785 research outputs found

    A Site-Specific Indoor Wireless Propagation Model

    Get PDF
    In this thesis, we explore the fundamental concepts behind the emerging field of site-specific propagation modeling for wireless communication systems. The first three chapters of background material discuss, respectively, the motivation for this study, the context of the study, and signal behavior and modeling in the predominant wireless propagation environments. A brief survey of existing ray-tracing based site-specific propagation models follows this discussion, leading naturally to the work of new model development undertaken in our thesis project. Following the detailed description of our generalized wireless channel modeling, various interference cases incorporating with this model are thoroughly discussed and results presented at the end of this thesis

    Customizing Indoor Wireless Coverage via 3D-Fabricated Reflectors

    Get PDF
    Judicious control of indoor wireless coverage is crucial in built environments. It enhances signal reception, reduces harmful interference, and raises the barrier for malicious attackers. Existing methods are either costly, vulnerable to attacks, or hard to configure. We present a low-cost, secure, and easy-to-configure approach that uses an easily-accessible, 3D-fabricated reflector to customize wireless coverage. With input on coarse-grained environment setting and preferred coverage (e.g., areas with signals to be strengthened or weakened), the system computes an optimized reflector shape tailored to the given environment. The user simply 3D prints the reflector and places it around a Wi-Fi access point to realize the target coverage. We conduct experiments to examine the efficacy and limits of optimized reflectors in different indoor settings. Results show that optimized reflectors coexist with a variety of Wi-Fi APs and correctly weaken or enhance signals in target areas by up to 10 or 6 dB, resulting to throughput changes by up to -63.3% or 55.1%

    Accelerating Radio Wave Propagation Algorithms by Implementation on Graphics Hardware

    Get PDF
    Radio wave propagation prediction is a fundamental prerequisite for planning, analysis and optimization of radio networks. For instance coverage analysis, interference estimation or channel and power allocation all rely on propagation predictions. In wireless communication networks optimal antenna sites are determined by either conducting a serie

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works

    Wideband mobile propagation channels: Modelling measurements and characterisation for microcellular environments

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient Rasterization for Outdoor Radio Wave Propagation

    Full text link

    Interactive ray tracing of massive and deformable models

    Get PDF
    Ray tracing is a fundamental algorithm used for many applications such as computer graphics, geometric simulation, collision detection and line-of-sight computation. Even though the performance of ray tracing algorithms scales with the model complexity, the high memory requirements and the use of static hierarchical structures pose problems with massive models and dynamic data-sets. We present several approaches to address these problems based on new acceleration structures and traversal algorithms. We introduce a compact representation for storing the model and hierarchy while ray tracing triangle meshes that can reduce the memory footprint by up to 80%, while maintaining high performance. As a result, can ray trace massive models with hundreds of millions of triangles on workstations with a few gigabytes of memory. We also show how to use bounding volume hierarchies for ray tracing complex models with interactive performance. In order to handle dynamic scenes, we use refitting algorithms and also present highly-parallel GPU-based algorithms to reconstruct the hierarchies. In practice, our method can construct hierarchies for models with hundreds of thousands of triangles at interactive speeds. Finally, we demonstrate several applications that are enabled by these algorithms. Using deformable BVH and fast data parallel techniques, we introduce a geometric sound propagation algorithm that can run on complex deformable scenes interactively and orders of magnitude faster than comparable previous approaches. In addition, we also use these hierarchical algorithms for fast collision detection between deformable models and GPU rendering of shadows on massive models by employing our compact representations for hybrid ray tracing and rasterization

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland, 9 - 14 June 2013

    Get PDF

    The Burning Bush: Linking LiDAR-derived Shrub Architecture to Flammability

    Get PDF
    Light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) sensors are powerful tools for characterizing vegetation structure and for constructing three-dimensional (3D) models of trees, also known as quantitative structural models (QSM). 3D models and structural traits derived from them provide valuable information for biodiversity conservation, forest management, and fire behavior modeling. However, vegetation studies and 3D modeling methodologies often only focus on the forest canopy, with little attention given to understory vegetation. In particular, 3D structural information of shrubs is limited or not included in fire behavior models. Yet, understory vegetation is an important component of forested ecosystems, and has an essential role in determining fire behavior. In this dissertation, I explored the use of TLS data and quantitative structure models to model shrub architecture in three related studies. In the first study, I present a semi-automated methodology for reconstructing architecturally different shrubs from TLS LiDAR. By investigating shrubs with different architectures and point cloud densities, I showed that occlusion, shrub complexity, and shape greatly affect the accuracy of shrub models. In my second study, I assessed the 3D architectural drivers of understory flammability by evaluating the use of architectural metrics derived from the TLS point cloud and 3D reconstructions of the shrubs. I focused on eight species common in the understory of the fire-prone longleaf pine forest ecosystem of the state of Florida, USA. I found a general tendency for each species to be associated with a unique combination of flammability and architectural traits. Novel shrub architectural traits were found to be complementary to the direct use of TLS data and improved flammability predictions. The inherent complexity of shrub architecture and uncertainty in the TLS point cloud make scaling up from an individual shrub to a plot level a challenging task. Therefore, in my third study, I explored the effects of lidar uncertainty on vegetation parameter prediction accuracy. I developed a practical workflow to create synthetic forest stands with varying densities, which were subsequently scanned with simulated terrestrial lidar. This provided data sets quantitatively similar to those created by real-world LiDAR measurements, but with the advantage of exact knowledge of the forest plot parameters, The results showed that the lidar scan location had a large effect on prediction accuracy. Furthermore, occlusion is strongly related to the sampling density and plot complexity. The results of this study illustrate the potential of non-destructive lidar approaches for quantifying shrub architectural traits. TLS, empirical quantitative structural models, and synthetic models provide valuable insights into shrub structure and fire behavior

    The Adaptive Multi-Resolution Frequency-Domain ParFlow (MR-FDPF) Method for Indoor Radio Wave Propagation Simulation. Part I : Theory and Algorithms

    Get PDF
    This report presents the theoretical background and new developments of the multi-resolution frequency domain ParFlow (MR-FDPF) approach for the calculus or radio propagation in Indoor environments for centimetric waves. This method has been developed to face the need of a best understanding of Indoor propagation and to help the WiFi network planning task. Indeed, the development of a wireless design tool is based firstly on a radio propagation engine to predict accurately the radio coverage of access points, with a limited computational load. Usual approaches in the literature are based on either empiric modeling, deducted from measurements, or geometrical optic formalism leading to ray-tracing. While the former suffers a lake of accuracy, the later needs a trade-off between accuracy and computational load, often difficult to assess. The approach proposed herein is based on a finite element approach. Once the problem developed in the frequency domain, the linear system thus obtained is solved in two steps: a pre-processing step which consists in an adaptive multi-resolution (multi-grid) pre-conditioning and a propagation step. The second step computes the coverage of a point source with an up-and-down propagation through the binary tree associated with the multi-resolution description. This approach solves exactly the linear system but with a strongly reduced computational complexity when compared to the time domain approach. For example, a full AP coverage at a macroscopic resolution and for an environment of 1000x600 pixels (i.e. 6000m26000m2 at a 10cm10cm resolution) lasts less than 200ms200ms
    • …
    corecore