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Abstract
Christian Lauterbach: Interactive Ray Tracing of Massive and Deformable

Models.
(Under the direction of Dinesh Manocha.)

Ray tracing is a fundamental algorithm used for many applications such as computer

graphics, geometric simulation, collision detection and line-of-sight computation. Even though

the performance of ray tracing algorithms scales with the model complexity, the high memory

requirements and the use of static hierarchical structures pose problems with massive models

and dynamic data-sets. We present several approaches to address these problems based on

new acceleration structures and traversal algorithms. We introduce a compact representation

for storing the model and hierarchy while ray tracing triangle meshes that can reduce the

memory footprint by up to 80%, while maintaining high performance. As a result, can ray

trace massive models with hundreds of millions of triangles on workstations with a few giga-

bytes of memory. We also show how to use bounding volume hierarchies for ray tracing

complex models with interactive performance. In order to handle dynamic scenes, we use

refitting algorithms and also present highly-parallel GPU-based algorithms to reconstruct the

hierarchies. In practice, our method can construct hierarchies for models with hundreds of

thousands of triangles at interactive speeds. Finally, we demonstrate several applications that

are enabled by these algorithms. Using deformable BVH and fast data parallel techniques, we

introduce a geometric sound propagation algorithm that can run on complex deformable scenes

interactively and orders of magnitude faster than comparable previous approaches. In addition,

we also use these hierarchical algorithms for fast collision detection between deformable models

and GPU rendering of shadows on massive models by employing our compact representations

for hybrid ray tracing and rasterization.
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Chapter 1

Introduction

1.1 Ray Tracing

The rules of geometrical optics have been used for centuries to compute the path of

light as straight rays in physics or engineering. As a computer algorithm, ray tracing

[6] is a fundamental technique used in many areas of computer science. In computer

graphics, it simulates the propagation of light, e.g. as rays from the eye [158, 78] or

photons from light emitters [73]. Thus, it can be used to synthesize realistic images.

In other applications, geometric simulation algorithms use rays as a representation of

other waves or particles and can perform ray tracing to simulate other phenomena. For

example, acoustical algorithms approximate the path of sound waves by stochastically

sampling rays [89] and computing paths to simulate room reverberation. Similarly,

radio waves can be traced such as to estimate signal strength based on emitters in a

virtual scene. In nuclear simulations, rays represent the trajectory of particles and can

be used to compute fission reactions. As a query to test whether two points can visible

to each other, ray tracing is also a useful tool in other areas. For example, in collision

detection rays can be shot to estimate whether there are obstacles ahead. In line-of-

sight computations such as in training systems, rays can determine whether objects are

visible to each other. While this thesis primarily deals with ray tracing in the context of



Computer Graphics, the methods described here are equally applicable in other areas.

Given a ray and a scene described mathematically, e.g. as a set of geometric prim-

itives such as triangles, the basic operation in ray tracing is to find the intersection of

that ray with the scene, if any. The trivial way to do so is to intersect the ray with every

primitive and then return the closest (or any) intersection. For obvious reasons, this

quickly becomes inefficient when the scene consists of more than a handful of individual

primitives. Acceleration structures such as grids and hierarchies for ray tracing have the

purpose of allowing to quickly determine which objects a given ray should be intersected

with to get the closest intersections, and to do so in less than linear time in terms of

the number of primitives.

While many such acceleration structures have been proposed, in the context of this

thesis the most interesting ones are hierarchies such as kd-trees or bounding volume

hierarchies (BVHs) since they are most universally adaptive to most kinds of scenes

[61]. Hierarchical acceleration structures are a representation of objects as a tree where

each node represents a subset of the objects, starting with the root node for all objects

and down to the leafs with typically only one of very few objects. Each node also

provides a simple geometric shape (e.g. a box or sphere) that the ray is tested for

intersection against, with the special property that if the ray hits any object contained

in the node, it must also intersect the boundary of the node. This allows us to quickly

cull away large non-intersecting parts of the scene objects during ray tracing. The use

of hierarchies in ray tracing is thus a recursive search traversal of the tree structure. For

n objects and assuming that the depth of the tree is on average O(log n), tracing a ray

through the hierarchy therefore has an average run-time of O(log n) as well, compared

to O(n) for testing each object.

In Computer Graphics, the recent focus in ray tracing has been on improving the

performance of ray tracing to allow interactive performance as a rendering technique

and as an alternative to hardware-accelerated rasterization rendering that has proven

2



less flexible and general in terms of which aspects of light transport it can simulate.

Some of the recent methods include bundling rays into small packets that can be traced

together and evaluated using vector operations [151] on commodity processors. Another

recent trend has been to develop improved acceleration structures [100, 61] to perform

ray queries. For the latter, it has been shown that the highest performance is usually

attained with acceleration structures that perform a very detailed and fine-grained sub-

division of the objects and thus provide the smallest set of primitives to intersect with

each ray. In other words, it is more efficient to spend more time traversing the hierarchy

in order to save time in performing ray intersection tests with the primitives. However,

when handling massive models with tens or hundreds of millions of triangles this leads

to other problems, as described in the next section.

1.2 Rendering complex models

The complexity of geometric models, measured in terms of number of triangles, has

been steadily increasing in various applications. For many interactive applications (e.g.

games or virtual reality), this has been driven by the fast evolution of graphics rasteri-

zation hardware that is able to render increasing numbers of triangles. However, for the

largest of models the determining factor has been the source of the data: for example,

new scanning techniques for three-dimensional objects produce a number of geometric

primitives proportional to the desired accuracy, which can often exceed the capabilities

of the rasterization hardware. CAD applications for complex machinery or architectural

objects have high level of detail for most objects since they are modeled with manufac-

turing or physical construction in mind. The combination of all the parts in the model

(e.g. the CAD model of a Boeing 777 airplane as shown in Fig. 1.1) often creates overall

geometric complexity that far exceeds the rasterization capabilities available. Models

originating from large scientific simulations have a complexity that is dependent on the

3



Figure 1.1: Complex models: Several highly complex models: From left to right:
St.Matthew (372M tris), Power plant (12.7M tris), Double Eagle tanker (82M tris),
Boeing 777 (360M tris). The right three models are examples of CAD and architec-
tural models, whereas the leftmost one is the result of laser-scanning a three-dimensional
object.

desired accuracy in the respective domain, not the visualization tool. Often, the result-

ing data-sets such as iso-surfaces are extremely large and hard to visualize at interactive

rates. Thus, interactive visualizations of these models are often limited to only a partial

or simplified view of the complete system. Providing a complete interactive rendering

system for these models is very desirable for many applications such as visualization,

maintenance, training or engineering.

Many approaches for rendering these kinds of models using rasterization with graph-

ics hardware acceleration to allow interactive walkthroughs have been developed. Since

the rasterization paradigm draws all the triangles, this has linear time complexity and

naive rendering of these models is unlikely to be fast. Some methods reduce image

quality for speed, e.g. by using several different levels of detail. Here, it is assumed that

simplified version of the objects can be used at a distance without a large visual differ-

ence, thus reducing the rendering workload. Others concentrate on model compression

to reduce overall memory footprint, culling of non-visible or occluded objects to reduce

the number of primitives that need to be rendered, or alternative rendering primitives

to reduce the work per object.

An additional implication of the detail in complex models is that advanced lighting

and visualization methods are needed to help the human observer understand spatial

4



Figure 1.2: Advanced visualization of complex models: The 12.7M triangle Pow-
erplant model rendered using only local lighting (left) and with ambient occlusion (right).
Using correct lighting helps with intuitive understanding of spatial relationships especially
in geometrically complex models.

relationships between the objects. Examples of this are shadows, partial transparency to

see hidden objects, and indirect illumination. However, since the rendering techniques

mentioned above are all based on the rasterization pipeline, it is much harder to extend

them to handle secondary effects such as reflections and refractions, or non-local light-

ing such as soft shadows. Other effects such as arbitrary transparency also pose hard

problems in complex models. Therefore, while it is possible to render massive models

relatively fast using rasterization, it is hard to generated realistic images.

1.3 Issues in ray tracing of complex models

Since ray tracing generally has logarithmic time complexity with the number of primi-

tives (e.g. triangles) in the scene, it is a good choice to use on complex scenes because

of its asymptotic performance. In addition, it easily extends to arbitrary lighting and

visualization methods and is therefore able to support much more general, high-quality

5



visualization methods. One large benefit is that implementing ray queries in parallel

is trivial both using data parallelism and multi-threading such as multiple cores on

commodity processors. Even though no dedicated ray tracing hardware is available –

unlike commodity graphics processors (GPUs) that are optimized for rasterization – the

progress in interactive ray tracing techniques as well as development in parallel archi-

tectures such as multi-core CPUs and programmable many-core GPUs has allowed ray

tracing to reach the performance necessary for real-time rendering [156, 2].

However, for complex models two main issues remain: 1) large memory footprint and

the size of the working set, and 2) acceleration structure construction and maintenance

for dynamic scenes.

Memory footprint: Interactive ray tracing needs far more memory than comparable

rasterization techniques due to two reasons. First, as described above, a detailed and

complex acceleration structure is needed to achieve high performance for individual ray

queries. As practice has shown, hierarchies can potentially take up memory comparable

in size of the geometric primitives, i.e. doubling the overall memory needed [149]. In

addition, any object in the scene can be intersected with a ray at any time. This

means that all geometric data for the scene has to be stored in a format that is both

randomly accessible and is efficient for the intersection computation, which may need

additional information such as material properties and normals. As a result, the working

set of an interactive ray tracer can potentially be very large at any time. In contrast,

rasterization-based algorithms typically stream the geometric data in a bulk synchronous

manner and each object just has to be loaded once. This allows efficient encoding of

objects in a sequential order, e.g. triangle strips for mesh objects, as well as compressed

representations that are decoded during rendering. This reduces the footprint size and

typically only needs a very small working set.

The problem of high memory footprint is exacerbated by the fact that ray tracing
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Figure 1.3: Out-of-core ray tracing: The same model at different simplification levels
is ray traced on a machine with limited memory (note the log-log scale). As the memory
footprint of the model and hierarchy exceeds main memory beyond 32M triangles, the
speed decreases by three order of magnitude due to disk cache misses. Graph from [164].

does not perform well when the geometric data and the hierarchical data structure do

not fit into the memory, i.e. during out-of-core rendering. As shown by an experiment

in [164] (see Fig. 1.3), ray tracing a model that exceeds the main memory can cause the

algorithm to experience enough disk cache misses that the overall performance decreases

by three orders of magnitude. Even though the performance remains logarithmic with

higher constants, it becomes far too slow to be of any use for interactive applications. On

architectures that have severely limited memory and may not support virtual memory

such as programmable GPUs, rendering out-of-core is not even a practical option and

therefore the complexity of the models that can be ray traced is severely limited by the

size of the available main memory.

Several techniques have been proposed to address this problem that allow ray tracing

on massive models even on machines with limited memory. One approach is to change

the order in which rays are evaluated so as to increase coherence in terms of memory

accesses. These reordering approaches [115, 28, 36, 15] can drastically reduce the amount

of cache misses and may only require parts of the model to reside in main memory, but

typically only work efficiently for offline rendering with high numbers of rays. It is also

possible to integrate levels-of-detail into ray tracing [20, 164, 31]. In these techniques,
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precomputed simplified versions of the objects in the scene can be used during ray tracing

which drastically reduces the working set size and allows to maintain the rendering

performance even when the geometry footprint is larger than main memory. Another

approach [153] hides memory latency for objects that are not in the main memory by

substituting a simple placeholder object for those parts of the scene. However, LOD

techniques may introduce visual artifacts and will also increase preprocessing time and

overall memory footprint.

Finally, several algorithms have been proposed to use more compact or compressed

representations for the ray tracing acceleration structures. Reduced precision BVHs [101]

encode the bounding box coordinates using a quantized representation using less bits,

thus drastically reducing the overall memory needed to store the BVH. However, there

is significant ray tracing performance overhead due to more ray-box intersection since

the quantized boxes are larger than the original ones. In addition, the decompression

needed during the traversal introduces additional overhead. Another technique [21] uses

higher branching factors to reduce the number of nodes and a fixed tree layout such that

no child pointers are needed, but has similar drawbacks. Neither of these approaches

reduces the overhead of storing the geometric data. A more general technique [82]

compresses small sub-trees individually and then decompresses them at run-time when

accessed. However, the run-time overhead may make this unsuitable for interactive

rendering.

Hierarchy maintenance: Constructing ray tracing hierarchies is a non-trivial task

that can be computationally expensive, especially when using methods that optimize

the hierarchy for high ray tracing performance [61]. For complex models, computing

the hierarchy in advance is possible but may add more time than the user is prepared

to wait. For example, in engineering applications many virtual parts may be combined

into a large model relatively quickly, but the precomputation time for ray tracing may
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delay the actual rendering for minutes or hours. More importantly, for complex scenes

that are dynamic – i.e. objects move or deform – the hierarchy becomes invalid as soon

as the underlying geometric shape changes or the objects in the scene undergo motion.

Without a fast way to construct or update the existing hierarchy, ray tracing of dy-

namic scenes is limited by the speed of the algorithm used to update of maintain the

acceleration structure. This is ever more important on current commodity processors,

as parallelism in hardware architecture increases since hierarchy maintenance does not

parallelize easily and thus becomes the bottleneck in terms of scalability. Therefore,

in order to perform scalable ray tracing of deformable models, it is necessary to design

parallel algorithms for hierarchy maintenance and construction. In particular, current

high-performance architectures such as many-core GPUs exhibit both high data paral-

lelism in the vector units, but also have many individual cores providing high thread

parallelism. To efficiently utilize these processors, it is necessary to exploit both of these

sources of parallelism.

While there are approaches that can compute acceleration structures that are valid

for an animation sequence [49, 57], they need a priori knowledge of the whole animation

to work and typically also decrease rendering performance due to larger bounding boxes.

There are two different approaches for ray tracing of animated scenes: the first is to

fully rebuild the acceleration structure for each frame and the second is to refit or

update the structure in order to restore correctness for geometric objects that have

moved since the last frame. Several approaches have been proposed to improve hierarchy

construction performance through algorithmic improvements or parallelism on multi-

core CPUs (see chapter 2 for an overview), but have not been investigated for highly-

parallel architectures such as GPUs.
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1.4 Thesis goals

The goal of this thesis is to address these two issues in ray tracing of complex models.

In particular, we want to design compact representations for interactive ray tracing

of triangular models that reduce the memory footprint without degrading the overall

performance significantly in terms of image quality and the frame rates. Our replace is

to perform ray tracing of massive models even on commodity PC systems with limited

memory such as workstation machines or graphics processors. We also seek to perform

ray tracing of dynamic scenes at interactive rates such that the hierarchy maintenance

between frames should not be the bottleneck of the overall rendering algorithm. We

want to design algorithms that take advantage of the nature of deformable models by

utilizing the coherence between frames to reduce the time spent on hierarchies. For

general dynamic models, we aim to introduce methods for fast hierarchy construction

on graphics processors and other massively parallel machines that fully utilize thread

and data parallelism and in practice allows interactive ray tracing while reconstructing

the hierarchy during each frame.

We also seek to investigate the impact of these improvements in areas other than real-

time rendering. We show that hierarchy computation for dynamic models can also be

used for interactive geometric sound propagation in virtual, dynamic scenes. In addition,

our algorithms for parallel hierarchy maintenance also enable highly parallel collision

detection. Finally, we show that rasterization and ray tracing of massive models can be

combined on graphics processors for generating high-quality hard and soft shadows.

1.5 Thesis statement

It is possible to perform interactive ray tracing of massive static models and complex

deformable models on commodity CPU and GPU hardware with limited memory using

compact representations and highly parallel hierarchy operations.
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1.6 Thesis overview and contributions

This thesis introduces several algorithms for ray tracing to address the problems listed

above. We summarize the main contributions and results of the thesis here.

1.6.1 Fast, compact representations for interactive ray tracing

We propose a novel light-weight representation for triangular meshes and optimized ray

tracing acceleration structures. In particular, we show how to efficiently represent ge-

ometric models based on triangle strips and object hierarchies in a structure that still

provides random access for ray tracing and does incur only very small ray tracing over-

head but results in a significant reduction in memory footprint compared to a standard

minimal representation for interactive ray tracing. We also present a new algorithm for

generating a new type of triangle strips that are optimized for ray tracing performance

compared to traditional triangle strip generation algorithms in that are designed for

rasterization.

Our results show that many of the widely-used complex models with several hundreds

of millions of triangles can be represented in 8GB of main memory. Compared to

a minimal geometry representation and state-of-the-art hierarchy, our novel ReduceM

approach reduces the overall memory footprint by up to 80%. This decreases the memory

complexity to a level that allows interactive ray tracing of these models on standard

workstation machines as opposed to supercomputer or clusters of workstations. At the

same time, using our representation results in only a very small performance overhead

compared to efficient kd-tree based ray tracing [149] when both approaches run fully

in-core. In terms of frame rate, at worst we observe a slowdown of 20%, but most

models see almost equal performance or even an improvement in overall render times

due to the smaller working set size. We also show that our algorithm for constructing

triangle strips optimized for ray tracing performance has a large impact on overall speed
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of ray tracing. In comparison to a standard strip construction algorithm we observe a

performance increase of up to 58% using our ReduceM algorithm.

Finally, we also demonstrate that our representation yields a practical method to use

data parallelism during ray intersection to speed up tracing of single ray. By intersecting

one ray against multiple edges of the triangles in parallel, we can increase the overall

rendering speed by up to 90% on complex models. This is important for applications

that do not work well with the standard ray packet approach for data parallelism, such

as path tracing.

1.6.2 Interactive ray tracing of deformable models using bound-

ing volume hierarchies

We also present an approach for ray tracing of deformable models. We use refitting

approaches for object hierarchies such as BVHs that can maintain the hierarchy for

deforming geometry and introduce a novel approach to automatically detect hierarchy

quality degradation due to refitting. In practice, this approach fully detects degradation

even for worst case models with highly changing connectivity where plain refitting results

in a performance decrease to a fraction of the original rendering speed. In addition, the

hierarchy quality control is tightly integrated into the refitting process and adds virtually

no overhead to the original update algorithm. We also show algorithms for fast and data

parallel ray packet intersection of BVHs in order to achieve interactive performance. Our

method achieves a speedup of 2− 2.5× using data parallel operations on current CPUs

and in practice can achieve interactive frame rates (larger than 10fps) on all our dynamic

benchmark scenes with hundreds of thousands of triangles on a current multi-core CPU

system.

We also present analysis and comparison of BVHs against other acceleration struc-

tures, specifically kd-trees and other object hierarchies such as s-kd-trees. Our results

show that BVHs can provide similar performance to kd-trees when using ray packet

12



approaches, without some of the disadvantages that these packets have in kd-trees. In

addition, BVHs tend to be more compact and predictable in memory footprint. Com-

pared to more light-weight object hierarchies, s-kd-trees provide better performance due

to less expensive intersection. However, we demonstrate that refitting approaches do

not work well on these object hierarchies and quality degradation in performance occurs

much quicker.

1.6.3 Parallel algorithms for hierarchy operations on GPUs

Another aspect of our work consists of algorithms for operating on bounding volume

hierarchies on massively parallel architectures such as GPUs. We present the first al-

gorithm for building object hierarchies optimized for ray tracing on current GPUs by

using both data and thread parallelism. Then, we show how to improve its scalability

on complex models through a new approach that eliminates the bottleneck in the early

stages of the algorithm by substituting with a linear-time build. Our results show that

the approach scales well even for large models and provides comparable performance to

multi-core approaches [148] for hierarchy construction. We also present an analysis of

performance scalability in terms of future GPU architectures and determine that the

algorithm is computation bound (as opposed to bound by memory accesses) and thus

is likely to scale well. Overall, the construction is fast enough to allow interactive ren-

dering of complex scenes with hundreds of thousands of triangles while rebuilding the

hierarchy at each frame.

In addition, we show a parallel approach for rapidly refitting the hierarchy for de-

formable geometric objects on GPU-like architectures. Due to high memory bandwidth,

this approach performs several times faster than on a CPU and is about an order of mag-

nitude faster than our fast hierarchy construction. This means that even for complex

models the hierarchy can be maintained in milliseconds on current GPUs.
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1.6.4 Interactive sound simulation in dynamic scenes

We present an algorithm to extend the fast BVH ray packet and refitting approaches to

perform interactive geometric sound propagation with specular reflections in dynamic

scenes. In particular, we introduce a novel volumetric representation based on four-

sided ray-frusta as a discrete approximation to sound beams and then show how to

efficiently trace these frusta using a BVH acceleration structure. This approach has

several advantages compared to traditional stochastic ray-based techniques used in sound

propagation that suffer from sampling problems, and is substantially faster than beam-

tracing methods that needed significant preprocessing and storage. In particular, our

approach works well on more general and much more complex scenes than any previous

method. In practice, our propagation algorithm can perform 3-4 specular reflections at

almost interactive rates on models with up to hundreds of thousands of triangles, thus

allowing moving sound sources, listeners and geometry on current multi-core CPUs.

1.6.5 Highly-parallel collision detection on GPUs

We also present parallel object-object intersection using bounding volume hierarchies

on GPUs and use them for fast collision detection. We introduce a novel lightweight

work balancing approach as an alternative to traditional work queue approaches that do

not perform well due to the synchronization overhead of the GPU cores. Additionally,

we present techniques for exploiting inter-frame coherence between collision detection in

subsequent frames to increase the parallelism in intersection computation. One result

of our algorithm is that on highly-parallel processors such as GPUs more tight-fitting

bounding volumes such as oriented bounding boxes (OBBs) have much lower overhead

in construction and refitting due to higher computational intensity, and yield improved

performance as compared to simple bounding volumes such as axis-aligned bounding

boxes or spheres. Overall, our results show that due to fast hierarchy maintenance and

work balancing it is possible to perform self-collision computations including continuous
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collision on models with tens or hundreds of thousands of triangles at performance

competitive with highly-parallel CPU systems. We observe up to an order of magnitude

performance improvement over prior GPU-based algorithms for collision detection.

1.6.6 Hybrid GPU shadows on massive models

Finally, we also present efficient techniques for rendering accurate shadows in massive

models on GPUs which cannot be handled well by rasterization methods. In particu-

lar, we introduce an approach that combines fast rasterization-based shadows with ray

tracing based visibility to correct localized errors left by the original algorithm. One con-

tribution is the adaptation of our previous compact memory representation as a format

that can be used as a data structure both for a ray tracer as well as a rasterization-based

rendering algorithm to avoid data duplication. We demonstrate how to use our approach

both for rendering of hard and soft shadows. In practice, our results demonstrate that

it is possible to generate accurate alias-free hard shadows on complex models in about

35%− 50% of pure shadow mapping algorithms, which is about 3− 5 times faster than

only using ray tracing.

1.7 Thesis organization

The rest of this dissertation is organized as follows:

Chapter 2: A detailed overview of previous and concurrent work related to the areas

of this thesis. In particular, we review related work in interactive ray tracing, ray tracing

of massive models and construction of ray tracing hierarchies.

Chapter 3: We describe our compact representation for interactive ray tracing of

triangular meshes. The main focus of this chapter is on massive static data-sets. We
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describe how to construct our ReduceM representation and use it for ray tracing queries

including hierarchy traversal and intersection.

Chapter 4: This chapter and the next discuss issues related to ray tracing dynamic

scenes. Chapter 4 concentrates on ray tracing of deformable models and shows tech-

niques for fast ray tracing using bounding volume hierarchies that can be refitted instead

of fully rebuilt each frame. We discuss issues regarding degradation of rendering perfor-

mance when refitting and present our solution to maintaining BVH quality over time.

Chapter 5: The second chapter dealing with dynamic scenes. Here, we introduce our

approach to fast construction of bounding volume hierarchies for more general dynamic

scenes that hierarchy refitting does not support. In particular, we discuss issues and

algorithms in terms of using parallelism in construction algorithms by using massively

parallel GPU architectures.

Chapter 6: This chapter deals with several applications that use the previously de-

scribed algorithms and representations. Section 6.1 describes a geometric simulation

algorithm for sound generation that performs interactive propagation of sound waves in

complex, dynamic geometric environments using the dynamic BVH system. Section 6.2

presents an approach using parallel hierarchy construction and refitting in addition to

parallel hierarchy operations to perform fast hierarchical collision and self-collision of

complex deforming models on the GPU. Finally, section 6.3 explores the combined use

of rasterization and ray tracing algorithms on GPUs as a hybrid system for interactive

generation of high-quality shadows.

Chapter 7: We conclude with restating the main results of the thesis and highlight

many areas for future work.
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Chapter 2

Previous work

This chapter presents a survey of related work in the area of ray tracing. First, we review

basic previous work in interactive ray tracing mostly concentrating on static, complex

models before moving on to related work on ray tracing dynamic and deformable scenes.

In addition, we examine algorithms for fast construction and refitting of ray tracing

hierarchies.

2.1 Interactive Ray Tracing

Even though ray tracing for computer graphics was introduced very early [6], it has

been traditionally limited to offline rendering and simulation for a long time. However,

the steady increase of computational power coupled with algorithmic advances in ray

tracing hierarchy construction and fast ray intersection has recently given rise to the

field of interactive ray tracing with the goal of allowing real-time implementations of

algorithms such as Whitted [158] or distribution ray tracing [22]. One development

has been the introduction of ray packet techniques that bundle groups of rays together

during intersection with the acceleration structure and geometric primitives. If any ray

can hit a node in the hierarchy or a geometric primitive, then all rays are intersected

against the same node or primitive. Wald et al. [151] first demonstrated small ray

packets on kd-trees that were also accelerated using vector units on mainstream CPUs



and resulted in several times the performance of single ray tracing. Additionally, they

proved that ray packets larger than actual vector sizes (e.g. 64 rays) yielded additional

improvements in performance.

The performance of ray packet approaches is dependent on ray coherence, i.e. the

probability of the rays to hit the same or close-by objects. For example, eye rays from

adjacent pixels usually have high coherence since they move in very similar directions.

On the other hand, rays that are stochastically sampled on a hemisphere such as used

in path tracing tend to go into very different directions, and hence coherence is low. In

ray packet tracing, lack of coherence means that individual rays in a group may need

to be intersected against a very different set of nodes and primitives. Since all rays are

intersected with the super-set of the nodes and objects hit by any ray, work overhead

is introduced in the form of additional intersection operations. If coherence is high,

however, then ray packet approaches save a significant number of intersection steps as

just one ray may need to actually perform the intersection. It should also be noted that

the primitives to be intersected against only needs to be loaded once, thus reducing

memory bandwidth.

The performance advantage of coherent ray packets was further improved upon in

multi-level ray tracing (MLRT) [124]. The main feature of that approach is to use very

large packets that could be subdivided into smaller groups when needed. In addition,

frustum culling techniques can test the whole group for intersections and are independent

from the number of actual rays in the packet. The main component of the algorithm is

the entry point search that for a group of rays finds the node deepest in the tree that all

the rays will intersect. When this is a leaf, then actual intersection with ray primitives

can occur. Otherwise, the group is split into smaller packets to find deeper entry points

in the tree. The main advantage of the MLRT method is that it exploits ray coherence

to a much higher degree because it can form much larger initial groups of rays and then

subdivide them as needed. Thus, for coherent work loads such as eye rays and shadows
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Reshetov et al. demonstrated speedups of an order of magnitude compared to standard

packet approaches.

Rays queries can almost always be evaluated fully independently. Therefore, parallel

implementations for ray tracing are trivial and multi-threaded implementations perform

well without much effort on multi-core architectures. Graphics processors (GPUs) are an

example of massively parallel architectures, and due to their theoretical computational

power have been a logical target for ray tracing. On the other hand, lack of programma-

bility and architectural limitations have made the design of ray tracing methods on

GPUs challenging. One early approach [17] used the GPU only to perform ray-object

intersections generated by a CPU hierarchy algorithm. A concurrent method [119] used

a three-dimensional grid as acceleration structure and thus was able to perform the com-

plete ray tracing algorithm on the GPU. However, the inflexible programming interface

and instruction limitations resulted in overall performance far off from comparable CPU

implementations and achieved only a fraction of theoretical computational power.

Subsequent approaches concentrated on using hierarchical approaches instead as

those had been shown to be highly efficient in CPU ray tracing approaches [61]. The

main problem for the traversal of hierarchies on GPUs was that ray traversal algorithms

essentially perform recursive queries on the tree structure and as such at some level need

a stack to represent the current state of traversal. This stack can potentially be large

– up to the maximum depth of the tree. Since space to store this stack on GPU cores

was not available, initial implementations of hierarchy traversal concentrated on finding

methods that did not rely on any state. Thrane and Simonsen [142] used a BVH with

a fixed traversal order with skip pointers [135] where the information on which node

to go to next is always explicitly available and no stack needed. Since this limitation

prevents any front-to-back ordering, this approach only works for simple models with

low depth complexity. A more advanced version was presented for kd-trees in [117].

Here, each node has precomputed ropes: pointers for each of the 6 sides of its bounding
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box. If a ray exits a node, the respective rope then provides information on where in

the tree to continue traversal without a stack. The main disadvantage of this approach

is that the memory footprint of the hierarchy increases significantly because an extra

6 pointers are stored per node, with additional precomputation. The kd-restart and

kd-backtrack methods [40] also work on kd-trees, but require less modifications. The

kd-restart method does not require changes to the kd-tree structure and always contin-

ues from the root node whenever recursion ends, but stores a distance that allows to

avoid the sub-trees already visited. Thus, it is less work efficient as it may visit some

nodes in the tree multiple times. The kd-backtrack algorithm relies on parent pointer

in the tree to find the next node and provides slightly higher performance at the cost of

higher memory footprint.

As GPUs added more flexibility in memory and programming instructions, work

concentrated on algorithms that could work with limited stacks. The kd-restart restart

algorithm has been combined with a small fixed-size stack [69] to avoid most restarts

and reduce the work overhead. This yielded much improved performance that for the

first time was comparable to CPU systems. For BVHs, Popov et al. [117] showed that

packet ray tracing techniques could also reduce the state for stacks since only once stack

is needed for a whole group of rays. Alternatively, a modified restart algorithm using

restart trails can allow stackless traversals on BVHs as well [91]. On current GPU

architectures, limitations have been relaxed such that stack-based recursive traversal is

usually not a problem, although some architectural concerns like scheduling still have

to be taken into account [2, 113].

2.2 Ray tracing of large models

Using ray tracing on massive data sets provides several challenges mainly due to the

high memory requirements. One approach to the problem has been to implement ray
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tracing on supercomputers [114], large shared memory systems [138, 29] or clusters with

distributed memory [27]. This allows to store the geometric primitives and hierarchy

in main memory such that standard ray tracing methods can be used unaltered. For

machines with limited main memory, several methods have been proposed to avoid the

problem of out-of-core rendering. We can broadly classify these approaches as reordering

techniques, levels-of-detail approaches and compact representations.

Reordering: Ray reordering methods change the order in which rays are traced to

generate more locality in the memory accesses, thus needing a smaller working set and

potentially only parts of the entire model in the main memory at any time. Reordering

is possible on several scales. On a high level, just the order in which rays are evaluated is

changed, but the actual ray traversal and intersection order is unchanged. The approach

in [115] performs this by ordering all rays based on their origin in a 3-D grid first, then

tests the rays against geometric primitives in each cell such that only local geometric

data can be accessed. In a hybrid system using CPUs and GPUs [15], simple reordering

is also used to schedule rays for execution on processors with only parts of the scene

in local memory. Another recent approach instead intersects the rays against a very

simplified version of the scene and then groups them according to approximate hit point

[107] instead of origin. All these approaches can drastically reduce the working set size

during ray tracing and result in a large speedup compared to standard ray tracing.

However, all of them also have in common that the reordering process adds significant

rendering overhead. In practice, they therefore require large ray workloads and offline

processing to amortize the overhead of ray organization.

At a lower level, it is also possible to change the order of ray evaluation during

hierarchy traversal and intersection tests. In breadth-first ray tracing [108] all the rays

are traced through the hierarchy at the same time and intersected with the same nodes,

then queued up for the next set of intersections. This means only one geometric object
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is ever needed to be stored in memory, but the overhead for queuing and organizing the

rays is high. In this context, all ray packet approaches can be considered a sub-class

of reordering approaches on a very small scale, but the groups are too small to have a

large impact. Several algorithms suitable for real-time rendering have been proposed

[36, 154, 47] and work by limiting the scope of reordering to a subset of all rays. At these

scales, reordering through stream compaction or other methods becomes more practical

during traversal, but currently the overhead still outweighs the benefits.

In general, the space of approaches between reordering the rays and reordering the

traversal steps is much less explored. There is some initial work into using ray hierar-

chies [125] that is motivated mostly by trying to avoid the need for building a scene

hierarchy. In this approach, a simple hierarchy of the rays is used and then all geo-

metric objects are streamed over that hierarchy to perform intersection computations.

However, performance is low except for very coherent ray sets.

Levels-of-detail: Algorithms using simplified versions of object data in order to re-

duce the rendering workload are common in GPU rasterization systems [99]. In ray

tracing, levels-of-detail (LODs) are not as easy to use since every ray may need to ac-

cess a different version of the model whereas for rasterization only once choice for each

object is required per frame. Nevertheless, several approaches using LODs have been

proposed. For subdivision surfaces such as used in animation and modeling, multiple

simplification levels are easily computed, but may take too much memory. Christensen et

al. [20] propose a multi-resolution method for offline renderers that decides on the LOD

based on ray differentials [72] and caches the generated meshes. In contrast, the Razor

system [31] concentrates on the use of LODs for rendering performance and quality and

not memory use. It uses lazy hierarchy construction and refinement of meshes during

ray tracing and addresses issues of matching simplification levels when using LODs for

secondary effects. An implementation was still significantly slower than comparable
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triangle-based ray tracers. For triangle meshes, Yoon et al. [164] introduce a method

that integrated a planar LOD representation with the kd-tree structure. Rays could

choose to use a simplified version of the geometric object from any point depending on

their size compared to node size, as well as a user-defined quality parameter specifying

acceptable error in terms of size relative to ray footprint. This resulted in far smaller

working set size and thus allowed to maintain logarithmic performance despite render-

ing out-of-core. Finally, the approach in [153] hides memory latency for objects not in

main memory through explicit memory management where ray tracing calls to parts of

the hierarchy or geometry not currently in cache would be intercepted. In that case,

the result is substituted by a simple precomputed placeholder object for those parts of

the scene and the real data loaded in the background without blocking. This ensures

that interactive rendering speed is maintained and unaffected by disk cache misses, but

requires relatively low-level interaction with the operating system. Overall, all these

techniques may introduce visual artifacts and may also increase preprocessing time and

overall memory footprint.

Compact representations: Finally, several algorithms have been proposed to use

more compact representations for ray tracing acceleration structures. By reducing the

overall memory footprint of the hierarchy, larger models can be ray traced in core. Re-

duced precision BVHs [101] quantize the coordinates of each bounding box hierarchically

such that each only has between 4 and 16 bits (instead of 32 for single-precision floating

point). Overall, this can drastically reduce the memory needed per BVH node. On

the other hand, since the quantized boxes can be larger than the original ones, this

approach could result in a higher number of ray-box intersections. During traversal the

algorithm must first decode the bounding box coordinates back to floating point, leading

to additional run-time overhead. Even though some of that overhead can be amortized

using ray packet techniques [101], compressed representations still incur rendering over-
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head. Another technique [21] also uses higher branching factors to reduce the number

of nodes and a balanced tree layout such that no child pointers are needed, but has

similar drawbacks. In addition, for models with uneven geometric distribution balanced

trees commonly perform much worse than using optimized hierarchies. Neither of the

approaches reduces the overhead of storing geometry data.

2.3 Ray tracing dynamic models

For any non-trivial scene, ray tracing algorithms depend on an acceleration structure to

quickly determine a set of geometric objects that a given ray can potentially intersect.

The disadvantage is that these structures typically become invalid as soon as objects

move or deform and when new objects are inserted or existing ones removed. While

there are approaches that can compute acceleration structures that are valid for an

animation, they need a priori knowledge of the whole animation (i.e. all the frames

and object positions) to work and typically also decrease rendering performance due to

larger bounding boxes. In space-time ray tracing [49], bounding boxes are built over the

whole space of the animation for each model. The approach described in [57] is more

practical for complex objects and first decomposes the object into smaller meshes, then

computes the animation bounding boxes for each of the meshes instead.

There are two different approaches for ray tracing of animated scenes: the first is

to fully rebuild the acceleration structure for each frame and the second is to refit or

update the structure in order to restore correctness for geometric objects that have

moved since the last frame. The two following sections address each of these solutions.

In this context, we mainly limit our discussion to hierarchical acceleration structures,

but a more detailed comparison of all approaches related to ray tracing of dynamic

models is available in [156].
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2.3.1 Hierarchy construction for ray tracing

In ray tracing, the fundamental problem of construction is to build a hierarchical data

structure from a given unstructured set of objects such as triangles. In this context

there are two main issues to address: how to construct hierarchies that provide high

ray tracing performance, and how to construct these hierarchies quickly. Almost all

algorithms for building hierarchies perform a recursive top-down subdivision of the set

of objects until some termination criterion is reached, such as a sufficiently small number

of objects remaining in each group. The main differences in algorithms stem from the

decision on how to subdivide the object set at each step. Early hierarchy construction

implementations [126] used simple methods such as subdividing along the longest axis of

the objects’ bounding box, or splitting to get an equal number of object on each side to

result in a balanced hierarchy. However, further analysis showed that this yielded sub-

par ray tracing performance. The surface area heuristic (SAH) [50, 100, 61] is a greedy

approach that minimizes a cost function at each split in order to find the one with the

least expected ray intersections and thus best expected ray tracing performance. During

each subdivision it minimizes a cost function that models the expected number of ray

intersections for the subdivision. This minimizes the overall surface area of all tree nodes,

and, since the surface area of a bounding volume is proportional to its probability of

being hit by a ray from a uniformly sampled direction, reduces the number of expected

ray-node intersection operations. Results have shown that especially for scenes with

irregular object distribution (such as architectural and CAD models) this can result in

a 2-3x higher rendering performance [61, 149]. While the SAH was initially introduced

for the kd-tree data structure, it has also been applied to others such as BVHs [93, 152]

and spatial kd-trees [163].

Evaluating the SAH cost function can be slow because it usually involves sorting

the objects on each axis at least once as a preprocessing step to finding all the split

candidates [155]. A recent development has been to use approximate SAH techniques
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instead [116, 71, 150]. Here, the SAH cost function is only computed for a small set of

candidates instead of all possible ones. Based on the results of those sample values, an

approximate overall cost function for the split can be constructed by standard interpo-

lation techniques, and the minimum value of that function is used to find the best split

available. In addition, data parallel operations can be used to evaluate multiple candi-

dates at the same time [71]. Results from these methods have shown that this speeds

up overall construction drastically while only sacrificing a negligible fraction of overall

ray tracing performance. As an alternative, other very fast object hierarchy splitting

techniques were also developed [163]. Here, initial splits are performed using very fast

spatial subdivision similar to an octree.

Another avenue for increasing construction speed is to parallelize the tree construc-

tion. Early work in [116] distributes splits to parallel threads on a multi-core CPU

system, but the authors found that the bottleneck of the algorithm was the lack of par-

allelism for the first splits at the top of the tree. Since these early splits also are the

largest in terms of number of objects to process, the least parallelism is available where

the most work is done. For that reason, their implementation would only achieve sub-

linear speedups even with a high number of cores. This problem was addressed in later

work [131] for kd-trees with the introduction of a initial clustering step that coarsely

sorts objects into larger groups. This clustering then provides the input to the real

subdivision build. Since the splits of each group can be handled independently, this pro-

vides enough parallel splits to achieve enough available parallelism for better scalability.

In addition, the clustering process itself is also a parallel operation. Subsequently, this

approach provides linear scalability with a small number of cores, but does incur a small

hierarchy quality penalty for using a simplified clustering method for the top levels of

the tree. This penalty is also dependent on the number of parallel cores used. A similar

approach is presented in [150] for BVH construction. The authors investigate a initial

clustering approach as in [131] and a coarse grid sort as a faster alternative, and see
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similar scalability results. However, for both approaches scalability falls beyond 4 cores

which is most likely to be attributed to limitations of memory bandwidth, which remain

an issue in hierarchy construction. Choi et al. present an improved multi-core kd-tree

construction algorithm [19] that avoids some of the quality trade-offs made in previous

parallel algorithms, but also achieve only about 7x scaling on a 16-core architecture.

On GPUs, Zhou et al. [166] have demonstrated an algorithm for building kd-trees in

parallel. Using work queues and a breadth-first construction, splits are assigned to GPU

cores and then the individual split operations performed using vector units. To avoid

the problem of insufficient parallelism for the first splits, they process the top levels of

the tree with a very simple split and only use SAH splitting at the lower levels. Their re-

sults show that parallel construction of hierarchies on programmable GPUs can achieve

comparable performance to multi-core CPU systems. For GPU BVH construction, Pan-

taleoni and Luebke [112] improve the LBVH algorithm [94] in performance and hierarchy

quality by introducing several ideas: first, they introduce an improved version of the

LBVH sorting algorithm that uses hierarchical information to achieve a 2-3x speedup

over LBVH. Second, they also use LBVH information for a hybrid SAH builder. How-

ever, due to the nature of the LBVH construction the approach still produces the best

results only on models with relatively uniformly distributed geometry such as scanned

models.

Finally, another solution is to eliminate the need to fully build the acceleration

structure by using lazy construction where the data structure is only built as it is

accessed during the ray intersection. Waechter et al. [163] investigate this for complex

models and find that it may significantly construction times. Similarly, the Razor system

[31] builds all acceleration structures lazily including generation of subdivision surfaces.

Overall, lazy construction has the advantage of reducing the time-to-image for rendering

and may also reduce the overall storage requirements of the hierarchy. However, it may

be less efficient if most parts of the scene are intersected by rays, such as with indirect
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illumination and other less coherent effects. Combining parallelism and lazy construction

also still poses problems that may be harder to solve.

2.3.2 Hierarchy refitting approaches

As an alternative to rebuilding, for object hierarchies such as BVHs it is also possible

to modify the existing hierarchy to account for moving objects. While it is possible

to insert and remove objects into object hierarchies [34], doing so may not be much

faster than a full rebuild if many objects change per frame. In general, most methods

are limited to deformable objects where only positions but not the number of objects

changes. Overall, the refitting operation on a hierarchy consists of recomputing all

bounding volumes in the tree to fit to the deformed geometric primitives, but leaving

the actual tree structure unchanged. In practice, this can be done through a post-order

traversal of the tree where at the leafs bounding volumes are fit to the geometric objects

and new volumes are then propagated upwards. For ray tracing, this has shown to

work well as long as object deformation is coherent and connectivity constant [152]. If

this is not the case, the ray tracing performance of the updated hierarchy may decrease

rapidly. Some methods have been proposed to handle this problem. If the animation

with object positions is known in advance, then it is possible to minimize the impact by

computing the BVH for each frame and then using the one that fits all frames best as

input [152]. Selective restructuring [165] is able to partially rebuild parts of the tree as

determined by a cost/benefit analysis, but the additional overhead leads to only small

overall improvement in performance compared to refitting. The approach in [46] tries

to identify different types of motion in the lower levels of the tree and uses that as a

criterion for refitting or partial rebuilding. Overall, hierarchy refitting has been shown to

be about 1-2 orders of magnitude faster than a rebuild [152], but does not scale linearly

to multiple CPU cores for larger scenes since it can be memory limited.
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Chapter 3

Massive models

One of the reasons that rasterization algorithms provide high performance for rendering

massive models has been the almost linear memory access pattern and small working set

size. However, as was explained in chapter 2, such a pattern cannot be directly replicated

for ray tracing. On the other hand, a good alternative in order to accelerate ray tracing

is to make the geometric object representation and acceleration structure sufficiently

compact by lowering the storage overhead and therefore being more memory efficient. In

this chapter, we describe a compact representation for interactive ray tracing of massive

triangular models that significantly lowers the overall memory footprint and thus enables

in-core ray tracing of much larger models. Similar to the development of many efficient

rasterization approaches, we exploit the connectivity between the triangles to reduce

storage overhead and even use that connectivity to partly represent the hierarchy.

3.1 ReduceM Representation

3.1.1 Overview

Our representation is based on the idea of a two-level hierarchy (see Fig. 3.1). Overall,

the model is decomposed into smaller meshes that are each stored in our representation.

Each of these meshes includes both the hierarchy and geometry information necessary



High-level hierarchy

(e.g. BVH, kd-

Compact combined

representation 

for hierarchy and geometry

Figure 3.1: Using a two-level hierarchy: Our representation is based on a compact
representation for meshes and hierarchy at the bottom levels and a top-level hierarchy
that is built on only the meshes and thus much smaller than a hierarchy built on the
original triangles.

for ray traversal and intersection, but in a very compact format that is still efficient, as

described below. The top-level hierarchy is then built on top of these meshes as opposed

on the actual underlying triangles. This results in a much smaller top-level hierarchy

since there are far less meshes than original triangles. In general, the top-level hierarchy

can be any choice of acceleration structure such as kd-trees, BVHs or grids. In this

further discussion, we assume that a BVH is used for simplicity.

The ReduceM representation has several components that will be described in turn.

First, the actual compact representation is based on triangle strips and encodes the

geometry in a format accessible to a ray tracer, but also stores an object hierarchy

with almost no overhead. Second, we describe efficient methods for traversing this

compressed hierarchy and intersecting with actual triangles. In particular, both ray

packet approaches and single ray traversal can be performed very efficiently in this

context. Finally, we discuss an algorithm for actually constructing our representation

from unstructured triangles that provides good performance for ray tracing by modifying

the triangle stripification algorithm.

30



Figure 3.2: ReduceM representation: This figure shows a triangle strip consisting
of 7 vertices (see a)). Our ReduceM representation consists of two main components:
1) a list of vertices and 2) a list of vertex indices referring the vertices. We implicitly
encode a balanced s-kd-tree structure (see b)), where each split along an axis partitions
triangles into halves. By laying out the vertices referenced in the strip carefully, we can
encode the bounds of the s-kd-tree (see c)). The actual strip is then defined by indices
after the vertices. Vertices not referenced in the hierarchy (here: 1 and 7) are stored
afterwards.
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3.1.2 Representation

We now present the details of the actual representation. An example is shown in Fig.3.2.

The ReduceM representation has three main components to store: 1) vertices (e.g., ver-

tex coordinates), 2) the triangle connectivity information, and 3) the hierarchy encoded

on the mesh. In order to preserve maximum locality of data access during traversal

and intersection, we store all the vertex coordinates directly in the strip without using a

global vertex list. Encoding the vertices directly instead of using indirect access through

the global vertex list can duplicate the vertices that are shared between different strips,

but reduces non-local memory access. As a result, it has a comparable or even better

memory usage (such as cache misses) compared to indexed vertices. This benefit is

mainly obtained by eliminating one indirection during ray tracing and preserving local-

ity. Even though vertex coordinates are stored locally in the ReduceM representation,

we store the actual triangle strip via vertex indices referring to vertex coordinates in the

ReduceM representation. Each vertex index is encoded in one byte, which limits the

maximum strip length. However, we have found that in practice useful strips longer than

255 vertices are hard to extract in many real-world models. On the other hand, vertices

can often be referenced multiple times in one strip. For example, to create a valid tri-

angle strip ordering from a sequence of triangles, it is often necessary to introduce edge

swaps in a triangle strip in order to ‘flip’ the edge order in the strip by introducing the

same edge twice (i.e. for the edge AB by having the sequence ABA) and hence creating

a zero area triangle as well as an additional vertex reference. Therefore, encoding the

triangle strip with vertex indices of small size will reduce the impact of such swaps in

the ReduceM representation.

We use a balanced spatial kd-tree (skd-tree, see also chapter 4) [110, 163] for the strip

hierarchy, which is a compact object hierarchy where instead of storing a full bounding

box per node we only store two coordinates for a given axis. One advantage of using

left-balanced trees (i.e. a balanced tree where the left sub-tree is always filled first) is

32



that they can be stored in an array in order by level where the location each node’s

children can be computed directly from its offset without needing an explicit pointer. If

both children are stored next to each other, then the children of a node at offset i are

at 2i and 2i+ 1, respectively.

Since we do not need child pointers, the only data left to store per node are the

bounds. Each node of the spatial kd-tree is represented by the upper and lower bounds

for the side of the split, respectively. Our observation is that the bounds for each split

always coincide with one or more vertices on each side of the split. By using vertex

indices for encoding the triangle strip, we are free to order the actual vertex coordi-

nates in the layout. Therefore, we reorder coordinates of vertices such that every two

consecutive vertices represent each split of the s-kd-tree. Based on this formulation, we

implicitly define a left-balanced s-kd-tree from the underlying ReduceM representation

(see Fig. 3.2). Each node of the hierarchy also needs to store the split axis for that

node, using 2 bits. While it is possible to list this information separately, we store all

the vertex coordinates relative to the strip’s bounding box known from the traversal,

and then encode that information into the sign bits of the vertices.

In general, the upper and lower bounds of the strip hierarchy do not reference all

the vertices in the strip. Therefore, we need to list all the unused vertices as well (e.g.

vertex 1 and 7 in Fig. 3.2). In addition, there are cases where a vertex may need to be

used twice in a strip hierarchy (such as vertex 4 in our example). Therefore, there is

extra memory overhead from storing vertices twice in the representation. We minimize

this overhead by searching for multiple split vertex candidates and always considering

previously unused candidates first. We have found that for our test models this method

effectively minimizes the overall overhead in our test models (see Table 3.1.) Note

that this is the only actual overhead for storing a hierarchy on top of the geometry

representation.

33



Model Tris Build time Hierarchy overhead

Powerplant 12.7M 5m 1.58%

Double Eagle 82M 33m 1.95%

Puget Sound 134M 36m 3.24%

Boeing 777 364M 1h50m 2.71%

St.Matthew 372M 1h36m 3.56%

Table 3.1: Construction statistics: The build time column shows the overall time
taken for construction including stripification and high-level hierarchy for our benchmark
scenes. Timings are on the system described in 3.4 and multiple parallel threads were
used to speed up construction. The last column shows the overall storage overhead in
terms of duplicated vertices as a fraction of total vertices in order to implicitly store the
strip hierarchy.

3.2 Ray tracing using the ReduceM representation

We now describe how to use this compact representation for fast ray tracing.

3.2.1 Hierarchy traversal

The ReduceM hierarchy is essentially a spatial kd-tree. Therefore, the triangle strip can

be traversed in a very similar manner to the spatial kd-tree (see [163], also illustrated

in Fig. 3.3). Starting at the root node, the bounding box of the mesh is split in the axis

stored in the node. Given a ray, the distances dL and dR to both split planes can be

tested to determine whether it hits the left, the right or both children, where the order

is given by the ray’s direction.

If the ray intersects both the children, the near one – as determined by the ray’s

direction – is traversed first and the far one is pushed on a stack. The children are

processed in the same manner by updating the bounding box from the parent with the

child’s respective split plane. Since the hierarchy is subdivided according to fixed rules

and the number of triangles in the mesh is known, the traversal just needs to keep track

of how many triangles are left in the current sub-tree to know when it encounters a

leaf. This is performed by updating the interval in the triangle strip representing the

triangles whenever the traversal jumps to another node. The pseudo-code implementing
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Figure 3.3: Traversing a node: Given an inner node of the mesh hierarchy, there are
two split planes associated with it. The ray hits the left child if the distance to the left
plane dL is larger than the node entry distance dmin and hits the right child if the node
exit distance dmax is larger than dR. For ray 1, only the near child is traversed, for ray
2 both need to be traversed and ray 4 only traverses the far child. Note the special case
for ray which traverses neither of the two children.

this traversal is shown in Algorithm 3.1.

3.2.2 Intersection Computation

At every step in the traversal, the ray tracer can decide to intersect with the triangles

contained in the node, which are defined by the current interval in the triangle strip

sequence. The näıve approach would be to test every triangle by itself using a standard

triangle intersection algorithm, but that would ignore information available as part of

the strip representation. Instead, we take advantage of the connectivity information.

Specifically, we use an edge-based intersection that tests the ray for containment using

Plücker coordinates[133], which allows us to test the orientation of a ray relative to an

edge. Given three edges defining a triangle in a consistent order (clockwise/counter-

clockwise), the ray intersects the triangle if and only if the signs of the Plcker edge

tests match. Given an interval in the triangle strip, we can compute all the edge tests

directly and then test each consecutive set of three edge results for intersection with

the respective triangle. Since there are shared edges, this is more efficient than testing

each of the triangles. In particular, we can easily test 4 edges at the same time by using
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Algorithm 3.1 Traversal of the ReduceM hierarchy

node ← root, left ← 0, right ← #indices - 1
[dmin, dmax] = ray.intersectWithBoundingBox()
while node != NULL do
while (right - left + 1) ¿ 2 do
dL ← ray.distToNear(node.axis, node.split1, node.split2)
dR ← ray.distToFar(node.axis, node.split1, node.split2)
if dL < dmin then
if dR > dmax then
[node,left,right,dmin,dmax] ← stack.pop()

else
[node,left,right] ← node.farChild(ray,node.reverse)

end if
continue

else if dR ≤ dmax then
stack.push(node.farChild(ray,node.reverse), max(dR, dmin), dmax)

end if
dmax ← min(dL, dmax);
[node,left,right] ← node.nearChild(ray,node.reverse)

end while
intersectStrip(left, right)
[node,left,right,dmin,dmax] ← stack.pop()

end while
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SIMD instructions on current CPUs. This is particularly effective when tracing just one

ray because we utilize data parallelism.

3.2.3 Ray Packets

Both the traversal and the intersection algorithms described above can be extended to

handle ray packets. For traversal, the algorithm given above changes in that a sub-tree

is traversed if the bounding box is intersected by any of the rays. For intersection, the

edge tests have to be performed for each ray in the packet. However, if the rays in

the packet share the same origin, the Plcker intersection can be optimized to reuse the

coordinate computation, as presented in [11].

An important issue for ray packet tracing on massive and complex models is that

rays can be very incoherent at the lower levels of the hierarchy due to small triangles

and the geometric detail. This leads to traversal and intersection steps to have one

or very few “active” rays, i.e. rays intersecting the current sub-tree. ReduceM allows

us to detect those cases and switch to edge intersection whenever appropriate. Thus,

when the number of active rays becomes smaller than a certain threshold, we switch

to single ray intersection for all the active rays. This improves performance because of

more efficient use of data parallelism.

3.3 Strip-RT: Stripification for Ray Tracing

The previous sections have so far assumed a subdivision of the mesh into suitable triangle

strips. However, the input for ray tracing is usually a mesh in the form of unordered

triangles. In this section we present an algorithm for stripification – i.e. decomposition

into triangles – with a focus on constructing strips optimized for ray tracing. The

goal is to lower the storage overhead and achieve high run-time performance during ray

tracing using our representation. The ReduceM representation consists of a triangle
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strip and a low-level strip hierarchy implicitly encoded in the triangle strip. The high-

level hierarchy is computed based on the low-level hierarchy. Therefore, the efficiency

of ReduceM basically reduces to computation of triangle strips from an input mesh. In

order to compute optimized triangle strips for ray tracing, we consider the following two

properties:

• Triangle strip length: We can achieve a higher compression ratio as the length

of the triangle strip increases. As a result, we can further reduce both the storage

overhead and the memory overhead of ReduceM.

• Spatial coherence of the balanced hierarchies: The balanced s-kd-tree im-

plicitly encoded on top of the triangle strips should have high spatial coherence in

order to reduce the number of intersection tests with nodes of the s-kd-tree during

ray tracing. It is widely known that we can achieve this goal by considering the

surface-area heuristic (SAH) during hierarchy construction [50, 100, 61].

Prior algorithms to compute triangle strips – such as Hoppe’s rendering sequence [67]

– satisfy the first property related to the length of the generated triangle strips. These

techniques work well for rasterization where the main goal is to achieve high GPU

vertex cache utilization during rasterization. However, these approaches do not address

the issue of computing tight fitting hierarchies on top of triangle strips and, therefore,

do not address the problem of achieving high spatial coherence between triangle strips

for ray tracing.

3.3.1 Hierarchical Triangle Strip Computation

Most acceleration hierarchy construction methods for ray tracing use top-down methods

while considering the SAH metric at each split. Since we implicitly encode our s-kd-

tree from the constructed triangle strip, we design our triangle stripification method,

Strip-RT, to construct triangle strips considering the SAH. Overall, the triangle strip
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Figure 3.4: Strip ordering: This figure illustrates the strip ordering in the strip-
ification algorithm. a) Each given triangle sequence can have up to four open edges
(shown in red) where combination with other sequences are possible. b) The blue trian-
gle sequence has two possible other sequences it can be combined with on its two open
edges.

Figure 3.5: Stripification for ray tracing: Triangle strips created for rasterization
(such as on the left) are often relatively wide-spread and therefore have a high surface
area compared to their size. Our stripification (on the right) creates strips that are both
compact in terms of surface area and have sub-strips that are themselves compact. This
creates higher traversal efficiency for ray tracing.
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computation algorithm is given an input mesh and produces one or more triangle strips

from it using the following steps:

1. Adjacency computation: Usually the input mesh is not given as a graph with

adjacency information but a list of unordered triangles. We find all shared vertices

and edges between triangles and then record all the adjacency information in the

mesh.

2. Partitioning: Given the mesh, the partitioning step recursively splits it into an

initial object hierarchy optimized by the SAH metric.

3. Ordering: The ordering step takes the initial hierarchy and iteratively computes

one or multiple triangle sequences optimized for ray tracing.

4. Strip output: Finally, using each sequence of triangles the strip output step

produces a list of indices defining each strip in the ReduceM format.

Of these, 2 and 3 are the main steps in the algorithm and will thus be described in detail

in the following text. Computing adjacency information in step 1 is relatively simple

as long as the triangles are specified with vertex indices; otherwise, duplicate vertices

have to be detected by analyzing the vertex coordinates. Computing a list of indices

specifying a triangle strip from a sequence of triangles has also been discussed in depth

in previous work (e.g. [38]) and we opt for a similar implementation. Note that during

the partitioning and ordering steps, our algorithm may not produce just one connected

triangle strip from the input mesh. In general,computing a single connected triangle

strip of a mesh is equivalent to computing a Hamiltonian path, which is a NP-complete

problem [30], and even if such a strip exists, it might not be a good choice for ray tracing

applications.

Partitioning: We recursively partition the mesh contained in a node of the hierarchy

into two sub-meshes, starting with the input mesh and ending when only one triangle is
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left. During each partition, we find the best split of the triangles in the mesh by using

the SAH metric and choosing the partition with the lowest cost. Thus, the partitioning

step is almost the same as building an object hierarchy such as a BVH on the input

mesh (e.g. as described in [145]). In addition to generating the hierarchy, we also store

an inverse mapping for each triangle that records which hierarchy node it is referenced

in (since this is an object hierarchy, only one node can do so.)

Ordering: The purpose of the ordering step is to find actual triangle sequences in

the input mesh that can later on be converted to triangle strips. In order to find

good strips for ray tracing, the previously computed hierarchy is used to provide hints

on determining good pairings of sequences. Our ordering algorithm iteratively combines

existing triangle sequences into longer sequences. As a first step, we consider all triangles

as a triangle strip of length one and place them into a list of active sequences. For each

sequence, we record the list of triangles that defines the sequence, as well as the adjacency

information: since each active sequence has two potentially ’open’ edges at the end (see

Fig. 3.4 for illustration), 4 pointers to the adjacent triangle at those edges (or to a null

object if not a shared edge) are sufficient. In addition, we also maintain a reference to

a node in the hierarchy built in the previous step, initialized to leaf nodes for the initial

sequences. Finally, we maintain the list of triangles in the mesh such that each triangle

also has a pointer to the sequence that it is currently contained in, which allows us to

find the neighboring sequences based on the triangle adjacency information.

At each iteration in the algorithm, we look at each sequence in the list of active

sequences and then evaluate all possible pairings with other active sequences using the

adjacency information. All sequences that have no further possible combinations are

placed in the output sequence list and removed from the active list. For many sequences,

however, there will be multiple possibilities for combination and we want to find the one

that will most likely produce strips that are best for our purposes. To do so, we rank
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all possible combinations with other strips according to two factors: first, since each

sequence is associated with a node in the initial hierarchy, we test the path distance in

the tree between the two nodes and prefer the combination that has the shortest one.

Intuitively, this rewards combining strips that would have been split similarly in the

optimized build and thus presumably are a good choice. However, we also use a second

criterion by considering the harmonic mean between the number of triangles in each

of the two sequences. The reason for this is that we later use a balanced hierarchy on

the ReduceM representation and thus do not have a choice in where to put the split

inside the strip. By choosing combinations of roughly equal relative size, it is very likely

that the implicit hierarchy will have a split that corresponds to the two strips we are

combining. For example, assume that we have two sequences with 130 and 10 triangles

and another pair with 70 and 70 pairs. Although the arithmetic mean (i.e. 70) is the

same, the pair with 130 and 10 connectivity pairs has a harmonic mean of 18.5 whereas

the other is 70. Overall, when determining the best combination we weigh both the

relative tree distance as well as the harmonic mean (relative to the total number of

triangles in the sequences) equally and then pick the combination with the best results.

To merge triangle sequences, we concatenate the triangle index list of both sequences

and then can easily find the adjacency information for the new strip. However, we also

need to find a tree node associated with the new strip. To do so, we find the nodes as-

sociated with the two individual sequences and then assign the lowest common ancestor

to the new strip. The algorithm terminates when at the end of an iteration there are

no more active sequences left, i.e. no more possible combinations of sequences avail-

able. However, we have also found that it can be useful to introduce a user-specified

maximum strip length parameter (please also see the discussion in section 6) that pre-

vents sequences from growing above a certain size. The reason for doing so is that the

algorithm may otherwise produce some very long strips while at the same time keeping

others very short. We have found that it is more desirable to keep sequence lengths
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Model Tris Memory (total)      Performance (fps)           

STRIPE ReduceM Tipsification STRIPE ReduceM Tipsification

Powerplant 12.7M 350 MB 272 MB 271 MB 28.57 31.25 29.05

Double Eagle 82M 2672 MB 1818 MB 1795 MB 11.90 12.5 11.31

Puget Sound 134M 2736 MB 2834 MB 2687 MB 7.58 12.05 6.45

Boeing 777 364M 12128 MB 8914 MB 8894 MB 3.75 4.76 3.8

St.Matthew 372M 7531 MB 7290 MB 7002 MB 3.36 4.81 3.15

Table 3.2: Comparison: We single out the effect of stripification on performance and
memory for the same ReduceM representation. Performance numbers are for primary
visibility at 10242. Stripification is performed with STRIPE [38] and with our Strip-RT
algorithm.

more uniform for performance.

3.3.2 Massive model stripification

In order to apply our algorithm to massive models and find smaller input meshes for the

stripification algorithm, we first decompose an input model into small chunks, each of

which fits into main memory. Then, we apply our algorithm to the chunks, each of which

can also be processed in parallel on multiple processors to speed up the stripification

process, with a merge operation at the end. Table 3.1 shows information on typical

construction times for our benchmark models, using parallel processing on a 16-core

system.

3.4 Results

We implemented the ReduceM algorithm in a full ray tracing system running on a Intel

Xeon machine with 16 cores (X7350 at 2.93 GHz) and 8 GB of RAM running on 64-bit

Microsoft Windows. We have used different models with various characteristics for our

benchmarks. These data sets are selected to provide examples from different applica-

tion areas including scientific visualization, terrain visualization, CAD and architectural

environments, and scanned models. Parameters were set such that triangle strip length

was limited to at most 60 triangles and strip hierarchy traversal was set to terminate
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Model Tris Vert. ReduceM    kd-tree        BVH      

Total Vertices Hierarchy Total Tree Geometry Total Tree

Powerplant 12.7M 11M 272 126 171 983 496 486 875 389

Double Eagle 82M 77M 1818 884 1047 7118 3373 3147 6241 2496

Puget Sound 134M 67M 2834 768 1961 11164 6044 5120 9216 4095

Boeing 777 364M 208M 8914 2389 6525 n/a n/a 14219 25059 11137

St.Matthew 372M 186M 7290 2138 4985 n/a n/a 13921 25595 11375

Table 3.3: Memory footprint: We show the effect on memory consumption of using
ReduceM compared to kd-trees and BVHs for several complex models (all numbers in
MB). The memory used by ReduceM can be split up in the uncompressed vertex data as
well as the high-level and strip hierarchy representation including the connectivity. The
BVH and kd-tree have the same storage for the triangle geometry, but different footprint
for the hierarchy.

Figure 3.6: Benchmarks: Screenshots from massive models used in the paper. From left
to right: St.Matthew (372M tris), Power plant (12.7M tris), Double Eagle tanker (82M
tris), Boeing 777 (264M). Our ReduceM representation decreases the memory needed
for rendering these scenes by a factor of 3 to 5 over standard representations.
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when reaching 2 triangles.

We measure the improvements both in terms of overall memory footprint as well as

the reduction in hierarchy and connectivity size alone. Table 3.3 summarizes the re-

sults for our benchmarks. We also compare the memory and rendering speed to a pure

kd-tree [149] and AABB bounding volume hierarchy implementation [93, 145], both of

which are popular solutions in interactive ray tracing. The kd-tree implementation uses

a standard 8 byte/node representation [153], while each BVH node takes 28 bytes. All

the hierarchies were built using the surface area heuristic with automatic termination

criterion. Also, performance results were obtained using ray packet traversal and in-

tersection. Note that performance results for these comparisons are not available for

some of the larger models since the total size exceeded main memory size and perfor-

mance results would therefore have been very low. The triangle geometry was stored in

a standard intersection format [153] using 40 bytes per triangle.

In order to verify the benefits of our strip construction method, we measure memory

requirement and run-time performance of our ReduceM method when using triangle

strips computed from Strip-RT and a standard rasterization-oriented stripification algo-

rithm STRIPE [38] (see Table 3.2). Strip-RT achieves up to 58% run-time performance

improvement over STRIPE.

There are newer methods for stripification rasterization that are geared towards

real-time construction, but as a side-effect also offer more spatial locality than previous

approaches such as STRIPE. In particular, the approach in [127] starts out with trian-

gle fans around vertices and computes a path around the fan, then combines multiple

triangle fans together to form a longer triangle strip. By construction, triangles in a fan

are relatively local, which satisfies some of the criteria described above. Interestingly,

the authors also subdivide the model ahead of stripification by clustering the triangles,

which is similar to the hierarchy construction step we use in the Strip-RT approach.

To evaluate the differences, we have implemented the local ”tipsification” approach
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described in [127], but instead take the same input meshes that we use as input to our

stripification algorithm. We then run their algorithm to construct the actual triangle

sequences, followed by the construction of the ReduceM representation. Our results are

in Table 3.2. In general, we found that the tipsification approach can construct very

long triangle sequences if allowed to – and typically longer ones than Strip-RT, since

the criteria for ”joining” strips are much more lax. On the other hand, the algorithm

often chooses sequences of triangles that only share a common vertex, but not a common

edge, whereas Strip-RT by construction will only choose edge-adjacent triangles. While

this is not a problem for the intersection and traversal algorithm since we allow null

edges by repeating vertices, it can reduce performance due to less edge-sharing and

useless computation for empty edges. The results reflect this: overall, tipsification can

actually reduce memory use slightly because we can find longer strips, but performance

is actually comparable or lower than STRIPE (except for 777 where the low connectivity

equalizes the playing field.) It would be interesting to investigate whether the algorithm

can be changed to construct sequences that have better edge adjacency.

3.5 Analysis and Comparison

Any mesh compression method for ray tracing can reduce three different parts: ver-

tex data, connectivity and hierarchy. The results from the ReduceM algorithm clearly

show that we are successful in reducing the memory footprint of both connectivity and

hierarchy, but even with the optimized stripification we still incur some rendering over-

head compared to a fully optimized standard hierarchy. In particular in architectural

and CAD scenes with strongly varying triangle sizes there still is a higher performance

difference, while other models are very close. However, in the common situation where

memory is in fact limited, being able to represent all ray tracing data in main memory

is invaluable.
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Figure 3.7: Effect of strip length parameter: Results for ReduceM on the Lucy
model when modifying the maximum strip length parameter in construction. Both
performance as well as memory footprint improve with increasing strip length. However,
at higher limits memory savings decrease as only some longer strips are found and
performance decreases slightly.

As discussed in section 4.1, it can be useful to limit the maximum triangle size

during construction to avoid unevenly distributed strip sizes. In general, we find that

due to the balanced split limitation even our optimized stripification algorithm cannot

guarantee the same hierarchy quality as for example a common SAH hierarchy, and

thus performance decreases slightly at some point as triangle strip length restrictions

are lowered. Figure 3.7 visualizes this at the example of the Lucy model where the

ReduceM representation was generated using different length limits ranging from 4 to

64 — note that this does not mean that all the strips are that size; in fact, the average

strip length is usually much lower.

Comparison: Approaches to compress the hierarchy used for ray tracing were in-

troduced in [101, 21]. By reducing the number of bits used to encode the bounding

boxes, the memory complexity can be reduced drastically. However, there are two main

implications. First, decoding of the coordinates has to occur at run-time and adds some

overhead to traversal, although Mahovsky [101] shows that the effect can be limited by

using ray coherence approaches. Second, quantizing bounding boxes inherently slows
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down ray tracing since it enlarges the surface area of the boxes and thus increases the

average number of traversal steps per ray. Reshetov has recently introduced a vertex

culling method [122] that can reduce memory requirement of hierarchies. The vertex

culling algorithm can efficiently intersect with relatively large kd-tree leaf nodes (i.e.

with a much higher number of triangles than the usual 2-4 triangles per a node) and

thus the overall hierarchy is smaller since fewer nodes are required. Geometry is still

stored as usual. Since the paper was not focused on massive models, it is hard to

directly compare both approaches due to lack of data. However, it is possible that

vertex culling could be combined with the ReduceM approach as an alternative strip

intersection method.

Limitations: Our method has certain limitations. First, ReduceM reduces memory

requirements only for connectivity and hierarchy information, but not vertices. This

puts a hard limit on the achievable overall compression rate since for massive models

vertex data can make up a large part of the overall storage. Compression is also strongly

dependent on available connectivity, i.e. if the input model is a fully disconnected set

of triangles, no improvement is possible. For example, we have found connectivity to

be a problem on the Boeing 777 model: vertex coordinates on the models were slightly

perturbed before distribution for security reasons, which breaks some of the connectivity

that would have otherwise been available. We assume that this is the main reason

that the stripification algorithm finds only significantly shorter strips on this model.

Finally, the stripification algorithm for ReduceM uses a greedy heuristic, which does

not guarantee to produce good results in all cases since it does not optimize globally.

In addition, many CAD models usually have a limit on how long strips can potentially

be for any algorithm, which limits the impact of ReduceM. Finally, generating the

ReduceM representation including stripification may be more computationally complex

than comparable kd-tree or BVH construction algorithms, so more preprocessing time

is required.
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Model Tris Vertices ReduceM fps kd-tree fps

Powerplant 12.7M 11M 30.30 27.78

Double Eagle 82M 77M 4.61 5.95

Puget Sound 134M 67M 12.05 12.48

Boeing 777 364M 208M 4.76 n/a (OOM)

St.Matthew 372M 186M 4.81 n/a (OOM)

Table 3.4: Results: Rendering performance. Performance results as average fps
at 10242 pixels using 2× 2 ray packets for primary visibility, compared to an optimized
kd-tree implementation. Note that we do not report some numbers for the kd-tree since
the data-set is out of core and thus fair comparison is impossible.
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Chapter 4

Deformable models

Unlike for static models, the largest problem in ray tracing of complex dynamic models

is not memory, but maintenance of the acceleration structure. As hierarchies typically

become invalid when geometric objects move or deform, the bottleneck in ray tracing

shifts towards computing a new hierarchy after each deformation. In this chapter, we

look at approaches for supporting ray tracing of complex deformable models, i.e. where

geometry may move and deform but the number of objects stays the same. In par-

ticular, we show that bounding volume hierarchies are a better solution than kd-trees

for this problem since they support a hierarchy refitting operation that is substantially

faster than rebuilding the hierarchy. We also show how to improve the performance of

interactive ray tracing using BVHs using ray packet techniques and other optimizations.

4.1 Deformable bounding volume hierarchies

A BVH is a tree of bounding volumes. Each inner node of the tree corresponds to a

bounding volume (BV) containing its children and each leaf node consists of one or

more primitives. Common choices for BVs include spheres, axis-aligned bounding boxes

(AABBs), oriented bounding boxes (OBBs) or k-DOPs (discretely oriented polytopes).

Many efficient algorithms have been proposed to compute sphere-trees [70], OBB-trees

[51], and k-DOP-trees[84]. However, we use AABBs as the BV as they provide a good



balance between the tightness of fit and computation cost since efficient algorithms for

ray-box intersection exist [132, 102, 159].

4.1.1 AABB hierarchies vs. kd-trees

In this section, we evaluate some features of BVHs based on AABBs and compare them

with kd-trees for ray tracing. Most recent efficient and optimized ray tracing systems

are based on kd-trees [149]. As far as static scenes are concerned, analysis has shown

that optimized algorithms based on kd-trees will outperform BVH-based algorithms [61].

There are multiple reasons to explain this behavior: First, even the most optimized ray-

AABB intersection test (e.g. from [159]) is more expensive than split plane intersection

for kd-trees. This is due to the fact that in the worst case (i.e. no early rejection) up

to 6 ray-plane intersections need to be computed for AABB trees, as opposed to just

one for a kd-tree node. Another important aspect is that a BVH does not provide real

front-to-back ordering during traversal. As a result, when a primitive intersects the ray,

the algorithm cannot terminate (as is the case for a kd-tree), but needs to continue the

traversal to find other intersections. Furthermore, kd-tree nodes can be stored more

efficiently (8 bytes per node [151]) than an AABB possibly could. On the other hand,

we found that BVHs often need fewer nodes overall to represent the scene as compared

to a kd-tree (please see Table 4.3). This is mainly due to the fact that primitives are

referenced only once in the hierarchy, whereas kd-trees usually have multiple references

for each primitive since those overlapping a split plane need to be stored on both sides

of the plane. In addition, AABBs have the advantage of providing a tighter fit to the

geometric primitives with fewer levels in the tree, e.g. kd-trees need multiple subdivisions

in order to discard empty space. Most importantly, the major benefit of BVHs is that

the trees can be easily updated in linear time using incremental techniques. No similar

algorithms are known for updating kd-trees.
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4.1.2 BVH Construction

As was already described in chapter 2, we construct an AABB hierarchy in a top-down

manner by recursively dividing an input set of primitive into two subsets until each subset

has the predetermined number of primitives. We have found that subdividing until each

leaf just contains one primitive yields the best results at the cost of a deeper hierarchy, as

– similar to kd-trees – node intersection is cheaper than primitive intersection, although

other authors have reported best performance for 6 primitives per node [101]. During

hierarchy construction, the most important operation is to find a subdivision into two

subsets that will optimize the performance of run-time ray hierarchy traversal. One

of the best known heuristics for tree construction for ray tracing is the surface-area

heuristic (SAH) [50, 61], which has been shown to yield higher ray tracing performance.

However, despite recent improvements [146], it also has a much higher construction

cost and will commonly take longer than the actual frame rendering time for dynamic

environments. Because of this, we use the spatial median of one of the dimensions and

sort the primitives into the child nodes depending on their location with respect to

the midpoint. We observe that the spatial median build is usually about an order of

magnitude faster to compute and provides rendering performance of 50-90% of SAH for

most scenes. Note that even though we just split along one dimension, the bounding

box will still be tight along all the three dimensions. As we are storing just one primitive

per leaf, it is also easy to see that the total number of nodes in the tree for n primitives

will always be 2n − 1, which allows us to allocate the space needed for any sub-tree

during construction.

Regardless of the heuristic for finding a split, the time complexity, T (n),of the top-

down AABB hierarchy construction algorithm is Ω(n logk n), where k is the number

of children of each node and n the number of primitives. It is easy to see that for

each split, every primitive in the node needs to be processed at least once to see which

child it belongs in. Since at each level of the tree during construction all n primitives are
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examined and the smallest possible number of levels is logk n, any top-down construction

has to take at least Ω(n log
k
n) time.

4.1.3 Refitting the hierarchy

The main advantage of using BVHs for ray tracing is that animated or deforming prim-

itives can be handled by updating the BVs associated with each node in the tree. Our

algorithm makes no assumptions about the underlying motion or simulation. In order to

efficiently update the hierarchy, we recursively update the BVHs by using a post-order

traversal. We initially traverse down to the leaves from the root nodes. As we encounter

a leaf node, we efficiently compute a new BV that has the tightest fit to the underlying

deformed geometry. As we traverse from the leaf node in a bottom-up manner, we ini-

tialize the BV of an intermediate node with a BV of the leftmost node and expand it

with the BVs of the rest of the sibling nodes.

The time complexity of this approach is O(n), which is lower than the construction

method. This is reflected by update times that we have found to be about 4 times faster

than rebuilding the tree for our benchmark models (see Table 4.3 for detailed results).

Therefore, we rely on hierarchy update operations to maintain interactive performance

for dynamic environments.

4.1.4 BVHs for deformable scenes

We initially build an AABB tree of a given scene. As the model deforms or some objects

in the scene undergo motion, the BVH needs to be updated or rebuilt. Updating the

BVH is to recompute the bounds of each BV node, and rebuilding the BVH is to

recompute the entire BVH from scratch and re-clustering the primitives. At run-time,

we traverse the BVH to compute the intersections between the rays and the primitives.

If the algorithm only updates the BVH between successive frames, the run-time

performance of BVHs can degrade over the animation sequence because the grouping of
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Figure 4.1: Benchmark scenes: Frames from the dynamic benchmark models used
for testing our BVH implementations, ranging from 16k to 69k triangles. From top to
bottom: Princess, Cloth/Bunny, BART, Bunny. Please see Table 4.1 for more details.
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the primitives and structure of the hierarchy does not change. As a result, the BVs may

not provide a tight fit to the underlying geometric primitives. This is often characterized

by growing and increasingly overlapping BVs, which subsequently deteriorate the quality

of the BVH for fast run-time BVH traversal by adding more intersections between the

ray and AABBs. In such cases, rebuilding the AABB tree or parts of it is desirable.

We found that updating the BVH works well with relatively small changes to the

scene or structured movement of groups of primitives such as meshes. When primitives

move independently, however, for example in different directions, changes to the actual

tree structure may be necessary to reflect the new positions of the deforming geometry.

Still, rebuilding the BVH can be considerably more expensive than updating the BVH.

As a result, we want to minimize the number of times rebuilding is performed. There-

fore, we need to efficiently decide when updating the BVH is sufficient or rebuilding the

BVH is required. This is non-trivial because the actual degradation of a BVH depends

on many factors, such as the speed with which primitives move and the general char-

acteristics of the motion of objects in the scene. Simple approaches such as rebuilding

the tree every t frames have the disadvantage of not being adaptable to different char-

acteristics over the animation and need to be chosen a priori. Conservatively choosing t

means adding a lot of rebuilding overhead, which is especially unwanted in an interactive

context. In order to efficiently detect when updating tree or rebuilding tree is required,

we use a simple heuristic that is described in the next section.

4.1.5 Rebuilding criterion

We assume that BVH quality degradation is marked by bounding box growth that is

not caused by actual primitive size, but by distribution of primitives or sub-trees in the

box. For example, consider two primitives moving in opposite directions. The parent

node containing them will have to grow to accommodate for the movement, resulting in

a bounding box that is relatively large, but mostly empty. Since the probability that a
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box will be intersected by a ray rises with its surface area, we want to rebuild a sub-tree

to find a more advantageous tree topology. To find these cases and prevent them from

impacting performance, we need to measure BVH degradation during each frame by

using a simple and inexpensive heuristic.

Our heuristic is based on the idea that we can find nodes that are large relative

to their children by comparing their surface area. In order to have a relative metric

independent of scale, we measure the ratio of each parent node’s surface area to the sum

of the area of its two children. The larger the ratio becomes, the more imbalance exists

in the sizes. We first compute the ratio during tree construction and store it in a field of

the optimized AABB data structure (see next section.) Whenever the tree is updated,

the changed surface areas are automatically computed and each inner node can easily

calculate its new ratio. Since we assume that the ratio stored from the construction is

as good as we can do, we find the difference between the new and old ratio and add

them to a global accumulation value. Once the bottom-up update reaches the root, we

have computed the sum of all the differences. To assure that this value can be tested

independently of the tree size, we normalize it by dividing by the number of nodes

that contribute to the sum, i.e. the sum of inner nodes, which is always n − 1 for n

primitives. This yields a relative value describing the overhead incurred by updating

the BVH instead of rebuilding it. This value is then simply compared to a predefined

threshold value (we found a threshold of 40% to work well in our tests) and the tree is

rebuilt if the threshold is exceeded.

This approach has several advantages: it will detect a good time to rebuild regardless

of the actual frame rate and without any scene-specific settings. Furthermore, in scenes

where there is little to no degradation, the heuristic will never need to initiate a rebuild.

It is also possible to use the method to just rebuild sub-trees, but we found that this

cannot fully replace a complete rebuild since degradations in the upper levels of the

hierarchy typically have the highest impact on the performance of ray tracing. Therefore,
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an implementation that rebuilds only sub-trees will have to either do a full rebuild

sometimes, or support a top-level update where only the upper levels of the tree are

rebuilt.

4.2 Fast ray tracing using BVHs

We now describe our BVH traversal algorithm and implementation and present tech-

niques to extend the algorithm to multi-core architectures.

4.2.1 Traversal and Intersection with BVHs

We use a simple algorithm to compute the intersection of a ray and the scene primitives

using the BVH. The ray is checked for intersections with the children of the current node

starting at the root of the tree. If it intersects the child BV, the algorithm is applied

recursively to that child, otherwise that child is discarded. Whenever a leaf node is

reached, the ray is intersected with the primitives contained in that node. For most rays,

the goal is to find the first hit point on the ray, so even if a ray-primitive intersection

is found, the algorithm has to search the other sub-trees for potential intersections.

An exception to this are shadow rays, where (at least for directional lights) any hit is

considered sufficient and traversal can stop.

BVH traversal optimizations: Experience with kd-trees has shown that front-to-

back ordering is a major advantage for ray tracing. Although BVHs do not provide a

strict ordering, we found that storing the axis of maximum distance between children for

each AABB and using that information during traversal together with the ray direction

to determine a ’near’ and ’far’ child improves the traversal speed, especially for scenes

with a high depth complexity (this has also been reported in [101] and [152]). Another

issue is cache coherence during traversal: similar to the compact kd-tree representations

57



[153], we can optimize the AABB representation to fit within 32 bytes. We achieve this

by storing the bounding box as 6 floating point values, one child pointer (such that

the second child is expected to be directly after the first one in memory) and one float

for storing quality information for the rebuild heuristic. Our profiling shows that BVH

traversal using our AABBs has the same cache efficiency as the kd-tree traversal.

Use of ray coherence techniques: One of the main techniques used in current real-

time ray tracers is to exploit ray coherence to reduce the number of traversal steps and

primitive intersections per ray. Those algorithms were originally designed for the kd-

tree acceleration structure. It is relatively straightforward to extend them to work with

BVHs as well. In order to use coherent ray tracing [151] the BVH traversal has to be

changed so that a node is traversed if any of the rays in the packet hits it and skipped if

all of the rays miss it. A hit mask is maintained throughout the traversal to keep track

of which rays have already hit an object and their distance. However, the traversal does

no longer require that the rays have the same direction signs because unlike kd-trees the

traversal order does not determine the correctness for a BVH. We have implemented ray

packet traversal for 2× 2 ray bundles using 4-wide SIMD instructions and found that it

yields an overall speedup of about 2 to 3, which is even above the improvement obtained

for kd-trees. We assume this is mainly because ray-AABB intersections are more costly

than the kd-tree’s ray-plane computation and therefore the reduction in traversal steps

has a more pronounced effect on overall performance. Furthermore, we also support

arbitrary-sized ray packets, which can be implemented very efficiently by using frustum

culling such as presented in [124]. Depending on the detail level of the scene and the

screen resolution, 16x16 or 8x8 packets will yield an even higher speedup to rendering

and performs much better than the normal packet traversal code that tests each ray

[101].

58



4.2.2 Multi-core architectures

One of major features of current computing trends is commodity architectures are be-

coming more parallel, mainly via multiple cores in one processor. Therefore, it is desir-

able to design our hierarchy update and run-time traversal such that they take advantage

of available parallelism.

Hierarchy Update: Our update method can be parallelized relatively simply. Given

the number of available threads, n, we decompose an input BVH into n sub-BVHs. For

this, we simply compute n different children by traversing the tree from the root in the

breadth-first manner. Then, each thread performs a bottom-up update from one of the

computed nodes in parallel. After all the threads are done, we then sequentially update

the upper portion of the n nodes. We particularly choose the bottom-up approach since

it is well suited to parallel processing. For example, we do not require any expensive

synchronization for each thread since the sub-trees that are accessed by threads are fully

disjoint. Even though the BVHs computed for ray tracing are not balanced, this simple

scheme provides reasonably good load balancing in practice. A more effective scheme

might be to generate more sub-trees than processors and then use a work queue to assign

trees to processors to make sure work is better balanced.

Overall, we have found that the main disadvantage of this approach is that it be-

comes limited by memory bandwidth relatively quickly and therefore may not scale very

well with many cores. The post-order traversal operation is not very computationally

intensive, but needs to read both the whole tree and every triangle, thus reading a po-

tentially large amount of data. This is especially apparent with larger models where the

sub-trees will not fit into processor caches.

Run-time traversal: We employ image-space partitioning to allocate coherent re-

gions to each thread. Also, in order to achieve reasonably good load balancing, we first
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Scene Tris Avg. fps Update (ms) Build (ms)

Bunny/Cloth 16K 13 4 13

BART 16K 11 6 23

Princess 40K 13 14 41

Bunny 69K 6 23 90

Buddha 1M 3 220 1659

Table 4.1: BVH results Results for BVH ray tracing of several scenes. The benchmark
configuration for each of the scenes is described in section 5. All benchmarks were
performed at 5122 resolution on a dual-core Intel Pentium 4 machine at 2.8GHz using
8x8 ray packet traversal and secondary rays (shadows and reflections). Performance
numbers are given as an average over the whole animation, tree build times are for the
spatial median build.

decompose image-space into small tiles (e.g. 16 × 16) and then allocate tiles to each

thread. After a thread finishes its computation, it continues to process another tile. A

more elaborate tile distribution may be necessary when using highly-parallel machines

[138], but we have found that this approach works well for workstation-class machines

and provides perfect scaling.

4.2.3 Performance results

We now show some results for our implementation of the algorithms above. We have

implemented an interactive ray tracer for deformable models using BVHs running on a

dual-core Intel Pentium 4 machine at 2.8GHz. To compare the performance of BVHs

with previous interactive ray tracing work for rendering static scenes, we also imple-

mented kd-tree rendering (without animation capability). All acceleration structures

support ray packet traversal using the SSE SIMD instruction set on Intel processors. For

efficiency reasons, we only support triangles as primitives. We employ multi-threaded

rendering and hierarchy updates using OpenMP.

We have tested our system on four animated scenes of varying complexity as well

as one more complex static model to measure performance of our approach (see Fig.

4.1 and 4.2). In general, building a BVH tree using the naive midpoint method is
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kd-tree BVH skd-tree

Scene Tris nodes memory build nodes memory build update nodes memory build update

Bunny/Cloth 16K 64137 859 KB 1487 ms 31923 997 KB 170 ms 4 ms 35097 548 KB 146 ms 4 ms

BART 16K 11075 1426  KB 1902 ms 32767 1024 KB 322 ms 6 ms 58921 920 KB 331 ms 11 ms

Princess 40K 218845 2778 KB 5 s 80059 2501 KB 733 ms 14 ms 148929 2327 KB 821 ms 19 ms

Bunny 69K 442347 5072 KB 10 s 138901 4340 KB 1526 ms 23 ms 259543 4055 KB 1521 ms 37 ms

Buddha 1M 2989439 33225 KB 80 s 2175431 67982 KB 32 s 220 ms 3666989 57296 KB 32 s 490 ms

Table 4.2: Constructing hierarchical structures: Tree statistics for other acceler-
ation structures as compared to BVHs. All hierarchies were built using the surface area
heuristic instead of the spatial median and BVH build times are therefore higher than
in the previous table (using the same machine). The SAH construction uses the simple
O(n log2 n) algorithm as opposed to the faster O(n log n) version [146]. Note that the
memory requirements for skd-trees are only slightly smaller than for BVHs due to the
higher number of nodes. Build times are about the same for both.

more than one order of magnitude faster than the optimized surface-area heuristic kd-

tree construction. In most cases, both structures have a similar memory footprint, but

kd-trees need more nodes because references to primitives can be located in multiple

nodes. The BART benchmark scene in particular is a hard case for hierarchy refitting

methods since connectivity changes significantly during the animation. Our rebuild

heuristic successfully detects these cases and only triggers a few rebuilds over the whole

animation.

4.3 Comparing hierarchical structures

Recently, several acceleration structures were proposed that could be seen as a hybrid

between BVHs and kd-trees. Because of BVH construction as a split operation, it is

apparent that storing full bounding boxes may be redundant if a node essentially just

stores the geometry as split along one dimension. Unlike kd-trees, which solve this by

storing just the actual split coordinate and dimension, spatial kd-trees for ray tracing

[163, 62] store two coordinates which represent the limits of the bounding boxes of the

left and right child in the split dimension (which are allowed to overlap in case the

contained geometry does). This reduces the memory requirements from storing 6 to 2
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coordinates only. Similarly, Woop et al. [162] present a hardware implementation called

the b-kd-tree in which they store the left and right bounds for both children and therefore

use 4 coordinates per node. Construction for both structures is almost identical to BVHs

by just storing the respective bounding box coordinates.

Both approaches also decrease the actual work done for one intersection as only 2

or 4 planes need to be intersected against the ray. In general, the traversal algorithm

for spatial kd-trees is more similar to kd-trees with the difference that rays are now

intersected against multiple planes. However, unlike kd-trees, no real depth sorting is

provided, so traversal cannot stop after the first hit.

Implementation: To compare our BVH implementation against those approaches, we

implemented a spatial kd-tree structure with two planes as in [163]. Similar to BVHs,

we use 2 × 2 ray packets using SIMD instructions as well as packets of arbitrary size

to allow direct comparison of results. For 2 × 2 packets, the traversal algorithm is a

direct adaptation of ray packet traversal in kd-trees extended to test two planes. For

larger packets, we designed a traversal algorithm that uses the inverse frustum culling

described for kd-tree ray tracing in [124] for determining whether a packet intersects a

node, although we do not perform entry-point search or split packets at the moment.

For all three structures we constructed the hierarchy using a SAH build (as opposed to

the spatial median build for BVH used in the results of the previous section).

Results and discussion: Our results are summarized in Table 4.3 and 4.2. In general,

we observed an increase in overall rendering speed for static scenes when using skd-trees,

which is a consequence of the less computationally expensive ray-node intersection.

However, for animations one important disadvantage is that after the update, many of

the empty leaf nodes introduced for empty space elimination may not be necessary any

more or, even worse, would have to be used at a different point. We have found that this

quickly results in more severe quality degradation of the hierarchy and, subsequently,
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rendering requires very frequent rebuilds. To avoid this, we rebuilt the hierarchy every 5

frames for skd-trees, to allow a better performance comparison. We did not implement

the B-kd-trees proposed in [162], but we assume that they would perform better than

skd-trees in this regard since they would require less empty splits.

0

1

2

3

4

5

6

7

8

9

10

Bunny/Cloth BART Princess Bunny Buddha

Single, BVH

Single, skd-tree

2x2, BVH

2x2, skd-tree

8x8, BVH

8x8, skd-tree

16x16, BVH

skd-tree   

Table 4.3: Rendering performance of BVH and spatial kd-tree: Direct compar-
ison of rendering speed for BVH and our spatial kd-trees implementation. Benchmark
results are frames per second relative to single ray BVH performance over the anima-
tion for 10242 primary rays only on a dual-core P4 machine at 2.8GHz. The results
are shown for different ray packet sizes and exclude all update times and rebuild times.
In order to avoid excessive quality degradation when updating skd-trees, we rebuild the
hierarchy every 5 frames.

We also found that traversal for larger ray packets does not seem to scale up as well

as for BVHs, so that skd-trees are about the same speed or even slower for our tested

packet sizes. Although the individual nodes are only half as large as our AABB nodes

(i.e. 16 bytes), memory use for skd-trees is only slightly lower than for BVHs. The

reason for this is that in order to achieve good performance, extra splits to eliminate

empty space at the outer bounds are needed often and, even though the actual empty

leaves do not need to be stored, this increases the number of actual nodes in the tree.

This also means that unlike BVHs, the actual number of nodes for a scene is not as

predictable (although it can be bounded easily since only a limited number of empty

space subdivisions can be introduced at each node), which prevents some easy ways
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to optimize construction. Having more nodes also means that the tree is deeper and

therefore on average more traversal steps may be needed to reach the leaves. Most

importantly, though, the hierarchy update for animation is linear to the number of

nodes. As the skd-tree usually has about twice as many nodes, this means that updating

may take longer.

Finally, a subtle difference is that ray packet traversal for skd-trees in general can

be more complicated to implement and less versatile: as for kd-trees, groups of rays for

inverse frustum culling are limited to having the same direction signs, which can make

obtaining groups of coherent rays more challenging, in particular for secondary rays.

Adapting an omnidirectional traversal for skd-trees may alleviate this problem [123]. In

contrast, BVH traversal is independent of ray direction signs, which eliminates special

cases for traversal, and frustum culling can be introduced easily by the fast frustum-box

intersection described in [124].

In conclusion, our results suggest that for animated scenes with updates a BVH

implementation is to be preferred and also lends itself better to an optimized ray packet

implementation. For scenes with varying numbers of primitives, the hierarchy update

will not work, so in that case a fast rebuild such as described in [163] should be used

instead. For static scenes, standard kd-trees will very likely provide superior performance

with an MLRT implementation [124], albeit at higher memory cost and more complex

optimized hierarchy construction.
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Chapter 5

Fast parallel hierarchy construction

Hierarchy refitting approaches such as presented in the previous chapter are generally

the fastest solution to hierarchy maintenance. However, their main shortcomings are

that they do not support more general dynamic scenes where the number of objects

may change and that they will still require a rebuild operation in case hierarchy quality

degradation is detected.

This chapter investigates fast methods for constructing and refitting object hier-

archies such as BVHs. In particular, the focus in the approach presented here is to

utilize highly-parallel architectures such as GPUs to speed up the construction process

significantly and to allow interactive building of ray tracing optimized BVHs.

In recent years, the focus in processor architectures has shifted from increasing clock

rate to increasing parallelism. Some of the most successful examples are GPUs which

have become very general processors with a strong focus on achieving performance

through high parallelism. Current high-end GPUs have a theoretical peak speed of

up to a few Tera-FLOPs, thus far outpacing current CPU architectures. Specifically,

there are several features that distinguish GPU architectures from multi-core CPU sys-

tems and also make it harder to achieve peak performance. First, the GPUs usually

have a high number of independent cores (e.g. the current generation NVIDIA GTX 280

has 30 cores) and each of the individual cores is a vector processor capable of performing



the same operation on several elements simultaneously (e.g. 32 or 64 in current GPUs).

Second, GPUs only provide no or a very limited general cache hierarchy for all memory

accesses, unlike CPUs. Instead, each core can handle several separate tasks in parallel

and switch between them in hardware when one of them is waiting for a memory op-

eration to complete. This hardware multi-threading approach is thus designed to hide

the latency of memory accesses to perform some other work in the meantime. However,

both of these characteristics imply that – unlike CPUs – achieving high performance in

a GPU-based algorithm critically depends on not only providing a sufficient number of

parallel tasks so that all the cores are utilized, but providing several times that number

of tasks just so that cores have enough work to perform while waiting for data from

relatively slow memory accesses. This greatly affects the algorithm design for the GPU

architectures.

5.1 SAH hierarchy construction

The surface area heuristic [50, 100, 61] method for building hierarchies can be applied

to many types of hierarchical acceleration structures – among them object and spatial

hierarchies – since it has been shown to be a good indicator of expected ray intersections.

The time complexity for top-down construction of a hierarchy for n triangles is O(n log n)

due to the equivalence to sorting, and research has shown [147] that SAH optimized

construction can also be achieved in the same bound. Top-down builders proceed by

recursively splitting the set of geometric primitives — usually into two parts per step,

resulting in a binary tree. The manner in which the split is performed can have a large

impact on the performance of a ray tracer or other application using the BVH. The

SAH provides a local cost function that allows to evaluate all possible split positions at

a node and then pick the one with the lowest cost.
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Figure 5.1: Work queue construction: By using two work queues, we can run all
active splits in parallel. Since the split kernel may not output new splits, a compaction
step after each split level removes empty space in the queue and allows it to be used in
the next step.

5.2 GPU SAH construction

The main challenge for a GPU algorithm for hierarchy construction is that it has to

be sufficiently parallel so as to exploit the computational power of the processors. In

a top-down construction algorithm, there are two main ways to introduce parallelism:

a) process multiple splits in parallel and b) parallelize an actual split operation. In our

approach, we use multiple cores to run as many node splits in parallel as possible and

then use the data parallel computation units in the processors to accelerate the SAH

evaluation as well as the actual split operation.

5.2.1 Breadth-first construction using work queues

We now present our algorithm for parallelizing the individual splits across all the cores.

During top-down construction, each split results in new nodes that still need to be pro-

cessed, i.e. split as well. Since each of the splits can be processed totally independently,

67



processing all the open splits in parallel on multiple cores is an easy way to speed up

construction. The simplest approach to manage all this work is to introduce a queue

that stores all the open splits such that each processor can fetch work whenever it is

finished working on a node, as well as put new splits on the work queue when finishing

up. However, even though current GPU architectures support atomic operations that

would make global synchronization possible, the problem is that the same architectures

do not provide a memory consistency model that would ensure writes to the queue are

seen in the correct order by other processors. Thus, implementing a global work queue

may not be practical yet (or desirable for performance reasons, see chapter 6.2 for more

discussion.) Instead, we opt for an iterative approach that processes all the currently

open splits in parallel and writes out new splits, but then performs a queue maintenance

step in between to provide a valid queue for the next step (similar in spirit to [68].)

In a binary tree, each split can result in either 0, 1 or 2 new open splits as a result.

Thus, if we have m open splits, we only need a work queue of at most size 2m to hold all

potential new splits. By using two work queues, one as an input and one as an output,

we can perform parallel splits without any explicit coordination between them. In our

algorithm, each block i reads in its split item from the input queue and processes it (as

described in the next section) and then either writes out new splits or a null split to

the output queue at positions 2i and 2i + 1 (also see Fig. 5.1). After that step, the

output work queue may have several null splits that need to be eliminated. Therefore,

we run a compaction kernel (such as described in [128]) on the queue and write the

result into the input queue. We again run the split algorithm on the new input queue

as long as there are still active splits left. Note that this means that we generate and

process all the nodes in the tree in breadth-first order, whereas recursive or stack-based

CPU approaches typically proceed in depth-first order (Fig. 5.1). Note that this form

of work organization does not add work overhead and the the overall work complexity

is still O(n log n).

68



5.2.2 Data-Parallel SAH split

In general, performing a SAH split for an object hierarchy consists of two steps:

1. Determine the best split position by evaluating the SAH.

2. Reorder the primitives (or the indices to the primitives) such that the order in the

global list corresponds to the new split.

Note that unlike spatial partitioning approaches such as kd-trees each primitive can

only be referenced on one side of the split (commonly determined by the location of the

centroid of the primitive), which means that the reordering can be performed in-place

and no additional memory is needed. All of these steps can be performed by exploiting

data parallelism and using common parallel operations such as reductions and prefix

sums, and each split is executed on one core.

We perform approximate SAH computation as described in [71, 116] and generate k

uniformly sampled split candidates for each of the three axes, and then use 3k threads

so that we test all the samples in parallel. Note that when k is larger or equal to the

number of primitives in the split, we can instead use the positions of the primitives as

the split candidates, in which case the algorithm produces exactly the same result as

the full SAH evaluation. The algorithm loads each primitive in the split in turn while

each thread tests its position in reference to its split position and updates the SAH

information (such as bounding boxes for the left and right node) accordingly. Once all

primitives have been tested, each thread computes the SAH cost for its split candidate.

Finally, a parallel reduction using the minimum operator finds the split candidate sample

with the lowest cost. We also test the SAH cost for not splitting the current node here

and compare it to the computed minimal split cost. If it is lower, then we abort the

split operation and make the node a leaf in the hierarchy.

Given the split coordinate as determined by the previous step, our algorithm then

needs to sort the primitives into either the left or the right child node. To avoid copying

69



Figure 5.2: Construction timings per level: In order to evaluate our SAH construc-
tion algorithm, we show the time taken to run the split as well as compaction kernels
for the 69K Bunny model per level of the tree, starting with the one split on level 1. We
also show how many splits are active at any level. Left: normal construction algorithm.
Right: construction with small split kernel as described in the text.

the geometry information, we only reorder the indices referencing the primitives instead.

To parallelize this reordering step, we go over all the indices in chunks of a size equal

to the number of threads in the block. For each chunk, each thread reads in the index

and set a flag to 1 if the respective primitive is to the left or 0 if on the right. We then

perform a parallel prefix sum over the flags. Based on that, each thread can determine

the new position to store its index. Finally, we store the bounding box information

computed during SAH computation in both the child nodes and save back the new split

information to the output split list for the next step if there is more than one primitive

left in the respective node.

5.2.3 Small split optimizations

The algorithm as described above generates a hierarchy practically identical in quality

to CPU-based approximate SAH techniques (see the results section). In practice, we can

efficiently use more samples due to high data parallelism and the SAH quality may be

even better since the main change has been to reorganize the split operation such that it

uses parallelism at every stage. Fig. 5.2 a) illustrates the performance characteristics of

the algorithm by showing the time spent during construction by level of the split. There

are two main bottlenecks in the algorithm: similar to CPU implementations, the initial
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splits at the top levels of the hierarchy are slow due to lack of processor parallelism

and large numbers of very small splits at the end. All further splits are much faster

even though there is much more work done per level because computational resources

are more fully utilized and processors can hide memory latency by switching between

active tasks. We present an improved scheme to improve the parallelism at the top

levels in section 5.3, but we can also improve on the performance at the lower levels of

the hierarchy. The main sources of overhead here are a) higher compaction costs since

a high number of splits are generated during each step and b) low vector utilization due

to only processing a few primitives per split. There is also some constant administrative

overhead during each operation for reading in information about the split etc. that

becomes more significant as the actual computational intensity decreases. We address

these issues by using a different split kernel for all splits with sizes below a specified

threshold and modify the compaction kernel such that these splits are automatically

filtered from the main work queue into a small split queue. Once all the normal splits

are done, we can run the small split kernel on all the elements in that queue once.

The main idea about the new split kernel is to use each processor’s local memory to

maintain a local work queue for all the splits in the sub-tree defined by the input split,

as well as to keep all the geometric primitives in the sub-tree in local memory as well.

Since local memory is very fast, we can then run the complete sub-tree’s construction

entirely without waiting for memory accesses. Essentially, we are using this memory as

an explicitly managed cache to reduce the memory bandwidth needed for construction.

In addition, we use as few threads as possible in the kernel to maximize utilization of the

vector operations. The threshold value of primitives for a split to be ”small” depends on

how much geometry data can be fit into local memory, i.e. the cache size. In our case,

we have set both the thread count as well as the threshold to 32, which for our GPU

architecture is the effective SIMD width and will also fill up most of local memory. Fig.

5.2 b) shows the impact of introducing this split kernel. As the normal construction is
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run, all splits smaller than the threshold are removed from the main work queue, so the

number of splits falls much more quickly than previously. At the very last split step,

the small split kernel is invoked and completely processes all the remaining sub-trees

in one run. Overall, we have found that this leads to a 15-20% overall speedup in our

test cases due to practically full utilization of the computational resources and reduced

overhead for queue compaction.

5.3 Hybrid construction algorithm

Fig. 5.2 shows that a large fraction of the overall construction time is spent in the top

levels of the tree. Similar to findings in multi-core CPU construction [116], this is because

having only one or very few active splits such as at the beginning of the construction

means that only very few of the overall processor cores are active. In addition, these

splits also are the most expensive ones since they contain the most triangles. Overall,

the SAH construction method above therefore does not scale well to larger models since

the performance will be dominated by the early, almost serial construction stages.

However, it is also possible to combine the algorithm described here with another

that works efficiently for large numbers of triangles. The LBVH algorithm as presented

in [94] is a GPU algorithm that reduces the hierarchy construction problem to a sort on

a space-filling curve. Using a fast parallel sort implementation [128], it is very efficient

on GPUs but has the main disadvantage that it does not take hierarchy quality for ray

tracing into account. In this context, on the other hand, it gives us the possibility to use

only a subset of the bits in the Morton code to sort on. In this case, the LBVH builds

a very shallow hierarchy with large numbers of primitives at the leafs. We can then

treat all the leafs in that hierarchy as active splits and process them in parallel with

the SAH construction algorithm. Essentially, this is similar to the bounding interval

hierarchy [163] (BIH) and grid-assisted [150] build methods, but in a highly parallel
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Model Tris CPU SAH GPU SAH LBVH Hybrid Parallel SAH

Flamenco 49K 144ms 

30fps/99%

85ms 

30.3fps/100%

9.8ms 

12.4fps/41%

17ms 

29.9fps/99%

n/a

Sibenik 82K 231ms 

21.4fps/97%

144ms 

21.7fps/98%

10ms 

3.5fps/16%

30ms 

21.4fps/97%

n/a

Fairy 174K 661ms 

11.5fps/98%

488ms 

21.7fps/100%

10.3ms 

1.8fps/15%

124ms 

11.6fps/99%

21ms           

93%

Bunny/Dragon 252K 842ms 

7.8fps/100%

403ms 

7.75fps/100%

17ms 

7.3fps/94%

66ms 

7.6fps/98%

20ms             

98%

Conference 284K 819ms 

24.4fps/91%

477ms 

24.5fps/91%

19ms 

6.7fps/25%

105ms 

22.9fps/85%

26ms              

86%

Soda Hall 1.5M 6176ms 

20.8fps/98%

2390ms 

21.4fps/101%

66ms 

3fps/14%

445ms 

20.7fps/98%

n/a

Table 5.1: Construction timings and hierarchy quality: First row for each scene:
Timings (in ms) for complete hierarchy construction. Second row: relative and absolute
ray tracing performance (in fps) on our GPU ray tracer compared to full SAH solution
at 10242 resolution and primary visibility only. CPU SAH is our non-optimized approx-
imate SAH implementation using just one core, GPU SAH is the algorithm as presented
in section 5.2 and Hybrid the combined algorithm as presented in section 5.3. The par-
allel and full SAH are both from the grid-BVH build in [150] and were generated on 8
and 1 core of an Intel Xeon system at 2.6 GHz, respectively.

approach. Overall, as we will show in the result section, this combines the speed and

scalability of the LBVH algorithm with the ray tracing performance optimizations in

the SAH algorithm.

5.4 Results

We now highlight results from the algorithms described in the previous sections on sev-

eral benchmark cases and scenarios. All algorithms are run on a Intel Xeon X5355

system at 2.66GHz running Microsoft Windows XP with a NVIDIA Geforce 280 GTX

graphics card with 1 GB of memory and were implemented using the NVIDIA CUDA

programming language [109]. We use several benchmark scenes chosen to both allow

comparison to other published approaches as well as to cover several different model

characteristics such as architectural and CAD scenes as well as scanned models (see Fig.

5.3). Note that all benchmark timings cover the full construction process starting with
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Figure 5.3: Benchmark models: Our benchmark scenes used to generate results. From
left to right: Sibenik cathedral (80K tris), Bunny/Dragon animation (252K tris), Con-
ference room (284K tris), Soda Hall (2M tris).

building the initial bounding boxes, but do not include any CPU-GPU copy of geometry.

In our benchmark results for the hybrid algorithm, we used the LBVH algorithm for

performing the first 6 levels of splits before switching to SAH construction. All per-

formance results and images in the paper were produced with a BVH-based ray tracer

running on the GPU. We implemented a relatively simple and unoptimized packet-based

BVH ray tracer similar to [58] in CUDA and tested it on our benchmark scenes while

rebuilding the hierarchy for each frame. In combination with the hierarchy construction,

this allows interactive ray tracing of arbitrary dynamic scenes on the GPU.

To justify both the approximate SAH building algorithm as well as the hybrid ap-

proach, we first compare relative rendering speed of all the algorithms presented in this

paper to a hierarchy built on the CPU with a full SAH construction algorithm such

as described in [152]. Rendering is performed using a standard CPU BVH ray tracer

using ray packets [93, 152]. The results listed in table 5.1 demonstrate that for most

scenes using approximate SAH has close to no impact compared to a full SAH build

and that even the hybrid build is very close to the reference results. This backs results

of similar splitting approaches in [163, 150]. Note that in some cases the approximate

or hybrid algorithm is in fact faster than the reference implementation. The SAH is

only a local heuristic and thus it is possible that a split that is non-optimal in the SAH

sense may still result in better performance in the actual ray tracer. The efficiency of
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the LBVH construction is highly scene dependent. It can provide adequate quality for

scenes with evenly distributed geometry such as the Dragon/Bunny model, but for ar-

chitectural and CAD scenes the performance is clearly inferior. Because it uses a fixed

number of bits per axis, its quality can degrade when very small details exist in a large

environment (the classic teapot-in-stadium scenario). Thus, the Fairy scene (benchmark

3 in Table 5.1) with a complex model in the middle of a less complex environment is

an example of this problem. In the hybrid algorithm, it is always possible to limit the

impact by limiting the number of splits performed by LBVH. Furthermore, this problem

is mitigated if the scene has some pre-existing structure, say from a scene graph that

can assist the construction procedure. Having primitives with highly varying sizes can

also have an impact on performance here since the classification according to Morton

code does not take this into account. However, this is usually also a problem for other

construction algorithms and the common solution would be to subdivide large primi-

tives [37] before construction. Table 5.1 also shows timings for the actual construction

with our different approaches and also lists published numbers from a fast parallel CPU

BVH builder [150] as well as our non-parallel CPU implementation of a sampling based

SAH approach (similar to [71, 150]) using 8 samples/split. Note that since the GPU ray

tracer uses a higher number of samples (in our case 64), it can provide slightly better

hierarchy quality compared to the CPU solution. The full LBVH is the fastest builder,

but is dominated by kernel call and other overhead for small models.

5.4.1 Analysis

Current GPU architectures have several features that would make them suitable for

hierarchy construction. First, thanks to special graphics memory they have significantly

higher memory bandwidth. At the same time, even though the individual processing

units do not have a general cache, they have explicitly managed fast local memory.

Thus, if data for the current computation can be loaded from main memory and held in
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Figure 5.4: Bottleneck analysis: Relative performance of the three construction algo-
rithms when modifying the core processor clock (top) and the memory clock (bottom).

local memory, memory access and bandwidth are very fast. GPUs also have very high

available parallelism both in terms of independent processors as well as data parallel

units. However, exploiting this parallelism in the construction algorithm now becomes

an harder challenge. Unlike the thread parallelism in CPU implementations, using data

parallelism is both more important as well as difficult due to higher SIMD width.

The memory footprint of our construction algorithm is relatively low since object

hierarchy construction does not require temporary memory and all elements can just

be reordered in-place. We can size the main work queues conservatively since for n

primitives there can be at most n/2 splits active at a time. Additionaly, the algorithm

stores an AABB per primitive, the main index list as well as an array for holding the BVH

nodes (which can be conservatively sized at the theoretical maximum of 2n− 1 nodes.)

Overall, our algorithm uses up to 113 bytes/triangle during construction including the

BVH, assuming the worst case of one triangle per leaf. This allows construction of

hierarchies for multi-million triangle models on current GPUs without problems.

We also analyzed the current bottlenecks in our construction algorithms. Figure

5.4 shows the impact of independently changing core (i.e. processing) and memory

clock for our construction methods. It is obvious that all three are currently bound

by computation, and both the hybrid and SAH algorithms are not limited by memory

bandwidth. The LBVH algorithm shows the highest dependence on memory speed:

since GPU sort is known [52] to be bandwidth limited and construction must have the
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Figure 5.5: Time spent: Split-up of the total time spent in construction into each part
of the algorithm. Left: Full SAH build. Right: Hybrid build. The ”rest” times consist of
all operations not explicitly in other parts, such as reading and writing BVH nodes and
setting up all the other components.

same lower bounds as sorting, we take this as a sign that the LBVH build is close to

the limit of achievable scalability. Overall, this means that the construction algorithms

will very likely scale well with added computational power in future architectures.

We also analyzed where time is spent in the construction. Figure 5.5 shows a break-

up of relative time for each of our benchmark scenes into several components: SAH

split is the time for finding the optimal subdivision, Reorder is the time spent reordering

the triangles according to the split, Compaction consists of the time for compacting

and maintaining the work queues between splits and LBVH is the initial split time in

the hybrid construction (for 6 levels). The remaining time (Rest) is spent reading in

and writing back BVH node information, setting up splits and otherwise joining the

rest of the steps together. Note that we did not include the time for computing the

AABBs and Morton codes here as it makes up far less than 1% of the total time in

all benchmarks. Overall, the results show that the full SAH build is clearly dominated

by the cost of evaluating the SAH split information, while the hybrid build is more

balanced. Computing the initial splits using the LBVH algorithm only takes a relatively

small amount of time, but reduces both the overall construction time as well as some of

the cost in work queue management.
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5.4.2 Comparison

There has been some concurrent work on GPU hierarchy construction focused on build-

ing kd-trees [166]. Our approach is similar in the organization of the splits by using

a work queue, but the authors use spatial median splits after sorting primitives into

chunks in order to speed up the top-level split computation. Despite the similarities

in both approaches, we would like to point out some differences in BVH and kd-tree

construction. In particular, the memory overhead in object hierarchy construction is

very small, whereas dynamic allocation in kd-tree construction so far limits the GPU

implementation — the current kd-tree algorithm would need about 1GB of memory to

construct the kd-tree for a model with one million triangles, whereas we could support

about ten times that. On the other hand, BVH splits are intrinsically more compu-

tationally intensive as the split kernel has to compute bounding boxes for each split

candidate whereas kd-tree splits are directly given by the parent’s bounding box and

the split plane. Thus, the main inner loop needs to load 3 times the data (all 6 bounds

as opposed to 2) with a corresponding increase in computation. This difference may

explain that our construction times are slightly higher than the kd-tree numbers in [166]

for the Fairy model (77ms compared to 124ms in our hybrid approach.)
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Chapter 6

Applications

The previous chapters of this thesis have introduced several methods for ray tracing on

complex static and dynamic models with a focus on visualization. In this chapter, we

demonstrate several applications of previously discussed algorithms to other areas and

show how they can improve the respective state-of-the-art.

6.1 Interactive sound simulation using frustum trac-

ing

In this section we present an algorithm for interactive sound propagation in complex

and dynamic scenes that builds on the BVH algorithms presented in chapter 4. Our

approach uses a simple volumetric representation based on a four-sided convex frustum,

for which we describe efficient algorithms to perform hierarchy traversal, intersection

and specular reflection and transmission interactions at the geometric primitives. Unlike

beam tracing and pyramid tracing algorithms, we perform approximate clipping by using

a subdivision into sub-frusta. As a result our rendering algorithm reduces to tracing ray

packets and maps well to the SIMD instructions available on current CPUs. Compared

to state-of-the-art beam tracing implementations, this approach is far more scalable to

complex models and performs significantly faster, allowing interactive performance on



multi-core CPU systems.

6.1.1 Sound propagation in virtual scenes

Sound propagation is the process of simulating the path of sound waves in a virtual

scene with one or multiple sound sources (usually modeled as points) as well as receivers

(or listener). The sound waves can be reflected, transmitted or diffracted by objects

in the scene and may at some point reach the receiver. The superposition of all these

waves then is what the listener hears.

Sound propagation approaches can be broadly categorized into numerical and geo-

metric simulation methods. Numerical solutions [88] attempt to accurately model the

propagation of sound waves by numerically solving the wave equation. These methods

are general and highly accurate [111]. However, they can be very compute and storage

intensive [143]. Current approaches are too slow for interactive sound propagation in

complex environments and are mainly limited to extremely simple scenes. Geometric

solutions model the propagation of sound based on rectilinear propagation of waves

and can, while less accurately, model the early reflections in sound propagation. Most

of these methods are closely related to parallel techniques in global illumination, and

many advances in either field can also be applied to the other. The earliest of these

approaches were particle and ray based [86, 89] and simulated the propagation paths

by stochastically sampling them using rays. However except for a very high number of

samples, these techniques suffer from noise and aliasing problems [97], both spatially

and temporally. Approaches using discrete particle representations called phonons or

sonels [12, 26, 79] have been developed in the last few years. While promising, they

are currently limited to simple scenes. Moreover, particle and ray-based algorithms are

susceptible to aliasing errors and may need a very high density of samples to overcome

those problems. Image source algorithms create virtual sources for specular reflection

from the scene geometry and can be combined with diffuse reflections and diffractions
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[13, 25]. They accurately compute the propagation paths from the source to the listener,

but the number of virtual sources can increase exponentially for complex scenes [13].

This makes these techniques suitable only for static scenes.

The last type of geometric methods is based on beam tracing, which recursively

traces pyramidal polyhedra from the source to the listener [63, 32, 39]. Funkhouser et

al. [43, 42] showed how beam tracing methods can be used for sound propagation at

interactive rates in complex virtual environments. Some algorithms have been proposed

to use beam tracing on moving sources [5, 45]. However, current algorithms take large

pre-processing time, are problematic on scenes that are not densely occluded and are

not directly applicable to dynamic scenes with moving objects.

6.1.2 Frusta for sound propagation

In order to avoid the sampling issues but retain the advantages of beam tracing, we

trace a simple convex polyhedron instead of infinitesimal rays. Specifically, we perform

frustum tracing which is similar to beam tracing and pyramid tracing. We use a simple

convex frustum so that we can perform fast intersection tests with the nodes of the

hierarchy and the primitives. Unlike beam tracing algorithms, we perform approximate

clipping using ray packets. This amounts to a discrete approximation to the arbitrary

beam shape achievable in beam tracing. Overall, our representation combines many of

the speed advantages of ray packet tracing with the benefits of volumetric formulations.

We use a convex four-sided frustum, i.e. a pyramid with a quadrilateral base (see

Fig. 6.1(a)) that is defined by its four side faces and one front face. Equivalently, the

frustum can be represented as the convex combination of four corner rays defining the

frustum. At a broad level, the main difference between frustum and beam tracing is how

we keep track of intersections with the primitive and the scene. Beam tracing performs

exact clipping with each primitive in the scene and therefore needs to maintain a full list

of clipped edges or faces of the beam. We avoid these relatively expensive operations by
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a)                                                b)

Figure 6.1: Frustum-based packet: The frustum primitive used in our algorithm.
a) The frustum is defined by the four side faces and the front face, or equivalently by
the boundary rays on the sides where the faces intersect. b) the frustum is uniformly
subdivided into sub-frusta defined by their center sample rays (dots), depending on a
sampling factor.

subdividing the frustum uniformly into smaller sub-frusta to perform discrete clipping,

and only keep track of intersections at the level of those sub-frusta (see Fig. 6.1(b)).

Moreover, each sub-frustum is represented by a sample ray, and a sub-frusta is considered

to intersect a primitive only if its sample ray hits the primitive. Essentially, this can be

interpreted as a discrete version of a clipping algorithm and can introduce some errors

in our propagation algorithm.

The difference between the frustum and beam tracing process is also highlighted in

Fig. 6.2. We show the intersection of the beam (left) and frusta (right) with three

primitives and the resulting secondary beams and frusta computed for reflection and

transmission. Note that since the intersection is determined by the location of the

sample ray, the frustum tracing algorithm in this example will underestimate the size of

secondary beams at the primitive on the left. The amount of error introduced depends

on the sampling rate, i.e. the rate of subdivision of the frustum.

Benefits: Our formulation of the frustum and the clipping algorithm allows a faster

and more general algorithm for propagation. We use the main frustum as a placeholder

for all the enclosed sub-frusta during hierarchy traversal or intersection computations.

As a result we are able to achieve very efficient and fast traversal using our representation

in both static and dynamic scenes. In addition, we organize our sample rays in ray pack-
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Figure 6.2: Beam vs. frustum tracing: Our approach compared to beam tracing
for a simple example.(Left): beam tracing. (Right): frustum tracing. The discrete
sampling in our frustum based approach underestimates the size of the exact reflection
and transmission frustum for primitive 1 and overestimates the size for primitives 2 and
3.

ets similar to those used in interactive ray tracing, and exploit the uniform subdivision

of frusta for faster primitive intersection computations. Finally, we defer constructing

the actual sample ray computation until the sub-frusta are actually needed, i.e. if the

whole frustum does not fully hit a primitive. This reduces the set-up cost, especially for

very small beams.

6.1.3 Frustum Tracing

The goal of frustum tracing is to identify the primitives (i.e. triangles) that intersect the

frustum and then to construct new secondary beams that represent specular reflection

and transmission of sound. This involves traversing the scene hierarchy, computing

the intersection with primitives and then constructing secondary frusta. We present

algorithms for each of these computations.

Construction of secondary frusta: Whenever a frustum hits a primitive, we con-

struct secondary frusta for transmission and specular reflection. If the entire frustum

hits one primitive, the construction of the secondary frusta is simple and can be accom-

plished by just using the four corner rays. For the general case, when different sub-frusta

hit different primitives, multiple secondary frusta have to be generated. A näıve solution
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would be to generate reflection and transmission for each single sub-frustum defined by

a sample ray. However, this could result in an extremely high number of additional

frusta, and the complexity of the algorithm will grow as an exponential function of the

number of reflections. To avoid this, we combine those sub-frusta that hit the same

primitive by hierarchically comparing four neighboring samples and treating them as

one larger frustum (see Fig. 6.3). This can be seen as a quad-tree structure, although

we do not compute the tree explicitly. If the samples hit neighboring primitives that

have the same material and normal, we combine those primitives in the same way to

avoid splitting too many sub-frusta. This is especially useful when rectangles are rep-

resented by two triangles, which is a common case in architectural models. In practice,

we have found that our approach yields a good compromise between the time taken to

find optimal groups of sub-frusta and the number of secondary frusta needed. We also

exploit the fact that the combined frustum exactly represents the sub-frusta, and there

is no loss of accuracy due to this hierarchical grouping. If the primitives in the scene are

over-tessellated, we could use simplificationalgorithms to decrease their size [77]. This

can introduce some additional error in our propagation algorithm, but big triangles in

the scene would result in fewer secondary sub-frusta.

Hierarchy traversal: We use a bounding volume hierarchy (BVH) as our choice of

scene hierarchy, as it has been shown to work well for general dynamic scenes as discussed

in earlier chapters. However, our algorithm can also be adapted to be used with kd-

trees or other hierarchies. The main operation for traversal of the BVH is checking

for intersection with a BV, most commonly an axis-aligned bounding box (AABB). As

described by Reshetov et al. [124], a frustum can be tested for overlap with an AABB

quickly. If the frustum does not intersect the AABB node, the entire subtree rooted at

that node can be culled. Otherwise the children of the node are tested in a recursive

manner.

However, this traversal method can result in traversing too many nodes because
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Figure 6.3: Constructing secondary frusta: We compute reflected and transmitted
frusta efficiently by grouping sub-frusta that hit the same primitive together in a single
secondary frustum instead of having to trace each of them individually. Using a hier-
archical process, we combine groups of four sub-frusta together as long as they hit the
same primitive.

traversal cannot stop until the first hit between the scene geometry and the frustum

has been computed. Interactive ray tracing algorithms using BVHs also track which

rays in the packet are still currently active (i.e. hit the current node) at any point

during traversal [145, 93]. Since we want to avoid performing intersection tests with the

frustum’s sample rays as long as possible, we also keep track of the farthest intersection

depth found so far to rule out intersecting nodes that cannot possibly contribute.

Efficient primitive intersection: We currently support triangles as primitives,

which is in line with most interactive ray tracers and sound simulations. The main goal

for intersection with triangles is to minimize the number of ray-triangle intersections,

as they can be more expensive than the traversal steps. Most importantly we want to

avoid performing any ray intersections at all if we can determine that the entire frustum

hits the primitive, which can happen many times. Consider Fig. 6.4, which shows the

different configurations that can arise when intersecting a frustum with a primitive. Case

1 shows that the frustum fully misses the primitives (i.e. no overlap at all); therefore,

we can skip that intersection right away. Case 2 shows that the frustum fully hits the

primitives, which means we can construct secondary frusta right away without having

to consider subdividing the frustum, unless a closer hit is found later on. In cases 3 and

4, the frustum partially overlaps the primitive or contains the primitive and we have to
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Case 1              Case 2                  Case 3              Case 4                 Case 5   

Figure 6.4: Primitive intersection: Five different cases can occur when intersecting
a frustum with a triangle. From left to right: Frustum misses completely, frustum is
contained, frustum intersects partially, frustum contains triangle. The last case shows
a situation where the frustum is clearly outside the triangle, but is not detected by the
edge based test since it is not fully on one side of any edge. This case is handled as
intersecting, but is culled later on during the clipping test.

consider the individual sub-frusta.

We test for these four cases by using a Plücker coordinate representation for the

triangle edges and frustum rays [133], which gives us a way to test the orientation

of any ray relative to an edge. Given a consistent orientation of edges (clockwise or

counter-clockwise), we can test for intersection if all the edge orientations have the same

sign. When testing the corner rays of the frustum, which can be performed in parallel

using SIMD instructions, we check for Case 1 and Case 2 simply by testing whether

all the corner rays are inside the triangle (Case 2) or fully outside one or more edges

(Case 1). Note that the latter test is conservative and may conclude that the frusta

are intersecting the triangle, even if they are not. These intersections will eventually be

culled in our handling of Cases 3 and 4. Note that due to the nature of the edge tests,

a fifth case is possible (see Fig. 6.4) where the rays are clearly outside the triangle, but

not fully on one side of any edge. This case is handled by full intersection.

If no early culling is possible, we then perform a ray-triangle intersection using the

actual sample rays. As the number of rays that actually intersect the triangle may

be small compared to the number of sample rays representing all the sub-frusta, we

first compute the subset of potential intersections efficiently. Since the sample rays

are uniformly distributed in the frustum space, we compute bounds on the projected
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triangle in that space and only test those samples that fall within those bounds. In order

to perform these computations, we clip the triangle to the bounds of the frustum by

projecting the triangle to one of the coordinate planes and use a line clipping algorithm

against the frustum’s intersection with the plane. Finally, when looking at the clipped

polygon’s vertices, we can compute their bounding box in frustum parameter space (see

Fig 6.5).

The actual triangle intersection is only performed for the sample rays that fall within

the boundary of the clipped triangle, and can easily be performed by using the indices.

Note that this can also be reduced to a rasterization problem: given a triangle that is

projected into the far plane of the frustum, we want to find the sub-frusta it covers.

Therefore, we can use other ways to evaluate this intersection. By using a higher set-up

cost, the triangle could be projected and processed with a scan-line rendering algorithm,

intersecting with the respective sample ray for each covered sub-frustum. Another inter-

esting approach would be to use a modified A-buffer [16] for computing the sub-frusta

covered by the triangle through lookup masks, at the cost of some precision.

Handling non-specular interactions: As described above, specular reflections

and transmissions can be handled directly. Although we have not implemented this,

our frustum tracing approach could also use the diffraction formulation described by

Funkhouser et al. [42] based on the uniform theory of diffraction. For diffuse scattering

the frustum tracing approach could be adapted to also generate secondary frusta on a

hemisphere around the hit point. However, this would increase the branching factor per

interaction dramatically and generally increase the size of the frusta and therefore have

a high negative impact on performance. Since we focus on interactive applications, this

currently makes simulating diffuse propagation unappealing.

87



6.1.4 Sampling and Aliasing

Our algorithm uses a discrete approximation of the exact secondary beams that would

be computed by using a full clipping algorithm such as in beam tracing. As a result the

reflections obtained by our method can suffer from aliasing artifacts, especially along

object boundaries. As shown in Fig. 6.2, reflected frusta often subtend areas that

are outside of the primitive or do not cover all of the area. This is due to the fact

that our tracing algorithm assumes that a sub-frustum hits the primitive in its full

projected area if its sample ray hits the primitive. This can result in other possible

effects such as missing paths, e.g. a small hole in the object might be missed due to our

sampling density. Fortunately, these artifacts only result in some missed contribution

paths from the reflections. Moreover, in a dynamic environment these effects would be

far less obvious to the listener as compared to the noise artifacts that can arise due to

stochastic sampling in ray tracing methods. Note that our algorithm will also avoid

creating holes or overlaps in the reflections field during the computation of reflected or

transmitted frusta. These holes or overlaps can have a far larger contribution of error

since they tend to be more apparent in an interactive application because of abrupt

changes in the contribution. An interesting aspect of our approach is that having small

geometric objects or primitives (i.e. a statue) in the scene will not result in a very high

number of small secondary frusta. Instead, the number of reflections is bounded by the

sampling density in the packet. These very small frusta would be computed by an exact

clipping algorithm, though they have very little or no contribution.

One of the main challenges is to compute an appropriate sampling rate (i.e. the

number of rays in the frustum). Ideally, the sampling rate could be chosen by taking the

highest detail in the scene and setting the frequency so that detail could be reconstructed.

Similar to rasterization algorithms, performing this computation in a view-independent

manner is almost infeasible due to its high complexity and can lead to very conservative

bounds. As a result we use realistic sampling rates and allow some error. There are
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Figure 6.5: Packet-triangle intersection: The intersection algorithm first computes
the potential ray intersections in frustum space by clipping the triangle to the frustum’s
edges in 2-D, then finding the rectangular bounds of the clipped point in frustum space.
The bounds can then be used to effectively limit the number of actual sample rays that
have to be tested.

several approaches for choosing the sampling rate in this context: first, a good way of

choosing the subdivision is to select the number of rays depending on the angular spread

of the packet. For example, a very narrow frustum will likely need a lower sampling

density than a wide frustum. Since the actual rays are not constructed until a sufficiently

small primitive is encountered, it is also possible to select the sampling rate relative to

the local geometric complexity in order to avoid under-sampling. One way to measure

local complexity, for instance, would be to use the current depth of the subtree in the

BVH. Finally, the sampling rate can also be made dependent on the energy carried by

a frustum or the number of reflections before reaching the current position. This is a

useful approximation as the actual contribution will likely decrease, and we can lower

thesampling rate after a few reflections.

6.1.5 Simulation overview

We now describe an overall sound rendering system that uses our sound propagation al-

gorithm. Our system is designed to be fully real-time and dynamic. We allow movement

of the listener, the sound sources and the geometric primitives in the scene by constantly

re-running the simulation at interactive rates. The sound propagation algorithm is run

as an asynchronous thread from the rest of the system to decouple the simulation update
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rate from rendering.

The sound propagation simulation starts out from each point sound source and

constructs frusta from that origin that span the whole sphere of directions around it

according to a predefined subdivision factor. Each of the frusta is traced through the

scene, and secondary frusta are constructed based on the algorithm described in Section

3. There is a user-specified maximum reflection order that limits the number of total

frusta that need to be computed. Attenuation and other wavelength-dependent effects

are applied according to the material properties per frequency band. Since we regen-

erate the sound contributions at each frame, we do not save the full beam tree of the

simulation, but just the those that actually contain the listener.

Handling dynamic scenes: The choice of a BVH as an acceleration structure

allows us to update the hierarchy efficiently in linear time if the scene geometry is

animated, or rebuild it if a heuristic determines that culling efficiency of the hierarchy

is low (as described in chapter 4). As the BVH is a general structure, our algorithm can

handle any kind of scene including unstructured ’polygon soup’ and models with low

occlusion. Furthermore, we can use lazy techniques to rebuild the nodes of a hierarchy

in a top-down manner.

Auralization: So far we have not described how the actual sound output is

generated from the simulation algorithm described in the previous section, i.e. the

auralization process (we refer the reader to a more detailed overview such as [44] for

an introduction). As mentioned above, the simulation is performed asynchronously to

the rendering and auralization, i.e. we have a dedicated rendering thread and one or

more simulation threads. During the simulation, we do not store the actual frusta, but

test each frustum on whether the listener’s position is contained in it. If so, we store

the sound information such as source, delay and power for all bands in a temporary

buffer. The rendering thread reloads this buffer at regular intervals and computes the

contribution of each source as an impulse response function (IRF) for each band and
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channel. Conceptually, each contributing frustum represents a virtual source located

at the apex of the frusta such as in image source methods. Note that this approach

can therefore update the sound more often even if the simulation itself is only updated

infrequently, which reduces the impact of listener movement.

Furthermore, to incorporate frequency dependent effects, each source’s sound signal

is decomposed into 10 frequency bands at 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240

and 20480 Hz and processed for two channels. For each channel the band-passed signal

is convolved with the impulse response for that band and the channel. The convolved

signals are then added up and played at the corresponding channel. We also have

provision for binaural hearing and we use Head Related Transfer Functions (HRTFs)

from a public-domain HRTF database [3]. The sound pipeline is set up using the FMOD

Ex sound API. We currently perform all convolutions in software in the rendering thread,

but it would be possible to do this in dedicated sound hardware using DSPs as well.

Implementation details: Our ray packet tracing implementation utilizes current

CPUs’ SIMD instructions that allow small-scale vector operations on 4 operands in

parallel. In the context of packet tracing, this allows us to perform intersections of

multiple rays against a node of the hierarchy or against a geometric primitive in parallel.

In our case this is especially efficient for all intersection tests involving the corner rays

as we use exactly four rays to represent a frustum. Therefore most operations involving

the frustum are implemented in that manner. The frustum-box culling test used during

hierarchy traversal is also implemented very efficiently using SIMD instructions [124].

Finally, since all the frusta can be traced in parallel, performing the simulation using

multiple threads on a multi-core processor is rather simple and can be easily scaled to

multi-processor machines.
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Figure 6.6: Benchmark scenarios: We achieve interactive sound propagation perfor-
mance on several benchmark models ranging from 9k to 235k triangles while simulating
up to 7 reflections. From left to right: Theater (9k), Quake (12k), Cathedral (196k).

Model Triangles Simulation results Simulation time

# sources # reflections # frusta 1 thread 3 threads frusta/thread/s

Theater 9094 1 6 132k 754 ms 276 ms 175k

Quake 11821 3 5 157k 861 ms 290 ms 182k

Cathedral 196344 1 5 60k 1607 ms 550 ms 37k

Table 6.1: Results: This table highlights the performance of our system on different
benchmarks. We report timings both for a single thread and three threads as well as
in frusta per thread per second. Note that the frustum tracing performance does scale
logarithmically with scene complexity and linearly with the number of threads.

6.1.6 Results

We now present results of using frustum tracing in our system on several scenes. All

benchmarks were run on an Intel Core 2 Duo system at 3.0 GHz with a total of 4

cores. As future CPUs will offer more cores, the performance of our sound propagation

algorithm can therefore improve accordingly. Results are shown both for using just one

thread and using all three threads.

We tested our system on several different environments and conditions (see Fig. 6.6).

Our main performance is summarized in table 6.1 and shows that we can handle all of

the benchmark models at interactive rates on our test system. The theater model is an

architectural scene that is very open and therefore would be very challenging for beam

tracing approaches. Even with 7 number of reflections per frustum, we can perform

92



Model Triangles Construction Update

Theater 9094 319 ms 2 ms

Quake 11821 53 ms 1 ms

Cathedral 196344 1615 ms 26 ms

Table 6.2: Construction and maintenance cost: Our results show that for all the
models maintaining or updating the BVH hierarchy adds a negligible cost to the over-
all simulation. Note that construction only needs to be performed once and then the
hierarchy is maintained through updates.

our simulation in less than one second with dynamic geometric primitives and sound

sources. The Quake model was chosen as a typical example of a game-like environment

and features densely-occluded portions as well as open parts. Some dynamic geometric

objects and moving sound sources are also included in our benchmark. We also tested

a more complex, static scene with 190K triangles with just one moving sound source.

The results in table 6.1 show that even though performance as measured by frusta per

second decreases with increasing number of primitives, the decrease is still sub-linear.

This is due to the logarithmic scaling of ray packet tracing methods. We recompute

the BVH whenever the geometric objects in the scene move. Even though the time

complexity of updating a BVH is linear in the number of primitives, the total time

needed for updating a BVH is still negligible compared to the simulation time, as shown

in table 6.2. Moreover, the BVH update can easily be parallelized using multiple threads

between the simulation runs.

A key measure in our algorithm is the number of sample rays that are used per

frustum. It can have a significant impact on the performance. Figure 6.7 shows the

overall simulation performance as well as the total number of frusta used in our bench-

mark models when changing the sampling rate. The graph shows that the scaling is

logarithmic, which is due to the ray-independent frustum traversal as well as our merg-

ing algorithm for constructing secondary frusta. This scaling makes the sampling rate

a good parameter for trading off quality and runtime performance, depending on the

requirements on the simulation.
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Figure 6.7: Sampling rates: The graphs show the impact of increasing the sampling
rate per frustum on both the simulation times as well as number of frusta generated
(all simulations are performed for 7 reflections.) In addition to the benchmark scenes
used in Table 1, the ’Boxes’ scene is a simple environment of two boxes connected by
a small opening. Due to our frustum traversal algorithm, efficient triangle intersection
and secondary frustum construction, increasing the sampling rate only causes logarith-
mic growth in the simulation time and number of frusta generated. This suggests that
changing the frustum sampling rate can be an efficient method to control the accuracy
of our simulation.
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6.1.7 Analysis

We now analyze the performance of our algorithm and discuss some of its limitations. As

discussed in section 3 our approach introduces errors due to discrete clipping as compared

to beam tracing. We have found that the artifacts created through aliasing are usually

hardly noticeable except in contrived situations, and they are far less obtrusive than

temporal aliasing that arises in ray tracing algorithms based on stochastic approaches.

Note that the sample location in the sub-frusta does not need to be the center, so

the aliasing due to sub-sampling could be ameliorated by stochastic sampling of the

locations, e.g. by jittering. However, this may introduce temporal aliasing in animated

scenes as stochastic sampling may change simulation results noticeably over time. It is

possible that Quasi-Monte Carlo sampling could eliminate these problems.

Another source of potential errors stems from the construction of secondary frusta:

since the reflected or transmitted frustum is constructed from the corner rays of the

sub-frustum, the base surface of the new frustum can significantly exceed the area of

the primitive if the incoming frustum comes from a grazing angle and the sample rays

hits close to the boundary of the object.

Another limitation of the frustum-based approach is that we assume surfaces are lo-

cally flat, and our algorithm may not be able to handle non-planar geometry correctly.

This is common to most volumetric approaches, but we can still approximate the re-

flections by increasing the number of sample rays and using the planar approximation

defined by the local surface normal. Our implementation is also currently limited to

point sound sources. However, we can potentially simulate area and volumetric sources

if the source can be approximated by planar surfaces. The lack of non-specular reflec-

tions is another limitation of our approach. For example, it could be hard to create

a frusta for diffuse reflection from a surface based on a scattering coefficient without

significantly affecting the performance of our algorithm.

We also studied the behavior of our algorithm for different sampling rates. As Fig.
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Figure 6.8: Impulse Response (IR) vs Sampling Resolution: The above picture
shows IRs generated from our frustum-tracing approach for a simple scene of two con-
nected boxes (top) and the Theater scene (bottom), with reflection order = 4 and varying
frustum sampling resolution {4 × 4, 8 × 8, 16 × 16, 32 × 32}. Notice that the sampling
resolution of 4x4 misses some contributions compared to higher ones, but captures most
of the detail correctly. As the sampling resolution increases, the accuracy of our method
approaches that of the beam tracing method. These results indicate that the accuracy
of our method for 4×4 or 8×8 sampling resolution can be close to that of beam tracing.
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6.7 shows, the simulation time increases sub-linearly to the sampling rate due to our

optimized intersection and sample combination algorithm. Fig 6.8 compares the re-

sulting impulse response functions on two different models for varying sampling rates,

which is significant since it is obvious that – as the sampling rate goes to infinity – our

algorithm essentially becomes beam tracing. As the results show, even for low sampling

resolutions, the response converges very quickly, which suggests that we can achieve

almost the same quality with very low sampling rates. Of course, our approach is still

a geometric algorithm and like all others its accuracy for high-quality simulation is may

therefore be limited compared to full numerical simulation [157].

Note that our frustum tracing technique is could be seen to be related to adaptive

super-sampling techniques in computer graphics such as [158, 48, 76]. However, recent

work in interactive ray tracing (for visual rendering) has shown, that adaptive sampling –

despite its natural advantages – does not perform near as fast as simpler approaches that

are based on ray packets and frustum techniques. While high uniform sampling, as used

in our algorithm, may seem uneconomical at first, our clipping algorithm reduces the

actual work and simplicity makes this approach map much better to current hardware.

Combining samples only after the sampling has been performed reduces the detail of

the uniform sampling to the same that adaptive sampling would generate, but does not

add any overhead to the traversal process. Similarly, there were parallel approaches in

other areas such as radio [120] and sound propagation [139, 32] using adaptive beam

methods, but for the same reasons they do not perform nearly as well and are limited

in the scale and generality of scenes they can handle.

6.1.8 Conclusion

In conclusion, the frustum tracing approach shows that ray tracing techniques for visu-

alization can be adapted and used for other geometric simulation methods as well. In

particular, BVHs offer many advantages including a robust traversal for general pack-
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ets and frusta as well as support for dynamic environments as presented in previous

chapters. Even though the frustum tracing algorithm introduces several algorithmic im-

provements, the core of the algorithm still is very similar to that of a normal ray tracer

in rendering, and it is very likely that further improvements in interactive ray tracing

will improve the state-of-the-art in sound simulation as well.

Beyond ray tracing, BVHs and object hierarchies in general have other very different

applications, one of which will be described in the next section.

6.2 Parallel collision detection on GPUs

Collision detection is widely used in computer graphics, physically-based modeling, vir-

tual reality, haptics and robotics and is important to perform accurate simulations. Some

of the most common algorithms use bounding volume hierarchies to accelerate different

queries such as collision of models or self-collision operations that test for intersection

of all triangles in a model.

In chapter 5 we demonstrated parallel algorithms for constructing and refitting

AABB bounding volume hierarchies on GPU architectures. In this chapter, we show

how these algorithms can be used to construct more complex bounding volumes such

as oriented bounding boxes (OBBs) with very little overhead. In addition, we present a

better approach to distributing work over GPU cores than the work queue compaction

approach used in that chapter. We demonstrate that this also enables the implementa-

tion of parallel collision detection queries that intersect hierarchies.

6.2.1 Background

Bounding volumes for collision

BVHs have been widely used for accelerating collision and distance queries. These in-

clude discrete as well as continuous collision detection, including self-collisions. The
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hierarchies mainly differ in the choice of the bounding volume (BV). The simplest hier-

archies use simple BVs such as spheres or AABBs, which have a lower storage overhead,

lower cost for updating the hierarchy and performing overlap tests. Other BVHs use

tight fitting BVs such as K-DOPs, OBBs and RSS [35]. These BVHs have a higher

storage overhead and increased cost of overlap test. However, their culling efficiency is

much higher than the BVHs based on simple BVs. In case of rigid models, the BVHs

are computed once and are traversed at run-time to resolve the query. In this case, some

of the fastest collision algorithms use tight-fitting BVs such as K-DOPs [84] and OBBs

[51] and the fastest separation distance computation algorithms are based on RSS [92].

However, for deformable models, the cost of reconstructing or updating the hierarchy

at each step of the simulation can be high. Therefore, most CPU-based algorithms for

deformable models use AABB or sphere hierarchies [144, 14, 24]. However, these simple

BVs can result in a high number of false positives and the resulting algorithms perform

a high number of elementary tests [24].

Fast hierarchical collision detection

Hierarchical techniques based on BVHs have long been a popular choice to accelerate

collision queries. Most recent improvements to these queries have either come from

improved culling techniques [24, 141] or parallelism [80]. However, there is a widespread

notion that it is hard to implement these hierarchical algorithms on GPUs. Instead, one

approach has been to use the GPU for broad-phase collision only [95]. Alternatively,

many GPU-based collision checking algorithms exploit the rasterization capabilities of

GPUs by using depth or stencil buffer tests at image-space resolution [64, 85, 55]. In

order to handle complex models, the hierarchical traversal is performed on the CPUs

[53, 140] and this results in additional CPU-GPU data transfer overhead. A similar

approach combines both multi-core CPUs and GPUs [81].

There is considerable literature in parallel computing on the use of work queues for
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load balancing, including locking and non-locking shared queues such as work stealing

approaches [7, 65]. These techniques map very well to hierarchical and recursive op-

erations and have been employed extensively in parallel systems and parallel program-

ming languages such as Cilk [41]. However, they have not been used on GPUs as the

overhead of performing communication between the cores through main memory can be

rather high. Instead, previous techniques for GPU work queues used explicit compaction

methods between kernel calls. The overhead of these methods makes them efficient only

for applications with relatively high computational intensity and coarse-grained paral-

lelism [166, 94]. There are known parallel algorithms to accelerate hierarchical traversals

[121, 87] and they are also applied to parallel collision detection [83, 56]. However, most

of these methods either perform communication between the processors or are not suited

for GPU-like architectures.

Challenges

In case of hierarchical collision detection and distance queries, the major challenge is that

work is generated dynamically as the algorithm progresses and that the computational

load can change significantly. Thus, any parallel hierarchical algorithm needs to address

the problem of load balancing and work distribution in order to maintain availability

of parallelism for all cores. On multi-threaded CPU architectures, prior approaches

have used work queues and work stealing for operations with hierarchies and recursion

with similar properties [7]. However, these techniques do not currently work well on

GPUs for multiple reasons. Primarily, they are based on the assumption that low-

latency communication between cores is possible in order to manage concurrent access

to shared data structures. Unfortunately, this is only possible in a very restricted sense

on current GPUs. The main barrier to communication is the latency and lack of a

memory consistency model in the global GPU memory shared by the cores, i.e. different

cores are not guaranteed to see memory writes from other cores at the same time or

100



Task 0

Task i

Core 1

Task n

Task n+i

Core k

Utilization

Balance
Core 1..k

New kernel call

abort or

continue

abort or

continue

Figure 6.9: Load balancing for hierarchy computation and traversal: In our
approach, each task keeps its own local work queue in local memory and can generate
new work units (such as intersection operation) without coordinating with others. After
processing a work unit, each task is either able to run further or has an empty or
completely full work queue and wants to abort.

may not even see them in the same order they were written. Even though newer GPU

architectures provide atomic operations such as compare-and-swap (CAS) that could be

used for locking operations, the remaining problem is that previous writes to the memory

protected by the lock may not have been executed yet, thus preventing implementation

of work queues or other structures shared by all cores. Even if memory consistency was

not a problem, busy waiting such as by spinning on a lock variable is relatively inefficient

on an architecture with high memory latency and hardware multi-threaded execution

can also lead to priority inversion and prevent other threads on the same core from

performing useful work. As a result, one of the major challenges in terms of hierarchical

traversal is to balance the load evenly among multiple cores on the GPUs without large

synchronization overhead.

101



6.2.2 Lightweight work balancing

In the context of this chapter, hierarchy operations include work such as testing a pair of

nodes for intersection or computing a separation distance. As a result of that test, new

pairs of nodes may have to be tested afterwards. We refer to the information describing

the specific test to be done (e.g. references to two nodes) a work unit in the further

discussion. In order to efficiently parallelize the hierarchy operations, we describe a novel

approach that distributes these work units between GPU cores and threads efficiently.

The main goal of our technique is to minimize the amount of synchronization overhead

while performing actual work. In our approach, we launch a number of parallel tasks

that run on separate cores. Every task keeps its own work queue either in the local

memory or global memory, depending on its size constraints. These queues are only

accessible locally; thus, no synchronization is necessary between cores when reading or

writing to queues. Work kernels can remove an element from the queue and then create

new ones as well. In order to use the vector processors, we also provide implementations

for data-parallel access to the queues such that the kernel may work on multiple work

units in parallel For example, on a 32-wide vector unit, at each step up to 32 work

elements are dequeued, processed and then some number of new units is pushed back

onto the queue. We can use either local atomic memory operations or explicit reduction

steps to synchronize access to the local work queue.

The main step that ensures that all cores have work is the balancing step (also see Fig.

6.9). Synchronization is only performed on one global variable that counts the number

of cores that cannot do further work (i.e. the queue is empty or full). Whenever a task

reaches that state, it atomically increases the variable and terminates the kernel. After

executing a work unit, each task tests the current value of the variable and compares it

against a user-specified idle threshold. If higher, then it terminates and writes back its

local queue to the global memory; otherwise, it continues. After all cores have either

finished or aborted, we run a kernel that examines the work queues from all the cores,
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then assigns a roughly equal number of work units to each. If there are work units to

process left, then the work kernel for the current hierarchy operation is called again and

the process repeats. Note that the number of actual tasks is in fact larger than the total

number of GPU cores, to allow for hardware multi-threading. Therefore, even if some

percentage of tasks have been aborted, the core it was scheduled on may not be idle but

just processing another task. In practice, we have found a threshold of 50% idle tasks

for balancing to work best.

6.2.3 Hierarchy traversal for collision detection

We use BVHs to check for collisions between two disjoint objects (inter-object collisions)

as well as self-collisions for deformable objects (intra-object collisions). We assume that

each object is composed of triangles and we do not make any assumptions about their

connectivity. As a special case, self-intersection involves checking whether any of the

non-adjacent triangles of the object intersect each other, as is needed in cloth simulation

or surgical simulation. Since many triangles can be thin with large aspect ratios, overlaps

can be missed if discrete collision checking is used. Therefore, continuous collision

detection (CCD) algorithms are used to check whether there is a collision between

the discrete time instances, and is more expensive than discrete collision checking. In

practice, the hierarchy is built on top of each object’s triangle or the swept volume

between the time instancesin CCD. During each step of the simulation, we use the

hierarchies to compute the potential collisions and only perform triangle-triangle overlap

tests on those candidate pairs.

Simultaneous hierarchy traversal

The traversal algorithm starts with the two BVH roots and tests the BV for overlap.

If the BVs overlap, then all possible pairings of their children are recursively tested for

intersection. If both of the nodes are leafs, then the two corresponding triangles are
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put on a list of potential intersections. If only one of the two is a leaf, then it is tested

against the children of the other node. This can be seen as traversing a tree of possible

bounding volume node pairs, also called the bounding volume test tree [92] (BVTT.)

Implicitly, our algorithm is performing a parallel traversal of the BVTT.

The main work units are pairs of hierarchy nodes and for a binary tree each intersec-

tion test can generate up to four pairs per step. All intersection tests between the nodes

of the hierarchy can be performed independently. The intersection kernel can be run

using the vector units to process several intersections in parallel and push the resulting

new intersection pairs on the work queue or in a separate result queue for actual triangle

pairs. After this traversal, the overall list of triangle pairs is then used as input into an

intersection test kernel that tests for actual overlap. Because all potential intersections

can be tested fully in parallel, this step is simple to implement by starting enough tasks

for all the pairs.

BVTT traversal

One problem with this approach is that there is a lack of available parallelism while

testing the higher levels of the hierarchy that can reduce the overall performance of

the algorithm. However, it is possible to exploit temporal coherence in the traversal

and drastically increase the level of parallelism. In many interactive applications there

is considerable temporal or spatial coherence between successive time steps; this can

be exploited by front tracking [33, 84]. We keep track of the front in the BVTT (see

Fig. 6.10) which consists of all the intersecting leaf node pairs of the BVTT as well as

every non-intersecting node pair for which a sibling overlaps. This simple list of node

pairs can be generated during the BVH traversal. For the next frame, we use this list

as input for the work balancing kernel and use the same pairs as the starting work

units. The traversal kernel for processing this front is a modified version of the standard

traversal algorithm: for each initial node, the intersection test is performed again with
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Figure 6.10: BVTT front: During the intersection operations, only a subset of the
BVTT nodes is explored (in blue), while others (grey) are not explored as their ancestors
do not intersect. By tracking the front of blue nodes in the (implicit) hierarchy from
the last collision query, we can use it as a starting point for the next query.

the updated BVs. If the pair had an overlap during the last frame and intersects again,

then the triangle pair is written to the intersection queue. If the pair did not intersect

last frame, but does now, then new work units are created as in the normal traversal.

Finally, if the pair does not intersect, then the kernel loads the parents of both the nodes

and tests them for intersection. If they still intersect, then we have at least one sibling

that must still overlap and the node pair is kept in the front. Otherwise, the front is

moved upwards by adding the pair of parent nodes to the work queue for the next step.

However, since all the siblings are in the front by definition, the parent pair would be

added to the list multiple times, which is to be avoided. Instead, we check whether the

pair is the leftmost child in the BVTT and only add the parent pair if that is the case

to avoid duplicates in the list.

6.2.4 Computing bounding volumes for collision detection

Tight-fitting bounding volumes have been shown to provide much higher culling effi-

ciency during distance and collision queries [51, 84, 92]. However, most recent CPU-

based algorithms for deformable models tend to use simple BVs such as AABBs because

of compact storage and lower cost of refitting or hierarchy computation. Interestingly,

this trade-off changes on GPU architectures as they reward the much higher ratio of

computational power to memory latency. However, in order to use OBBs it is necessary
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to also compute the OBB hierarchy efficiently. We solve this problem through parallel

hierarchy refitting.

Parallel hierarchy refitting

The hierarchy refitting approach that was discussed in chapter 4 assumes that a hierarchy

already exists, but that primitives may have been moved or deformed, and it will modify

the bounding volume associated with each node of the hierarchy to reflect the newly

changed primitives. In this case, the primitives associated with each node of the tree

do not change and the work structure is simple since it simply needs to perform a post-

order traversal of the hierarchy. At each step, the main work is updating the bounding

volume of each node based on the bounding volumesof the children. At the leaf nodes,

the bounding volumes are computed from the actual geometric primitives. In a normal

recursive implementation, the traversal thus goes down the tree to the leaves, then

propagates the new bounding volumes upwards to be merged until the root is reached.

It would be possible to express this in our framework by issuing two different tasks, a

downward traversal and an upward merge task. However, since the actual computational

load is already very small, we found that it is faster to reorder the layout of the tree in

memory such that the nodes are stored by tree level. For our parallel BVH construction

approach, this is very simple since the nodes will already be stored in that order due

to the breadth-first construction order. All that remains is to store a start offset and

node count per level to prepare for refitting. We start out at the leaves of the tree and

only need to perform the merge kernel. Since each level is dependent on the results of

the previous one, it is necessary to terminate the computation after each level and then

call the merge task again with the front set to one level further up. In other words, no

coordination besides a barrier between tree levels is needed and no explicit management

of work units is necessary since the structure is known in advance.
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Figure 6.11: Benchmarks: The benchmark models used for collision detection in this
order: Princess cloth simulation (40K triangles); Flamenco cloth simulation (49K tri-
angles), Cloth dropping on sphere (92K) and n-body simulation (146K). Our algorithm
can perform interactive continuous self-collisions using OBB hierarchies and pairwise
elementary tests on all of these models in tens of milliseconds, about 7− 12 faster than
prior methods.

Computing OBB trees

The refitting approach allows us to reduce the amount of hierarchy maintenance for

deformations between collision detection steps since we can avoid having to fully rebuild

the hierarchy which might dominate the hierarchy intersection time. However, it also

provides a tool to quickly compute a hierarchy with OBB or other bounding volumes:

first, we build a standard AABB hierarchy using the algorithms described in chapter 5.

Then, we run the refitting algorithm on the hierarchy, but instead of recomputing the

AABBs we compute the OBBs for the same tree structure. In our results (see the next

section) this typically only adds about a 20-25% overhead to the overall construction

cost.

In further results, we use OBBs (and compare against AABBs) in our implemen-

tation. We use the fitting method based on principal component analysis as well as

the separating axis overlap test [51] for triangles, then merge OBBs in the refitting

process. Even though these operations involve using about 1 − 2 orders of magnitude

more instructions than AABB trees, the overall parallel computation and higher culling

efficiency of OBBs results in improved overall performance on GPUs.
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Model Tris Build   Refit    

Collision AABB OBB AABB OBB

Flamenco 49k 22 27 1.73 4.6

Princess 40k 20 24 1.4 3.9

Sphere/Cloth 92k 31 39 2.5 7.9

Balls 146k 56 68 3.2 11.5

Figure 6.12: Parallel hierarchy results: The benchmark scenes used in this paper,
and timings (in ms) for our construction and refitting algorithm both for AABB and
OBB hierarchies. Note that the overhead for creating and refitting a hierarchy with
more complex bounding volumes is relatively low.

6.2.5 Results

We have implemented our approach using a Intel Core2 Duo system at 2.83 GHz on 4

cores. We use CUDA on a NVIDIA GTX 285 GPU that has a total of 30 processing

cores and 1 GB of memory. Our collision detection algorithm uses a variant of the

Moeller test [106] for discrete triangle-triangle intersection. For continuous triangles, we

solve the cubic equation [118] for each of the 15 elementary vertex/face and edge/edge

tests to compute the first time of contact.

We use several commonly benchmark scenes for collision and distance queries and

compare their performance with prior methods (see Fig. 6.11). These models range from

12k to 245k triangles each and can have multiple triangle pairs in close proximity. For

example, the Flamenco model has several cloth layers very close together, representing

a hard case for culling in collision detection algorithms. Figure 6.12 summarizes the

results for our parallel GPU construction and refitting algorithms. We also compare the

timings for building a AABB BVH to show the overhead of OBBs. Since refitting cost

is about an order of magnitude lower than construction, it is a good choice for handling

deformable models and animations with no topological changes.

The collision detection performance is summarized in Fig. 6.13. We provide results

for discrete as well as continuous versions using either AABB or OBB bounding volumes.

In addition, we show the impact of exploiting temporal coherence by using our front-
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Model Discrete  Continuous    

AABB OBB AABB OBB

Flamenco 35 29 40 38

Princess 22 28 27 34

Sphere/Cloth 33 49 47 43

Balls 85 75 99 81

Model Discrete  Continuous    

AABB OBB AABB OBB

Flamenco 27 22 37 34

Princess 17 22 26 29

Sphere/Cloth 28 36 42 38

Balls 78 70 91 74

Figure 6.13: Performance results: These tables highlight the performance of our
collision detection algorithm (top: without BVTT, bottom: with BVTT), which checks
for inter-object and intra-object collisions. All the numbers are in milliseconds and
include the time for refitting, front-based traversal and pairwise triangle intersections.

based traversal implementation of the same algorithms. All the numbers are averaged

over the whole animation. Note that AABBs are slightly faster on most benchmarks for

discrete collision detection where intersection tests are relatively cheap. However, for

continuous collisions where better culling performance is more important, OBBs provide

better performance despite their higher cost for maintenance and traversal. The front-

based traversal generally results in a speedup compared to full traversal, although the

result is model-dependent since temporal coherence can vary. The overall impact of any

front caching method is limited since by definition at the very minimum all the leaf in

the BVTT need to be tested, which will be half the total tested nodes in any case. Thus,

even for an unchanged frame the theoretical work reduction would be half the number

of BV overlap tests, with no decrease in primitive-primitive tests.

We also look at a breakup of timings within the collision detection algorithm, i.e.

refitting, traversing, balancing and triangle intersection (see Fig. 6.14), in the Flamenco

model. The results show that a large part of the time is spent in the traversal part

while intersection tests account for a smaller percentage, mostly due to the fact that

it runs with optimal parallel utilization given that all intersections can be performed

independently. Refitting takes a relatively constant fraction of time.
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Figure 6.14: Split-up of timings: The fraction of time spent in the parts of the
algorithm differ based on whether continuous or discrete collision detection is performed
and the choice of the BV. In general, the use of OBBs results in more time spent in
refitting and traversing, but less in intersection tests due to higher culling efficiency.

6.2.6 Analysis

The performance results show interesting implications for the choice of BVs for collision

detection on GPUs. Most current CPU approaches use AABBs since they provide very

fast intersection and refit operations and are relatively compact in memory. Our results

show that for discrete collision detection AABBs can provide improved performance

in many cases. However, for continuous collision detection this situation is reversed

and OBBs provide faster results. We have found that OBB intersection and refitting

benefits from having much higher compute density that is a good match to the high

computational power of GPUs. In particular, OBBs use 2.5 as much memory as AABBs,

but operations such as computing an OBB from triangles or intersecting two OBBs

take about two orders of magnitude more instructions. For example, AABB-AABB

intersection needs just 6 comparison operations and needs to load 12 coordinates to do so.

In contrast, OBB-OBB intersection test loads 30 coordinates, but then needs to perform

15 separating axis tests, resulting in hundreds of operations. This will be slower on a

low-latency CPU architecture with less compute power, but fast on a GPU architecture

where high-latency memory accesses are expensive and computational power is high.

Limitations: Our approach has some limitations. Firstly, getting high performance

or speedups for collision detection depends on having a relatively large front in the
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BVTT traversal tree. Unlike self-collision, inter-object collision between two different

hierarchies, e.g. deformable models, may exhibit a much smaller front unless the objects

are very close such that there are many BVs overlaps. For very small models, available

parallelism may be limited. In this case, handling multiple object queries in parallel

will be a better solution to exploit the capabilities of a GPU. In general, even though

our approach tries to implement very lightweight synchronization, we are still limited

by inherent memory latency of GPUs for communication. To achieve better scaling,

our approach could benefit from having a low-latency communication channel between

the cores on GPU architectures. This would allow the implementation of algorithms

such as work stealing during kernel execution, which based on our experiments can

already be implemented on current GPU architectures, but are very slow. Future GPU

architectures that have coherent caching could also improve performance significantly.

6.2.7 Comparison

In this section, we compare the performance of our algorithms with prior CPU-based

and GPU-based algorithms.

Some of the fastest CPU-based algorithms for continuous self-collision use feature-

based hierarchies and other culling methods (e.g. normal cone tests) to reduce the

number of pairwise intersection tests. As an example, the representative triangle al-

gorithm [24] takes about 200ms per frame on a single core for continuous self-collision

detection on the Flamenco model, as compared to our algorithm that takes about 35ms

to perform a query. Note that these culling approaches are orthogonal to our work

and could be integrated into our framework as well. Some recent algorithms have im-

plemented the hierarchical CCD test on multi-core CPU systems [80] and performed

continuous self-collision on the cloth/sphere benchmark in 53ms (vs. our 34ms) using

an 8-core Xeon system. A more recent hybrid version running on 4 CPU cores and 2

GPUs improves timings to only 23ms, but uses more computational resources [80].
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Several previous approaches have been proposed to perform self-collision on GPUs

using rasterization algorithms [64, 85, 55]. Govindaraju et al. [53] used occlusion queries

along with CPU-based overlap tests to perform continuous self-collisions for cloth simu-

lation and were able to handle a 13K triangle version of the 40K Princess model at about

500ms. In contrast, our approach tests the same model with three times the complexity

thirty times faster, though we use a faster GPU. Similarly, Sud et al [140] perform self-

collisions by using discrete Voronoi diagrams generated by rasterization. Their approach

took 800ms (1̃50ms scaled by FLOPs) on a 15K version of the Cloth/Ball scene we use,

whereas our approach is over 25x faster on the full 92K model. Note that it is hard to

compare performance across GPU generations. In addition, previous approaches relied

heavily on occlusion query performance and CPU-GPU bandwidth which has not scaled

with the computational power of many-core GPUs.

6.2.8 Conclusion

In conclusion, parallelizing recursive operations such as hierarchy intersections on GPU

architectures is possible and in current implementations far preferable to previous rasterization-

based approaches. We have shown that the focus on compute intensity actually leads to

different choices compared to multi-core CPU systems. Overall, performance is already

very competitive, but similar to hierarchy construction it is unlikely that a high fraction

of peak compute performance will be useable without architectural changes for work

distribution.

6.3 Selective ray tracing for hybrid shadows

In this final application, we further investigate the possibilities opened by being able to

perform interactive construction and maintenance of hierarchies on GPUs, in this case

the advantages of also having very fast rasterization capabilities. Many rasterization-
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based approaches can be used to generate shadows on GPUs, but when evaluating

them on large, complex models they typically only provide either high performance or

accuracy, but not both. On the other hand, ray tracing provides a simple solution to

generate accurate hard and soft shadows with good scalability for large in-core models.

Despite recent advances and good use of parallelism, for rendering current ray tracing

implementations are one or two orders of magnitude slower than rasterization approaches

on GPUs.

In this chapter, we present a selective ray tracing algorithm to generate accurate hard

and soft shadows on current many-core GPUs. Our approach is general and the overall

image quality is comparable to that of a fully ray-traced shadow generation algorithm.

Moreover, unlike previous similar approaches [10, 66] the algorithm scales to handle

highly complex models, as long as the model and its bounding volume hierarchy can

fit into GPU memory. We also show how the ReduceM data structure introduced in

chapter 3 can be used for massive model ray tracing and rasterization on GPUs.

6.3.1 Shadow algorithms on GPUs

We give a brief overview of related work limited to interactive shadow generation and

reducing aliasing errors and refer the readers to [59, 98, 90] for recent surveys on shadow

algorithms. At a broad level, prior techniques to alleviate aliasing artifacts using raster-

ization methods are based on shadow maps [160] and shadow volumes [23]. Some hybrid

approaches have been proposed that combine shadow mapping and volumes [103, 18]

and can improve shadow volume performance and allow interactive high-quality shadows

on simple scenes. Most current interactive applications use variants of shadow mapping,

but may suffer from aliasing problems. Many practical algorithms have been proposed

to alleviate perspective aliasing [136, 161, 98] as well as projective aliasing [96]. Other

shadow mapping algorithms can eliminate blocking artifacts [1, 75] by implementing a

rasterizer that can process arbitrary samples on the image plane.
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In general, soft shadows can be implemented by sample-based methods such as us-

ing averaging visibility from multiple shadow maps to calculate visibility or ray tracing.

Both these methods can be slow, so many approaches have been developed to generate

plausible soft shadows with methods such as post-filtering shadow maps or special cam-

era models [105], which produce correct results only for simple scenes. More accurate

approaches evaluate the light source visibility from the image samples by back-projection

[8, 129, 134, 9] or by generating shadows from environment lighting [4]. Techniques us-

ing irregular z-buffering have also been extended for soft shadows on a proposed new

architecture [74]. Several approaches combine rasterization and ray tracing to generate

higher quality images [137] or use GPU rasterization for visibility and shading [40, 69].

Two recent methods are most closely related to our approach. Beister et al. [10] com-

bined shadow maps and ray tracing, but used CPU ray tracing, whereas Hertel et al. [66]

also ray traced on the GPU. We compare our algorithm more closely to these methods

in section 6.3.5.

6.3.2 Selective ray tracing

In this section we give a brief overview of our hybrid rendering algorithm that performs

selective ray tracing. Most prior work on hybrid combinations of rasterization and ray

tracing has been used for corrective textures [137] or other rendering applications. We

perform selective ray tracing, and only shoot rays corresponding to a small subset of

the pixels in the final image. This is in contrast to full ray tracing that shoots rays

through all the pixels. Our assumption is that shadow mapping computes the correct

shading information for most pixels in the frame, but may include localized error such

as aliasing artifacts in parts of the image. We try to identify these regions of potentially

incorrect pixels (PIP) in a conservative manner since any additionally selected pixels

will not change the image whereas missed ones may result in artifacts. As Fig. 6.15

illustrates, this is a multi-step process that starts with the results of a GPU rasterization
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Figure 6.15: Overview: Pipeline model of our hybrid rendering algorithm. After GPU-
based rasterization is run, the PIP computation detects and marks pixels that need to be
ray traced. The ray generation step generates a dense ray list from the sparse buffer of
potentially incorrect pixels and then generates one or more rays per pixels as required.
A selective ray tracer traces all the rays using the scene hierarchy and then applies the
results to the original buffer. Finally, the pixels are shaded based on the ray results.

algorithm that provides a first approximation to the desired result (e.g. shadows). As

a next step, we test the accuracy of each pixel and classify it accordingly, marking each

pixel in a buffer, e.g. as pass/fail. The buffer with all marked and unmarked pixels is

then passed into the ray tracer where the first step filters out all non-marked pixels and

keeps just the potentially incorrect pixels. For each pixel in the PIP set, we shoot one

or more rays to compute the correct visibility or shading information for the underlying

problem (e.g. shadows.) All rays are stored in a dense list that can be used as input for

any data parallel, many-core GPU ray tracer. After the rays have been evaluated, the

results are then written back to the original pixel in the PIP set. Back in the rasterizer,

a shading kernel is used to compute colors for all the pixels.

In general, this hybrid approach is one of the ways to complement the weaknesses of

current GPU-based rasterization algorithms. The most important issue that governs its

performance is the fraction of pixels that are in the PIP set. If only a small number of

pixels are correct then the overhead of the hybrid approach may outweigh the savings

compared to full ray tracing. This also means that the PIP computation algorithm

should try to limit the number of pixels it marks while still being conservative. Also,

any rasterization algorithm that is used as input for the first step should be efficient so

that it is able to compute visibility and shading information for the initial image quickly
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even on complex models. Otherwise, the typically logarithmic scalability of ray tracing

may make a full ray tracing solution faster. The next section describe our algorithms

for shadow generation that are based on these characteristics.

6.3.3 Shadows using selective ray tracing

In this section, we present our algorithms for applying the selective ray tracing approach

generating high quality shadows based on hybrid rendering and selective ray tracing.

Hard shadows

Shadow mapping is one of the most widely used algorithms for generating hard shadows

for interactive applications. It works on general, complex 3D static and dynamic scenes

and maps well onto current GPUs. However, the shadow maps may need high resolution

to avoid aliasing artifacts. These errors can be classified into perspective and projective

aliasing [136]. Perspective error occurs due to the position of the surface with respect to

the light and viewpoint and result in the ’blockiness’ of shadows in the algorithm. Pro-

jective error stems from the orientation of the receiver to light and viewpoint. Geometric

errors from under-sampling can also include missing contributions from objects that are

too small or thin in light space, e.g. surfaces that are oriented close to coplanar with

the view direction. Artifacts from this error result in missing and interrupted shadows

for these objects. Finally, shadow map self-shadowing error occurs from inaccuracies in

the depth values computed in the light view and the camera view. It stems both from

depth buffer precision (numerical error) as well as orientation of the surface (geometric

error). We consider this mainly an artifact that can be minimized by increasing depth

precision and using slope-dependent bias and do not address it directly in our algorithm.

Pixel classification: We now discuss our method for estimating the set of pixels

in the image that can potentially be incorrect (PIP) due to the error described above.

We first note that most of the error in shadow mapping appears at shadow boundaries

116



S

n

L

X
X

S

S

X

a)                                             b)

= shadow map sample = image sample

X
X

SS

c)                                             d)

X

X

S

n

Figure 6.16: PIP computation: a) For a given image sample X we project back to
the shadow map and find the corresponding sample S. We then test the depths of the
surrounding shadow map samples and select the one with the maximum difference ∆ in
depth value to S and label it as Ŝ. b) We now determine whether the surface at X can
be affected by an edge at S and Ŝ by finding the closest point X̂ on the surface within the
angle α of one shadow map pixel and find its depth d̂. c) If d̂ is within the shaded region
of depth ∆ around S or on the other side of the region as seen from X, then does not
need to be ray traced. Here, the pixel can be classified as shadowed. d) Counter-example:
X̂ is in the region and thus the pixel is ray traced.
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while the shadow interiors (as well as the interiors of lit regions) tend to be accurate.

Thus, we can assume that when we look up the corresponding sample in the shadow

map for a given image sample, it should not be considered accurate if it is adjacent to

an edge in the shadow map. We therefore modify the standard depth buffer look-up

to test the 8 texels around the sample value with depth s in the shadow map and find

the maximum absolute difference ∆ = max(‖s − s′‖, s′ ∈ depth around S) in depth. If

∆ exceeds a threshold value, e.g. a fraction of the possible scene depth as determined

by z-buffer near and far planes, we assume that there is a shadow edge at this image

pixel. In this case, we need to make sure this edge can affect the shadow generation at

the current shading sample X that is at distance d from the light source (see Fig. 6.3.3

for illustration.) This is to prevent that a relatively small shadow discontinuity at one

side of the model does still affect pixels far away. To achieve this, we find the closest

distance to the light d̂ that the receiver surface can reach within the angle α of one texel

of the shadow map. Intuitively, the closer to parallel the receiver surface is to the light

direction, the larger the difference between d̂ and d becomes. If d̂ overlaps the interval

[s −∆, s + ∆] or d and d̂ are on different sides of S then we mark the pixel as part of

the PIP set.

The actual computation of d̂ for a local point light source follows from trigonometry

such that d̂ = d sin β/ sin (α + β). Given the normal vector n and normalized light

direction L, then this is easily computed by using sin β = n ·L. A similar calculation for

directional lights is relatively straightforward. Note that is also possible to precompute

∆ for the shadow map and store it for each pixel in addition to the depth value. This

may be useful if the light source is mostly static since it reduces the memory bandwidth

needed during the lighting pass of the rasterization algorithm.

One case that the method above does not detect is the geometric aliasing problem

when a primitive is too small (e.g. a thin wire) as seen from the light view and thus

not even drawn during scan-line rendering. Some of the pixels that are actually covered
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Figure 6.17: Detecting shadow artifacts: Shadows on City model. Top left: shadows
with perspective shadow mapping at 20482 resolution. Top Right: pixels marked for ray
tracing in red. Bottom left: pixels marked by conservative rendering. Bottom right: final
result. The image is identical to the fully ray-traced result.
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by the object may not get rasterized and thus not detected during edge filtering. This

can cause missing shadow regions in the actual image. Our solution is to identify these

small objects during rasterization from the light view and employ conservative rendering

techniques to assure that they are actually part of the PIP set. We use geometry shaders

to implement the conservative triangle rendering method described in [60] and modified

by [134]. In essence, each triangle is transformed into a polygon with 6 corners by

extruding at the original vertices. The new extruded primitive is then guaranteed to

cover the center point of each pixel that it touches. Since extending all the triangles in

the scene could be extremely costly, the shader also tests the area and aspect ratio of

each triangle in image space and only uses conservative rendering for those that are thin

and thus likely to be missed. At the same time, this technique automatically avoids very

small but regular triangles (e.g. as in scanned models) where conservative rendering is

not needed. Note that an even more efficient culling method would detect whether the

triangle also has a silhouette edge, but we found that this adds more constraints on the

rendering pipeline by having to provide adjacency information. Figure 6.17 illustrates

the effect of our conservative rendering approach.

Soft shadows

We now describe an extension of the approach presented above that can also be used

to render high quality soft shadows. Ray tracing approaches commonly stochastically

generate a number of samples on the area light source for each hit point, evaluate their

visibility using shadow rays and then average the results to find an estimate of how much

of the light source is visible from the hit point. However, a high number of samples and

shadow rays are needed to avoid high frequency aliasing error. We observe that the only

area that needs to be evaluated from multiple light samples is the penumbra region,

because for umbra and fully lit regions the visibility of the light is binary. This enables

us to handle those binary regions using rasterization-based techniques, e.g. shadow
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mapping, and to identify the penumbra as potentially incorrect pixels (PIP), and thereby

perform selective ray tracing on these pixels. They only correspond to a portion of the

final image, so significant amount of computation can be saved. More importantly,

ray-based computation can be directed to regions that need it the most.

One standard shadow map taken from the center of the light suffices for our approach

to estimate the penumbra region. For pixels in the image plane that do not fall in our

estimated penumbra no shadow rays are needed and they will be shaded by shadow

mapping. The penumbra is identified in the following manner. First we compute edge

pixels in the shadow map in the same way we do for hard shadows. For hard shadows

those edge pixels are the potentially inaccurate pixels, while for soft shadows they need

to be expanded to account for the effect of the area light sources. Next we compute the

projection of the area light onto the shadow map, centered at each of these silhouette

pixels. This is equivalent to splatting each edge pixel using the shape of the light and a

size based on the depth difference between the light and the edge. After splatting all the

edge pixels we get a mask which is a union of all the splats in the map. Masked pixels

are potentially in penumbra while unmasked pixels are either in the umbra or fully lit.

We use this in a similar way as a shadow map. During rendering any points that are

projected inside the masked area belong to the estimated penumbra and are ray traced

using multiple shadow rays (e.g. 8× 8 sampling), while points that are projected inside

unmasked area are classified as umbra or fully lit based on the original shadow map.

Figure 6.18 shows an example of this process.

The advantage of this approach is that it estimates the penumbra with the cost of

little more than a standard shadow map, and consequently large parts of the image

can be exempted from shadow ray tracing. Admittedly not all silhouette edges can

be captured because the shadow map is generated only from the center of the light,

but because such missed edges are often in the vicinity of the edges that are actually

identified, it is very likely that most of the penumbra regions in the final image plane
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Figure 6.18: Penumbra classification: Soft shadow on Bunny model. Left: mask in
the shadow map formed by splatting edge pixels. Middle: penumbra pixels marked for
ray tracing in red. Right: final result.

have been correctly identified. The accuracy can be further improved by computing

shadow maps from multiple samples on the area light source, e.g. the corners, and then

computing the union of masked pixels from each.

6.3.4 Results

We have implemented the algorithms described above on a NVIDIA GPU. We use

OpenGL with Cg as the rendering interface and CUDA for general-purpose program-

ming. Our ray tracer uses a BVH built on the GPU as the acceleration structure with

a stack-based traversal and persistent threads similar to those described in [2]. This

also allows us to handle dynamic scenes by rebuilding the hierarchy each frame. A com-

paction step based on scan operations groups all the rays generated for marked pixels

into a dense buffer that is then subdivided into small packets, each of which is handled

independently. For rendering massive models, memory for storing the geometry and

hierarchy on the GPU becomes an issue. We use a variant of the ReduceM representa-

tion shown in chapter 3, but we modify the strip representation slightly such that it is

possible to also directly rasterize strips via OpenGL in order to use the same representa-

tion both for rasterization and ray tracing. Without this representation, larger models
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Benchmarks Tris Hard    Soft        

SM SRT FRT SM SRT FRT

City 58K 256 103 (3%) 21 200 19 (9.8%) 3.7

Sibenik 82K 150 66 (4%) 13 47 7.3 (6%) 0.64

Buddha 1M 42 29 (1.4%) 8 34 9 (7.7%) 2.5

Powerplant 12M 25 16 (7.1%) 4 4.4 2.1 (11%) 0.8

Figure 6.19: Performance: Performance of our selective ray tracing (SRT) approach on
our benchmark models, compared to the light-space perspective shadow mapping algorithm
(SM) with one point light for hard and 4 point lights for hard shadows, as well as a fully
ray traced solution (FRT). The percentages show the fraction of pixels marked for ray
tracing. All numbers are frames per second (FPS) at 10242 screen resolution.

such as Powerplant would not fit into memory, especially not if stored in addition to a

optimized vertex buffer representation for rasterizing geometry. In addition, we also use

the top levels of the scene BVH for view frustum culling and occlusion culling based on

occlusion queries both from the light as well as the camera view. These culling methods

drastically accelerate the performance of the rasterization algorithm for large models.

In our current implementation, view frustum culling is currently performed on the CPU,

but could also be easily implemented in a CUDA algorithm. For soft shadows, we use a

simple stratified sampling scheme for the shadow ray samples that is computed for each

pixel with a simple random number generator inside the ray generation kernel. We base

the random seed on sample location which allows us to compare our results for selective

and full ray tracing without having to isolate variance in the estimate.

We now present results from our implementation running on a Intel Core2 Duo

system at 2.83 GHz using a NVIDIA GTX 280 GPU running Windows XP x64. Fig.

6.19 summarizes the timings for hard and soft shadows at 1024×1024 screen resolution,

including comparison timings for light-space perspective shadow mapping only, selective

ray tracing and full ray tracing. The data for selective ray tracing also shows the

percentage of pixels in the PIP set. We selected a wide range of benchmark models

from relatively low-complexity game-like environments to high-complex scanned, CAD

and architectural models to highlight the scalability of the algorithm. For shadows,
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Figure 6.20: Timings: Time spent in different parts of the algorithm for hard (left)
and soft shadows (right). Rasterization includes both shadow map generation, frame
buffer rendering and shading. Ray tracing includes time spent in the ray tracing kernel
only, while ray generation is the time for generating the compact ray buffer from sparse
frame buffer and writing back at the end. CUDA/GL times represent the cost for buffer
transfers and similar as the overhead of switching between OpenGL and CUDA.

all timings are for a moving light source, i.e. the shadow map is generated per frame,

and soft shadows are generated by using 16 samples/pixel. Note that our algorithm is

typically about 5 times faster than full ray tracing.

We present a detailed analysis of the timing breakdown in selective ray tracing (see

Fig. 6.20) for several of our benchmark scenes. There is a relatively constant overhead

associated with PIP detection, ray compaction and parts of the implementation such as

the overhead of CUDA/OpenGL communication in the current programming environ-

ment. Note that the actual tracing of the selected ray samples only makes up a fraction

of the time spent which explains why the render time does not decrease proportionally

with the fraction of pixels ray traced. While we do not explicitly show the overhead in

rasterization introduced by conservative rendering in the graph above, we have found

that in practice it slows down the rasterization step by up to 10% (on Powerplant) since

only a relatively small set of primitives are rendered conservatively.
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6.3.5 Comparison

A very important aspect for evaluation of our algorithm is the difference in image quality

compared to the full ray tracing solution. In practice, for hard shadows we have observed

that our algorithm computes images that are almost error free and virtually identical

to fully ray traced results for all our benchmark scenes, with differences arising from

biasing errors. Unfortunately, we cannot guarantee full correctness since some features

such as very small holes inside a solid object could theoretically be missed due to the

regular sampling in light space (i.e. geometric aliasing errors). However, these artifacts

appear to be very rare outside of specially constructed benchmark scenarios.

It is hard to directly compare the quality of our results with only rasterization-based

approaches. The fast shadow mapping methods based on warping and partitioning may

not account for projective aliasing [136, 161, 98] and their accuracy can vary based on

the relative position of the light source w.r.t. the viewpoint. Many techniques to handle

projective aliasing [96] and alias-free shadow maps [1, 75] can be implemented on current

GPUs. These approaches can generate high quality shadows, but it is not clear whether

they can scale well to massive models. For soft shadows, most of the accurate methods

may not be able to handle complex models at interactive rates on current processors.

Recently, Sintorn et al. [134] presented a soft shadow algorithm that can handle models

with at most tens of thousands of triangles at interactive rates. It uses a more accurate

method for penumbra computation and can be faster on smaller models, but quickly

slows down on large models.

Our hybrid approach shares the same theme as other hybrid shadow generation al-

gorithms that use shadow polygons and LODs [54] or shadow volumes [18]. However,

LODs can affect the accuracy of the shadow boundaries. Moreover, the complexity of

shadow volumes tense to increase with the number of silhouette edges in complex mod-

els. Thus, the bottleneck becomes the fill rate needed for rendering all volumes, which

becomes prohibitively large with high geometric complexity. The analysis in [104] shows
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that the overall expected number of silhouette edges for a model is proportional to the

sum of the dihedral angles. As an example, the average dihedral angle per primitive

on Powerplant model is about 6 times the average angle on the Buddha model. In

our experiments with several viewpoints over 4 million silhouette edges may need to

be rendered per frame for shadow volumes on Powerplant, which is clearly impractical.

The idea of hybrid shadow mapping has been explored before. The method in [18] uses

shadow mapping and employs a simple discontinuity detection on the depth map, then

performs selective rasterization for the marked pixels using hierarchical z-culling. How-

ever, hybrid shadow volumes still have significant drawbacks compared to our approach.

First, generating and processing the volumes including silhouette computation can be

expensive especially for large CAD models with complex topology such the models used

here. Second, even though shadow volumes may need to be selectively rasterized for

only a small set of pixels, all shadow volumes still have to be processed by the rendering

pipeline in any case. Hierarchical culling in the hardware may cull areas of the image

efficiently, but the hybrid approach will most likely decrease the efficiency of the GPU

rasterizer since active pixels will be relatively sparse and the parallel rasterization units

are not sufficiently utilized by rendering only a few pixels inside a block of pixels.

Two approaches combining ray tracing and shadow mapping have been proposed:

Beister et al. [10] perform CPU ray tracing for all pixels with shadow map discontinuities

and also support soft shadows by rendering nine shadow maps and classifying regions as

penumbra where the shadow map results disagree. However, this approach is not scalable

particularly for large models since it requires rendering many shadow maps per frame

(where rasterization may already be the bottleneck). In addition, in our experiments

we found that using several shadow maps do not guarantee correct classification of

penumbras in complex scenarios and may generate temporal aliasing artifacts (i.e. holes

or blocks of shadows dropping in and out) which is particularly distracting. In addition,

this approach may be limited by CPU-GPU communication. A subsequent approach
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Model Geometry Full RT SRT SRT+SM SRT % Rays

City 2 MB 1066 MB 113 MB 222 MB 5

Sibenik 2.2 MB 2280 MB 224 MB 859 MB 4

Buddha 27 MB 3148 MB 601 MB  1144 MB 12

Figure 6.21: Memory bandwidth: Simulated memory bandwidth requirements for
rendering one frame at 5122 image resolution with selective (SRT) and full ray tracing
(FRT) on several models (total storage for geometry and BVH is given in second column
to show the total working set size.) The last column shows the time for SR plus a very
conservative estimation of bandwidth needed by scan-line rendering of the shadow map.

[66] performs ray tracing on the GPU, but uses a different method for detecting shadow

pixels. While their method is also accurate for hard shadows, the overhead in their

conservative rendering approach is much higher since they need to render all triangles

as polygons. When directly comparing results, we observe that our ratio of ray traced

pixels is significantly lower, i.e. our approach has to ray trace far less pixels. Even after

adjusting for different hardware, it appears that our render times are substantially lower

as a result. In relative performance, rendering accurate shadows in [66] is more than an

order of magnitude slower than shadow mapping whereas we observe a factor of 1.5-2.5

in our results.

6.3.6 Performance analysis

In this section, we show that our hybrid algorithm maps well to current many-core GPUs

and has lower memory bandwidth requirements as compared to full ray tracing. A key

issue in designing GPGPU or related algorithms on current highly parallel architectures

is to ensure that they are not limited by memory bandwidth. This is mainly because

the growth rate for computational power far exceeds that of memory bandwidth. The

streaming model of computation used in the rasterization pipeline has been shown to

be very successful in this regard with memory bandwidth being mostly used for depth

and frame buffer accesses.

We analyzed the memory bandwidth requirements when running both selective and
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full ray tracing for two of our benchmark models, in particular the memory bandwidth

used by the actual ray tracing kernel. Since current GPU architectures have limited

cache sizes, i.e. only a texture cache, such analysis is simpler than for CPUs. We

implemented a simple software simulator that emulates the behavior of the memory

unit for global memory accesses in CUDA in device emulation mode running on the

host CPU. Care has to be taken mainly to correctly account for the behavior of the

memory unit in combining data parallel accesses to contiguous memory. Our results

(see Fig. 6.21) indicate that selective ray tracing consistently only uses about an order

of magnitude less memory bandwidth per frame than full ray tracing. The bandwidth

for selective ray tracing is still slightly higher than expected from the number of rays

compared to full ray tracing. This is due to the fact that the ray groups in selective ray

tracing are more incoherent and thus will access more memory locations. In order to

perform a complete analysis, we also need to compute the memory bandwidth needed by

the rasterizer for scan-line rendering of the shadow map. However, this is not possible

for hardware accelerated rasterization (i.e. current GPUs) since the implementation

details are not publicly available. However, we provide an estimate for the bandwidth

used for rasterizing the shadow map by multiplying the peak bandwidth on the GPU by

the time taken for rasterization, thus providing us a conservative upper bound. We list

the summed memory bandwidth for shadow mapping plus selective ray tracing in the

last column of Fig. 6.21. Note that the combined bandwidth is still significantly lower

than full ray tracing.

6.3.7 Scalability analysis

We also demonstrate the scalability of our approach with model complexity. To eliminate

bias introduced by different model characteristics, we use different simplification levels

of the same model and then compare the time used for selective ray tracing for each

of the levels. Our results in Fig. 6.22 show that we can achieve sub-linear scalability
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Figure 6.22: Scalability: Top: Performance vs. model complexity on several simplifi-
cation levels of the St. Matthew model, showing close to logarithmic scaling. Bottom:
Performance vs. light source size on Buddha model.

with model size due to the use of hierarchical structures and occlusion culling. We also

look at the performance implications of increasing the area of the light source for soft

shadow rendering (see Fig. 6.22 bottom). Similar to other approaches our performance

decreases significantly with larger light sources mostly due to more of the pixels being

in penumbra regions and subsequently being ray traced.

Overall, the main determining factor for our algorithm is the size of the PIP set. If

the set is too large, then our algorithm cannot achieve a significant speedup over full

ray tracing; however, at worst it can also only be slightly slower to the extent of shadow

mapping overhead. In addition, the rays generated by selective ray tracing may exhibit

less ray coherence than in full ray tracing which means that tracing these rays will be

slightly more expensive on a per-ray metric. Since the rays still can access any part of

the model, we also can only render models that fit into GPU memory and need to store

an additional ray tracing hierarchy as well as update or rebuild it for deformable models.

Our approach may also still carry over some of the geometric errors from rasterization

such as depth buffer errors and resulting shadow map bias. In our soft shadow algorithm,
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the main weakness is that penumbra radius in image space is necessarily conservative

and can mark too many pixels for ray tracing in some cases. For example, very small

objects that are extremely close to the light can result in a disproportionally large part

of the depth buffer marked for ray tracing. In addition, the overall performance is linear

too the number of shadow samples and more than 16 will most likely be required for

high-quality rendering.

6.3.8 Conclusion

The results from the selective ray tracing approach show that is is possible to combine

rasterization and ray tracing on the same GPU to combine the advantages of both

approaches. As a combination of several methods presented in this thesis, it particularly

is an application of the ReduceM massive model rendering approach and demonstrates

that it works equally well on GPU architectures where the benefits of low memory

overhead are even more important.
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Shadow mapping Our approach Ray traced Difference image

(e) 256 FPS (f) 103 FPS (g) 21 FPS (h) Difference

(i) 150 FPS (j) 66 FPS (k) 13 FPS (l) Difference

(m) 42 FPS (n) 29 FPS (o) 8 FPS (p) Difference

(q) 25 FPS (r) 16 FPS (s) 4 FPS (t) Difference

Figure 6.23: Hard shadows: We compare the image fidelity of our algorithm to a pure
ray-traced reference solution. From left to right: shadow mapping at 10242, selective ray
tracing, ray traced reference, difference selective to reference.
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Shadow mapping Our approach Ray traced Difference image

(e) 200 FPS (f) 19 FPS (g) 3.9 FPS (h) Difference

(i) 47 FPS (j) 7.3 FPS (k) 0.64 FPS (l) Difference

(m) 34 FPS (n) 9 FPS (o) 2.5 FPS (p) Difference

(q) 4.4 FPS (r) 2.1 FPS (s) 0.8 FPS (t) Difference

Figure 6.24: Soft shadows: We compare the image fidelity of our algorithm to a pure
ray-traced reference solution . From left to right: shadow mapping with 4 samples at
10242, selective ray tracing, ray traced reference (both at 16 samples/pixel), difference
selective to reference.
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Chapter 7

Conclusion

In the previous chapters, we have introduced several new algorithms for interactive

ray tracing of complex models to solve the memory and hierarchy maintenance issues

presented in chapter 1. The problem of high memory footprint is addressed by the

ReduceM representation that compactly represents triangle models for ray tracing and

allows rendering of much larger models with limited memory with high performance. The

hierarchy maintenance problem is addressed in two different ways: first, the deformable

BVH algorithm can provide very fast hierarchy refitting to update an existing hierarchy

between frames, and can also be implemented as a parallel algorithm. Second, the

highly parallel construction algorithm can rebuild BVHs much quicker than a serial

version could. Together, they provide a fast solution to general dynamic models for ray

tracing.

Another aspect of this thesis was to show that these improvements for ray tracing

are not limited to visualization purposes, but in fact can be used in many more appli-

cations. The sound simulation algorithm demonstrates the use of dynamic BVHs and

data parallel ray packet techniques for high performance general geometric simulation,

whereas the selective ray tracing approach uses the compact ReduceM representation

on a GPU architecture to enable massive model rendering with strictly limited memory.

This work has also shown that the parallelization techniques we developed for hierarchy



construction and refitting are useful in other hierarchy operations such as intersection

of hierarchies for collision detection.

7.1 Future work

There are many avenues for future work to improve on the algorithms presented in this

thesis. For compact model representations, the major remaining bottleneck is the rep-

resentation of vertices and associated data, which is still uncompressed. To solve this

problem, it would be interesting to investigate quantizing this data as well. This might

also lead to a lossy compression scheme for ray tracing. In addition, the ReduceM rep-

resentation is mostly orthogonal to many other techniques such as quantized bounding

volumes, and it might be worthwhile to investigate possible improvements by combining

them together.

Refitting techniques have been investigated thoroughly, but no algorithm that can

fully cope with any kind of deformation or even insertion and deletion of objects has

been proposed yet. Given the obvious time advantage compared to even the fastest con-

struction methods, further improving refitting appears worthwhile. In particular, work

into integrating localized rebuilding that so far still has high overhead might address

many of these issues.

In general, the topic of parallel data structure construction and maintenance will

most likely be of much further interest in the future, especially with the wide-spread use

of highly-parallel architectures such as GPUs or the Larrabee processor [130] and more

flexible rendering architectures. In this context, a possible direction for ray tracing

includes the use of ray hierarchies in addition the scene hierarchies, both to improve

coherence in ray intersection for wide vector units, as well as to improve the memory

access pattern and working set size.

The future of work distribution on highly parallel architectures that is important
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for a plethora of parallel algorithms is still highly dependent on the development of

parallel hardware. At this time, synchronization support on these architectures is still

rudimentary. However, future versions may shift the current state significantly and make

other solutions much more efficient. Further investigation into best techniques on these

processors will be necessary.
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