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1. Introduction 

Radio wave propagation prediction is a fundamental prerequisite for planning, analysis and 
optimization of radio networks. For instance coverage analysis, interference estimation or 
channel and power allocation all rely on propagation predictions. In wireless 
communication networks optimal antenna sites are determined by either conducting a series 
of expensive propagation measurements or by estimating field strengths numerically. In 
order to cope with the vast amount of different configurations to select the best candidate 
from and to avoid expensive measurement campaigns, numerical predictions have to be 
both accurate and fast. In this chapter we focus on accelerating techniques for radio wave 
propagation algorithms in dense urban environments with the target frequency range of 
common mobile communication systems, i.e., several hundred MHz up to few GHz. One 
important aspect in radio wave propagation is the prediction of the mean received signal 
strength which can be simulated by taking complex interactions between radio waves and 
the propagation environment (see Figure 1) into account. Thus, the simulation of radio 
waves for propagation predictions becomes a computationally intensive task. 
A promising approach is the use of ordinary graphics cards, nowadays available in every 
personal computer. With over 1000 Gigaflops, modern graphics hardware offers the 
computational power of a small-sized supercomputer. This is achieved by a strict parallel 
many-core architecture which can be accessed by a high level of programmability. The main 
challenge of utilizing graphics hardware for scientific computations is to trick the graphics 
processors into general purpose computing by casting problems as graphics: Input data is 
transformed into images and algorithms are turned into image synthesis. However, in the 
last couple of years a growing support of so-called ”General Purpose Computation on 
Graphics Hardware” has led to recent changes in this architecture, allowing more common 
ways of parallel programming. Much effort and interest has been put on the acceleration of 
ray optical approaches, since most ray tracing algorithms tend to be computational intensive 
and exhibit run times up to hours. Therefore, we focus on the efficient implementation of 
wave guiding effects on graphics hardware. Among the most time consuming tasks in ray 
tracing is the problem of visibility between objects, i.e., the identification of all possible 
interaction sources for diffracted or reflected propagation rays. The algorithms we will 
present here are specifically designed to reduce the computational cost of the visibility 
computations by exploiting special features of the graphics card. 

Source: Wave Propagation in Materials for Modern Applications, Book edited by: Andrey Petrin,  
 ISBN 978-953-7619-65-7, pp. 526, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Fig. 1. Typical propagation environment with 2.5 dimensional building structures. The 
underlying satellite image provides geographical reference. 

In principle our method is based on ray tracing. However, interaction sources are found by 
tracing full line-of-sight beams instead of single rays. Each beam is constructed such that it 
covers all rays that fall inside its angular opening. Thus, fewer beams than rays have to be 
processed. Furthermore, we do not actually compute any intersections between propagation 
environment and radiation source. In fact, we use a discrete sampling approach, i.e., ray 
tracing is accomplished by traversing discrete points of all rays that lie within a certain 
beam. Our approach results in an acceleration of wave propagation algorithms by 
developing a special implementation that exploit the parallel architecture of modern 
graphics hardware. As prove of concept, we have implemented four basic propagation 
effects: (1) line-of-sight propagation, (2) wall penetration depth in non-line-of-sight, (3) 
diffraction into street canyons and (4) diffraction over building rooftops. 
The remainder of this chapter is organized as follows. After briefly reviewing previous work 
in Section 2, we give an overview of the general concept of programmable graphics 
hardware in Section 3. Then, we cover the basic prerequisites of our algorithm in Section 4 
and present our method for the computation of urban propagation phenomena in Section 5. 
Our path loss model is described in Section 6. We finally give a performance analysis in 
terms of computation time and accuracy in Section 7 and conclude the chapter in Section 8. 

2. Related work 

A theoretical foundation of radio wave propagation is given for instance by Rappaport 
(1995). Since a variety of approaches exists for solving the problem of predicting mean 
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received signal strength we point the reader to Correia (2006) for an overview. In general, 
we distinguish between empirical (stochastic) channel models and deterministic 
propagation algorithms. Empirical models, approximate the actual path loss by 
parametrized functions which are commonly accompanied by extensive measurement 
campaigns, whereas deterministic approaches are often based on the principle of ray 
tracing. That is, they identify ray paths through the propagation environment based on 
wave guiding effects like reflection or diffraction. 
Well-known examples of empirical models are the work of Hata (1980) and Ikegami et al. 
(1984). They propose to model the radio propagation phenomena by approximating the 
actual propagation loss (path loss) by parametrized functions. Hata determined parameter 
values by conducting extensive measurement campaigns. Ikegami extended Hata’s work by 
analyzing the dependence of approximate equations of mean field strength in urban 
propagation environments with respect to height gain, dependence on street width, 
propagation distance and radio frequency. More recently, Erceg et al. (1999) presented a 
stochastic channel model which can be applied to frequency ranges above two GHz 
(WiMAX). Additionally to height gains and propagation distance, Erceg included a 
parametrization of the environment into his model according to a flat or hilly terrain with 
either high or low vegetation. Empirical models are typically characterized by short 
evaluation time but are prone to huge prediction errors and perform especially poor in 
heterogeneous propagation environments like historically grown cities, cf. Damosso (1999). 
Therefore, most deterministic algorithms rely on the computation of actual propagation 
paths due to wave guiding effects like reflection, diffraction and scattering. Typical 
approaches are often based on ray tracing which was originally introduced by Whitted 
(1980) to compute global illumination effects based on geometric optics for image synthesis. 
Although, global illumination as formulated by Kajiya (1986) and radio wave propagation 
are similar problem statements, different propagation effects like diffraction or interference 
become dominant when shifting from visible light to radio waves due to the different size of 
wavelengths. There are various approaches that focus on acceleration techniques by 
mapping global illumination algorithms onto the GPU, among them are publications by 
Horn et al. (2007); Carr et al. (2006) and Dachsbacher et al. (2007). Global illumination 
techniques have been used for different problems before, for instance for sound rendering. 
Notable here are the works of Tsingos et al. (2001; 2004) and Funkhouser et al. (1999). Some 
work on the diffraction effect is described for instance by Stam (1999) for application in 
computer graphics, whereas Tsingos et al. apply diffraction theory for modeling acoustics in 
virtual environments. 
Ikegami et al. (1991) showed that classical ray tracing can also be applied to the estimation of 
radio propagation losses. Due to complex interaction of radio waves and geometric structures, 
this is a time consuming task. However, high prediction accuracy can be achieved. For 
instance, Schaubach et al. (1992); Erceg et al. (1997); Kim et al. (1999) and Schmitz & Kobbelt 
(2006) state that their predicted path loss values were generally within 4 to 8 dB of the 
measured path loss which is considered as a very good result. In Mathar et al. (2007) a ray 
launching algorithm is used which represents an urban environment as a grid of discrete 
blocks. Ray-object intersections are found by traversing the blocks by a line sampling method, 
thereby greatly reducing computation time. In order to further reduce the computational 
complexity Rick et al. presented an GPU-based approach to radio wave propagation in Catrein 
et al. (2007) and Rick & Mathar (2007). They trace propagation paths in a discrete fashion by 
repeated rasterization of line-of-sight regions. Propagation predictions are computed at 
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interactive rates. However, the accuracy depends on the resolution of the rasterization. Part of 
their work is presented here. A more general overview of general purpose computations on 
GPUs and on the evolution of GPU architectures is given for instance by Owens et al. (2005) 
and Owens et al. (2008), respectively. 
The idea of ray tracing can be further extended to the concept of beams, which are a 
continuum of rays. Beam tracing was first introduced by Heckbert & Hanrahan (1984). The 
main benefits of beam tracing can be summarized as reduced intersection tests and less 
sampling problems since after a few iterations ray samples tend to become either too sparse 
or too dense. Published work in this area includes application of real time rendering by 
Overback et al. (2007) or audio rendering by Funkhouser et al. (1999). An application of 
beam tracing to the problem of radio wave propagation can be found in the work by 
Rajkumar et al. (1996) and more recently by Schmitz et al. (2009). They especially address 
the issue of delay spread due to multi path propagation. 

3. Graphics hardware 

Up to 1999 graphics cards had a non-programmable so-called fixed-function architecture. 
Over the last decade they evolved to configurable pipelines and recently into fully 
programmable floating-point graphics processing units (GPUs). 
Modern GPUs are extremely powerful computing devices. Figure 2 depicts the evolution of 
floating point operations per second (FLOPS) of the GPU in comparison to the CPU over the last 
few years, c.f. Owens et al. (2005). The performance gain of graphics cards roughly doubles 
every half year, clearly outperforming the CPU when competing for Giga FLOPS (GFLOPS). 
The latest NVIDIA G80 GPU achieves over 300 GFLOPS. The performance of a Quad-Core 
Intel Xeon processor (3GHz) is roughly 80 GFLOPS Intel Corporation (2008). 
The GPU is specialized for computational intensive, highly parallel calculations. Rather than 
caring for data caching and flow control as the CPU, the GPU is especially designed to 
support data processing. The GPU architecture follows the Single Instruction Multiple Data 
paradigm. Many processors simultaneously execute the same instructions on different parts 
of a datastream. The key challenge of programming graphics hardware is to correctly map 
problems to the graphical rendering context. Input data is transformed into images or 
geometry and algorithms are turned into image synthesis. 
 

 

Fig. 2. Floating point operations per second: GPU vs. CPU. The graphics card clearly 
outperforms the CPU in terms of floating point operations. 
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Fig. 3. The graphics rendering pipeline. Geometric primitives are loaded into the vertex 
buffer and transformed by multiple vertex processors in parallel. The rasterization samples 
the geometry into pixel positions such that multiple fragment processors can assign colors 
that are recorded in the frame buffer for the final image. 

In general, a computation on the GPU consists of a pass through the various stages of the so-
called graphics rendering pipeline, see Figure 3. We refer to this pass as a rendering pass. 
Basic geometrical primitives like points or triangles are loaded into the vertex buffer. The 
primitives are described by their location in space, i.e., coordinates (vertices) and associated 
attributes like material or color. Additionally, data arrays (textures) of integer or floating 
point values can be allocated directly in graphics memory. 
First, multiple vertex processors execute in parallel the instructions from a user-written 
program (vertex program). Vertex programs operate on single vertices with access to their 
attributes and global read-only texture memory. Typically, geometric transformations like 
translation, rotation and projection are applied. 
In the subsequent step, the transformed geometry is sampled (rasterized) into discrete points 
(fragments). Each fragment corresponds to a single pixel (picture element) position on the 
screen, and typically has additional information like color and a depth value, i.e., the 
distance between viewer and the object which originally corresponded to the pixel. 
The fragment processors operate analogous to the vertex processors. A user-written fragment 
program is executed on each fragment in a parallel fashion. The fragment program is 
executed once per fragment. Most instructions are floating-point vector operations. Typically, 
lighting models are evaluated and corresponding fragment colors are assigned (shaded). 
The frame buffer is a two-dimensional array of pixels. The task of the frame buffer is to 

assemble the final result of the GPU computation by collecting and recording all fragments. 

Frame buffer operations decide how the color from the incoming fragments is combined with 

the color already stored at the same pixel position. Thus, many fragments can contribute to 

the final color of a pixel. Commonly, the frame buffer contains color information and hence, 

it can be displayed on the screen. Information in the frame buffer can also be read back to 

main memory, which is especially useful for GPU computations. For further readings we 

point the reader to introductory texts and advanced techniques on graphics and shader 

rogramming from Akenine-Möller & Haines (2002); Shreiner et al. (2003) or Fernando & 

Kilgard (2003). 

4. Overview 

Similar to Wahl et al. (2005), the data requirements for our algorithms are building 
structures with corresponding building heights. The shape of rooftops is usually omitted 
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Fig. 4. Example propagation path (side profile). A ray is emanating from the radiation 
source, diffracted at the rooftop of the first building and reflected the second building into 

the street: xs ‚ x1 ‚ x2 ‚ x3 ‚ xe. 

and hence, a building is described by its polygonal outline and one height value. We refer to 
this representation as 2.5 dimensional. Building structures ares usually given in vector 
format with a location accuracy in the order of 1 to 10 meter. In order to produce reliable 
results, height accuracy should be around 1 to 2 meter. Information about vegetation is not 
considered and terrain is assumed to be flat. Figure 1 shows a typical propagation 
environment. 
The basic propagation phenomena are reflection, diffraction and scattering. All effects 

contribute to the radio signal distortions and give rise to signal fluctuations (fading) and 

additional signal propagation losses. We distinguish propagation effects according to the 

characteristics of the propagation environment by approximating which propagation paths 

(see Figure 4) are most likely to occur. In the course of this chapter we will present 

specialized algorithms for each of the following propagation effects. 

If receiver and transmitter antenna have an unobstructed direct path, they are in line-of-sight 

(LOS), otherwise in non-line-of-sight (NLOS). An urban high-rise scenario consists 

predominantly of streets lined with tall buildings of several floors each. High building 

heights make significant contributions from diffraction over multiple rooftops rather 

unlikely. Therefore, if transmitter antennas are mounted below rooftops, dominant 

propagation effects are expected from reflection and diffraction into street canyons. See 

Figure 8(b) for an illustration, more details can be found in Andersen et al. (1995). 

Furthermore, an urban low-rise scenario is characterized by wide streets and buildings with 

less than three floors. Antennas are usually mounted above average rooftop level and 

diffraction over rooftops (Figure 9(a)) becomes the dominant propagation effect. 

Propagation paths due to reflection are not considered in this chapter. 

Hence, we formulate the requirements of our propagation algorithm as follows: (1) It is 
necessary to efficiently distinguish between regions in LOS and in NLOS. (2) In case of 
NLOS, we require our algorithm to compute different propagations paths, namely wall 
penetration depth, diffraction into street canyons and diffraction over rooftops. 
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5. Algorithm 

The input for our algorithms is a database of building structures as described in Section 4. In 
general, the output is a discrete two-dimensional raster image which serves as a role model 
for the discrete representation of results from GPU computations. An image consists of 
pixels that are organized in a regular array. Pixels are the data elements of this structure. 
However, pixels are not restricted to contain only color information. Pixel data is interpreted 
according to the current context of the GPU computation. 

In order to provide a formal description of the presented algorithms we introduce the 

following notation (see Table 1): Let s = (x,y, z) be a radiation source location, e.g., the 

transmitter antenna, where the height is referred to as s.z. All height values are relative to 

ground. A wall w of a building structure consists of two points p0 and p1 at ground level and 

two points p2 and p3 at rooftop level. The set containing all walls w is denoted by W. 

Additionally we associate a normal vector n
f

 with each wall. Normal vectors are 

perpendicular to their wall and point away from the corresponding building. 

Since the terrain is assumed to be rather flat and the receiver points are typically located 1.5 

meter above ground we define a receiver plane R to be a discrete set of receiver points at 

constant height R.z. We restrict ray path calculations to only those paths that intersects the 

receiver plane. 
In the following we will describe algorithms which are explicitly designed to run directly on 
graphics hardware. First, we present a method for determining line-of-sight regions. Then 
we will show how this algorithm can be extended to provide additional non-line-of-sight 
information. Furthermore, we show how the graphics card can be exploited for ray path 
calculation due to diffraction into street canyons and diffraction over rooftops. GPU 
implementations are obtained by separating the calculation of these effects into distinct 
algorithms. 

5.1 Line-of-sight 

The line-of-sight (LOS) algorithm computes a sampling of the receiver plane R where each 

point p ∈ R is marked whether it is in clear line-of-sight to a source s or not. This algorithm 

will be one of the main building blocks in the computation of ray paths on graphics 

hardware. The GPU computation is based on the concept of so-called shadow volumes, c.f. 

Fernando (2004). This technique constructs a polygonal representation of the shadow cone 

(shadow volume) for 3-dimensional triangular geometry. Since the description of urban 

propagation environments involves usually just a polygonal outline and one corresponding 

height value, we propose a specialized algorithm for this particular form of geometry (see 

Catrein et al. (2007)). 
 

 

Table 1. Notation 
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Fig. 5. Size of the shadow polygon (dark gray) according to the intercept theorem for a 
source height s.z greater than the wall height pi.z (side profile). 

The main idea is to extract the shadow of each building wall directly in the receiver plane. 
We refer to the intersection of the shadow cone and the receiver plane as shadow polygon. 
Regions are in LOS, if and only if they are in no shadow polygon. 

The construction of the shadow polygon of a wall w proceeds as follows: each shadow 

polygon is a quadrangle with corners (q0, q1, q2, q3). Points q0 and q1 are given by the corners 

of the wall p0 and p1 on the ground. The remaining two corners are determined by the 

intersection of the receiver plane R and each of the straight lines through the source point s 

and the wall point at roof level p2 and p3. 

According to the intercept theorem (see Figure 5), qi, i ∈ {2, 3} is then given by 

 (1) 

where 

 

(2) 

The corners of each shadow polygon are computed by a vertex program in parallel for each 
wall and sampled into discrete points by the subsequent rasterization phase. The result is a 
two-dimensional pixel array, every (discrete) receiver location lies either in LOS or inside a 
shadow polygon, hence in NLOS. 
With q2 and q3 according to equation (1), we refer to the shadow polygon of a single wall w 
with source point s as 

 (3) 

A LOS beam LOS(s) is the set of discrete points in the receiver plane that do not lie in any 
shadow polygon of the source s 

 
(4) 

Figure 6 shows an example of a discretized receiver plane with pixels in LOS (dark grey) 

and NLOS (light grey) pixels. Note, that although the result is two-dimensional, all shadow 

computations are performed using all 2.5-dimensional information. 
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Fig. 6. Top view of the discrete line-of-sight region (dark grey) with the source point in the 
center (white cross). Building interior is shown in light grey. 

5.2 Wall transmission 
The algorithm for LOS beams can be extended to provide additional non-line-of-sight 
information. This can include for instance the number of penetrated walls or material which 
can be achieved by taking all walls into account that intersect the direct ray from the source 
to a receiver as sketched in Figure 7. 
We first provide a more thorough look at GPU frame buffer operations which are an integral 
part of the algorithm for transmission depth. When fragments are collected and recorded in 
the frame buffer at the final stage of the rendering pipeline (c.f. Section 3), frame buffer 
operations decide how fragments that fall on the same pixel position, contribute to the final 
color of that pixel. Commonly, the fragment with the lowest depth value, i.e., which is 
nearest to the viewer, determines (replaces) the pixel color. Alternatively, the final color can 
be a combination (interpolation) of the values of both fragments, the one already in the 
frame buffer and the new one, which wants to occupy the same pixel position. This 
technique is called blending. In image synthesis, blending is commonly used to draw 
translucent objects. 
 

 

Fig. 7. Wall transmission depth can be taken into account by counting the number of walls 
in the direct path between the source and the receiver points. On the graphics card, this is 
achieved by an additive blending of shadow polygons. 
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Here, we use the blending capability to increase the value in the frame buffer with every 
rendered shadow polygon. Thus, instead of a solid rendering (replacement of fragments) of 
the shadow polygons, we apply an additive blending. This effectively counts the number of 
shadow fragments at each receiver location. 
However, frame buffer operations like blending are currently implemented in hardware 
with a precision of 8 bits. This would means that we could only count up to 255 wall 
transmissions, which may not be enough for large and complex scenarios. A solution is 
presented by graphics cards that offer buffers (textures) of higher precision like 32 bit. 
Blending has to be implemented by a user-written fragment program since high precision 
blending is not yet directly supported in hardware. 
To overcome this drawback and to support propagation environments with an arbitrary 
number of walls we propose the following hybrid approach between 8 bit hardware and 32 
bit fragment shader blending. 
Two 32 bit buffers are created and filled with zeros. These buffers will provide a so-called 
ping-pong scheme because current GPUs do not support a simultaneous read and write 
access to the same buffer. One buffer is referred to as the next buffer, it is the buffer which 
will be rendered to. The other buffer is referred to as the current buffer, it is bound as a 
texture and read from in the updating step. After each pass, the buffers are swapped, so that 
the next buffer becomes the current buffer and vice versa. 
Hence, one buffer will keep track of the total transmission depth for every fragment and the 

other will store intermediate results. The actual rendering of the shadow polygons is done 

into a third 8 bit frame buffer with hardware supported additive blending. The vertex buffer 

containing the wall geometry is rendered in separate chunks of 255 walls each. After each 

chunk rendering, the transmission depth of every fragment is added to next buffer. This is 

done by a fragment shader which reads the current buffer and the 8 bit buffer containing the 

transmission depths of the latest wall chunk. A simple add operation is performed and the 

result is stored in the next buffer. This procedure is repeated until all wall chunks have been 

processed. 

This approach is a multi-pass algorithm, for n walls it requires  rendering passes. This 

number can be reduced, if chunks are rendered in parallel whose shadow polygons do not 
overlap. Roughly the same performance as the original LOS algorithm is achieved since this 
approach utilizes parts of the rendering pipeline (frame buffer operations) that have been 
idle before. 

5.3 Diffraction into street canyons 
Classical ray tracing algorithms commonly model diffraction effects by tracing a multitude 
of rays into the respective diffraction cone as illustrated in Figure 8(a). This is 
computationally quite intensive, as one ray (the one hitting the diffraction edge) is split into 
many secondary rays. Shooting fewer rays, usually results in an under sampling of the 
propagation environment, leading to regions where no rays arrive. Thus, no path loss 
calculations can be performed there. 
A solution to this problem is presented by the following approach. In order to achieve a 
high throughput of diffraction computations, we trace full beams instead of single rays. This 
has the advantage that beams cover a lot more area than single rays and thus, a lot fewer 
beams than rays have to be processed for a sufficient sampling of the propagation 
environment. 
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                                    (a)                                                                     (b) 

Fig. 8. (a) Modeling diffraction by shooting a multitude of rays into the diffraction cone. (b) 

Diffraction beams in nearby street canyons. Diffraction sources are DS (s) = {x0, x1} and 

DS (x1) = {x2}. Geometric ray paths are for instance s‚x0 ‚r0 or s‚x1‚x2‚r2. 

The algorithm consist of three main steps. (1) Identify all potential diffraction sources for a 
propagation into street canyons. (2) Determine the propagation paths of the secondary wave 
fronts. (3) Compute geometrical paths in reverse order from the target location towards the 
diffraction source. This procedure can be applied recursively if propagation paths along 
multiple street canyons are desired. The idea is sketched in Figure 8(b). 
Let s be a radiation source. According to Section 5.1 the set of discrete points that are in line-
of-sight to s is defined by LOS(s). We define a diffraction source as an end point of a wall w 
that satisfies the following criteria: (1) The wall is in LOS to the radiation source if one of the 
end points is in LOS 

 (5) 

and (2) if the normal vector of the wall is facing away from from the radiation source 

 (6) 

For a radiation source s, we collect all possible diffraction sources in the set DS (s) 

 

(7) 

where each w.pj is choosen such that 

 (8) 

Hence, a diffraction source is always a point on the wall that is closest to the radiation 
source. 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

114 

Now, we construct the diffraction beam DB(x) as a secondary wave front that originates 

from the diffraction source x ∈ DS (s). With our notation we can write a diffraction beam as 

 (9) 

All points which have been in line-of-sight to the original radiation source s will not be part 
of the diffraction beam. Thereby, we ignore regions that would result in very large 
diffraction angles which would in turn not contribute to the overall signal level, 
significantly. 

The final steps consists of the reconstruction of geometric ray paths based on the beam 

information. For each beam b ∈ DB(x), we create a set of ray paths RP (b) 

 (10)

Thus, every point within the beam travels along its diffraction source towards the original 
radiation source. Diffraction paths of arbitrary length can be constructed by assigning the 
start points of the rays as new diffraction sources in a recursive fashion. 
The computational bottleneck of this method are the numerous LOS computations. Therefore, 
we propose to use the LOS implementation on the GPU as described in Section 5.1. 

5.4 Propagation over rooftops 
The algorithm for diffraction into street canyon (see Section 5.3) always maps one wall edge 
to one source point for LOS since only ray paths that hit the receiver plane are computed. 
The calculation of propagation paths over rooftops is different because diffraction source 
points lie on the whole edge of the roof, see. Figure 9(b). 
Therefore, this sections describes how propagation paths due to diffraction over rooftops 
can be calculated efficiently on the graphics processing unit. The algorithm basically consists 
of two steps: (1) a discretized version of the diffraction cones is constructed for every 
rooftop. (2) Ray paths are found by going backwards from each receiver location towards 
the transmitter. An integral part of our method is the computation of diffraction beams for 
every rooftops simultaneously. Therefore, no identification of diffraction sources is required, 

we define the set of roof diffraction sources directly as the set of all building walls W. 

Let s be a radiation source. As illustrated in Figure 9(a), a roof diffraction beam RDB(w) of a 

wall w directly corresponds to the shadow polygon 

 (11)

Due to the construction of the beam all geometric ray paths from RDB(w) to the radiation 

source s have a deflection point somewhere on the wall w at rooftop level, e.g. s‚w ‚r. 

For a point r ∈ RDB(w) the exact deflection point xr on the wall can by found be the 

intersection of the two lines l0 = (w.p2,w.p3) and l1 = (r, s), hence 

 (12)

The idea is sketched in Figure 9(b). The geometric ray paths RP (b) for each beam b ∈ 

RDB(w) are then 

 (13)
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                                     (a)                                                                        (b) 

Fig. 9. Illustration of a roof diffraction beam. (a) The diffraction beam of the source s and 
wall w is depicted in a side profile. (b) The top view reveals the exact deflection point xr as 

the intersection of the direct connection between s and r. This yields the ray path s‚xr ‚r. 

The implementation of this method again involves the LOS computation on the GPU. 
However, some care has to be taken when ray paths are concatenated due to diffraction over 
multiple rooftops. If two consecutive points of a ray path are in LOS to each other, all points 
in between must be removed from the final path. This can be achieved by always computing 
the upper convex hull of all points on a ray path. Further implementation details can be 
found in Catrein et al. (2007). 

6. Path loss calculation 

This section depicts how a ray path is mapped to received signal strength. We handle the 
cases for LOS and NLOS separately. We have an unobstructed clear line-of-sight path if a 
ray path is of the form 

 (14)

for a receiver location x and a radiation source s. We write the corresponding path loss in dB as 

 
(15)

with antenna gains G, wavelength λ, transmitted power Pt and received power Pr 

 
(16)

according to the free space propagation loss by Rappaport (1995). 
The path loss prediction in regions with no direct LOS is known to be more complex. 
Consider a ray path  given as 

 (17)

The change of direction  according to the deflection of the wave front at xi is given by 
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 (18)

Let α  be the change of direction of the corresponding deflection, the angle depended 
attenuation can then be represented by a polynomial of degree 3 

 (19)

We retrieve the unknown model coefficients (α0, α1, α2) by a calibration to real-world 
measurements, thus modeling the stochastic influence of traffic and vegetation. The 
calibration can be realized by a formulation as a constraint least-square problem. The 
optimal parameter vector can then be calculated by common solver algorithms like Gauss-
Newton or Levenberg-Marquardt (see Levenberg (1944)). 

Different types of wave guiding effects are taken into account by introducing distinct 

attenuation functions, the attenuation functions due to diffraction into street canyons and 

over rooftops are denoted by
 

. For the attenuation due to wall 

transmissions (n) we use a model similar to the Multi-Wall model by Lott & Forkel 

(2001) which depends on the number of penetrated walls n. 
In logarithmic notation, the overall attenuation of a receiver location r is then the sum of the 
arriving ray paths and can be written as 

 

(20)

where Nstreet, Nroof and Nwall denote the number of deflection points and αstreet,i, αroof ,j the 
corresponding changes of direction. 

7. Results 

In this section we present prediction accuracy and calculation time. For the purpose of 
benchmarking we use building and urban micro cell measurements of downtown Munich, 
Germany. This data has been created during the COST 231 action as described by Damosso 
(1999) and is now publicly available at Mannesmann Mobilfunk GmbH, Germany (1999). 

The scenario comprises 7 km2 of approximately 18000 building walls. Three different 
measurement routes are available, referred to as METRO200, METRO201 and METRO202. 

All predictions were performed on the whole area of 7 km2 with a resolution of 5 meter. This 

requires the evaluation of more than 3 · 105 receiver points. The transmitter location is 
depicted in Figure 10 which shows a typically field strength prediction. Colors are chosen 
such that diffraction at building edges is clearly visible. In the following, all path loss 
calculations are based on a calibration on the measurement points along route METRO202. 

7.1 Computational performance 
The key component of the presented algorithm is the computation of LOS regions and is 
therefore analyzed in more detail. We have evaluated the performance of our GPU 
implementation of the LOS computation on different generations of graphics cards: NVIDIA  
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Fig. 10. Field strength prediction in downtown Munich (Germany) with colors according to 
intensity. 

GeForce 6600 GT (May 2004), 7800 GT (August 2005) and a 8800 GTX (May 2007). Figure 11 

sketches the computations per second over the size of the underlying discrete grid. At a 

resolution of 5 meters these cards achieve 100, 200 and over 500 LOS computations per 

second, respectively. Thus, we observed a speedup by a factor of 2 for every new generation 

of graphics cards. Hence, we conclude that the implementation of this algorithm in graphics 

hardware scales well on new generations of graphics hardware. In terms of throughput, the 

500 LOS computations per second can also be expressed as roughly 1.6 · 108 receiver points 

per second. As point of reference, the total number of receiver points is roughly 3 · 105 at a 

resolution of 5 meter. 

The implementation of the transmission depth exhibits similar performance behavior as the 
LOS computation since there is almost no noticeable increase in rendering load by this 
approach. 
Table 2 gives an overview of different propagation predictions with respect to accuracy and 

runtime for route METRO201. We use the CPU implementation of the ray launching 

algorithm CORLA by Mathar et al. (2007) as reference for our GPU implementation. In our 

test scenario, CORLA exhibits run times of about 8 seconds. When switching from the CPU 

implementation of CORLA to our GPU method we observed a speedup of roughly 2.5X for 

the roof diffraction and a speedup of 160X for the diffraction into street canyon with 

additional transmission depth. The computation time of propagation paths over rooftops is 

about 3 seconds. The most time (2 seconds) is currently consumed by the computation of 

upper convex hull, since this has to be executed on the CPU, due to a missing stack 

implementation on the GPU. 
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Fig. 11. Line-of-sight calculation time on different generations of graphics cards. Test 
scenario is COST 231 Munich. 
 

 

Table 2. Accuracy and runtimes of propagation models in COST 231 Munich along route 
METRO201. 

Furthermore, we neglected the angle deviation in the propagation paths over rooftops and 
counted only the number of diffractions (which can be performed by the algorithm for 
transmission depth). In combination with the calculation of diffraction paths into street 
canyons, the runtime was reduced to approximately 0.05 seconds at roughly the same 
prediction accuracy. 

7.2 Prediction accuracy 
We quantify the accuracy of our propagation predictions by the mean squared error (mse) and 
the standard deviation (std. dev.) between prediction and measurement data. Let the number 
of measurements points be N, and ri the ith measurement point. MdB (ri) denotes the 
measured, and PLdB (ri) the predicted path loss at ri.  
We define the mean squared error as 

 

(21)

and the standard deviation as 

 

(22)
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with mean error 

 
(23)

A comparison between our prediction and the three available measurement routes 
according to these performance criteria is given in Table 3. Propagation accuracy according 
to the mean squared error lies between 4.5 and 6.2 dB. Whether the GPU or CPU was 
involved in the prediction computation had no influence on the propagation accuray as 
depicted in Table 2. The exact shape of the predicted and measured path loss is illustrated in 
Figure 12 for route METRO201. It can be seen that although the path loss is sometimes over- 
or underestimated, most of the important features in the measurement data are captured 
quite well by the propagation prediction. 
 

 

Fig. 12. Comparison between measured and predicted pathloss along route METRO201 in 
COST 231 Munich. 

 

 

Table 3. Prediction accuracy in COST 231 Munich. 

8. Conclusion 

In this chapter, we exploited graphics hardware for accelerating the computation of radio 
wave propagation predictions. Our method traces discrete line-of-sight beams and 
reconstructs ray paths based on radiation source, beam origin and all discrete points within 
a sampled beam. 
All algorithms are designed to benefit from the computational power and parallel 
architecture of modern graphics cards. Core component of the GPU algorithms is a high 
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throughput LOS computation which leads to computation times of 3 to 0.05 seconds in a 
scenario of 7 km2 with roughly 18000 walls. This results in a speedup of 2.5X to 160X times 
compared to the CPU algorithm CORLA. This is achieved by designing separate algorithms 
for distinct propagation effects like diffraction over rooftops and diffraction into street 
canyons. Hence, a proper combination of propagation effects computed on the GPU can 
deliver propagation predictions at interactive rates. The accuracy of our propagation 
predictions is quantified by a standard deviation between predictions and measurement 
data of 4 to 7 dB which is considered as a very good result. Thus, the use of graphics 
hardware for field strength predictions does not diminish propagation accuracy. 
We summarize the main contribution as the development of a run-time efficient algorithm 
that accurately predicts mean received signal strengths in dense urban propagation 
environments. 

A. Abbreviations and mathematical operators 

LOS line-of-sight 
NLOS non-line-if-sight 

E x
f E2 length of vector x

f
 

〈 ,x y
f f

〉 scalar product of two vectors x
f

 and y
f

 

∧ logical operator and 

∨ logical operator or 

∩ set operator intersection 

∪ set operator union 

∅ empty set 

x i–1 ‚xi ‚xi+1 ray path that starts at xi–1, changes direction at xi and arrives at xi+1 
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