protection circuitry based on discrete components. Other factors’ 

effects on noise are also studied, such as parasitic inductance, voltage divider impedance, 

damping resistance, and duration of high dv/dt. 

The main concern with negative dvds/dt is the resulting negative voltage spike that 

can falsely trigger the desat comparator with the phase reversal issue. Hence, the noise 



 

169 

 

immunity under the negative dvds/dt can be improved by selecting comparators without 

phase reversal issue and adding clamping diodes. 

The more challenging issue is the high positive dvds/dt, which lasts for a much 

longer time than that generated by 1.2 kV and 1.7 kV SiC MOSFETs. The analytical model 

of the noise immunity margin is established to support the noise immunity improvement 

under high positive dv/dt. The noise immunity analysis and improvements are supported 

by simulation and experimental results. Different methods and their experimental 

validation based on the derived noise immunity margin are presented to enhance the noise 

immunity. Comprehensive design guidelines to boost noise immunity are summarized, 

including circuit design, component selection, and PCB layout. None of the design 

guidelines recommended in this dissertation to improve noise immunity will slow the 

protection response significantly, and hence can be fully leveraged when designing the 

desat protection with fast response and strong noise immunity. 

6.2 Improved Desat Protection with Digital Blanking Time 

In this section, an improved desat protection scheme is designed to achieve fast 

response in overcurrent/short circuit conditions, while also featuring strong noise immunity 

and simple implementation. The response time in this chapter is defined as the time it takes 

for the device current to start to decrease after it exceeds the threshold current. 

6.2.1 Working Principles 

Details of the improved desat protection scheme are provided in Fig. 6-22. The 

fundamental idea is the same as the conventional desat protection for SiC MOSFETs, which 

is to monitor Vds and output Vdesat to indicate the device current. Once the overcurrent  
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Fig. 6- 22. Improved desat protection in the gate driver for 10 kV SiC MOSFETs. 
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protection signal is generated, an SR latch will lock the signal and output a fault signal to 

activate the soft turn-off of the MOSFET and notify the controller.  

Response time of the conventional desat protection is mainly determined by the 

blanking time to avoid false triggering during the turn-on transient [66]. Based on DPT 

results in Fig. 3-10, 10 kV/20 A SiC MOSFETs require a blanking time longer than 550 ns 

to ensure that Vds reaches steady state. With the conventional desat protection scheme which 

is adopted in the baseline phase leg design in Chapter 3, a relatively large blanking capacitor 

Cblk is selected to provide a long blanking time (> 550 ns), leading to long response time in 

all types of short circuit faults [61], including HSF, FUL, and flashover fault. 

The improved desat protection scheme utilizes the digital blanking time to enable 

the use of a small blanking capacitor Cblk. The blanking time is realized by digital ICs and 

hence is independent of Cblk. A 600 ns digital blanking time is designed after the rising edge 

of the input gate signal of the gate driver IC to disable the output signal from the desat 

comparator. In other words, even if the comparator output voltage flips during the 600 ns 

digital blanking time, the protection will not be triggered since the protection is equivalently 

disabled by the blanking time. A Zener diode Dblk with sufficient power rating ensures Vdesat 

lower than 21 V to protect the comparator.  

The screening effect is only effective for 600 ns after the rising edge of the gate 

signal for gate driver IC. During the normal turn-on transient, Vds of the MOSFET has 

already reached steady state when the digital blanking time expires, thus the protection will 

not be falsely triggered. If the digital blanking time is much shorter than 550 ns, overcurrent 

protection might be triggered immediately after the digital blanking time expires. 
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With the digital blanking time, a small blanking capacitor is used to enable Vdesat to 

follow Vds quickly when the MOSFET is fully on, leading to fast response when a FUL or 

a flashover fault happens. In other words, the response time when a FUL or a flashover fault 

happens is no longer influenced by the required blanking time. The response time under a 

HSF is still strongly impacted by the length of the digital blanking time. If a HSF occurs, 

the protection will be triggered immediately after the digital blanking time is over. If the 

digital blanking time is longer, the time it takes to clear the fault will be longer. 

6.2.2 Implementation  

The improved desat protection scheme with 600 ns digital blanking time is 

implemented with numerous digital ICs. The protection scheme can be easily realized with 

a microcontroller, yet the gate driver is not equipped with a microcontroller. Instead, the 

digital blanking time and other digital signals of the protection scheme are generated by 

logic ICs and delay ICs. 

When implementing the protection scheme, it is necessary to generate a signal to 

screen the output signal from the comparator to realize the 600 ns digital blanking time. The 

designed signal with digital blanking time is output by a XOR logic gate, and the details can 

be seen in Fig. 6-23. One input of the XOR gate is the initial gate signal with 1 μs delay. 

The other input of the XOR gate is the gate signal after the 400 ns dead time insertion, which 

is the final gate signal for gate driver IC during normal operation. The signal with digital 

blanking time stays HIGH for 600 ns after the rising edge of gate signal for gate driver IC, 

and then stays LOW as long as gate signal is still HIGH. It is able to disable the signal from 

desat comparator to realize digital blanking time since they both are sent to an OR logic  
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Fig. 6- 23. Implementation details of 600 ns digital blanking time. 

 

 

 

 

 

 

 

 

 

 

 

 



 

174 

 

gate. Thereby, even if the desat comparator outputs LOW during the 600 ns blanking time, 

the overcurrent protection signal stays HIGH, and the fault signal will not be generated. 

Such implementation scheme of 600 ns digital blanking time also screens the 

comparator output signal for 1 μs after the falling edge of gate signal. As shown in  

Fig. 6-23, the signal with digital blanking time from an XOR gate maintains HIGH for 1 μs 

after the falling edge of gate signal. In fact, overcurrent protection is not required when the 

MOSFET is turned off. Moreover, such effect also eliminates false triggering during the fast 

turn-off transient with high positive dv/dt and leads to better noise immunity. One 

disadvantage is that such implementation requires the MOSFET to stay OFF for at least  

600 ns, otherwise the signal with digital blanking time can be wrong. This requirement sets 

an upper limit for the duty cycle of the MOSFET, which is 94% when the switching 

frequency is as high as 100 kHz. 

The 10 kV desat diode Ddesat is realized by the series connection of three 3.3 kV SiC 

Schottky diodes (GAP3SLT33-220FP) [87]. Each SiC diode is in parallel with a  

50 MΩ/4 kV resistor (HVC4020V5005JET from Ohmite) to ensure voltage balancing 

during steady state and switching transients. Also, insulation design for the 10 kV desat 

diode usually results in increased gate driver footprint, as can be seen in Fig. 3-2. To 

overcome this drawback, a daughterboard perpendicular to the motherboard is designed to 

accommodate the 10 kV desat diode, in which diodes are soldered as surface-mount devices, 

as shown in Fig. 6-24(a). A high voltage wire is used to connect the daughterboard with the 

drain terminal of the MOSFET. The daughterboard is coated with insulating material (Super 

Corona Dope) to reduce the insulation distance requirement. Hence, the desat diode does  
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(a) 

 

(b) 

Fig. 6- 24. (a) Detailed 3D design of the phase leg. (b) Prototype of half bridge phase leg 

with improved desat protection in high voltage test platform. 
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not increase the gate driver footprint and the volume of the phase leg. Series connection of 

SiC diodes also effectively reduces the parasitic capacitance Cdesat. 3 V voltage drop of the 

desat diode should be considered when determining the threshold voltage. Based on the  

I-V characteristic of the 10 kV SiC MOSFET, the designed protection threshold is 15 V, 

leading to 20 A threshold current at 125 ̊ C and 42.85 A threshold current at 25 ̊ C. The final 

threshold voltage is 18 V to compensate the 3 V voltage drop of the desat diode. 

6.2.3 Discussions of Response Time 

The improved desat protection scheme has fast response when a FUL or flashover 

fault happens, depending on how fast Vdesat can follow Vds. When a HSF happens, the 

response time is mainly determined by the length of digital blanking time. If a longer digital 

blanking time is implemented, response to clear a HSF will be slower, while the response 

time under a FUL or a flashover fault will not be influenced. Therefore, tuning Rblk, Rdamp, 

and Cblk only changes the response time under the FUL or flashover fault. 

With the improved desat protection scheme, the response time under the FUL and 

flashover fault is adjusted by changing Rblk and Cblk. A 90 Ω Rdamp is introduced to dampen 

the oscillations. Under the FUL or flashover fault, the capability of Vdesat to track Vds 

depends on Cblk and Ichg, the current available to charge Cblk. To achieve faster tracking 

speed and shorter response time, a small Cblk and a high Ichg are desired, and Ichg can be 

calculated as follows. 

𝐼𝑐ℎ𝑔 =
𝑉𝑐𝑐 − 𝑉𝑑𝑒𝑠𝑎𝑡
𝑅𝑏𝑙𝑘 + 𝑅𝑑𝑎𝑚𝑝

−
𝑅𝑏𝑙𝑘

𝑅𝑏𝑙𝑘 + 𝑅𝑑𝑎𝑚𝑝

𝐼𝑑𝑒𝑠𝑎𝑡 (6.17) 
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Vcc in the equation is the power supply voltage, +30 V, and Idesat is the displacement current 

of the desat diode. A smaller Rblk and a Vcc higher than +30 V lead to faster response, but 

the power loss of Rblk when the 10 kV SiC MOSFET is turned off also rises. 

Under the flashover fault and the FUL with high positive dvds/dt at the beginning 

of the fault, the desat diode almost immediately becomes reverse biased, and all current 

from Vcc is used to charge Cblk. Under the flashover fault with extremely high dvds/dt and 

di/dt, Idesat turns zero and then its direction changes within several nanoseconds. Assuming 

that the short circuit current reaches the peak when Vgs starts to drop, the response time in 

this case can be estimated as follows. 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡) = [
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞

𝑅𝑏𝑙𝑘
+ 𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑖𝑛𝑖,𝑑] (1 − 𝑒

−𝑡
𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞) + 𝑉𝑖𝑛𝑖,𝑑 (6.18) 

𝑡𝑟𝑒𝑠 = 𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞 ln [
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞 + 𝑅𝑏𝑙𝑘(𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑖𝑛𝑖,𝑑)

(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞 + 𝑅𝑏𝑙𝑘(𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ)
] (6.19) 

In the equations, Rblk,eq (Rblk,eq = Rblk // (Rd1+Rd2)) is the parallel resistance of Rblk and 

Rd1+Rd2. Cblk should be the total capacitance between Vclamp and Vdesat, including the 

parasitic capacitances. Vini,d is the value of Vdesat right before the fault happens. The impact 

of the positive dvds/dt during the fault is also neglected. 

In terms of the FUL, the other case is that the desat diode is still in conduction mode 

at the beginning of the fault. As the short circuit current accumulates, Vds increases 

accordingly without a high dv/dt, so Vdesat also rises. When the short circuit current reaches 

the threshold current, Vdesat is already close to the protection threshold voltage Vdesat,th, 

significantly higher than Vini,d in the equation (6.19). Thereby, the response time under this 

kind of FUL is significantly shorter than the response time calculated with (6.19). 
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Finally, 12 pF Cblk and 3.25 kΩ Rblk are selected for the improved desat protection 

scheme to secure <200 ns response time under the FUL and the flashover fault. The 

estimated response time is 139.5 ns based on (6.19), assuming 3 V Vini,d at 0 A device 

current. Rblk will have 377 mW power loss when the MOSFET is off. Under the FUL and 

flashover fault with high positive dvds/dt, the considerable Idesat makes the response time 

even shorter. If the flashover fault happens when the device current is negative, the 

response will be slightly slower. Generally, <200 ns response time under the FUL and 

flashover fault can be guaranteed. 

6.2.4 Experimental Results 

Captured waveforms of the lower MOSFET of the phase leg under HSF short 

circuit fault can be seen in Fig. 6-25. When conducting the HSF short circuit test, the upper 

MOSFET is shorted with a high voltage wire with a parasitic inductance of 171 nH. The 

improved desat protection responds immediately after the 600 ns digital blanking time 

expires, triggering the soft turn-off process. The turn-off di/dt is -0.438 A/ns leading to 

small voltage overshoot in Vds. The short circuit response time is 340 ns, and the total short 

circuit energy loss is 178 mJ. Before the protection is triggered, Vdesat has already exceeded 

the 18 V protection threshold voltage, proving the effectiveness of the digital blanking 

time. The digital blanking time is slightly shorter than 600 ns, which is likely owing to the 

propagation delay in the gate driver IC. 

Fig. 6-26 displays the test result of the same phase leg under FUL fault at 6.5 kV. 

When both MOSFETs are turned off, the measured Vds of the lower MOSFET is ~2 kV, 

lower than Vdc/2, because the lower MOSFET of the phase leg has lower leakage resistance  
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Fig. 6- 25. HSF short circuit test waveform of lower MOSFET in the phase leg. 

 

 

 

 

 
 

 

Fig. 6- 26. FUL short circuit test waveform of lower MOSFET in the phase leg. 
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than the upper MOSFET. A FUL fault is generated by turning on the upper MOSFET when 

the lower MOSFET is already in ON state. As short circuit current increases rapidly, Vds 

of the lower device and Vdesat rise accordingly, while most of dc-link voltage occurs across 

the upper MOSFET under a HSF fault. After 290 ns, Vgs starts to decrease to turn off the 

device, and meanwhile the short circuit current continues to increase. Vds does not increase 

with high dv/dt (66 V/ns) until the short circuit current starts to drop. In this case, the 

displacement current caused by dv/dt has little impact on Vdesat before the protection is 

triggered.  

The measured response time under the FUL fault is 195 ns thanks to the small Cblk. 

Under this kind of FUL fault, the measured waveforms show that the short circuit current 

continues increasing for 115 ns after soft turn-off process is initiated. In this kind of FUL 

fault, it is difficult to estimate the response time because of difficulty in predicting when 

the short circuit current reaches the peak. The peak short circuit current is 76 A, 

significantly lower than that under HSF fault. The total power loss is 29.77 mJ, including 

the turn-off loss. Also, the measured Vgs waveform is distorted by the voltage drop on the 

common source inductance Lss. When the short circuit current increases, the positive 

voltage drop on Lss results in the measured Vgs higher than 15 V. Voltage drop on Lss also 

changes drastically when short circuit current reaches the peak, since the di/dt changes 

from 0.24 A/ns to -0.4 A/ns.  

Unfortunately, there is no experimental setup available in the lab for a flashover 

fault test with an extremely high dv/dt. Since <200 ns response time has been verified in 
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the FUL fault test, similar response should also be achieved under the flashover fault, and 

the higher positive dvds/dt during the flashover fault could lead to shorter response time. 

Continuous test of the phase leg is conducted to fully qualify the noise immunity 

of the improved desat protection. In the continuous ac-dc test, the HB phase leg is 

configured as an inverter with the fundamental frequency of 300 Hz, the same as the 

continuous test in the baseline test in Chapter 3 [1]. Fig. 6-27 displays the continuous test 

waveform at 6.5 kV. The total dead time is 600 ns with 200 ns dead time generated by the 

controller. The modulation index is 0.55 to output the load current with the peak value of 

~6 A. Vdesat used for overcurrent protection also has a sinusoidal shape, indicating that it is 

able to follow Vds quickly when the MOSFET is in ON state. It can also be seen that Vdesat 

is clamped at -5 V when MOSFET is turned off. Successful ac-dc continuous switching 

test demonstrates the excellent noise immunity of the improved desat protection. 

6.3 Desat Protection with Ultrafast Response 

This section presents a desat protection scheme with ultrafast response for 10 kV 

SiC MOSFETs. Its working principle is the same as the conventional desat protection for 

the 10 kV SiC MOSFET, yet its blanking time is designed by fully considering the 

influence of negative dvds/dt during its fast turn-on transient. Meanwhile, the noise 

immunity is not impaired by following the design guidelines in Section 6.1. In this section, 

the 10 kV/20 A SiC MOSFET is used as an example to illustrate this desat protection 

scheme with ultrafast protection [1]. The desat protection scheme can also be designed to 

protect other high voltage SiC MOSFETs from short circuit/overcurrent faults. 
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Fig. 6- 27. Waveforms of ac-dc continuous test at 6.5 kV. 
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6.3.1 Working Principles 

One advantage of the proposed desat protection scheme with ultrafast response is 

that it has the same circuitry as the conventional desat protection. Fig. 6-28 shows the 

circuit diagram of the desat protection with ultrafast response for the 10 kV/20 A SiC 

MOSFETs, the same as the desat protection introduced in Chapter 3. 

The blanking time is required in desat protection to prevent false triggering during 

the turn-on transient. Usually it is assumed that Vdesat will be dominated by the capacitive 

charging process during the blanking time. Based on this assumption, the waveform of 

Vdesat is drawn in Fig. 6-29(a). After Vgs starts to rise, Vdesat will still be clamped at Vclamp 

for a time interval tcla since it takes time to turn off Mcla. tcla can be adjusted by tuning 

Rgoff,cla, the turn-off gate resistance of Mcla. After Mcla is turned off, Vdesat will keep 

increasing as the charging process goes on. The length of blanking time tblk can be 

expressed as follows. 

𝑡𝑏𝑙𝑘 = 𝑡𝑐𝑙𝑎 + 𝑡𝑅𝐶 (6.20) 

In the equation, tRC is the time interval it takes for Vdesat to rise from Vclamp to Vdesat,th as a 

result of R-C charging process. To avoid false triggering during the blanking time, the 

conventional desat protection possesses a R-C network with a large time constant so that 

Vdesat is always lower than Vdesat,th during the blanking time [1], [66]. The improved desat 

protection in Section 6.2 introduces the digital blanking time so that desat protection is 

effectively disabled during the blanking time.  

However, the assumption is not valid during the fast turn-on transients of high 

voltage SiC MOSFETs. High dvds/dt with long duration during the turn-on transients has 

not been considered, which also plays a critical part in shaping Vdesat via the parasitic  
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Fig. 6- 28. Circuit diagram of desat protection with ultrafast response for 10 kV/20 A SiC 

MOSFET 

 
 
 
 
 
 

 

                           (a)                                       (b)                                             (c) 

Fig. 6- 29. Waveforms of Vdesat during blanking time: (a) impact of high dv/dt neglected; 

(b) reverse recovery process neglected; (c) both high dv/dt and reverse recovery 

considered. 
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capacitance Cdesat. The high dvds/dt during the normal turn-on transient is negative and 

generates the displacement current that should be sourced by the desat protection circuitry 

as displayed in Fig. 6-28. As a result, Vdesat will be heavily shaped by high negative dvds/dt 

during the blanking time. 

The normal turn-on transients of high voltage SiC MOSFETs have high dv/dt for 

low switching loss and hence draws a large displacement current Cdesatdvds/dt. Typically, 

the current provided by Vcc in desat protection is too low to supply the required 

displacement current. Once high dv/dt is generated during the normal turn-on transients, 

Vdesat will stop rising and start decreasing as Cblk is discharged to provide Cdesatdvds/dt. 

Because of the long duration of voltage fall time and small Cblk with limited stored charge, 

Cblk will be discharged quickly, and the diode Dblk will be forward biased to clamp Vdesat 

until the voltage fall time with high dv/dt ends. In this case, at the end of the voltage fall 

time, Vdesat is reset to its original value if the forward voltage drop of Dblk is neglected. The 

real blanking time tblk after considering the effect of high dv/dt during the fast turn-on 

transient of high voltage SiC MOSFETs is as follows. 

𝑡𝑏𝑙𝑘 = 𝑡𝑐𝑙𝑎 + 𝑡𝑚 + 𝑡𝑓𝑎𝑙𝑙 + 𝑡𝑅𝐶 (6.21) 

tfall is the voltage fall time of Vds with high dv/dt during the normal turn-on transients. tm is 

the time interval between the end point of tcla and the starting point of tfall. Details are 

illustrated in Fig. 6-29(b).  

In fact, Vdesat will not necessarily start rising immediately after the high negative 

dv/dt disappears. If Dblk is a clamping diode with p-n junction, Vdesat will still be clamped 

until the reverse recovery process is over [17]. Also, the body diode of the MOSFET Mcla 
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has reverse recovery effect. As shown in Fig. 6-29(c), the real blanking time after 

considering high dv/dt will be even longer because of the reverse recovery effect [17]. 

𝑡𝑏𝑙𝑘 = 𝑡𝑐𝑙𝑎 + 𝑡𝑚 + 𝑡𝑓𝑎𝑙𝑙 + 𝑡𝑟𝑟 + 𝑡𝑅𝐶 (6.22) 

In the equation, trr is the reverse recovery time during which Vdesat will still be clamped at 

Vclamp. The reverse recovery process can be eliminated by selecting a Schottky diode as Dblk 

and a bipolar junction transistor (BJT) as Mcla. 

Since the real blanking time of desat protection can be effectively prolonged by the 

high dv/dt and the reverse recovery process, a R-C network with a much smaller time 

constant can be designed to realize the desat protection with ultrafast response without false 

triggering issue during the normal turn-on transients. To achieve the desat protection 

scheme with ultrafast response, Rblk and Cblk are selected so that Vdesat will continue to 

decrease and later be clamped during the voltage fall time with high dv/dt. A Si diode with 

p-n junction and a Si MOSFET are selected to serve as Dblk and Mcla, respectively, in order 

to take advantage of the reverse recovery effect for longer blanking time. 

During the voltage fall time with high negative dv/dt, Vdesat(t) can be analyzed with 

the superposition theorem. To simplify the analysis, a constant dv/dt is assumed during the 

voltage fall time of Vds, and Rdamp is neglected. Also, the nonlinear parasitic capacitance of 

the desat diode is modeled with its charge-equivalent linear capacitance Cdesat [102]. After 

considering the constant dc voltage source Vcc and the constant dc current source 

Cdesatdv/dt, Vdesat in frequency domain is expressed as: 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑠) = (
𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝

𝑅𝑏𝑙𝑘
+ 𝐶𝑑𝑒𝑠𝑎𝑡

𝑑𝑣

𝑑𝑡
)

𝑅𝑏𝑙𝑘,𝑒𝑞

1 + 𝑠𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞
+ 𝑉𝑐𝑙𝑎𝑚𝑝 (6.23) 

Rblk,eq (Rblk,eq = Rblk // (Rd1+Rd2)) is the parallel resistance of Rblk and Rd1+Rd2. Then, during 



 

187 

 

the voltage fall time, Vdesat in time domain can be solved as follows. 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡) = 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) + [𝑉𝑑𝑒𝑠𝑎𝑡,𝑀 − 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞)]𝑒
−𝑡

𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞 (6.24) 

It should be noted that the reference point of Vdesat in this section is 0 V. Vdesat,M is the value 

of Vdesat at the starting point of the voltage fall time. Also, the dv/dt is negative during the 

voltage fall time. 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) can be expressed as: 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) = (𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)
𝑅𝑏𝑙𝑘,𝑒𝑞

𝑅𝑏𝑙𝑘
+ 𝐶𝑑𝑒𝑠𝑎𝑡

𝑑𝑣

𝑑𝑡
𝑅𝑏𝑙𝑘,𝑒𝑞 + 𝑉𝑐𝑙𝑎𝑚𝑝 (6.25) 

To ensure that 𝑉𝑑𝑒𝑠𝑎𝑡  can be clamped at Vclamp, the fundamental requirement is that 

𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞) should be lower than Vclamp. The requirement can be rewritten as: 

𝑅𝑏𝑙𝑘,𝑒𝑞 >
𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑐𝑐

𝐶𝑑𝑒𝑠𝑎𝑡
𝑑𝑣
𝑑𝑡

(6.26) 

If Rblk cannot satisfy the requirement in (6.26), Vdesat will never drop to the voltage level 

lower than Vclamp. Cblk only influences how quickly Vdesat drops. Also, the higher the 

negative dv/dt becomes, the more quickly Vdesat can drop during the voltage fall time, which 

also means Vdesat can drop to Vclamp more easily. 

Similar analysis can be conducted for the desat protection realized with a gate driver 

IC shown in Fig. 6-1(b). If the displacement current flowing through Cdesat is sufficiently 

large due to high dv/dt, Vdesat will keep dropping and finally be clamped by Dblk. The real 

blanking time can be much longer with the help of high dv/dt and the reverse recovery of 

Dblk. In order to ensure that Vdesat can be clamped by Dblk during the voltage fall time with 

high dv/dt, the requirement is expressed as: 

(𝐶𝑑𝑒𝑠𝑎𝑡
𝑑𝑣

𝑑𝑡
− 𝐼𝑐𝑐)𝑡𝑓𝑎𝑙𝑙 > 𝐶𝑏𝑙𝑘(𝑉𝑑𝑒𝑠𝑎𝑡,𝑀 − 𝑉𝑐𝑙𝑎𝑚𝑝) (6.27) 

Therefore, a smaller Cblk can be adopted to speed up the protection response significantly. 
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It is not necessary to select Cblk based on the traditional blanking time requirement in desat 

protection, which does not consider the influence of high negative dv/dt on Vdesat. In fact, 

The smaller Cblk is, the more quickly Vdesat will drop to Vclamp during the voltage fall time. 

6.3.2 Design Details 

In this subsection, design details of the desat protection with ultrafast protection 

will be covered for 10 kV/20 A discrete SiC MOSFETs shown in Fig. 3-1 [1]. The 

protection circuitry is the same as the conventional desat protection based on discrete 

components in Fig. 6-1(a). A Si clamping diode with p-n junction is installed as Dblk, and 

a Si MOSFET is installed as Mcla. Together, they contribute to a reverse recovery time trr 

of 370 ns, as shown in the waveform of Vdesat in Fig. 6-30.  

The experimental waveform of Vdesat in Fig. 6-30 is obtained during the ac-dc 

continuous power test of the HB phase leg based on 10 kV/20 A SiC MOSFETs at 6 kV. 

Again, the phase leg is configured as a half bridge inverter, and details are introduced in 

Chapter 3. After high negative dvds/dt is generated, Vdesat is clamped at a voltage level 

slightly lower than -5 V Vclamp, which proves that Dblk becomes forward biased. Without 

the clamping diode Dblk, the period during which Vdesat is clamped after the voltage fall 

time is reduced by 210 ns, as displayed in Fig. 6-31. It is hence proved that the clamping 

diode Dblk participates in clamping Vdesat with its reverse recovery process. After removing 

Dblk, trr is reduced to 160 ns, which is attributed to the reverse recovery process of the body 

diode of Si MOSFET Mcla (BSS138). Generally, the experimental waveforms in Fig. 6-30 

and Fig. 6-31 validate the analysis about the impact of negative dv/dt and reverse recovery 

effect on Vdesat during the blanking time in Fig. 6-29.   
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Fig. 6- 30. Waveform of Vdesat during 6 kV ac-dc continuous test (with Dblk, 56 pF Cblk, 

6.5 kΩ Rblk, 470 Ω Rgoff,cla). 

 
 

 

Fig. 6- 31. Waveform of Vdesat during 6 kV ac-dc continuous test (without Dblk, 56 pF 

Cblk, 6.5 kΩ Rblk, 470 Ω Rgoff,cla). 
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With a trr of 370 ns, according to (6.22), using the R-C network with a much smaller 

time constant can still result in the effective blanking time longer than 550 ns, which is 

required based on the switching characteristic of the 10 kV SiC MOSFET shown in  

Fig. 3-10.  

When designing the R-C network, the primary consideration is that Vdesat can drop 

rapidly and finally be clamped during the voltage fall time. Thus, according to (6.26), Rblk 

can be selected based on 𝐶𝑑𝑒𝑠𝑎𝑡
𝑑𝑣

𝑑𝑡
 first, which is the displacement current flowing through 

the desat diode. As displayed in Fig. 6-32, turn-on dv/dt of the 10 kV SiC MOSFET 

increases rapidly as the MOSFET switches at higher voltage levels, while Cdesat, the charge-

equivalent linear capacitance of the desat diode, reduces significantly as the switching 

voltage rises [102]. As a result, the displacement current 𝐶𝑑𝑒𝑠𝑎𝑡
𝑑𝑣

𝑑𝑡
 increases by 237% as 

the voltage increases from 200 V to 6500 V, as indicated in Fig. 6-33. To satisfy the 

requirement in (6.26) at all voltage levels under 6500 V, Rblk,eq should be at least 1.01 kΩ. 

Rblk is finally selected as 3.25 kΩ after considering 200% margin. 

The margin is introduced for a series of reasons. 𝑉𝑑𝑒𝑠𝑎𝑡(𝑡 = +∞)  should be much 

lower than Vclamp in order to guarantee that Vdesat can drop to Vclamp and be clamped by Dblk 

before the voltage fall time of Vds is over, which is usually shorter than 150 ns. The forward 

voltage drop of Dblk should be considered as well. The margin is also helpful in ensuring 

Vdesat can be clamped at Vclamp when the MOSFET switches with lower turn-on dv/dt. For 

example, the turn-on dv/dt will be lower than the dv/dt data in Fig. 6-32 if the MOSFET 

switches with higher gate resistance or the load current higher than 5 A. Also, Rblk,eq is 

always slightly lower than Rblk. Therefore, the 200% margin is necessary. 
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Fig. 6- 32. Turn-on dv/dt (at 5 A and 25 ˚C) of 10 kV/20 A SiC MOSFETs and equivalent 

capacitance of desat diode at different voltage levels. 

 

 

 

 

 

Fig. 6- 33. Displacement current flowing through desat diode (Cdesatdv/dt, calculated 

based on data in Fig. 6-32) at different voltage levels. 
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When selecting Rblk, it is not recommended to add too much margin, which will 

slow down the protection response. Also, the selection of Rblk is heavily impacted by the 

switching speed of the 10 kV SiC MOSFET. Higher turn-on dv/dt caused by the smaller 

gate resistance enables the use of a smaller Rblk, and makes protection response even faster.  

As for the selection of Cblk, Cblk should be as small as possible to ensure that Vdesat 

is brought down to Vclamp rapidly before the voltage fall time is over. Another important 

consideration is that a small Cblk supports the fast protection response. The lower limit of 

Cblk is determined by the requirement that Vdesat,M should not exceed the threshold voltage 

before the high negative dv/dt is generated during the turn-on transient, as shown in (6.28). 

The effect of the capacitor Cd in the voltage divider is neglected here, to simplify the 

analysis. 

𝑉𝑑𝑒𝑠𝑎𝑡,𝑀 = 𝑉𝑐𝑙𝑎𝑚𝑝 +
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞

𝑅𝑏𝑙𝑘
[1 − 𝑒

−(𝑡𝑑−𝑡𝑐𝑙𝑎)
𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞] < 𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ (6.28) 

td is defined as the time interval between the rising edge of Vgs and the starting point of the 

voltage fall time with high dv/dt. In other words, td is the sum of tm and tcla. If Vdesat,M is 

higher than Vdesat,th due to the small Cblk, the desat protection will be falsely triggered before 

the voltage fall time. The requirement for Cblk can be rewritten as: 

𝐶𝑏𝑙𝑘 >
𝑡𝑑 − 𝑡𝑐𝑙𝑎

𝑅𝑏𝑙𝑘,𝑒𝑞 ln [
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞

(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞 + 𝑅𝑏𝑙𝑘(𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ)
]

(6.29)
 

The lower limit of Cblk is mainly determined by td and tcla. Based on measured 

switching transients of 10 kV SiC MOSFETs, td is a strong function of the load current and 

junction temperature, as shown in Fig. 6-34. Higher load current leads to longer td, because 

of the longer current rise time during the turn-on transient. At higher junction temperature,  
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Fig. 6- 34. Measured td during the turn-on transient of the 10 kV/20 A SiC MOSFET at 

6.5 kV dc bus voltage. 
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td becomes shorter due to the lower gate threshold voltage Vg,th and shorter turn-on delay 

time. The dc voltage does not have a significant influence on td, as shown in the waveforms 

of Vds in Fig. 6-35 during the turn-on transient with dc voltage ranging from 1 kV to  

6.5 kV at 10 A load current. As dc voltage decreases from 6.5 kV to 1 kV, td only reduces 

by 7.6%, which could be attributed to the slightly higher Vg,th at higher dc voltage. In 

summary, td is dominated by the load current and junction temperature during the normal 

turn-on transient of the 10 kV/20 A SiC MOSFETs. 

As higher load current and lower junction temperature lead to longer td, the 

selection of Cblk should be based on the maximum load current of the phase leg and lowest 

device junction temperature. To support higher load current of the phase leg, a higher Cblk 

should be selected, and the response time to clear short circuit faults will be longer.  

In fact, Cblk in this chapter is the lumped capacitance between Vdesat and Vclamp. The 

nonlinear parasitic capacitance of Dblk and Mcla, and the parasitic capacitance due to PCB 

layout, should all be included in Cblk. Cblk contributed by parasitic capacitances can be 

modeled with a linear capacitor, based on the waveform of Vdesat measured in the benchtop 

test with 0 pF capacitor installed as Cblk. The benchtop test results show that Cblk due to 

parasitic capacitances can be modeled by an equivalent linear capacitance of 51.2 pF. 

Cblk should be selected based on the maximum td at rated device current (20 A) and 

room temperature. According to measured turn-on transient waveforms of the 10 kV/20 A 

SiC MOSFET, the maximum td is 235 ns at 6.5 kV/20 A. Then, if we neglect tcla by using 

a small Rgoff,cla, the selected Cblk should be 54.4 pF. In fact, Vdesat might start to rise before 

Vgs starts to increase from -5 V because of the 40 ns propagation delay of the gate driver 
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Fig. 6- 35. Waveforms of Vds during the turn-on transient of the 10 kV/20 A SiC 

MOSFET at different dc voltage levels (at 10 A and 25 ˚C). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

196 

 

IC. So, the maximum td we use for selecting Cblk is increased to 285 ns, and Cblk is finally 

selected as 66 pF. Considering the 51.2 pF Cblk caused by parasitic capacitances, the 

installed Cblk is 15 pF. This is called the desat protection design 1 with ultrafast protection 

response. In reality, measurement results show that this design has 20 ns tcla due to the  

110 Ω Rgoff,cla. 

Based on (6.29), the lower limit of Cblk can be smaller by selecting a higher Rgoff,cla 

to prolong tcla. Adopting longer tcla and smaller Cblk can speed up the response of the desat 

protection under the FUL and the flashover short circuit fault. The protection response 

under the FUL and the flashover fault will not be affected by tcla, since Mcla is already 

turned off when the two kinds of fault happen, while a smaller Cblk will accelerate the 

protection response under the two kinds of fault. So, we can design the desat protection 

design 2 with ultrafast protection response by selecting a larger Rgoff,cla and a smaller Cblk.   

In this case, we achieve the lowest feasible Cblk by not installing any capacitor in 

the position of Cblk. The equivalent Cblk is hence 51.2 pF. Then, tcla should be selected based 

on the 285 ns maximum td to avoid the false triggering due to the large Vdesat,M. According 

to (6.29), the requirement for tcla can be written as: 

𝑡𝑐𝑙𝑎 > 𝑡𝑑 − 𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞 ln [
(𝑉𝑐𝑐−𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞

(𝑉𝑐𝑐−𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞+𝑅𝑏𝑙𝑘(𝑉𝑐𝑙𝑎𝑚𝑝−𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ)
] (6.30)  

 So, tcla is selected as 65 ns in order to make sure that Vdesat,M is still lower than the 

protection threshold voltage when td is as long as 285 ns. Compared to the desat protection 

design 1, the desat protection design 2 with ultrafast response has longer tcla to enable a 

smaller Cblk, as shown in Table 14. 
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Table 14. Summary of parameters of two desat protection designs with ultrafast response 

 Desat protection design 1 Desat protection design 2 

Rgoff,cla 110 Ω 348 Ω 

Measured tcla 20 ns 65 ns 

Installed Cblk 15 pF 0 pF 

Equivalent Cblk 66.2 pF 51.2 pF 

Rblk 3.25 kΩ 3.25 kΩ 

Calculated tHSF 305 ns 285 ns 
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tcla is an influencing factor of the protection response under the HSF fault, although 

it is independent of the protection response under the FUL fault and the flashover fault. 

Under the HSF fault, the time interval tHSF between the rising edge of Vgs and the falling 

edge of Vgs after the protection is triggered to clear the HSF fault can be estimated as 

follows. 

𝑡𝐻𝑆𝐹 = 𝑡𝑐𝑙𝑎 + 𝐶𝑏𝑙𝑘𝑅𝑏𝑙𝑘,𝑒𝑞 ln [
(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞

(𝑉𝑐𝑐 − 𝑉𝑐𝑙𝑎𝑚𝑝)𝑅𝑏𝑙𝑘,𝑒𝑞 + 𝑅𝑏𝑙𝑘(𝑉𝑐𝑙𝑎𝑚𝑝 − 𝑉𝑑𝑒𝑠𝑎𝑡,𝑡ℎ)
] (6.31) 

In the equation, the impact of displacement current from Cdesat is neglected during 

the HSF fault, in order to simplify the analysis. After applying the requirement in either 

(6.29) or (6.30) in equation (6.31), we can obtain the following result. 

𝑡𝐻𝑆𝐹 > 𝑡𝑑 (6.31) 

So, no matter how tcla and Cblk are designed, tHSF should always be longer than the 

maximum td. The calculated tHSF of the two protection designs can be seen in Table 14, 

both of which are longer than the maximum td. In summary, with the proposed desat 

protection scheme, the response under a HSF is limited by td, which is determined by the 

turn-on characteristic of the 10 kV SiC MOSFET. With high negative dv/dt considered 

during the turn-on transient, the response time under a HSF is no longer determined by the 

effective blanking time. Because of the smaller Cblk, the desat protection design 2 can have 

faster response to clear FUL and flashover faults. Yet the desat protection design 2 has 

almost the same response to clear the HSF fault as the desat protection design 1. 

In terms of the protection response under the FUL fault and the flashover fault, the 

response is limited by how low Cblk can be in reality. The lowest Cblk that can be achieved 

feasibly is determined by parasitic capacitance between Vdesat and Vclamp. Then, the required 
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tcla and Rgoff,cla can be selected accordingly, based on (6.30). It should be mentioned that 

the selection of tcla will not influence the turn-on characteristic of Mcla, since the turn-off 

gate resistance of Mcla is different from its turn-on gate resistance. 

In addition, when designing the desat protection scheme with ultrafast response for 

the implementation realized with a gate driver IC shown in Fig. 6-1(b), tcla cannot be 

selected, since it is determined by the gate driver IC. Without this design freedom, the 

protection response under the FUL fault and the flashover fault cannot be tuned. Cblk should 

be selected based on the maximum td and the tcla determined by the gate driver IC. 

6.3.3 Experimental Results 

The desat protection design 1 with ultrafast response is fully tested with short circuit 

tests and ac-dc continuous switching test. HSF short circuit test result at 6.5 kV (short 

circuit inductance: 71 nH) demonstrates that the HSF fault with a peak current of 71.2 A is 

cleared with a response time of 120 ns. Meanwhile, the desat protection in the baseline 

design in Chapter 3 has a response time of 1075 ns under the HSF fault at 6.5 kV, based 

on the definition of response time in this chapter. With 89% reduction in response time 

under the HSF fault, the desat protection design 1 with ultrafast response has successfully 

achieved much faster response than the desat protection in the baseline phase leg design. 

Moreover, the 120 ns response time achieved by the desat protection design 1 with ultrafast 

response is 65% shorter than the response time of the improved desat protection in  

Section 6.2 when clearing the HSF fault. 

As shown in Fig. 6-36, the protection responds and initiates the soft turn-off process 

within 370 ns after Vgs starts to rise, which is slightly longer than the calculated 305 ns tHSF  
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Fig. 6- 36. HSF short circuit test waveform of 10 kV SiC MOSFET with desat protection 

design 1 with ultrafast response. 
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in Table 14. The difference is mainly due to the total propagation delay when the gate 

driver is trying to turn off the MOSFET, especially the 40 ns propagation delay in the gate 

driver IC. The other reason is that the low negative dv/dt in Vds during the HSF fault slows 

down the rise of Vdesat slightly. It should be mentioned that the measured waveform of Vgs 

during HSF fault is distorted by the voltage drop on the common source inductance, 

especially when the di/dt of short circuit current suddenly changes. 

FUL short circuit test of the lower MOSFET in the phase leg is also conducted at 

6.5 kV, as displayed in Fig. 6-37. The FUL short circuit is generated by turning on the 

upper MOSFET with the same process as the FUL test in Section 6.2. The response time 

under FUL fault is 215 ns after the device current reaches the threshold current (42.5 A at 

25 ˚C). In fact, the device current continues increasing after the soft turn-off process is 

initiated, until it reaches the peak current of 80 A. The detection time before triggering the 

soft turn-off process is only 95 ns. 

In addition to the ultrafast protection response, the strong noise immunity of the 

protection design 1 with ultrafast response is fully validated with the ac-dc continuous test 

at 6.6 kV. During the ac-dc continuous test, the protection was never falsely triggered. The 

waveform captured during the ac-dc continuous switching test can be seen in Fig. 6-38. 

When the lower MOSFET of the phase leg serves as the synchronous device with negative 

load current, Vdesat does not have significant positive spikes. In this case, the lower 

MOSFET can achieve ZVS turn-on with sufficiently high load current, and Vdesat is quickly 

clamped by the desat diode after Vgs starts to rise. Even if the load current is too low to 

achieve ZVS, the spike of Vdesat is still low because of the low load current and short td.  
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Fig. 6- 37. FUL short circuit test waveform of 10 kV SiC MOSFET with desat protection 

design 1 with ultrafast response. 

 
 
 
 
 

  

                                     (a)                                                              (b) 

Fig. 6- 38. Waveforms captured during 6.6 kV ac-dc continuous test with desat protection 

design 1 with ultrafast response. 
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When the load current is positive, the lower MOSFET cannot achieve ZVS and 

serves as the active switch in the phase leg. The magnitude of Vdesat,M becomes 

considerable, and Vdesat,M has a sinusoidal shape because higher device current leads to 

longer td. The magnitude of Vdesat,M in Fig. 6-30 and 6-31 is low due to the large time 

constant of R-C network and the large Rgoff,cla (470 Ω). As shown in zoom-in waveform 

with ~5.5 A load current in Fig. 6-38(b), because of the small Rgoff,cla, Vdesat rises almost 

immediately after Vgs starts to rise.  Vdesat exceeds 10 V before quickly dropping to ~-5 V 

because of the high negative dv/dt during the fast turn-on transient.  

The desat protection design 2 with ultrafast response is also validated with a series 

of short circuit tests and ac-dc continuous test. With the desat protection design 2 with 

ultrafast response, HSF short circuit test result at 6.5 kV proves that the HSF fault with a 

peak current of 68 A is cleared with a response time of 115 ns, as displayed in Fig. 6-39. 

The HSF short circuit test setup is the same as the desat protection design 1 with ultrafast 

response. The measured time interval tHSF between the rising edge and falling edge of Vgs 

is 358 ns, still slightly higher than the calculated 285 ns tHSF in Table 14, which is similar 

to the case in protection design 1. 

Although the test setup generating a flashover fault is not available in the laboratory, 

the FUL test setup can be adjusted to generate a FUL which is closer to a flashover fault. 

In the phase leg, the upper MOSFET used to generate a FUL has 15 Ω turn-on gate 

resistance. To make the FUL closer to a flashover fault, the turn-on gate resistance of the 

upper MOSFET is reduced to 3 Ω, resulting in higher di/dt during the FUL. Further  
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Fig. 6- 39. HSF short circuit test waveform of 10 kV SiC MOSFET with desat protection 

design 2 with ultrafast response. 
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reducing Rg,on is not feasible, because the required gate current will exceed the output 

current capability of the gate driver IC (IXDD609). 

The FUL short circuit fault is successfully cleared at 6.5 kV with the desat 

protection design 2 with ultrafast response. With a R-C network with a smaller time 

constant, Vdesat can follow Vds with a shorter delay. The response time is further reduced to 

155 ns, and the detection time before triggering the soft turn-off process is only 82 ns, 

which is also reduced compared to the desat protection design 1. To continue reducing the 

detection time and response time, Cblk caused by parasitic capacitances should be 

minimized, as discussed in Subsection 6.3.2. 

The detailed waveforms can be seen in Fig. 6-40. Because of higher di/dt during 

the current rise time, the peak short circuit current is higher than 80 A, although the desat 

protection design 2 with ultrafast response has shorter response time than the desat 

protection design 1. After the FUL fault is generated, the measured Vgs reaches 18 V 

because of the high voltage drop on common source inductance caused by the high di/dt.  

The noise immunity of the protection design 2 is also fully validated with the ac-dc 

continuous power test at 6.6 kV, during which the protection was never falsely triggered. 

Even though Cblk is completely realized by parasitic capacitances, strong noise immunity 

is still achieved by following design guidelines in Section 6.1. Especially, Cp3 is reduced 

to less than 0.001 pF.  Because of the larger Rgoff,cla (348 Ω) and longer tcla, Vdesat,M is reduced 

substantially compared to the desat protection design 1 under the same test condition  

(6.6 kV, 0.55 modulation index), as shown in Fig. 6-41. With longer tcla, Vdesat,M still has a 

sinusoidal shape with the ac load current whose fundamental component has a peak value  
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Fig. 6- 40. FUL short circuit test waveform of 10 kV SiC MOSFET with desat protection 

design 2 with ultrafast response.  

 

 

 

 

 

 

 

 

                                      (a)                                                              (b) 

Fig. 6- 41. Waveforms captured during 6.6 kV ac-dc continuous power test with desat 

protection design 2 with ultrafast response. 
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of ~6 A. The zoom-in waveform in Fig. 6-41(b) confirms that Vdesat is clamped at -5 V after 

Vds of the lower MOSFET starts to fall with high dv/dt. Fig. 6-41(b) also reveals that tcla in 

desat protection design 2 is significantly longer than tcla in desat protection design 1 with 

ultrafast response. In summary, both strong noise immunity and ultrafast response of the 

desat protection design 2 are demonstrated with experimental results at rated voltage. Both 

HSF and FUL can be cleared with a response time of <160 ns. 

6.3.4 Discussion 

The proposed desat protection scheme in this section feature several advantages in 

terms of protecting 10 kV SiC MOSFETs. To start with, it possesses ultrafast protection 

response and strong noise immunity simultaneously. Although the desat protection circuity 

has a R-C network with a small time constant, the noise immunity will not be sacrificed by 

following the design guidelines in Section 6.1. The ultrafast protection response can 

effectively help reduce the short circuit current and energy loss, which makes it more 

competitive in applications where the high short circuit current is a significant concern 

because of the high saturation current of the MOSFET. 

Furthermore, the implementation of the desat protection scheme with ultrafast 

response is as simple as the conventional desat protection design. Compared to the 

conventional desat protection design, no additional circuitry and components are required. 

The only modification is that Rblk, Cblk, and the clamping diode should be selected 

differently. 

Moreover, the circuity of the desat protection scheme with ultrafast response is 

compatible with that of the conventional desat protection design. The conventional desat 
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protection design can be easily modified to switch to the proposed desat protection design 

with ultrafast response, without ordering a new PCB. Again, only Rblk, Cblk, and the 

clamping diode Dblk should be replaced. Thus, the designer has the flexibility to switch 

between the conventional design protection and the proposed desat protection with ultrafast 

protection. Also, the proposed desat protection scheme with ultrafast response is effective 

for the two mainstream implementations for high voltage SiC MOSFETs in Fig. 6-1. 

In fact, high negative dv/dt generated by low voltage (<3.3 kV) SiC MOSFETs can 

also play a role in shaping Vdesat during their turn-on transients. The impact of high negative 

dv/dt on Vdesat can counteract the capacitive charging process leading to higher Vdesat, which 

will also result in longer effective blanking time. The main difference is that the duration 

of the high dv/dt generated by low voltage SiC MOSFETs is much shorter. To apply the 

proposed ultrafast desat protection scheme in low voltage SiC MOSFETs, the key is to 

ensure that Vdesat drops quickly to make Dblk enter the forward conduction mode within the 

short voltage fall time with high dv/dt.  

The limitation of the proposed desat protection scheme with ultrafast protection is 

that it cannot have ultrafast response in short circuit faults with high negative dv/dt. In 

normal turn-on transients with high negative dv/dt, it takes advantage of the negative dv/dt 

to effectively prolong the blanking time. As a result, if high negative dv/dt is generated 

during the short circuit fault, it will take a long time for Vdesat to reach the protection 

threshold, leading to much longer response time than the cases without high negative dv/dt. 

However, it is not common to have high negative dv/dt during the short circuit and 

overcurrent conditions, as shown in Fig. 6-42. During the FUL fault and flashover fault,  
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Fig. 6- 42. Typical waveforms of Vds under HSF, FUL, and flashover fault. 
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the waveform of Vds is dominated by a high positive dv/dt. During the HSF fault, usually 

Vds only experiences a small dip with a low negative dv/dt for a short time. Also, the 

resulting displacement current is small because of the small parasitic capacitance of the 

desat diode at high Vds.  

6.3.5 Summary 

In this section, a desat protection scheme with ultrafast protection response is 

proposed for 10 kV SiC MOSFETs. The proposed protection scheme with ultrafast 

response can be applied in both the desat protection circuitry based on discrete components  

and the desat protection circuitry realized with a gate driver IC. The proposed protection 

scheme has the same fundamental working principle and circuitry as the conventional desat 

protection. However, the blanking time requirement is satisfied by fully taking advantage 

of the high negative dv/dt during the turn-on transient of 10 kV SiC MOSFETs and the 

reverse recovery effect of the clamping diode. With the long duration of the high negative 

dv/dt generated by 10 kV SiC MOSFETs, the two factors can be easily utilized to 

effectively prolong the blanking time. Therefore, a much smaller blanking capacitor Cblk 

and a R-C network with a much smaller time constant can be used in the desat protection 

circuitry, leading to ultrafast protection response under various short circuit conditions. 

The design considerations and trade-offs of the R-C network are presented in detail. The 

ultrafast response and strong noise immunity of the proposed protection scheme are 

validated in numerous short circuit tests and ac-dc continuous switching test. The proposed 

protection scheme can clear the HSF with a response time of 115 ns and the FUL within 
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155 ns, which is the fastest reported response for a protection scheme based on desat 

protection when protecting a discrete 10 kV SiC MOSFET. 

6.4 Summary 

The noise immunity of the desat protection for 10 kV SiC MOSFETs and other high 

voltage SiC MOSFETs is analyzed extensively and quantitatively to achieve the desat 

protection with fast response and strong noise immunity simultaneously. The influence of 

both high positive dvds/dt and high negative dvds/dt is investigated. The high positive dvds/dt 

is identified as the major concern which could falsely trigger the desat protection via the 

extremely small parasitic capacitance (< 0.01 pF) coupled with the voltage divider in the 

desat protection circuitry. The mathematical model of the noise immunity margin is 

established to evaluate the noise immunity and support the noise immunity improvement. 

According to Fig. 6-11, the worst case for noise immunity margin is the high positive 

dvds/dt with a long voltage rise time, which explains why the desat protection for high 

voltage SiC MOSFETs is more vulnerable to noise than desat protection for other devices. 

Systematic design guidelines are summarized to enhance the noise immunity of the desat 

protection, which are supported by the simulation results and experimental results.  

An improved desat protection scheme with 600 ns digital blanking time is developed 

for 10 kV SiC MOSFETs to realize fast response and excellent noise immunity 

concurrently. The digital blanking time implementation decouples the length of blanking 

time from the R-C network in desat protection circuitry. The R-C network with a smaller 

time constant can hence be used to accelerate the protection response, especially the 

response under the FUL and the flashover fault. Short circuit test results at 6.5 kV 



 

212 

 

demonstrate that the HSF can be cleared with a response time of 340 ns, and the response 

time is 195 ns under the FUL. Meanwhile the noise immunity is not impaired by leveraging 

the design guidelines obtained from the noise immunity analysis. 

A desat protection scheme with ultrafast response is proposed to protect 10 kV SiC 

MOSFETs. By leveraging the analysis results and design guidelines in Section 6.1, the 

proposed desat protection scheme is able to achieve ultrafast response and strong noise 

immunity simultaneously. The proposed desat protection scheme with ultrafast response 

achieves sufficiently long blanking time by taking advantage of the high negative dv/dt with 

long duration during the fast turn-on transient and the reverse recovery effect of the 

clamping diode Dblk, instead of relying on a large blanking capacitor. Thus, a small blanking 

capacitor and a R-C network with a small time constant can be adopted in the protection 

circuitry for ultrafast response under HSF, FUL, and the flashover fault. Short circuit test 

results at 6.5 kV demonstrate that the proposed protection scheme has achieved ultrafast 

response: 115 ns response time under a HSF fault and 155 ns response time under a FUL 

fault. 
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CHAPTER 7. COMPREHENSIVE TEST SCHEME OF A 10 KV SIC 

MOSFET BASED PHASE LEG 

The comprehensive test scheme for a phase leg based on 10 kV SiC MOSFETs 

should be able to provide an operating condition similar to the real condition in a modular 

MV converter, such as device current, dv/dt, CM voltage, and so on. Specifically, the test 

scheme should fully validate its thermal performance, insulation design, and the capability 

to withstand high dv/dt and the resulting noise when the phase leg operates as part of a 

modular MV converter. For example, high dv/dt can distort PWM signals and falsely 

trigger protections via various mechanisms [24], [105], and such issues should be found at 

the stage of phase leg testing, instead of MV converter testing.  

In this chapter, a simple test method is proposed to fully qualify a HB phase leg 

based on 10 kV SiC MOSFETs, especially its ability to withstand high dv/dt. First, the 

proposed test scheme is introduced in detail, whose essential step is the ac-dc continuous 

test in which two phase legs are connected in series to resemble the operation of modular 

MV converters with multiple cascaded phase legs. Second, an open loop voltage balancing 

scheme is introduced to balance the voltage of two cascaded phase legs. Detailed 

simulation and experimental results are provided to validate the proposed test method, 

followed by the summary of this chapter. It should be noted that part of the content in this 

chapter is from the author’s conference paper published in IEEE EPE 2020 [106]. 

7.1 Overview of Test Scheme 

The proposed test scheme for the HB phase leg is a simple three-step scheme with 

the focus on the ac-dc continuous test. The first step is the component qualification and 
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phase leg assembly. Initial tests are conducted to check the gate loop and gate driver 

functions in the second step. In the first step, components should be tested and qualified 

individually before the phase leg assembly, including gate driver, voltage sensor, 

MOSFETs, and busbar. After the phase leg is assembled, the vital functions of the gate 

driver are examined, including rising/falling edge of gate-to-source voltage Vgs, feedback 

signal, short circuit protection as well as soft turn-off. The last step is the ac-dc continuous 

test which should be conducted carefully by starting from low dc-link voltage operation. 

Compared to the baseline testing procedures introduced in Chapter 3, the proposed test 

scheme does not require DPT and short circuit test for each MOSFET, and hence is much 

simpler, less time-consuming, and more efficient, which is important when many phase 

legs need to be tested. It is acceptable to skip DPT and short circuit test since the  

10 kV/20 A SiC MOSFET and its package in the phase leg have become more mature and 

reliable. In other words, DPT and short circuit test are necessary if the device is still in 

early stage with its performance not fully guaranteed. Meanwhile, more comprehensive 

tests of the gate driver functions are required in the second step.  

7.1.1 Overview of ac-dc Continuous Test 

A proposed ac-dc continuous test circuit with two cascaded phase legs is the core 

of the test scheme, as shown in Fig. 7-1. The proposed ac-dc continuous test circuit has a 

simple configuration, including a high voltage dc power supply, which is commercially 

available from various manufacturers, an input capacitor, two cascaded HB phase legs, and 

the load. During the normal operation with the voltage of two phase legs well-balanced, 

the dc component of the phase leg voltage is approximately equal to the input voltage Vg.  
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Fig. 7- 1. Circuit diagram of the proposed ac-dc continuous test circuit for the 

qualification of half bridge phase legs. 

 

 

 

 

 

 

 

 

 

 

 

 



 

216 

 

Thereby, the high voltage dc power supply should be able to output the rated dc bus voltage 

of the HB phase leg. The load can be easily realized with inductors and the resistive load 

built for the test of MV converters. Rload can be adjusted to achieve the desired active 

power. Typically, the active power and the value of Rload are limited by the output current 

capability of the dc power supply.  

The proposed continuous test circuit has two cascaded phase legs to resemble 

numerous modular MV converters with a string of phase legs in series, including MMC 

and cascaded H-bridge converter. During the ac-dc continuous test, Phase Leg 1 in  

Fig. 7-1 is the phase leg under test, with floating potential and high dv/dt in all of its 

terminals resulting from the switching actions in Phase Leg 2. Phase Leg 2 can be regarded 

as part of the ac-dc continuous test setup. Usually Phase Leg 2 has the same gate resistance 

and switching speed as the phase leg under test. The gate resistance of Phase Leg 2 can 

also be reduced to further increase the dv/dt in order to fully test the dv/dt immunity of the 

phase leg under test. A fiber optic voltage probe which is able to withstand high common 

mode voltage can be used to accurately monitor the gate signal, the output signal of the 

short circuit protection, and other signals [107], to evaluate the noise immunity of the phase 

leg under test under high dv/dt. In parallel with the ac-dc continuous test, the thermal design 

can be evaluated online by measuring device temperature with a fiber optic temperature 

sensor. Acoustic partial discharge detection method is effective in the online validation of 

the insulation design under PWM voltage with high dv/dt [108].  
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7.1.2 Modulation Scheme 

In the ac-dc continuous test, a modulation scheme is implemented to force the phase 

leg under test to undergo high dv/dt that might be generated by the modular MV converter. 

Cascaded phase legs are leveraged to generate ≥2X normal dv/dt of a single 10 kV SiC 

MOSFET, which is likely to occur in the modular MV converter with many modules in 

series. In this chapter, normal dv/dt is defined as the dv/dt of a single 10 kV SiC MOSFET 

with the selected gate resistance for the phase leg. Bipolar SPWM modulation with the 

same modulation index is implemented in both Phase Leg 1 and 2. With zero phase shift 

between the PWM signals for Phase Leg 1 and 2, M1 shares the same gate signal with M3, 

and M2 and M4 receive the same gate signal.  

If Phase leg 2 and the phase leg under test have the same switching speed and 

switching frequency, the source of M1 in Phase Leg 1 will undergo the voltage rise from 0 

to 2Vg with 2X normal turn-on dv/dt of M1 as M1 and M3 turn on simultaneously. The source 

potential of M1 drops from 2Vg to 0 with 2X normal turn-off dv/dt of M1, as M1 shuts off. 

In modular MV converters, in fact, such switching actions with 2X normal dv/dt could 

occur when multiple cascaded modules switch their modes simultaneously [109]. The 

voltage step change between 0 and 2Vg with 2X normal dv/dt results in 2X CM current 

flowing through the gate driver and its isolated power supply. Also, the high voltage 

insulation capability of the isolated power supply for the gate driver can be tested in this 

case. 

In addition, the gate resistance of Phase Leg 2 can be tuned and different from the 

phase leg under test. If the gate resistance for MOSFETs in Phase Leg 2 is adjusted to be 

lower than the gate resistance in Phase Leg 1 to achieve higher dv/dt, >2X normal dv/dt 
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and CM current can be realized for the phase leg under test. Meanwhile, the DC- terminal 

of the phase leg under test undergoes dv/dt higher than the normal dv/dt of 10 kV SiC 

MOSFETs in a modular MV converter. Hence, the dv/dt that the phase leg under test 

experiences during the continuous test can be fully controlled for the purpose of evaluating 

the dv/dt immunity margin. The noise immunity of the phase leg under high dv/dt, 

especially the short circuit protection and the isolated power supply, can thereby be fully 

tested. Subsequently, the phase leg under test can be tested and debugged to achieve the 

capability to handle the desired level of dv/dt. With such modulation scheme, the ac-dc 

continuous test setup is a suitable platform to test the capability of the phase leg to 

withstand high dv/dt when operating as a building block of a modular MV converter.  

The ac-dc continuous test setup has the capability to validate the thermal and 

insulation design of the phase leg under test at the rated dc bus voltage and current. The 

rated dc bus voltage of the phase leg can be realized by increasing Vg. The load voltage is 

a PWM-type voltage with step changes between Vg and -Vg. Normally the load current has 

a sinusoidal shape due to the high impedance of the load inductor at high frequency. The 

magnitude of the load current can be adjusted by changing the modulation index and the 

fundamental frequency. The peak value of the fundamental component of the load current 

Ifund,pk can be estimated with the equation below. 

𝐼𝑓𝑢𝑛𝑑,𝑝𝑘 =
𝑚𝑉𝑔

√(2𝜋𝑓𝑙𝑖𝑛𝑒𝐿𝑙𝑜𝑎𝑑)
2 + 𝑅𝑙𝑜𝑎𝑑

2

(7.1)
 

In the equation, fline is the fundamental frequency, and m is the modulation index, both of 

which are determined by the modulation signal. The dc component of the load current 



 

219 

 

Iload,DC  is determined by the active power consumed in the continuous test setup, which can 

be calculated with the following equation. 

𝐼𝑙𝑜𝑎𝑑,𝐷𝐶 =
𝑃𝑙𝑜𝑠𝑠 + 𝑅𝑙𝑜𝑎𝑑𝐼𝑅𝑀𝑆

2

𝑉𝑔
(7.2) 

IRMS is the RMS value of the load current, and Ploss is the power loss in the ac-dc continuous 

test setup. If the resistive load is not installed, the dc component of the load current will be 

almost zero. 

7.2 Open-loop Voltage Balancing Scheme 

Voltage balancing is essential to the proposed ac-dc continuous test circuit with two 

cascaded HB phase legs. In order to further simplify the test setup and control, an open 

loop voltage balancing scheme is adopted, whose details are presented in this section.  

The two cascaded phase legs ideally have balanced dc capacitor voltage, since the 

two capacitors always have the same current with the designed modulation scheme. In ideal 

conditions, M1 and M3 always conduct at the same time to achieve natural voltage 

balancing. In reality, the two phase legs could have different dead times due to nonideal 

factors in the controller and the gate driver board. Also, there could be slight phase shift 

between Vgs of M1 and M3, or Vgs of M2 and M4. For example, the fiber optic transmitter or 

receiver with the same part number could have different propagation delay. Especially, 

longer dead time contributes to higher dc capacitor voltage no matter what the direction of 

the load current is. Without any voltage balancing method, the dc capacitor voltage of the 

two phase legs would diverge from each other, and the dc capacitor voltage of the phase 

leg with shorter dead time finally drops to zero. This can be explained by the difference 

between the average capacitor current of the two phase legs, which is named the offset 
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current, Ioffset. In the dc circuit model in Fig. 7-2(a), the dc capacitor voltage of the two 

phase legs is marked as ∆𝑉𝑑𝑐1 and ∆𝑉𝑑𝑐2, because the initial dc voltage is neglected. The 

dc voltage difference Voffset, defined as ∆𝑉𝑑𝑐1 − ∆𝑉𝑑𝑐2 , will continue to increase in 

magnitude as long as Ioffset exists due to the different dead times, and the voltage of one 

phase leg will eventually drop to zero.   

The magnitude and polarity of Ioffest is determined by the load current as well as the 

dead time difference and phase shift between Vgs for the MOSFETs of the two phase legs. 

In fact, the magnitude and polarity of Ioffest can be time-varying. For instance, assuming 20 

ns phase shift between Vgs for M1 and M3 (Vgs for M1 leading) and zero phase shift between 

Vgs for M2 and M4, the instantaneous Ioffset is almost zero when the load current is positive, 

because M1 and M3 are synchronous devices whose body diodes conduct current during the 

dead time. If the load current is negative, the phase shift between Vgs for M1 and M3 will 

play a part, and the instantaneous Ioffset(t) can be described with the following equation. 

𝐼𝑜𝑓𝑓𝑠𝑒𝑡(𝑡) =
1

𝑇𝑠
(∫ 𝐼𝑙𝑜𝑎𝑑(𝑡)𝑑𝑡

𝑡+𝐷𝑇𝑠

𝑡

−∫ 𝐼𝑙𝑜𝑎𝑑(𝑡)𝑑𝑡
𝑡+∆𝑡+𝐷𝑇𝑠

𝑡+∆𝑡

) (7.3) 

In the equation, Ts is the switching period, D is the duty cycle, and ∆𝑡 is the phase shift. 

The equation shows that the magnitude and polarity of Ioffset depend on the instantaneous 

phase angle of the load current. In fact, it is likely that different dead time and slight phase 

shift between Vgs for M1 and M3 as well as between Vgs for M1 and M3 influence Ioffset 

simultaneously. As a result, the average Ioffset over a line cycle is not zero in steady state, 

and hence the voltage balancing cannot be achieved. 

An open loop method with an external parallel resistor is developed to suppress the 

impact of Ioffset and achieve voltage balancing. As can be seen in Fig. 7-2(a), Ioffset that could  
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(a) 

 

(b) 

Fig. 7- 2. (a) DC circuit model of the two phase legs used to study Voffset. (b) DC circuit 

model of the two phase legs after adding a resistor in parallel with the capacitor. 
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be caused by numerous nonideal factors can only flow through the capacitor, and hence 

keeps charging or discharging the capacitor. After adding a resistor in parallel with the 

capacitor, as shown in Fig. 7-2(b), all of the offset current will be absorbed by the resistor, 

and the capacitor voltage will reach steady state. The dc capacitor voltage of the two phase 

legs in steady state still has some difference Voffest, whose equation is shown in Fig. 7-2(b). 

Voffest is only determined by the added parallel resistor and the magnitude of Ioffset and is 

independent of the capacitance and parasitics of the dc capacitor.  

It is difficult to calculate the average Ioffset in a line cycle in an analytical way. 

However, the average Ioffset can be obtained easily based on simulation results. The parallel 

resistor should be selected based on the trade-off between the Voffest and the power loss of 

the resistor. A small parallel resistance is attractive due to better voltage balancing results, 

yet bulky power resistors must be selected which may also require additional heatsinks or 

fans and lead to a complicated experimental setup. A large parallel resistance results in a 

simple test setup, but the large Voffset makes it difficult to control the voltage of the phase 

leg under test in a convenient way, and increases the risk of device damage due to 

overvoltage. 

7.3 Simulation Results 

The proposed ac-dc continuous test circuit with the open loop voltage balancing 

method is simulated in Matlab/Simulink. Fig. 7-3 shows simulation results of the case with 

zero phase shift between gate signals for the two phase legs and 500 ns dead time for both 

phase legs. The dc capacitor voltage of the two phase legs is hence perfectly balanced, and 

the PWM-type load voltage and the load current with a sinusoidal shape can be seen in the  



 

223 

 

 

 

(a) 

 

(b) 

Fig. 7- 3. Simulated waveforms of load voltage and load current at 6 kV dc-link voltage 

(modulation index m=0.25, Rload =1 Ω, Lload =175 mH): (a) Overview (Vg ramps up from 

0 to 6 kV within 0.15 s); (b) Zoom-in waveforms. 
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simulation waveforms. The load current is regulated at ~6 A peak with almost zero DC 

component, since Rload is 1 Ω. In addition, Fig. 7-4 displays the simulated phase leg voltage 

waveforms without and with the open loop voltage balancing method to prove its 

effectiveness. The case where two phase legs have significantly different dead time is 

simulated since it provides a large Ioffset. Without the added parallel resistor, the voltage of 

Phase Leg 2 with 100 ns shorter dead time keeps decreasing, and Voffset increases rapidly to 

~800 V within 3 s. The calculated Ioffset based on simulation results is 2.4 mA, and the 

calculated Voffset at t=3 s is 782 V based on the equation in Fig. 7-2(a). Then a relatively 

small parallel resistor is added in both phase legs in order to achieve voltage balancing 

even faster and reduce computational burden in the simulation. After adding a 100 kΩ 

resistor, the voltage of two phase legs is balanced, and reaches steady state with a constant 

Voffset of ~200 V, close to the calculated 240 V Voffset, based on the equation in Fig. 7-2(b). 

The dc capacitor voltage of the phase leg has the line frequency ripple with a peak-to-peak 

value of ~300 V, similar to the submodule voltage ripple observed in a MMC converter. 

7.4 Experimental Setup and Results 

The proposed ac-dc continuous test circuit is realized with the experimental setup 

shown in Fig. 7-5. The high voltage dc power supply from Spellman (Part Number: 

ST15P12) can output the dc voltage up to 15 kV with the maximum power of 12 kW. The 

input capacitor Cin is implemented with a capacitor bank whose equivalent capacitance is 

46.7 µF. The load inductor is implemented with two high voltage inductors in series with 

a total inductance of 175 mH. The resistive load is not installed due to the 0.8 A output 

current limit of the power supply. In fact, in order to reduce the output current ripple of the  
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(a) 

 

(b) 

Fig. 7- 4. Simulated phase leg voltage waveforms (modulation index m=0.25, Vg= 6 kV, 

Rload =1 Ω, Lload =175 mH): (a) Without parallel resistor for voltage balancing; (b) With a 

100 kΩ parallel resistor for voltage balancing. 
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(a) 

 
(b) 

Fig. 7- 5. Experimental setup of the ac-dc continuous test circuit: (a) Zoom-in view of the 

two cascaded phase legs; (b) Overview of the whole test setup (the load inductor is not 

visible). 
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dc power supply, a 470 Ω resistor is inserted between the DC+ terminal of the power supply 

and Cin, otherwise an overcurrent fault will be reported from the power supply. 

As can be seen in Fig. 7-5(a), two phase legs are placed next to each other. Each 

phase leg has two 24 V isolated power supplies with 20 kV insulation capability to provide 

the auxiliary power [110], whose primary side is connected to a 120 V AC power adapter. 

Each phase leg has a 500 kΩ resistor for voltage balancing which is composed of five  

100 kΩ resistors (RH050100K0FE02 from Vishay) in series to support the continuous test 

up to 6 kV Vg. Without any additional heatsinks or fans, the 500 kΩ resistor has a power 

rating of 100 W, which is 39% higher than its expected power loss at 6 kV. The 500 kΩ 

resistor can support the test setup even when nonideal factors result in Ioffset up to 4 mA and 

the voltage of one phase leg up to 7 kV. As shown in Fig. 7-5, the resistors for voltage 

balancing are placed on a garolite board.  

The cabinet is solidly grounded by connecting it with the grounded case of the high 

voltage dc power supply to achieve single-point grounding. The DSP controller and 

human-machine interface (HMI) are far away from the high voltage test setup and isolated 

via fiber optics. The selected fundamental frequency is 300 Hz, which is higher than 60 Hz 

in order to limit the magnitude of the load current. The switching frequency of the 10 kV 

SiC MOSFETs is 10 kHz. 

Experimental results of the ac-dc continuous test at 2.1 kV dc-link voltage are 

displayed in Fig. 7-6 and Fig. 7-7. Before the continuous test, both phase legs have passed 

the first two steps of the proposed test scheme. Both phase legs have the same gate 

resistance: 15 Ω for turn-on, and 3 Ω for turn-off. In terms of the measurement setup, a  
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Fig. 7- 6.  Waveforms of the continuous test with the proposed ac-dc continuous test 

circuit at 2.1 kV. 
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(a) 

 

(b) 

Fig. 7- 7: Zoom-in waveforms of the continuous test with the proposed ac-dc continuous 

test circuit at 2.1 kV: (a) Phase leg output voltage rises; (b) Phase leg output voltage 

decreases. 
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CWT Ultra Mini Rogowski coil from PEM is adopted for the load current measurement, 

and two differential voltage probes are used to measure the output voltage of the two phase 

legs. Vgs of M4 is monitored by a low voltage passive probe TPP1000 from Tektronix, 

whose source is solidly grounded. With a modulation index of 0.45, the sinusoidal load 

current with 10 kHz ripple has a peak value of ~3 A, which coincides with the estimation 

result and the simulation result.  

The voltage of two phase legs is well balanced with the help of the 500 kΩ parallel 

resistor. The voltage difference between the two phase legs Voffset is less than 250 V with a 

dc-link voltage of 2.1 kV. In fact, only one pair of PWM signal is generated in the DSP 

controller, so the same gate signal is sent to the gate driver of M1 and M3 via fiber optics, 

as well as M2 and M4. The voltage difference is mainly attributed to the phase shift between 

the Vgs of M1 and M3, and M2 and M4, which is due to the propagation delay difference of 

the components in the gate driver board. According to the zoom-in waveforms in Fig. 7-7, 

the output voltage of the two phase legs rises and drops almost simultaneously, with a 

phase shift of <20 ns. It is thereby proved that the designed modulation scheme forces the 

source of M1 to undergo 2X dv/dt that M2 and M3 withstand. The dv/dt that M1 and M2 of 

the phase leg under test experience continuously will be higher if Phase Leg 2 is modified 

to switch with higher dv/dt. 

The ac-dc continuous test is successfully conducted at 6 kV dc-link voltage, with 

the waveforms displayed in Fig. 7-8. Since the differential voltage probe is not capable of 

withstanding 6 kV common mode voltage with high dv/dt, the output voltage of the phase 

leg under test (Phase Leg 1) cannot be measured any more. The output voltage of Phase  
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Fig. 7- 8: Waveforms of the continuous test with the proposed ac-dc continuous test 

circuit at 6 kV. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

232 

 

Leg 2 is measured with a high voltage passive probe, P6015A from Tektronix. At 6 kV, 

the modulation index is reduced to 0.25 because the continuous operation of the load 

inductor only allows <9 A peak current [1]. The maximum load current flowing through 

the inductor and MOSFETs is ~6 A. Because the source of M1 experiences 2X normal dv/dt 

of the 10 kV SiC MOSFET, substantial displacement current flows through EPC of the 

load inductor, as clearly indicated in the measured load current waveform. Measurement 

results of the output voltage of Phase Leg 2 show that the dc capacitor voltage of Phase 

Leg 2 varies from 5.1 kV to 5.4 kV. Therefore, it is estimated that the voltage of the phase 

leg under test (Phase Leg 1) varies from 6.6 kV to 6.9 kV. The proposed open loop voltage 

balancing method effectively achieves voltage balancing in the ac-dc continuous test setup. 

With a larger Ioffset due to the higher load current, the voltage difference Voffset is higher than 

1 kV. In addition, more accurate phase leg voltage measurement results and Voffset can be 

obtained with better high voltage differential voltage probes in the future.  

7.5 Summary 

This chapter focuses on a simple test scheme to test phase legs based on 10 kV SiC 

MOSFETs comprehensively. The test scheme provides a comprehensive and efficient 

qualification of the phase leg, including its thermal design, insulation design, and its 

capability to withstand high dv/dt. In the test scheme, an ac-dc continuous test circuit with 

two phase legs in series is developed to qualify the phase leg as the final step. With the 

designed modulation scheme, the phase leg under test needs to continuously withstand 2X 

normal dv/dt of 10 kV SiC MOSFETs, which could occur during the operation of a real 

modular MV converter. In fact, the dv/dt that the phase leg under test will undergo is 
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controllable so that the capability of the phase leg to operate normally under high dv/dt can 

be fully tested and evaluated. An open loop voltage balancing method with the external 

parallel resistor is adopted to simplify the test setup. The developed continuous test circuit 

is fully validated with the built test setup and the ac-dc continuous test up to 6 kV. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

10 kV SiC MOSFETs with superior device performance are one of the essential 

enablers of future MV converters with higher efficiency and control bandwidth as well as 

much smaller size and weight. To apply them in modular MV power conversion systems, 

a series of challenges caused by device-level characteristics of 10 kV SiC MOSFETs 

should be addressed, such as high blocking voltage and high dv/dt. This dissertation, 

throughout which these challenges are analyzed and tackled, intends to investigate the 

switching performance evaluation, design, and testing of a robust 10 kV SiC MOSFET 

based phase leg for modular MV converters. 

First, a baseline design of a 6.5 kV HB phase leg based on 10 kV SiC MOSFETs is 

presented for continuous operation as a building block of a modular MV converter. The 

developed gate driver is equipped with numerous functions to support continuous operation 

of the phase leg. Baseline testing procedures are developed to validate the baseline design.  

Then, how the parasitic capacitances in the MV converter and the freewheeling 

diode influence the switching performance is evaluated in detail. Higher EPC of the load 

inductor makes switching transients slower, leading to lower turn-off loss and higher total 

switching energy loss. The parasitic capacitance caused by the heatsink prolongs switching 

transitions and increases the switching loss. With negligible reverse recovery charge, the 

body diode is suitable to serve as the freewheeling diode in the HB phase leg. Adding the 
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10 kV anti-parallel JBS diode is not recommended because it introduces additional 

parasitic capacitance and leads to higher switching loss. 

The 10 kV SiC MOSFET under the flashover fault caused by premature insulation 

failure is studied in detail, where dv/dt and di/dt are much higher than those under 

conventional short circuit faults. To reduce the overvoltage and short circuit current under 

a flashover fault, a higher Rg,off  is suggested for 10 kV SiC MOSFETs without Kelvin source 

to avoid a large Rg,on/Rg,off, while a small Rg,off  is recommended for the MOSFET with Kelvin 

source. The analysis also provides design guidelines about the gate loop inductance and 

whether to add an external capacitor across gate and source terminal. Based on simulation 

results at 7 kV, the short circuit energy loss is compared between the flashover fault and 

two conventional short circuit faults, HSF and FUL. The required response time to clear a 

flashover fault should be shorter than the response time determined by conventional short 

circuit faults.  

The noise immunity of the desat protection for 10 kV SiC MOSFETs and other high 

voltage SiC MOSFETs is examined quantitatively and comprehensively in the pursuit of 

the desat protection with faster response and strong noise immunity. The main concern is 

the high positive dvds/dt: the high dvds/dt together with the long voltage rise time makes the 

desat protection for high voltage SiC MOSFETs more vulnerable to noise than the desat 

protection for other Si and SiC devices, as shown in Fig. 6-11. Design guidelines are 

summarized to improve noise immunity of the desat protection. Leveraging the knowledge 

acquired in noise immunity analysis, an improved desat protection scheme with digital 

blanking time is developed for 10 kV SiC MOSFETs to realize fast response and excellent 
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noise immunity concurrently. The response time is 340 ns under the HSF, and the response 

time is 195 ns under the FUL at 6.5 kV. Furthermore, a proposed desat protection scheme 

with ultrafast response can protect the 10 kV SiC MOSFET with even  shorter response 

time: 115 ns under the HSF and 155 ns under the FUL. The proposed desat protection 

scheme with ultrafast response also features excellent noise immunity and simple circuitry 

that is compatible with the conventional desat protection circuitry.  

Finally, a simple test scheme has been proposed and validated to thoroughly test 

HB phase legs based on 10 kV SiC MOSFETs. With an ac-dc continuous test circuit 

featuring two phase legs connected in series, the test scheme provides a comprehensive 

and efficient qualification of the phase leg as a robust building block for modular MV 

converters, including its thermal design, insulation design, and its capability to withstand 

high dv/dt and its resulting noise. In the continuous test circuit, the dv/dt is controllable to 

fully test the operation of the phase leg under high dv/dt.  

8.2 Future Work 

With much higher dv/dt and di/dt than Si IGBTs, the switching transients of 10 kV 

SiC MOSFETs are sensitive to both parasitic capacitances and parasitic inductances in the 

MV converter. Only parasitic capacitances’ impact on switching transients is studied in 

this work, since the parasitic inductance is not a dominant influencing factor in the 

switching transient of the 10 kV/20 A SiC MOSFET [31].  However, parasitic inductance, 

especially the power loop inductance, could cause much more significant ringing and 

higher overvoltage in 10 kV SiC MOSFET modules with higher current rating and higher 

di/dt, and hence should be addressed in future work [111]. 
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Regarding the gate driver design for 10 kV SiC MOSFETs, one of the challenges 

is how to deal with the CM current and its resulting noise, which is not covered in detail in 

this dissertation. The CM current results from the parasitic capacitance Cps of the isolated 

power supplies in the modular MV converters and the high dv/dt. The CM current could 

lead to the malfunction of the gate driver if it is sufficiently large. However, how the CM 

current impacts the normal operation of the gate driver has not been thoroughly 

investigated, and the interference mechanisms should be clearly identified. Gate driver 

design guidelines should be provided to solve the problems induced by the CM current, in 

addition to reducing Cps of the isolated power supply. 

In this dissertation, the noise immunity analysis of desat protection circuitry 

assumes that the dv/dt is a constant during the voltage rise/fall time of Vds. Nevertheless, 

dv/dt is not necessarily a constant in some cases. For example, the instantaneous dv/dt can 

change significantly when only partial ZVS is achieved due to low load current. In this 

case, the peak dv/dt is substantially higher than the average dv/dt calculated between 90% 

and 10% of Vds. It will be useful to study the noise immunity of desat protection circuitry 

when the constant dv/dt assumption is not valid. How the average dv/dt and the peak dv/dt 

interfere with the circuitry will be revealed in such analysis, and the analysis results will 

make the noise immunity margin model more comprehensive. 

In terms of the flashover fault study, a comprehensive discussion of methods to 

alleviate the impact of a flashover fault is still greatly needed. It is also necessary to 

establish a high voltage test platform for the flashover fault and develop protocols to ensure 

that the test is safe and nondestructive. The experimental validation of the analysis based 
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on simulation results as well as discussions based on test results will benefit the study of 

the flashover fault and guide the SiC-based MV converter design in the future. 
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