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Abstract

Judicious control of indoor wireless coverage is crucial in built environments. It enhances

signal reception, reduces harmful interference, and raises the barrier for malicious attack-

ers. Existing methods are either costly, vulnerable to attacks, or hard to conVgure. We

present a low-cost, secure, and easy-to-conVgure approach that uses an easily-accessible,

3D-fabricated reWector to customize wireless coverage. With input on coarse-grained en-

vironment setting and preferred coverage (e.g., areas with signals to be strengthened or

weakened), the system computes an optimized reWector shape tailored to the given en-

vironment. The user simply 3D prints the reWector and places it around a Wi-Fi access

point to realize the target coverage. We conduct experiments to examine the eXcacy and

limits of optimized reWectors in diUerent indoor settings. Results show that optimized

reWectors coexist with a variety of Wi-Fi APs and correctly weaken or enhance signals in

target areas by up to 10 or 6 dB, resulting to throughput changes by up to -63.3% or 55.1%.
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Chapter 1

Introduction

1.1 Motivation

From residential spaces to commercial real estates, wireless access points (AP) are es-

sential for providing ubiquitous connectivity to mobile devices. As much as we enjoy the

wide wireless coverage, we also face two fundamental problems brought by the broadcast

nature of APs. First, when multiple APs transmit in the same frequency channel in an

uncoordinated manner, signal interference among APs can drastically degrade commu-

nication quality. The problem is worsening with the increasing broadband penetration

and the widespread uncoordinated deployment of APs. Second, wireless transmissions

are vulnerable to security/privacy attacks such as traXc eavesdropping. Even when the

transmission is encrypted, an attacker can still obtain network information (e.g., received

signal strength) and thereby physically locate the AP or launch other attacks.

Addressing these problems demands active, judicious control of each AP’s wireless cov-

erage in the environment, which improves the eXciency of wireless infrastructure in

buildings by mitigating the impact of building’s insulations, partitions, and interior lay-

outs. If we can control the propagation of the electromagnetic waves from an AP (e.g.,
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Wi-Fi router), we can better plan the coverage regions of multiple APs. By regulating the

physical coverage of each wireless access point (AP), we can enhance signal reception

in desired regions while weakening signals in others to reduce harmful interference. In

addition, this level of signal steering should be taken as a light-weight access control that

enhances the system security and strengthens user privacy. It will not defeat sophisti-

cated attackers with high-end antennas. Rather, it serves as a complimentary method to

existing network security measures, such as encryption, and hence raises the barrier for

attackers.

1.2 Challenges

Achieving this goal is particularly challenging indoors, because of the complex inter-

actions of radio signals with the environment. Existing approaches rely on directional

antennas to concentrate signals in desired directions. These approaches, however, have

three shortcomings. First, they face a tradeoU between cost and control Wexibility. Low-

cost directional antennas (5) concentrate signals in a static direction, oUering very few

coverage shapes. Antenna arrays with more sophisticated control (e.g., arbitrary beam

patterns, dynamic conVguration) are costly, e.g., $5000+ for Phocus array (29), $200 for

an 802.11ac AP (40). It is because forming a narrow beam needs a large number of anten-

nas, each with a separate RF chain (59). These additional RF chains lead to a prohibitive

cost. Second, they often fail to provide strong security guarantees. On the one hand,

Vxed-beam directional antennas cannot physically limit signals within an arbitrary area

of interest due to their Vxed radiation patterns. On the other hand, multi-user beamform-

ing systems (e.g., 802.11ac APs) cannot diUerentiate intended and malicious clients and

strengthen signals for both types of clients. Third, they require signiVcant conVguring

eUorts due to rich multi-path eUects indoors (5; 12; 45). Users must try diUerent antenna

conVgurations to identify the one best matching the desired coverage.
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1.3 Approach

In this paper, we present a low-cost, physically-secure, and easy-to-conVgure approach

that customizes each AP’s coverage without requiring directional antennas. Given the

increasing popularity and easy accessibility of 3D printers, we study the use of 3D-

fabricated reWectors produced by 3D digital manufacturing (“3D printing”) to control

signal propagation in the space. SpeciVcally, we place a signal reWector around an AP,

where the reWector shape is computationally optimized, taking into account the environ-

ment (e.g., interior layouts, partitions, AP locations) and the desired signal distribution

(i.e., target areas to strengthen or weaken signal strength). The reWector reWects wireless

signals to realize a desired coverage. Indeed, anecdotal experiments (67) have demon-

strated substantial (29.1%−57.2%) bandwidth gain by placing a soda can behind a Wi-Fi

AP to strengthen signal in one direction. Our work generalizes this idea by presenting

a systematic approach to optimizing reWector shapes for enabling a rich set of signal

distributions.

SpeciVcally, our system works as follows (Figure 1.1). Users Vrst provide the system

with a digitized environment setup (e.g., furniture, Woor plan), which can be obtained

using full-Wedged systems (e.g., Google Tango, Microsoft HoloLens) or other 3D geometry

reconstruction techniques (16; 31; 54). Users then specify AP locations, as well as target

areas to strengthen or weaken wireless signal strength. With these inputs, the system

automatically computes a 3D reWector shape that considers the signal’s interaction with

the given environment to form the target wireless coverage.

The shape optimization is an iterative stochastic optimization process that searches for

a 3D reWector shape for each AP, so that collectively they achieve the target wireless

coverage. Starting from an initial 3D shape and reWector position, our algorithm perturbs

the current shape and estimates the resulting signal distribution with the new shape.

Based on an objective function that measures the quality of a reWector shape, it then
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Figure 1.1: Overview. Our system takes the following input: a 3D environment model, the AP
location, and target signal coverage. It then iteratively searches for a 3D reWector shape optimized
to achieve the target signal distribution. Users simply press the button of a 3D printer to fabri-
cate the reWector, and mount the fabricated reWector around the AP to realize the target signal
distribution. We examine the signal distribution through drone-based measurements.

chooses to accept or reject the perturbed shape before moving on to the next iteration.

Evaluating the objective function requires a 3D wireless propagation model that predicts

the spatial distribution of received signal strength. Our wireless propagation model takes

into account the indoor environment and simulates the radio waves interacting with

environment objects. The process stabilizes at a Vnal shape until no further improvement

can be made to better match the target.

Finally, we output the shape and placement of the reWector, then the user fabricates the

optimized reWector shape and coats it with a thin metal layer (e.g., aluminum foil) to

enhance its ability to reWect wireless signals. The fabricated reWector is then mounted

around the wireless AP to realize the desired wireless coverage.
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Figure 1.2: Radiation beam patterns enabled by various 3D reWector shapes.

1.4 Contributions

Our approach provides four beneVts. First, it provides strong physical security by limiting

the physical reach of wireless signals, hence creating a virtual wall for wireless signals.

Second, it relies on a low-cost ($35), reproducible 3D reWector, which can be easily re-

placed upon substantial changes in the environment or coverage requirement. Third, it

oUers an easily-accessible and easy-to-conVgure solution to non-expert users. Users only

need to specify coverage requirements and a coarse environment model, with which our

system computes a reWector shape tailored to the built environment. Figure 1.2 illustrates

example beam patterns enabled by various reWector shapes. Finally, it is applicable to

commodity low-end Wi-Fi APs without directional or multiple antennas.

Table 1.1 compares our solution to its alternatives. Though Vxed-beam directional an-

tennas (e.g., microstrip antennas (5)) have relatively low cost (a few dollars), it typi-

cally concentrates signals in a single static direction thus has low Wexibility. Meanwhile,

conVgurable-beam directional antennas oUer multiple beam patterns and dynamic con-

Vguration of beam patterns but come with high price tags (e.g., $5000+ for Phocus ar-

ray (29)). However, both of them present a steep technical barrier to ordinary users, who

may not have suXcient domain knowledge to conVgure antennas based on their environ-

ments. On the other hand, multi-user beamforming systems (e.g. 802.11ac APs) collect
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Physical ConVg. Hardware Directionality
Security EUort Cost Gain

Fixed-beam DA Limited High Low Good
ConVgurable-beam DA Yes High High Best
Multi-user beamforming No Low High Best

Our solution Yes Low Low Good

Table 1.1
Comparing our solution to directional antennas (DA) or beamforming.

real-time Channel State Information (CSI) to enhance the signal strength for all connected

clients without diUerentiating malicious users, which fail to provide security guarantees.

And it usually takes a few hundred bucks. In comparison, we oUer a physically-secure,

low-cost, and easy-to-conVgure solution in this paper.

We have made two key technical contributions in this work: First, we design an eUective

optimization algorithm that optimizes reWector 3D shapes for a target wireless coverage.

During this process, we represent a reWector shape as a parametric model (53) in com-

puter graphics to ensure surface smoothness and in turn the feasibility of 3D fabrication.

The shape optimization leverages a 3D wireless modeling to evaluate the eUectiveness of

a candidate shape and improve the shape iteratively. We guide a Simulated Annealing

algorithm (36) using local gradient descent to sample the shape space more eXciently.

We also extend our optimization to deal with multiple APs and jointly optimize their

reWector shapes. Second, we develop an eXcient modeling approach that uses 3D ray

tracing to simulate radio signal propagation and signal’s interaction with objects in a 3D

environment. We consider signal’s reWection, transmission, and diUraction through ob-

jects. For APs with multiple antennas, we also take into account the antenna location and

orientation to trace radio signals accurately in the 3D space.

We 3D print optimized reWectors, test them with various Wi-Fi APs (including the lat-

est 802.11ac AP) via signal and throughput measurements in two indoor settings. Our

Vndings are as follows:
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• Optimized reWectors correctly adjust signal distribution towards the target coverage.

Resulting signal strength can decrease by up to 10 dB and increase by 6 dB, leading to

throughput diUerences from -63.3% to 55.1%;

• Optimized reWectors coexist nicely with various Wi-Fi APs including MIMO APs (e.g.,

TP-Link AP and Netgear R7000). They allow multiple APs to collaboratively serve a

region, or to conVne each AP’s coverage to enhance security and reduce interference;

• The optimized reWector is relatively easy to place. Its eXcacy is not sensitive to slight

placement oUsets, tolerating up to 10◦ oUset in orientation and 10 cm oUset in the

distance to the AP.

• Given an environment model, our system computes an optimized reWector shape in 23

minutes on a laptop (2.2. GHz Intel Core i7).

1.5 Outline

The remaining chapters are organized as follows:

In Chapter 2, we review previous research in wireless coverage conVguration, directional

antennas, and wireless propagation modeling to explain groundwork the thesis builds

upon.

In Chapter 3, we focus on shape optimization algorithm. We use NURBS surface to repre-

sent the reWector’s shape, simulated annealing combined with gradient descent to search

the optimum shape.

In Chapter 4, we describe our shape optimization algorithm, We use NURBS surface to

represent the reWector’s shape, simulated annealing combined with gradient descent to

search the optimum shape. at last we fabricate the reWector using 3D printer.

In Chapter 5, we introduce the 3D wireless signal propagation model to simulate signal

distribution given an 3D indoor layout and position of an AP. We leverage ray tracing
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methodology to trace the interaction between every ray and the indoor layout.

In Chapter 6, we Vrst go over the implementation details, including 3D model construc-

tion, algorithm implementation, and reWector fabrication. Then we comprehensively

evaluate our approach by experimenting several indoor scenarios in two diUerent room

layout. We examine the optimized reWectors’ impact on signal distribution and through-

put in both single-AP and multi-AP settings. We also test our system’s sensitivity to the

reWector placement and size, accuracy of our 3D wireless modeling and running time of

the shape optimization.

Finally in Chapter 7, we discuss conclusions of the thesis and outline the limitations and

future work.
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Chapter 2

Related Work

2.1 ConVguring Wireless Coverage

Prior works have optimized AP placement to improve signal reception in certain ar-

eas (47). However, moving the AP to enhance one area would result into the decline

of signal strength in other areas. Thus, such methods are constrained in its Wexibility.

Another method is to use directional APs to conVne wireless coverage to a speciVed re-

gion (60). However, this method needs multiple costly directional APs. Other methods

either only enhance signal reception (e.g., Wi-Fi range extender) or impose expensive

measurement overhead, e.g., the transmit beamforming (44) in 802.11ac APs needs to col-

lect real-time Channel State Information (CSI) to form the optimal beam. Our approach

works with a single AP without directional antennas and considers signal’s interaction

with the environment to achieve a target coverage.

As for the use of reWectors, recent work (19; 64; 65) has studied reusing walls to reWect

radio waves and control signal propagation. This method, however, relies on smart walls

made of special materials and requires infrastructure-level changes. Similarly, a latest

work (27) examined placing multiple metal plates in the environment to enhance wire-
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less performance of a single AP. This approach also requires nontrivial changes in the

environment by installing reWectors likely in large sizes. In contrast, our approach uses

only a small reWector at the AP, is applicable in any environment, and supports mul-

tiple APs. Additionally, (27) optimizes reWector locations, whereas our work optimizes

reWector shape. Another prior work (15) studied the feasibility of applying fabricated

reWector to control wireless coverage, where the optimized reWector was evaluated us-

ing simulations. It uses a simpliVed shape model, applies standard annealing with 2D

wireless modeling, and examines optimized shapes using simulations. We advance this

prior work in multiple fronts: a more sophisticated shape model, a more eXcient shape

optimization and extension to multiple APs, 3D wireless modeling, and extensive indoor

experiments with optimized reWectors.

2.2 Directional Antennas

Directional antennas increase signal gain in a chosen direction and thus improve spatial

reuse (5; 12; 13; 43; 52; 62; 63). Researchers have studied steerable-beam directional an-

tenna’s link quality outdoors (13). The same directional antenna is also used to study its

directionality and impact on node localization and spatial reuse in indoor scenarios (12).

However, several existing works show that in indoor settings its directionality greatly de-

creases due to rich multi-path eUects (5; 12; 45). In comparison, we consider the inWuence

of indoor layout when optimizing reWector shape. Besides, high-end directional antennas

(e.g., Phocus Array (29)) that oUer sophisticated beam control are expensive, while low-

cost directional antennas (e.g., microstrip antennas (5), sectorized antennas (63)) only

provide limited simple patterns. Our reWector is low-cost and Wexible in radiation pat-

terns.

Directional antennas often rely on multi-antenna beamforming, which electronically ad-
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justs an array of omni-antennas to form narrow beams and maximize the signal strength

for one or multiple users (44; 59). Despite its superior performance, it has three main

limitations. First, it cannot provide physical security, as it only enhances client’s sig-

nal reception and cannot take into account client’s location information (i.e., whether

the client is inside the authorized location or not). As a result, it can end up forming

a beam towards an attacker outside the authorized area. Second, it is more costly than

our solution as it requires multiple antennas, each with a separate RF chain. Finally, it

imposes expensive measurement overhead by collecting real-time Channel State Infor-

mation (CSI).

2.3 Wireless Propagation Modeling

Active research has studied the modeling of wireless propagation (6; 30; 33; 50). A recent

study models the RF propagation as EM waves using the Helmholtz equation (1). This

method creates a more nuanced signal map and yet entails a high computational com-

plexity. By contrast, Ray tracing method is known for its eXciency and accuracy (20; 32;

38; 47; 58; 69). Ray tracing simulates the wireless signal propagation as a Vnite number

of isotropic rays emitted from a transmitting antenna. Each ray transmits with the same

amount energy from the antenna and the energy attenuates as travel distance increases

and encounter walls or Woors.

There are twomainmethods among ray-tracing methods: Imagemethod (32) and Shooting-

and-Bouncing Ray (SBR) launching algorithm (20; 38; 58) are two main ray-tracing meth-

ods. Image method determines a ray trajectory between a transmitter and a receiver by

placing artiVcial sources that model reWections from the Wat surfaces of objects. One

problem of image method is in 3D indoor model considering multiple reWections and

transmissions, its computational cost will grow exponentially as the number of planes
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(wall, Woors and furnitures) (30; 39) , thus it is not tractable in an aUordable time when

the scenarios is complex with a large number of rooms or abundant details of furnitures.

Image method is best suited for simpliVed , two-dimensional scenario (20). Meanwhile, in

SBR algorighm rays are launched from the transmitter and are traced to see if they hit any

object until they reach a receiver. The computational eUorts is linear with the number of

planes, thus is preferable in complicated, three-dimensional environment with hundreds

or thousands of planes and multiple reWections. We adopt SBR launching algorithm in

our model. However, our approach does not require speciVc propagation models and can

be integrated with other advanced models.

2.4 Automated Wireless Measurements

Collecting detailed wireless measurements commonly requires intensive human eUorts.

Prior works have proposed the use of a Roomba robot vacuum with a Wi-Fi receiver to

automate signal measurements (24; 25; 35). Red tapes laid our with blue periodic marks

indicating spot locations are used to navigate the Roomba to move precisely. However,

Roomba is a vacuum cleaning robot on the ground, which is not suitable for our 3D wire-

less signal measurement. More human-friendly way is to control the drone by making

body gestures (14; 26). The disadvantage of this method in our scenario is that the drone

itself couldn’t know its measurement locations. It is also diXcult to control the drone to

precisely stay at one location for a period of time indoor. Drone’s fast moving propellers

cause unpredictable airWow in complicated indoor environment, which makes itself drift.

In our paper, we adopt the drone-based measurements method. To address aforemen-

tioned challenges, we place periodic marks on the ground and leverage drone’s bottom

camera to locate and navigate the Wight.
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2.5 Caustic Design in Computer Graphics.

Our approach echoes the principle of the caustic design in computer graphics, which

creates an object between a light source and a planar screen to refract or reWect the

light rays and form a desired image on the screen (21; 48; 49; 57; 71; 74). One of the

earliest work is to get a target reWectance distribution of a surface by modifying small-

scale geometric features on the surface (71). Another work optimized a transmissive or

reWective surface that refracts lights from a light source to form an a priori deVned caustic

image (21). They optimized the surface by using simultaneous perturbation stochastic

approximation to minimize the mean squared error between the target caustic image

and the caustic image generated by the current surface. However, they evaluated their

approach in simulation without any fabrication. Another method uses nonnegative image

decomposition based on a set of estimated anisotropic Gaussian kernels, to construct an

array of continuous surface patches that focuses lights onto those kernels (49). And it

is also the Vrst work that actually fabricate the refractors with a engraving machine.

Another interesting application of caustic design is optical hidden image decoding (48),

where you can only see meaningful target images with some optimized lens.

In a similar sense, we create an object (the reWector) that steers radio waves to form a

signal “caustic pattern” (signal map). Caustic designs rely on advanced 3D optimization

to transform an unperturbed light pattern to a desired light pattern. They also require

high precision in light propagation. However, in our context, the level of variance for

radio wave propagation is high, thus a simpler solver using Monte Carlo method suXces.
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Chapter 3

ReWector Shape Optimization

The core goal is to fabricate a reWector with optimized shape to achieve desired signal

map coverage. Thus, given a 3D indoor Woor map, the AP’s position, desired signal map

coverage and an initial reWector, we design a shape optimization algorithm to calculate

the best reWector’s shape. We Vrst present parameterizing the 3D geometry of a reWec-

tor, followed by our shape optimization procedure, as well as its extension to deal with

multiple APs.

3.1 Representing the ReWector Shape

To represent a 3D surface, we seek a shape parameterization that can express a large

space of feasible shapes and yet entail a low control degrees of freedom for the sake

of computational performance. A naive solution is to represent a shape as a triangle

mesh and optimize the positions of mesh vertices. However, this approach has a large

number of optimization variables (i.e., the positions of mesh vertices). It results into

an optimization problem in a high dimensional space, which is rather computationally

expensive. Furthermore, the resulting shape might not be well-formed and thus cannot
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be fabricated in practice.

We overcome this challenge by leveraging the Non-uniform rational B-spline (NURBS)

surface (53), a shape parameterization commonly used in computer graphics and engi-

neering design (17). The NURBS surface oUers appealing properties: 1) it is Wexible,

supporting a large variety of shapes including standard analytical shapes such as spheres

and free-form shapes; 2) it guarantees a smooth surface, facilitating the fabrication; and

3) it enables Vne-grained control with low complexity using a small number of control

points. and 4) it is invariant under aXne transformation, thus rotation and translation

could be applied to the surface by directly applying to the control points.

The NURBS surface is deVned by NURBS curves. A NURBS curve consists of a set of

weighted control points, a knot vector and its order. We aim to Vt control points on the

curve, which then determine the curve shape. The knot vector is a list of ascending num-

bers, deVning where and how control points aUect the NURBS curve. By manipulating

the knot vector, we can decide whether the curve passes through or passes by certain

control points. The size of the knot vector is equal to the number of control points plus

the order. The order deVnes the number of nearby control points that inWuence any given

point on the curve.

A NURBS surface is calculated as the tensor product of two NURBS curves. Thus, it has

two parametric directions (u and v) and two corresponding orders and knot vectors. For

our purposes, we predeVne its knot vectors and orders and then manipulate its shape by

changing positions of the control points. A NURBS surface Ω(u, v) is constructed as:

Ω(u, v) =
l∑

i=1

w∑
j=1

Ri , j (u, v)P i , j , (3.1)

with

Ri , j (u, v) = Ni ,n(u)N j ,m(v)wi , j∑l
p=1

∑w
q=1 Np,n(u)Nq,m(v)wp,q

(3.2)
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as rational basis functions, where we have l ×w control points P i , j , and wi , j is the corre-

sponding weight. Ni ,n(u) is the i th B-spline basis function of degree n (18). In our model,

a shape Ω is deVned by l ×w control points P i , j .

3.2 Optimizing the ReWector Shape

To search for the reWector shape optimized for a target coverage, we start with a Wat

plane as the reWector shape Ω and then perturb Ω over iterations. In each iteration, we

evaluate the eUectiveness of a candidate shape Ω by the objective function F (Ω), where

F (Ω) measures the diUerence between the desired coverage and the coverageCΩ resulting

from reWector shape Ω. We estimate CΩ by running the 3D wireless modeling described

in Section 4. SpeciVcally, we divide the environment into small cells in uniform size (1 m

× 1 m in our implementation). We apply the 3D wireless propagation modeling to predict

signal strength at each cell’s center. Assuming M+ and M− denote the areas where users

aim to strengthen and weaken signals respectively, we compute F (Ω) as:

F (Ω) = ∑
i∈M+∪M−

||CTarget(i )−CΩ(i )||2, (3.3)

where CΩ(i ) is the signal strength in dBm at cell i after placing reWector shape Ω, and

CTarget(i ) is the target signal strength of cell i . To derive CTarget(i ), we Vrst compute

signal C (i ), which is the estimated signal strength at cell i when no reWector is placed.

We then add/subtract δ, which is the expected signal enhancement/reduction at cell i . To

determine δ, we tested diUerent materials on their performance of signal enhancement

and attenuation at distances from 1 to 3 meters. Results (Figure 5.9) show that the signal
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(a) (b)

Figure 3.1: (a) shows the objective function F (Ω) as we perturb two control points of the NURBS
surface. (b) illustrates our search method. In the (k − 1)-th iteration (Ωk−1), we apply gradient
descent to seek the local optimum Ω′

k and choose Ω′
k as the next candidate.

change is at most 15 dB. Thus we set δ to 15 dB and write CTarget(i ) as:

CTarget(i ) =


C (i )+δ if i ∈ M+

C (i )−δ if i ∈ M−

. (3.4)

Here we use a cell-dependent target value CTarget(i ), rather than a uniform signal upper

and lower bound, because CTarget(i ) deVnes an equal range (δ) above or below C (i ). As a

result, a given amount of signal enhancement or reduction leads to the same amount of

change in F (·), regardless of the cell location. This, however, is no longer guaranteed if a

uniform bound is used, because of the quadratic nature of F (·). Thus,CTarget(i ) ensures the

optimization process is unbiased across cells. Finally, the optimization process searches

for Ω?: Ω? = argminΩF (Ω), where Ω? is the 3D reWector shape that leads to signal

distribution best matching the target.

While the optimization problem appears standard, the search space is daunting and many

local optimums exist (Figure 3.1(a)). Simple local search methods such as hill climbing

can easily be stuck at local optimums. We need eXcient algorithm to identify the global

optimal. To achieve this goal, we consider simulated annealing (SA) (36), which allows the

iterations to opportunistically escape from the current local search area even if the escape
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Algorithm 1 Shape Optimization
1: initialize Ωk , k = 0, T = Tmax

2: while T > Tmi n do
3: k ← k +1
4: F (Ωk−1) ← E q.(3.3)
5: Ωk ← perturb(Ωk−1)
6: while do
7: ∇F (Ωk ) ← getGradient(F (Ωk ))
8: λ← getStepSize()
9: if F (Ωk −λ∇F (Ωk ))+ε< F (Ωk ) then
10: Ωk ←Ωk −λ∇F (Ωk )
11: else
12: break
13: end if
14: end while
15: F (Ωk ) ← E q.(3.3)

16: p ← e
F (Ωk−1)−F (Ωk )

T

17: if F (Ωk−1) ≥ F (Ωk ) or rand[0,1] ≤ p then
18: Ω?←Ωk

19: end if
20: T ← T · r
21: end while
22: return Ω?

leads to an increase in the objective function. The escape likelihood p is determined by

two parameters in the algorithm: current temperature T and the increase in the objective

function. SA keeps examining candidate shapes until T reaches the minimal temperature

(0). When a candidate shape Ω is examined, the current temperature is cooled at a rate r .

SA accepts Ω if F (Ω)is lower than the previous candidate. Otherwise, it accepts Ω with

a probability p . p is adapted over iterations. In the beginning when T is higher, p is

also higher so SA tends to explore other areas in the shape space. As T decreases to 0, p

approaches 0 so that it gradually settles at an optimum.

However, SA can require a fairly large number of iterations as it randomly samples the

search space. To achieve better results, we propose to guide SA’s iterations using gradient

descent. The key idea is to consider characteristics of a local search area for determining

the next candidate. SpeciVcally, in each iteration of SA, instead of randomly generating a

shape as the candidate, we apply gradient descent to seek the local minimum as the next

candidate. Take the kth iteration as an example, we Vrst generate a random shape Ωk ,
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then we calculate the shape gradient ∇F (Ωk ) of objective function F (Ωk ) at Ωk :

∇F (Ωk ) = lim
||dΩk ||→0

F (Ωk +dΩk )−F (Ωk )

dΩk
, (3.5)

where dΩk is obtained by slightly changing the control points of Ωk . Then we apply

backtracking line search to Vnd an appropriate step size λ. Finally we take Ωk −λ∇F (Ωk )

as Ωk and repeat Eq. (3.5) until we Vnd a local optimum Ω′
k . We take Ω′

k as the candidate

instead of Ωk to go over the accept/reject procedure. This method directly iterates from

one local minimum to another (Figure 3.1(b)), and thus is more eXcient to approach the

global optimum than SA’s random sampling (41).

Each iteration in our search can be time-consuming, because deriving ∇F (Ωk ) requires

altering the positions of Ωk ’s control points one by one. The running time of each itera-

tion is linear with the number of Ωk ’s control points. Thus, we speed up each iteration

as follows. First, we carefully balance the optimization eXciency and shape precision

by choosing 3 × 5 control points. Fewer control points fail to support the variety of

shapes, while more control points result in twisted shapes and even worse result due

to the enlarged search space. Moreover, to speed up the gradient computation, we lever-

age the simultaneous perturbation stochastic approximation (SPSA) algorithm (11; 61),

which perturbs all parameters (i.e., control points) simultaneously with a random pertur-

bation vector ∆ to estimate the gradient of each parameter. Thus, it approximates the

gradient computation using only two calculations of the objective function, regardless of

the parameter dimension (i.e., the number of control points in our problem). Additionally,

we run these iterations as parallel threads to further shorten the process. As a result, an

iteration take 1.71 seconds on average on a MacBook Pro (2.2 GHz Intel Core i7).
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3.3 Extending to Multiple APs

We now extend the above shape optimization to handle multiple APs. We classify APs

into two types: 1) Collaborative APs: APs that are deployed by the same entity, e.g., a

user or an enterprise deploying multiple APs in a home or workplace. These APs col-

laboratively serve a region to provide wireless coverage and user’s device automatically

connects to the AP with the strongest signal; 2) Non-Collaborative APs: APs that are de-

ployed by diUerent entities. Each AP serves users in its own pre-deVned coverage region,

without the knowledge nor any control of other APs.

For collaborative APs, we jointly optimize their reWector shapes so that the resulting

signal coverage best matches the target. Here the signal coverage map is deVned based

on the strongest signal received at a location from all collaborative APs. Thus, let O =
{Ω1, ...,ΩM } denote a set of candidate reWector shapes for M collaborative APs, where Ω j

is the reWector shape for AP j . Then its objective function F (O) is similar to Eq.(3.3):

F (O) = ∑
i∈M+∪M−

||CTarget(i )−CO(i )||2, (3.6)

For non-collaborative APs, each AP has its own pre-deVned coverage region without the

knowledge of other APs, thus each AP’s reWector shape is optimized separately following

the Algorithm. For non-collaborative APs operating on the same channel, they can in-

terfere with one another if their coverage regions are nearby. The impact of interference

can be minimized if the information (e.g., location, reWector shape) of other interfering

APs is available to the shape optimization algorithm. We can estimate the interference

at each cell and consider signal-to-interference ratio (SINR) as the target (Eq. (3.3)) for

shape optimization. We leave it for future work.
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Chapter 4

EXcient 3D Wireless Modeling

Another essential part of our method is an eXcient modeling that simulates wireless sig-

nal propagation in a given environment for evaluating the eXcacy of a candidate reWector

shape. Most existing models either fall far short in modeling accuracy (37; 50), or require

expensive measurement or computation overhead. In our context, we desire a better

tradeoU between accuracy and eXciency, since the propagation model is run repeatedly

to evaluate the eXcacy of a reWector shape during the shape optimization process. To

achieve a better tradeoU, we choose 3D ray tracing for its best accuracy (32; 47; 69) and

design schemes to speed up its computation. In particular, we choose the Shooting-and-

Bouncing Ray (SBR) launching algorithm (20; 38; 58), which launches a number of rays

from the transmitter and traces all their possible paths to reach a receiver. SpeciVcally,

our 3D propagation modeling takes two inputs: 1) a 3D environmental model (e.g., a 3D

Woor plan), and 2) the AP location and antenna conVguration (e.g., the number of anten-

nas, antenna orientation and placement). Next we describe the key steps of our modeling

in detail.
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(a) (b) (c)

Figure 4.1: Geodesic sphere for uniform ray launching, where a ray is emitted from the sphere
center to each geodesic vertex on the sphere. The sphere is generated by tessellating a regular
icosahedron (a). (b) and (c) show the resulting spheres after tessellating each triangle surface in
(a) into 4 and 256 triangles, respectively.

4.1 Ray Launching

In our 3D wireless propagation model, the radio waves from a transmitter are modeled

as many uniformed rays shooting from the location of the antenna. It is desirable to

model each launching ray uniformly and predictably distributes around the transmitter,

which means equal angles between a ray and its neighbors. Past work demonstrates ray

launching from the vertices of regular polyhedrons is the only way to fulVll this criteria

(66).

Our method is to use geodesic sphere ray launching, which is formed by tessellating the

faces of a regular polyhedron and extrapolating the intersection points ot the surface of

a sphere (34). The geodesic vertices provide equivalent angular separation around the

entire sphere (58), thus we can model the ray launching from the center of the sphere

to every geodesic vertex on the sphere to guarantee uniform ray launching. We consider

tessellating an icosahedron in our model.

An regular icosahedron has 20 triangular faces and 12 vertices. To achieve higher reso-

lution, we can tessellate each triangular face of the icosahedron into N equal segments,

where N is called tessellation frequency (70), shown as Figure 4.1. Then the number of

total geodesic faces is 20N 2 and number of total geodesic vertices, which is also the ray
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number, is 10N 2+2. There are some discrepancies in angular separation among launched

rays, however it can be mitigated by using higher tessellation frequency (58) and adopting

average angular separation. By equating the 20N 2 geodesic faces within a 4π steradians

unit sphere, we can Vnd the approximately average radial angular separation as (20):

α= 1

N

√
4π

5
p

3
= 1.205

N
radians, (4.1)

4.2 Ray Tracing

We track each ray’s interaction with environmental objects. Given the wavelength of Wi-

Fi signals, we consider three types of interactions (Figure 4.2(a)): transmissions (rays pen-

etrate the objects), reWections (a ray is bounced over a smooth surface), and diUractions

(a ray hitting an object edge is diUracted as a set of rays in a cone shape, Figure 4.2(b)). To

model diUraction, we leverage the Uniform Theory of DiUraction (UTD) used by the fast-

wave acoustics simulation in computer graphics (68). It has also been applied in modeling

RF propagation in buildings (51). Similar to (28; 32), we do not consider wave phase as

we average signal strengths in each 1 m × 1 m cell when evaluating coverage.

We do not model other wave phenomena like scattering since they have negligible impact

on the resulting signal map (32). Though wireless radiation near Veld behaves diUerently

from far Veld, we ignore the near Veld eUects because the border between near Veld with

far Veld is the Fraunhofer distance 2D2/λ from the antenna (9), where D is the largest

physical linear dimension of the antenna and λ is the wavelength. In our scenario, the

Fraunhofer distance only counts for tens of centimeters while our measurements lie at

least meters from the antenna.

While oUering higher accuracy, ray tracing incurs heavy computation, mainly because of

calculating intersections of a large number of rays and triangle meshes. In our implemen-
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Figure 4.2: Ray tracing.

tation, the indoor model has 107 triangle meshes and the ray tracing launched 1926 rays,

producing ≈ 10K rays after multiple reWections and transmissions. To speed up the ray

tracing process, we index the triangle meshes with a Kd-Tree (10). We construct a Kd-Tree

of the bounding boxes containing these triangle meshes. For each ray, we Vrst search the

tree to identify the bounding boxes that the ray intersects. Only for the triangle meshes

in those bounding boxes, we examine the ray-triangle intersection, which avoids many

unnecessary intersection tests. For each ray-box and ray-triangle intersection test, we

apply prior algorithms (23; 42) to improve the eXciency.

4.3 Path Loss Model

Each type of ray interaction contributes to additional energy loss of a ray, in addition

to its signal degradation over distance. To integrate all these contributors, we choose a

partition model (7; 32) to calculate each ray’s signal power at a receiver location. The

model consists of four parts: 1) the signal degradation over distance, represented by the

pathloss exponent α; 2) the reWection attenuation, which is the product of the reWection

coeXcient β and the number of reWections; 3) the transmission attenuation, which is the

product of the transmission coeXcient γ and the number of times that a ray penetrates

obstacles; and 4) the diUraction attenuation, which is the product of the diUraction co-
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eXcient λ and the number of diUractions. We do not consider multiple diUractions and

reWection-diUraction (58).

Formally, let P j
i denote the power in dBm contributed by the i th ray of j th AP after

traveling a distance of di to reach a receiver, we can calculate P j
i as:

P j
i = P j

0 −10αlog10(di /d0)−βNi ,ref−γNi ,trans

−λNi ,diU−β′N ′
i ,ref−γ′N ′

i ,trans,
(4.2)

where P j
0 (in dBm) is the reference power of j th AP at distance d0, pathloss exponent α

captures how quickly the signal degrades over distance, Ni ,ref, Ni ,trans, Ni ,diU are the num-

ber of reWections, transmissions, and diUractions that ray i experiences, respectively.

Since the reWector surface is designed to be highly reWective, we consider diUerent trans-

mission and reWection coeXcients (β′, γ′) for the reWector. N ′
i ,ref and N ′

i ,trans are the

number of times ray i penetrates and is reWected by the reWector, respectively.

4.4 Ray Reception

To calculate the received signal strength at a receiver location, we need to deVne a recep-

tion zone Vrst. We consider the reception zone as a sphere with radius of θd/
p

3 centered

at the receiver (56), where θ is the average radial angular separation between adjacent

rays launched from the transmitter, and d is the length of a ray’s propagation path to

the receiver. The radius of the reception sphere considers the fact that rays are spread

out as they propagate. Figure 4.2 shows the reception sphere for each ray, where ray2

travels the longest distance to reach receiver and thus has the largest reception sphere.

The radius of the reception sphere is conVgured as θd/
p

3 because the linear distance

between rays is nearly 2θd/
p

3.

We calculate the received power P j (in dBm) from j th AP as the summation of the power
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of all rays within the reception sphere Z at the receiver location (69). After acquiring

each ray’s path loss, we convert the path loss (dBm) of each ray to power (watts), sum

the power of each ray within the reception zone Z of this receiver, then convert the sum

to dBm to get the aggregate path loss value as followings:

P j = 10log10
∑
i∈Z

10P
j
i /10, (4.3)

where P j (in dBm) is the received power from AP j and P j
i (in dBm) is the power con-

tributed by ray i from AP j calculated by Eq. (4.2).

Finally, we need to calibrate the reference parameters P j
0 ,α,β,γ,λ,β′,γ′ in Eq. (4.2) to

apply our path loss model. With some measurements only at a few sampled locations,

we apply simulated annealing to Vnd the best-Vt parameters values that minimizes the

simulation errors. Notice that in our ray tracing model, the reWection coeXcient and

transmission coeXcient of the reWector are considered seperately since the reWector is

supposed to have better reWectivity. These parameters can then be reused at all locations

of an environment.
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Chapter 5

Evaluation

We evaluate our approach by testing optimized reWectors in two indoor scenes. We seek

to understand its capability in aUecting wireless signal distribution and throughput, im-

plications on enhancing security and reducing interference, its sensitivity to reWector

placement and size, and other performance microbenmarks.

5.1 Implementation

In order to simulate 3D wireless propagation indoor, we should have accurate site-speciVc

indoor information. We use Blender (22), an open-source 3D computer graphics software,

to build a 3D model of indoor environment(Figure 5.1(a)). We select this tool because it

can export .obj Vle, which contains positions of vertices and faces. Only large-scale fea-

tures indoor are considered, such as walls, doors, tables, refrigerators and so on. Blender

can create surfaces that mimic the shapes of real-world objects e.g., tables, sofas, and

walls. Among the three types of modeling oUered by Blender, namely mesh, curve, and

meta modeling, the mesh modeling was most suited to our scenario.

We implement the wireless signal modeling (i.e., ray launching, ray tracing, ray recep-
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(a) (b)

Figure 5.1: (a). 3D indoor model built by Blender. (b). Top view and side view of ray trac-
ing visualization by OpenGL. 42 rays are launched in this example, and the maximum times of
transmission and reWection is 4 and 3.

tion, and path loss model), and shape optimization algorithm using Java. We parse .obj

Vle of 3D indoor model and visualize how each ray interacts with environment as in Fig-

ure 5.1(b) to validate the correctness of ray tracing process using JOGL (3). The JOGL

provides full access to the APIs in the OpenGL to applications written in Java. For shape

optimization, we use jMonkeyEngine SDK (2) to construct a NURBS surface via deVning

control points, knot vectors and other parameters. To reduce the dimensions of search

space, we use 3 by 5 control points, uniform knot vectors, set both orders to 3, and all

weights as 1. We optimize the shape by only perturbing the positions of control points.

In future work, however, the weights and knot vectors can be also optimized to generate

more sophisticated shapes with slightly higher computational cost.

After we obtain the optimized shapeΩ?, the last step is to realize it as a physical reWector.

We output all the mesh points of Ω? in an .obj Vle, add thickness to the surface and

export it to a .stl Vle for a 3D printer (MakerBot) to print it. Its build volume is 25.2 cm

× 20 cm × 15.0 cm. Overall fabricating a 20 cm × 20 cm reWector costs no more than

$35 (one large spool of MakerBot PLA Filamen). We add a thin layer of metal to the

plastic reWector surface because metals have exceedingly high conductivities and thus

are eUective reWectors and attenuators of radio waves (46). In Sec 5.5, we experiment
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(a) Scene 1 (b) Scene 2

Figure 5.2: Two experiment scenes, where scene 1 is a typical workspace scenario, while scene
2 has a spacious lobby room surrounded by three rooms, resembling a private home scenario. (a).
We automate the Wi-Fi signal measurements using a drone (AR Drone 2.0), where we place paper
marks on the Woor for the drone to navigate across measurement locations autonomously.

with diUerent metals (copper, silver, and aluminum) and choose aluminum given its good

performance and lower cost.

5.2 Experimental Setup

We experiment two indoor scenarios with diUerent room layouts: (a) a 19 m × 13 m in-

door area with a narrow (7.5-m long) hallway connecting a research lab and two oXces

(Figure 5.2(a)); (b) a 16 m × 12 m area where a spacious lobby (5.8 m × 5.1 m) is sur-

rounded by three rooms (Figure 5.2(b)). Figure 5.3(a) and Figure 5.5(a) show their Woor

maps, respectively. Although rooms are furnished in both scenes, the 3D environment

models used in our shape optimization contain only walls and doors (we will evaluate the

impact of including furniture in environment models in later chapters). Experiments are

conducted during working hours with moving users around (walking, working at their

desks, or standing and talking to others). For the simplicity and feasibility of the user

input, we assume the same material for objects in the environment.
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We use Netgear R7000 (IEEE 802.11ac) as default APs. R7000 has three antennas and

operates on both 2.4 GHz and 5 GHz frequency. We conVgure it to transmit at 10 mW

and collect RSS values at 2.4 GHz band. We also test two other popular APs: Linksys

WRT54GL (IEEE 802.11g) and TP-Link WR841N (IEEE 802.11n), both operating on 2.4

GHz frequency and equipped with two external antennas. To minimize interference from

external APs, we analyze channel usage status using a mobile app (Wi-Fi Analyzer) and

set the AP to operate on the least congested channel (channel 9 in our environment).

Although our approach does not require exhaustive site survey measurements to com-

pute reWector shapes, such measurements are necessary for us to evaluate the impact of

optimized reWectors on signal distribution. To gather signal measurements, we divide

each area into 1 m × 1 m cells and average received signal strength (RSS) values within

each cell. We also sample a few locations (blue circles in Figure 5.3(a) and Figure 5.5(a))

to measure the throughput.

To automate RSS measurements in the 3D space, we apply a drone-based method in (73).

We program an AR Drone 2.0 to collect RSS at speciVed locations. We reuse drone’s built-

in Wi-Fi radio to receive beacons from our AP and record RSS values. We also leverage

drone’s bottom-facing camera for autonomous navigation, guided by paper marks (1-

m interval) on the Woor (Figure 5.2(a)). Communication with the drone’s controller is

done via socket connection. and the drone’s command line interface via telnet. During

the measurement, the controller sends commands to the drone, thus the RSS should be

suXciently high for stable communication. To decide the measurement duration per

location, we let the drone hover over a location, measure for 1 minute and 10 seconds

respectively, and compare the mean and standard deviation of RSS. Results reveal that 10

seconds are suXcient for collecting stable RSS statistics.
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(a) Target coverage of an AP (scene
1)

(b) Naive concave reWector (c) Optimized reWector

(d) RSS change using naive reWector (e) RSS change using optimized reWector

Figure 5.3: EXcacy of an optimized reWector for achieving a target wireless coverage (a), where
areas users aim to strengthen the signal are marked by green ticks and areas to weaken the signal
are marked by red crosses. (b) and (c) show a reWector in a simple concave shape and a reWector
in optimized shape, while (d), and (e) show their resulting signal changes in dB. The optimized
reWector shape leads to a signal distribution better matching the target.

5.3 EXcacy of Optimized ReWector

5.3.1 One-AP Settings

We start by examining the overall eXcacy of the optimized reWector in a single-AP set-

ting. We consider a target coverage in Figure 5.3(a), where we mark areas with received

signals to be strengthened by ticks and areas with signals to be weakened by crosses. We

run our shape optimization algorithm to derive the optimized reWector shape, fabricate

the reWector (20 cm × 20 cm in size), and place it around AP’s antennas. Figure 5.3(c)

shows the optimized 3D shape, its estimated radiation pattern, and its placement. The

radiation pattern is generated by simulating signal change at one meter away. For this

target coverage, an antenna is behind the reWector and the others are in front of the

reWector. We measure changes in the resulting RSS and throughput.
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Figure 5.4: Throughput change using optimized reWector.

Impact on Signal Distribution. We collect the signal maps before and after placing the

reWector around the AP. We also compare the results to that of a naive reWector shape (the

concave shape used in anecdote experiments, Figure 5.3(b)). Figure 5.3(d) and (e) show

the RSS change (in dB), where positive numbers indicate signal enhancements and nega-

tive numbers indicate signal declines. We observe that the optimized reWector correctly

adjusts signals in all target areas, weakening signals in the hallway and room2 by 10 dB

while strengthening signals in other target areas by 6 dB. It achieves the goal by blocking

an antenna that emits signals to the hallway and room2 while reWecting the signals of

the other two antenna towards room1. The naive reWector, however, generates a simple

radiation pattern that uniformly weakens signals in all areas in the back of the reWector,

and thus fails to meet requirements of all target areas. The result demonstrates the ne-

cessity and eXcacy of our optimization, which considers the indoor layout to customize

the reWector shape and enables more Wexible control.

A side eUect of the optimized reWector is that in order to weaken signals in the hallway

and room2, it also slightly weakens the RSS in the right bottom of the lab. It is a sacriVce

made by the shape optimization to reach an overall signal distribution better matching

the target. As we further analyze signal change at individual cells, 83.1% of cells have

their signals correctly strengthened or weakened, demonstrating the overall eXcacy of

the optimized reWector.
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Impact on Throughput. We further examine how signal-level changes translate into

throughput diUerences at clients. We sample a few locations (marked as blue circles in

Figure 5.3(a)) and measure the throughput at those locations before and after placing

the reWector. In particular, we associate two laptops (MacBook Pro) with our AP. We

Vx the location of a laptop, while a user holds the other laptop walking around within

each location to measure the throughput. We instrument one laptop to transmit 500-MB

data to the other using the iperf utility and collect throughput statistics. We repeat the

experiment for 10 rounds.

Figure 5.4 shows the percentage of throughput change under diUerent APs with opti-

mized reWectors. We also include error bars covering 90% conVdence intervals. Overall

throughput increases/decreases by up to 22.1%/36.7% in target areas. The throughput

improvement at location 8 is small because its RSS is low, requiring a larger signal en-

hancement to switch to higher data rates. The throughput at location 9 slightly decreases

because its RSS is slightly weakened by the reWector (Figure 5.3(e)). Most other locations

in the lab experience improved throughput. Overall, the optimized reWector correctly ad-

justs throughput for 11 out of 12 locations. The result also shows that our reWectors can

coexist nicely with MIMO APs (i.e., TP-Link AP and Netgear R7000).

5.3.2 Multi-AP Settings

We now move on to scenarios with multiple APs.

Collaborative APs. To evaluate the eXcacy of jointly optimized reWectors, we deploy

two APs in scene 2 and jointly optimize their reWector shapes for a target coverage in Fig-

ure 5.5(a). We measure the signal map before and after placing reWectors, where the RSS

at a location is the signal from the stronger AP. We plot the signal change in Figure 5.5(b).

The two optimized reWectors successfully reduce signal strength in lobby by up to 10 dB

and increase signals up to 6dB in room 3, 4 and 5 (The numbers are slightly diUerent
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(a) Target coverage of two collaborative APs (scene 2)

(b) RSS change with optimized reWectors
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Figure 5.5: EXcacy of optimized reWectors of two collaborative APs to achieve a target wireless
coverage. In (a), areas where users aim to strengthen or weaken signals are marked by green ticks
and red crosses, respectively. (b) shows the map of resulting signal change in dB. (c) plots the
throughput improvement at sampled locations (blue circles in (a)).

from that in Figure 5.9 since the result here is measured at further distances and also

aUected by the environment.). Overall, 91% of cells have their signals correctly strength-

ened/weakened. To further examine the impact on resulting bandwidth, we sample 9

locations (blue circles in Figure 5.5(a)) and plot in Figure 5.5(c) the throughput change

brought by optimized reWectors. For 7 out of 9 locations, the throughput changes from

-63.3% to 55.1%. Location 13 and 18 experience little change because of their minor signal

changes (Figure 5.5(b)). Overall the signal and throughput changes are notable for the

majority of locations, demonstrating the eXcacy of our joint optimization.

Non-Collaborative APs. For non-collaborative APs, we aim to conVne each AP’s cov-

erage. We examine the implications on security/privacy and interference reduction with

optimized reWectors.
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(a) Target regions of two non-collaborative APs (scene 1)
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Figure 5.6: Experiments on eXcacy of reWectors conVning wireless coverage and reducing in-
terference. (a) shows the placement and desired Wi-Fi regions of two APs. (b) plots the packet
loss rate change outside the desired region of each AP when optimized reWectors are placed. (c)
presents reWectors’ impact on SINR inside the AP’s desired region.

1) Implications on Security/Privacy: We set up two Netgear R7000 APs in scene 1 and

mark each AP’s coverage region in Figure 5.6(a). We then fabricate reWectors for these

APs to conVne their coverage. We measure packet loss rates at sampled locations (marked

as blue circles) before and after placing reWectors. We associate two laptops (MacBook

Pro) with the same AP and instrument a laptop to transmit packets to the other using the

iperf utility. Similarly to (60), we desire packet loss rates above 30% for locations outside

an AP’s coverage region, as many TCP and UDP based applications (8; 55) require a

packet loss rate below 25%.

Figure 5.6(b) plots packet loss rates when a receiver outside an AP’s region attempts to

connect to this AP. Before placing any reWector, all locations have access to both APs.

After placing optimized reWectors, we Vnd that room2 (location 1 and 2) is unable to

35



access the network of AP1 (50 - 60% packet loss rates), and locations at the lab (location

6, 7 and 8) can not access AP2. This demonstrates that optimized reWectors help conVne

Wi-Fi signal strength in the desired region. We also observe that for some locations

outside an AP’s region, packet loss rate does not change much after placing the reWector,

e.g., the packet loss rate of AP2 at location 9 is nearly 0% with or without the reWector.

It is because location 9 is relatively close to AP2 and receives a strong signal from AP2

even with the reWector. The same holds for location 3, 4, and 5. To address this limitation,

we plan in future work to include transmit power as another parameter in our model to

control coverage more precisely.

2) Reducing Interference: To quantify the beneVt on interference reduction, we examine

Signal to Interference Noise Ratio (SINR) at locations in each AP’s coverage region. We

reuse the setting in Figure 5.6(a) and compute the SINR at all locations. Figure 5.6(c)

shows that reWectors boost the SINR for most locations by up to 13 dB. The SINR at

location 9 barely changes because while AP2’s reWector weakens the interference, AP1’s

reWector also weakens the signal at this location, resulting into little change in its SINR.

5.4 ReWector Placement and Size

In addition to the reWector shape, the reWector placement and size can also aUect re-

Wector’s eXcacy. Next we examine system’s sensitivity to these factors. In following

experiments, we use the optimized reWector in Figure 5.3(c) as an example.

Placement OUset. We Vrst study the impact of orientation oUset, which can occur

during manual placement. In the experiment, the reWector (20 cm × 20 cm) faces room1

and room2 to enhance signals, which corresponds to the 0◦ orientation oUset. We ro-

tate the reWector from −30◦ to 30◦ in a counterclockwise manner with 5◦ interval. We

then plot the average signal enhancement of interested locations in room1 and room2 in
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Figure 5.7: Sensitivity to reWector placement oUset.

Figure 5.7(a). During the experiment, we observe some large signal variation at certain

locations (location 10) when the orientation oUset is within 10◦, but the variation is only

within 0.51 dB for room1 and 0.83 dB for room2, indicating that the reWector can toler-

ate small orientation oUset. Orientation oUset larger than 10◦ results in slow decrease in

signal enhancement.

We then examine how the distance between the reWector and AP aUects the performance.

We Vx the reWector’s orientation, vary its distance from 0 cm to 25 cm with 5-cm inter-

val, and plot the average signal enhancement at room1 and room2 in Figure 5.7(b). We

observe that oUsets within 10 cm have negligible impact. Once the distance is above 10

cm, the signal enhancement starts to decrease. It is because as signals travel, they are

further spread out with attenuated strength. Thus, a reWector further away from the AP

reWects fewer signals and is less eUective in aUecting signal distribution.

ReWector Size. We also study the impact of reWector size on reWector’s ability to adjust

signal distribution. A larger reWector reWects more signals and can be more eUective,

however its fabrication is harder and more costly. We aim to seek a proper size to achieve

a good tradeoU. We fabricate the reWector in two sizes: 20 cm × 20 cm and 40 cm × 40

cm. Given that the height and width of all our APs are roughly 20 cm, a 20 cm × 20 cm

reWector can cover all antennas. We place each reWector around the AP and measure the

resulting RSS change at room1 and room2. As we compare the mean RSS change and
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Figure 5.8: Accuracy of 3D wireless propagation modeling, in comparison to the 2D modeling in
prior work (15).

the standard deviation for these two sizes, we observe negligible diUerence, indicating as

long as the reWector covers all antennas, it needs not to be larger. This observation can

be a guideline for determining reWector size for APs in other sizes.

5.5 Microbenchmarks

Finally, we compare the impact of diUerent metal materials on wireless signals, we also

examine the accuracy of our 3D wireless modeling and overall running time of the shape

optimization.

Material Comparison. To determine the metal material, we systematically test three

types of metal sheets made of silver, copper, and aluminum, which are all 0.1-mm thick.

We also test aluminum sheet with 0.25-mm thickness to evaluate the impact of the metal-

layer thickness. We attach each metal sheet to a 30 cm × 30 cm plastic (the same material

used by 3D printers in fabrication) to form the Vnal reWector. We place the reWector at the

back of an AP to test its ability to reWect Wi-Fi signals to a receiver. To test its ability to

attenuate signals, we place the reWector between the AP and the receiver. For both tests,

we vary the distance of the receiver to the AP from 1 m to 3 m.

In Figure 5.9, we see that copper and aluminum perform similarly in enhancing and
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Figure 5.9: DiUerent plane reWector’s ability to reWect and attenuate Wi-Fi signals, at distances
from 1 to 3 meters.

attenuating Wi-Fi signals, and silver performs slightly better. Increasing sheet thickness

moderately improves its ability to attenuate signals, but not its reWection property. Given

the lower cost of aluminum and the diXculty of applying a 0.1-mm sheet to an uneven

reWector surface, we choose to cover the reWector surface with a 0.024-mm household

aluminum foil.

We also observe that reWectors are better at weakening than strengthening Wi-Fi signals,

mainly because of Wi-Fi’s wavelength and the energy loss when signals penetrate the

reWector. When Wi-Fi signals interact with the reWector, the signal either penetrates, or

is absorbed, or is reWected by the reWector. Only the reWected energy can be directed to

strengthen the signal at locations before the reWector, while both the reWected and the

absorbed energy contribute to the signal attenuation at locations behind the reWector.

Accuracy of 3D Wireless Modeling. Using scene 1 as an example, Figure 5.8 (a) and

(b) plot CDFs of absolute RSS errors of our 3D wireless model, using measured RSS as

ground truth. Figure 5.8 (a) is the result without any reWector, while Figure 5.8 (b) is

for a concave shaped reWector placed around the AP. Overall the mean RSS error of 3D

wireless modeling is 3 dBm.

Furthermore, we compare our 3D modeling to the 2D modeling in a prior work (15).

We observe that 3D modeling notably lowers the tail of RSS errors. The maximal error
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Figure 5.10: Our shape optimization algorithm stabilizes at an optimized shape within 0.5 hr (a).
Our speedup schemes (Kd-Tree and multiple threads) reduce the running time of each iteration
from 9.78 s to 1.71 s (b).

of 2D modeling is 11 dBm and 16 dBm, with and without reWector respectively, while

they are 8 dBm and 12 dBm for 3D modeling. 3D modeling outperforms 2D modeling

because of more accurate characterization of signal interaction in the third dimension.

We also include the results when 2D/3D wireless modeling uses a Vner-grained environ-

ment model that includes main furniture (e.g., desks, sofas). We observe that for both

2D and 3D modeling, adding furniture leads to negligible diUerence in resulting accuracy

in both scenarios. The results indicate that coarse-grained 3D environmental models are

suXcient.

Running Time. We run our shape optimization algorithm on a MacBook Pro (2.2

GHz Intel Core i7) and record the time to generate an optimized shape for various target

coverage requirements. Figure 5.10(a) compares how the objective function (Eq. (3.3))

decreases using our algorithm with the standard SA. They allow the addition of gradient

computation to improve the optimized shape with minor increase in the running time.

We observe that the algorithm stabilizes after 23 minutes on average.

We further look into eUectiveness of our speedup schemes: the Kd-tree used to speed up

wireless modeling, the SPSA algorithm and multiple threads to speed up the search for

optimized shape. Figure 5.10(b) lists the running time of the optimization process when

using either no speedup scheme, or only one speedup scheme, or all of them. Having

107 triangle meshes and 10K rays in the ray tracing model, we see that the Kd-tree ac-
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celerate around 1.6 times. For a complex model that has thousands of triangle meshes,

the speedup of Kd-tree can be up to tens of times. Theoretically SPSA can reduce tens of

time to calculate the gradient when we have 3×5 control points, however it only speeds

up roughly 1.5 times, because the search for appropriate step size is another bottleneck.

Multiple threads accelerate nearly 4 times. Together, they reduce the average running

time from 207 minutes to 23 minutes.
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Chapter 6

Conclusion

In this paper, we sought a diUerent approach to controlling wireless signal propagation

for a given environment without needing directional antennas. We studied the design of

a low-cost, 3D-fabricated reWector to customize wireless coverage. We present a system-

atic approach of computing Vne details of the reWector shape to achieve a rich set of signal

distributions given a indoor environment. We physically fabricated the reWector using 3D

digital manufacturing (“3D printing”) and demonstrated the eXcacy of optimized reWec-

tors with reWector prototypes and indoor experiments. We evaluated their eUectiveness

using measurements in two indoor scenarios. We programed a drone to automate wire-

less measurements in the 3D space and examined the resulting signal distribution after

placing the optimized reWector. We further measured the wireless throughput to exam-

ine the actual performance gain experienced by end users. We also tested the impact

of placement of the reWector, the accuracy of our 3D wireless propagation model, and

computational cost of optimization method.

We obtain the following key Vndings. Our system only takes 23 minutes to compute an

optimized reWector. Our optimized reWectors eUectively steer the Wi-Fi signals towards

target wireless coverages. It results in up to 10 dB signal enhancement or decline in
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areas where users desire stronger or weaker Wi-Fi signals, which translates into 63.3%

throughput diUerences experienced by end users. The optimized reWector is relatively

easy to place. Its eXcacy is not sensitive to slight placement oUsets, tolerating up to

10◦ oUset in orientation and 10 cm oUset in the distance to the AP. It is also applicable to

variousWi-Fi APs including MIMOAPs. It oUers better Wexibility in controlling theWi-Fi

coverage and coexist with the high-end, costly AP with directional antennas. This work

has been published at BuildSys’17 conference and covered by a wide range of medias (72).

Its related YouTube video got over 0.6 million views (4).

6.1 Limitations and Future Work

We summarize the limitations of our current study and elaborate our plan for future

work.

Application to higher frequency bands. While we use Wi-Fi as a case study in this

work, our approach is applicable to other frequency bands such as millimeter waves and

visible light spectrum. In addition, the wavelength of Wi-Fi signals limits reWector’s

ability to reWect and block signals (Figure 5.9). Thus, changes on RSS and throughput

have been moderate. Moving forward, we will examine higher frequency bands such

as millimeter waves and visible light, where reWectors can block and reWect signals more

eUectively and cause more signiVcant change in signal distribution. Generalizing to other

frequency bands only requires to adapt the 3D wireless modeling to best capture the

propagation behaviors on those bands. The same shape optimization procedure can be

applied to identify the 3D reWector shape.

Diverse and dynamic indoor scenarios. We plan to test more diverse indoor scenarios

and examine the eXcacy of our approach. For the simplicity and feasibility of the user

input, we assumed the same material for objects in the environment. To consider hetero-
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geneous materials, we can adapt the reWection, transmission and diUraction coeXcients

in Eq. (4.2) based on materials, and track what materials a ray has traveled through. We

will also more thoroughly evaluate the impact of moving users on the reWector’s ability

to aUect the signal distribution.

Advanced materials. After we fabricate the reWector, we cover the reWector with a thin

aluminum foil. The aluminum foil crumples a lot and the wrinkles in the sheet might

have unpredictable inWuence on the RF waves, thus in the future we may consider metal

electroplating our reWector. We plan to apply metal electroplating to coat the reWector

with a thin layer of aluminum or copper. It is low-cost (e.g., <$35 for a 20 cm × 20

cm area). It produces a wrinkle-free surface, potentially improving the eUectiveness of

fabricated reWectors. On the other hand, the eXcacy is limited by Wi-Fi signal’s ability of

penetrating the reWector, marginal enhancement at signal level, we hope in the future we

can use more advanced materials that has higher impact on the signals to fabricate the

reWector.

Transformable reWector. Since our current study focuses on a static reWector, upon any

substantial environment changes (e.g., removal/addition of walls), users need to input the

updated environment setup and fabricate a new reWector to achieve the target coverage.

In the future, we plan to study reWectors made of transformable materials, enabling the

reWector to automatically adapt its shape upon major changes.
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