
Graduate Theses, Dissertations, and Problem Reports 

2022 

The Burning Bush: Linking LiDAR-derived Shrub Architecture to The Burning Bush: Linking LiDAR-derived Shrub Architecture to 

Flammability Flammability 

Michelle S. Bester 
michelle.bester@mail.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Other Earth Sciences Commons, and the Other Environmental Sciences Commons 

Recommended Citation Recommended Citation 
Bester, Michelle S., "The Burning Bush: Linking LiDAR-derived Shrub Architecture to Flammability" (2022). 
Graduate Theses, Dissertations, and Problem Reports. 11532. 
https://researchrepository.wvu.edu/etd/11532 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/166?utm_source=researchrepository.wvu.edu%2Fetd%2F11532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=researchrepository.wvu.edu%2Fetd%2F11532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11532?utm_source=researchrepository.wvu.edu%2Fetd%2F11532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 

 

The Burning Bush:  

Linking LiDAR-derived Shrub Architecture to Flammability 

 

Michelle S. Bester 

 

Dissertation submitted  

to the Eberly College of Art and Sciences 

at West Virginia University 

 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in 

Geography 

 

Brenden McNeil,  Ph.D., WVU, Chair 

Nicholas Skowronski, Ph.D., Forest Service, Co-chair 

Jamison Conley, Ph.D., WVU 

Aaron Maxwell, Ph.D., WVU 

Timothy Warner, Ph.D.,WVU 

 

Department of Geology and Geography 

Morgantown, West Virginia  

December 2022 

Keywords:  Remote Sensing, LiDAR, Fire Ecology, Quantitative Structure Models, Fire Fuels, 

3D Modelling, Machine Learning  

Copyright 2022 Michelle S. Bester 



 

 

 

ABSTRACT 

The Burning Bush: Linking LiDAR-derived Shrub Architecture to Flammability 

Michelle S. Bester 

 

Light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) sensors are 

powerful tools for characterizing vegetation structure and for constructing three-dimensional 

(3D) models of trees, also known as quantitative structural models (QSM). 3D models and 

structural traits derived from them provide valuable information for biodiversity conservation, 

forest management, and fire behavior modeling. However, vegetation studies and 3D modeling 

methodologies often only focus on the forest canopy, with little attention given to understory 

vegetation. In particular, 3D structural information of shrubs is limited or not included in fire 

behavior models. Yet, understory vegetation is an important component of forested ecosystems, 

and has an essential role in determining fire behavior.  

In this dissertation, I explored the use of TLS data and quantitative structure models to 

model shrub architecture in three related studies. In the first study, I present a semi-automated 

methodology for reconstructing architecturally different shrubs from TLS LiDAR. By 

investigating shrubs with different architectures and point cloud densities, I showed that 

occlusion, shrub complexity, and shape greatly affect the accuracy of shrub models.  

In my second study, I assessed the 3D architectural drivers of understory flammability 

by evaluating the use of architectural metrics derived from the TLS point cloud and 3D 

reconstructions of the shrubs. I focused on eight species common in the understory of the fire-

prone longleaf pine forest ecosystem of the state of Florida, USA. I found a general tendency for 

each species to be associated with a unique combination of flammability and architectural traits. 

Novel shrub architectural traits were found to be complementary to the direct use of TLS data 

and improved flammability predictions.  

The inherent complexity of shrub architecture and uncertainty in the TLS point cloud make 

scaling up from an individual shrub to a plot level a challenging task. Therefore, in my third study, 

I explored the effects of lidar uncertainty on vegetation parameter prediction accuracy. I developed 

a practical workflow to create synthetic forest stands with varying densities, which were 

subsequently scanned with simulated terrestrial lidar. This provided data sets quantitatively 



 

 

 

similar to those created by real-world LiDAR measurements, but with the advantage of exact 

knowledge of the forest plot parameters, The results showed that the lidar scan location had a 

large effect on prediction accuracy. Furthermore, occlusion is strongly related to the sampling 

density and plot complexity.  

The results of this study illustrate the potential of non-destructive lidar approaches for 

quantifying shrub architectural traits. TLS, empirical quantitative structural models, and 

synthetic models provide valuable insights into shrub structure and fire behavior. 
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INTRODUCTION 

Understory vegetation is essential for overstory succession, nutrient cycling, and wildlife 

habitat, thus forming a vital component of many forested ecosystems (Kutnar et al., 2019; Young 

& Koerner, 2022; G. Zhou et al., 2022; Zinnert et al., 2013). Moreover, their structural 

characteristics affect wildland fire behavior and act as ladder fuels which, if left unchecked, 

could lead to stand-replacing fires (Burger & Bond, 2015; Weiser et al., 2021). Therefore, 

quantifying these structures and understanding understory dynamics can provide valuable 

information for biodiversity conservation, forest management, and fire behavior. Unfortunately, 

understories are often not as extensively studied, as research has tended to focus on overstory 

architecture, composition, and interactions with fire (Hernandez-Santin et al., 2019; X. Su et al., 

2019).  

Remote sensing offers an innovative approach for acquiring vegetation information 

without having to be in physical contact with the object. Since it can provide information 

consistently and cost-effectively that is less laborious than traditional approaches, it has become 

an indispensable tool for many forestry applications and ecology, including fire ecology 

research (Clawges et al., 2008; Jensen, 2013; Meng et al., 2018). In particular, Light detection and 

ranging (LiDAR) has been used since the early 2000s to characterize ecosystem structural 

features and can reconstruct the vertical and horizontal vegetation arrangement for an area of 

interest based on three-dimensional (3D) measurements taken by the sensor (Åkerblom et al., 

2017; Atkins et al., 2018; Calders et al., 2018; Coops et al., 2021). Terrestrial Laser Scanning (TLS) 

is a stationary ground-level LiDAR system that captures detailed 3D point cloud representations 

of vegetation structure, especially within the understory. In recent advancements, TLS data have 

been used to reconstruct trees as 3D models.  

Quantitative structure models (QSM) is one such 3D modeling approach. Modeling 

hierarchical collections of geometric primitive structures from the TLS data, these models 

provide ‘real’ depictions of tree structures (Burt et al., 2018; Malhi et al., 2018; Martin-Ducup et 

al., 2020; Raumonen et al., 2013). Since QSMs can isolate and model the woody structure of trees, 

it is possible to calculate biomass estimations, height and volume calculations, obtain the 

physical branch structure, branch sizes as well derive other ecological properties (Bournez, 

Landes, Saudreau, Kastendeuch, & Najjar, 2017; Pasi Raumonen et al., 2013). Although QSM 

reconstruction has successfully been implemented and optimized for trees, I found minimal 

research pertaining to understory vegetation architecture, such as shrubs. 
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Therefore, in the first chapter of this dissertation, we investigated the potential of using 

QSMs to model shrub architectural traits. In this chapter, we present a semi-automated 

methodology for reconstructing woody shrubs from TLS LiDAR by adapting current QSM 

methods optimized for trees. To assess the accuracy of this methodology, we used ten 

architecturally different shrubs and evaluated the shrub reconstructions from the point clouds. 

As this was a feasibility test, we acquired the shrubs from a nursery and manually removed the 

leaves to minimize the occlusion of the woody architecture. To determine how occlusion would 

impact the accuracy of the models, we used two different point cloud resolutions. Furthermore, 

by investigating shrubs with different architectures, it was possible to understand how shrub 

complexity and shape may influence the modeling process. The results of this chapter 

highlighted the potential for incorporating QSMs of understory shrubs into ecological 

applications, especially fire behavior.  

In the context of fire behavior, the architecture of species, such as the spatial arrangement 

and branching patterns, affect flammability (Morandini et al., 2019; Santacruz‐García et al., 

2019). According to studies by Pausas et al. (2017) and Schwilk & Kerr (2002), understory shrubs 

with dense branching patterns of smaller twigs have a higher chance of undergoing pyrolysis 

and can be characterized as flammability-enhancing traits. Conversely, loose branching with 

open canopies reduces the plants' flammability. Characterizing how vegetation architectural 

traits influence flammability may provide insight into wildland fire behavior, including the 

intensity, severity, and spread patterns in species coexistence and plant succession (Gale et al., 

2021; Loudermilk et al., 2022). Although researchers have investigated architectural traits, they 

again primarily focus on the overstory or are often limited to small-scale (leaves, plant 

components, etc.) or large fuel bed scales. Moreover, most plant flammability research occurs in 

a laboratory setting (Santacruz‐García et al., 2019; Tachajapong et al., 2008; Tumino et al., 2019) 

and fuel characterization is typically represented by two-dimensional components (surface area, 

mass, bulk density, etc.). Even though these measurements provide valuable information for fire 

modeling and behavior analysis, they tend to oversimplify understory fuels and do not capture 

the architectural variability or other 3D functional traits (Bright et al., 2016; Rowell et al., 2020). 

Chapter two of this dissertation aids in closing these knowledge gaps by exploring the 

link between 3D metrics derived from TLS and QSM and flammability components. To ensure 

this research is relevant, we decided on a study area within a fire-prone area with a diverse 

understory. Pine forest ecosystems within the southeastern coastal plain met these criteria. Pine 
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forest ecosystems depend on frequent fire; without it, the forest structure changes, and essential 

habitat of economic, social, and environmental importance disappears. As such, prescribed 

burning and fire management has become integral to managing coastal plain ecosystems (Bailey 

et al., 2007; Noss, 2018; Peet et al., 2018). Therefore, it is important to understand fire components 

and their interaction with the understory ecosystems. Particularly knowledge about fuel types, 

flammability, and vegetation characteristics in the understory.  

To achieve this, our study was divided into three sections. First, we characterize 

understory shrubs using TLS- and QSM- architectural metrics. Although previous studies have 

used TLS to characterize the architecture of vegetation, we included additional novel metrics 

related to the topological architecture of shrubs. Additionally, we focus on less extensively 

studied understory vegetation. This allowed us to identify similarities and highlight species 

differences in the vertical architectural structure, including shrub branch ramification, 

branching angle, woody volume etc. The second portion of this chapter’s research focused on 

experimentally analyzing shrub flammability in the field. Here we burn and record flammability 

components relating to combustibility, sustainability, and consumability. In the last section of 

this chapter, we tie the first two sections together by evaluating the TLS and QSM architectural 

metrics to predict the variability of shrub flammability. The results of this chapter high highlight 

the importance of incorporating topological vegetation architecture in fire behavior studies. 

In chapters one and two, we note that the inherent complexity of vegetation architecture 

and wildland fuels at different spatial and temporal scales makes it challenging to accurately 

measure combustible fuels. Moreover, all lidar-based measurements of physical objects are subject 

to some uncertainty (Disney et al., 2018; Raumonen et al., 2013; Riley & Thompson, 2016). This could 

be due to errors in the sensor position from incorrect interaction with GPS, interference from the 

atmosphere, or sensor calibration. Errors can also occur due to the density of trees, leaves, and 

branches as well as terrain variables (Andersen et al., 2005; Moorthy et al., 2011). Moreover, lidar-

based estimations' quality is influenced by the number of acquisition stations with different angles 

within the area of interest. For example, lidar pulses that reach the uppermost part of the canopy 

have a larger footprint, depending on the beam divergence of the instrument (Disney et al., 2018). 

Higher the number of stations set up in the plot or stand, provide more point cloud data lowering 

the number of omissions of vegetation structure. In addition, weather conditions such as wind or 

precipitation induce artifacts (noise) in the point cloud data (Bournez et al., 2017). Finally, the 

processing procedure from raw point clouds to lidar-estimated models further creates uncertainties. 
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This includes georeferencing, co-registration, merging, segmentation, sampling, and point cloud 

classification (Alonso-Benito, Arroyo, Arbelo, & Hernández-Leal, 2016; Calders et al., 2018).  

Therefore in chapter three, I wanted to explore the effects of lidar uncertainty on vegetation 

parameter prediction accuracy. For this research, we use scripting (coding) to present a semi-

automated methodology to mimic LiDAR sampling characteristics and run controlled sampling 

tests over synthetic forest plots. This provides data sets quantitatively similar to those created 

by real-world LiDAR measurements but with the advantage that we have exact knowledge of 

the forest plot parameters. By comparing the outputs of LiDAR-derived metrics with the 

‘known’ properties of the stand, we can directly and accurately measure the success of 

prediction algorithms (Wang et al., 2013). We evaluate three machine learning prediction 

algorithms and measure uncertainty based on scan density and forest complexity.   

In summary, this dissertation contains three stand-alone manuscripts written for journal 

submission. There are slight differences in formatting in each of the three chapters due to target 

journal requirements. These manuscripts seek to fill the knowledge gap for accurately 

characterizing the architectural diversity and complexity of understory fuels using non-

destructive approaches. Quantifying links between architectural traits of understory vegetation 

and flammability and investigating the uncertainties that arise. 
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RESEARCH QUESTIONS AND OBJECTIVES 

This dissertation research aims to measure understory shrub architectural traits using a 

LiDAR-derived methodology. Then using these measurements to predict vegetation parameters 

and find a link between them and shrub flammability.  

We will achieve this by answering the following research questions:  

Chapter 1 Research Question:  

Can we accurately reconstruct the 3D architecture of woody shrubs using QSMs derived 

from TLS LiDAR? 

Chapter 2 Research Questions: 

As measured from QSM and point cloud representations derived from TLS LiDAR, how 

many, and which architectural traits best discriminate representative understory species of 

the longleaf/slash pine forest ecosystems?  

How do these species vary in their flammability, especially along the flammability 

components of combustibility, sustainability, and consumability? 

Is the architecture of longleaf/slash pine forest understory species adapted to 

flammability? 

Chapter 3 Research Question:  

Is there a significant difference in occlusion between single and multiple TLS scan 

locations? 

With known forest parameters, are there differences in prediction accuracies using 

machine learning algorithms?  
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PROJECT SIGNIFICANCE 

This research will expand our knowledge on how mechanisms of vegetation architecture 

affect the flammability of understory species. Further intellectual merit was achieved by the 

development of QSM representations specifically for understory species.  Using TLS combined 

with QSM opens up new approaches for studying vegetation structure, provides 3D fuel 

information that can be incorporated into fire models, and links the architectural traits to 

flammability. The field burn experiments of complete individual plants and not just components 

(leaves, shoots) within the southeastern coastal plain can be incorporated into existing fire 

models as little information about understory fuels in this area is available. The 3D models and 

the flammability characteristics could also prompt the development of new fire behavior models 

that include 3D fire information.  

The datasets used in chapter two of this study fall within a more extensive dataset 

collection. Thus, the is an opportunity to investigate the methodology at larger scales and 

evaluate plot-level flammability characteristics. The semi-automated methodologies proposed 

in this research, both for the development of 3D models of understory species and synthetic 

forest plot generation, could provide researchers with an established framework that can be 

implemented in multiple fields of study. Other studies have already sought 3D models of 

understory architecture to investigate the influence of vegetation disturbance and wind flow 

and other fire behavior modeling. Sythetic data and computer algorithms provide an 

environment where multiple experiments can be tested with controlled settings. Similarly, 

multiple experiments can be run on the simulated LiDAR investigating different sensor or plot 

characteristics.  

My research has broader impacts as it forms part of a larger 3D fuel characterization for 

physics-based fire behavior, fire effects, and smoke models on US Department of Defense 

military lands which will integrate state-of-the-art modeling and analysis to provide 

foundational methods and tools for both managers and scientists. Finally, the methods and 

results from this dissertation are not limited to fire ecology but can be implemented in other 3D 

modeling, forestry, and ecology applications. 
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Abstract:  

Accurate characterization of shrub architecture is important for understanding how 

architectural traits affect ecosystem dynamics and processes. 3D modeling methodologies, 

including Terrestrial Laser Scanning (TLS), have demonstrated their potential to capture plant 

architecture; however, few studies have evaluated these methods for woody shrubs. Therefore, 

in this study, we investigate the accuracy of shrub architectural traits of derived from 

Quantitative Structure models (QSMs), developed using TLS data. We used TreeQSM, to model 

the shrub architecture of ten architecturally different shrubs at two-point cloud density levels. 

As a reference, we manually measured the shrub's architectural parameters and compared them 

to the QSM-derived parameters. The QSMs derived from both the low-density point clouds 

(QSM_L), and the high-density point clouds (QSM_H), showed a high agreement with reference 

shrub height measurements, with R2 values of 0.98 and 0.99, respectively. QSM_H correctly 

modeled an average of 80% of branches, while QSM_L correctly modeled 56% of the branches. 

The accuracy of the models was similar across growth forms, but was strongly affected by 

architectural complexity and branch diameter size. The results of this study illustrate the 

potential of non-destructive lidar approaches for quantifying shrub architectural traits.        

Keywords: Terrestrial light detection and ranging; Quantitative Structure Models (QSM); 

architectural traits; woody shrubs 
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 Introduction 

Shrubs comprise a significant portion of biodiversity in many biomes in North America and 

worldwide (Kutnar et al., 2019; Li et al., 2020). They account for a large portion of the vegetation 

in tundra, tropical savannas, Mediterranean and arid regions. Shrubs are also abundant in the 

understory of forests and woodlands (Götmark et al., 2016; Prévosto et al., 2020; Zhou et al., 

2020). Thus, their diversity, abundance, and architectural forms have broad implications for 

many ecosystem functions.  

Studies indicate that the architecture and spatial arrangements of shrubs influence the 

ability of wildlife species to persist. Indeed, changes in architecture, complexity, and density 

can affect wildlife species range dynamics, composition, and abundance (Rodomsky-Bish, 2016; 

Zhou et al., 2020; Zuliani et al., 2021). In many ecosystems, shrubs serve as ecosystem engineers 

that modify the physical environment and influence various levels of biological organization 

(Cushman et al., 2010, Kleinhesselink et al., 2014). They can alter environmental conditions, 

influence nutrient cycling, create fertile sites that facilitate succession, and support seedling 

regeneration and growth (Hillman et al., 2019; Morsdorf et al., 2010). The architecture and 

vertical stratification of shrubs also has direct and indirect influences on fire behavior 

(Morandini et al., 2019; Rowell et al., 2020). For example, dense branching patterns of smaller 

twigs have a higher chance of undergoing pyrolysis, and the spatial arrangement of shrubs 

influences wind flow and turbulence across plots (Pausas et al., 2017; Rowell et al., 2020; Schwilk 

& Kerr, 2002). Therefore, quantifying shrub architecture can provide important metrics for 

understanding and assessing ecosystem dynamics and processes. Additionally, information on 

shrub architecture can contribute to the sustainable management of forests and woodlands, as 

shrubs influence forest hydrology, productivity, and other ecosystem services (Moore et al., 

2008; Moskal & Zheng, 2012). In particular, detailed shrub measurements and 3-dimensional 

(3-D) representations enable measurement of important parameters and inputs to ecological 

and fire models. 

LiDAR (Light Detection and Ranging) is an active remote sensing technology that has been 

established as a valuable tool with 3D mapping abilities that allows the non-destructive 

assessment of woody vegetation architecture and traits (Andersen et al., 2005; Atkins et al., 2018; 

Beland et al., 2019; Disney, 2018; Disney, 2019; Skowronski et al., 2011). LiDAR is usually 

acquired from a moving platform above the vegetation. In contrast, with Terrestrial Laser 

Scanning (TLS), the instrument is usually stationary, fixed on a survey tripod close to the target. 

Scans are sometimes acquired from multiple vantage points around the target, and combined to 

increase coverage and minimize occlusions (Beland et al., 2019; Bournez et al., 2017; Putman et 

al., 2018).  
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TLS provides a detailed 3D point cloud representation of the vertical and horizontal 

distribution of vegetation architecture, with particularly rich information regarding the 

understory. For example, Tansey et al. (2009) assessed the feasibility of using TLS-based 

methods to estimate tree variables such as diameter at breast height (DBH) in a woodland 

environment, and found that the TLS measurements compared well (RSME 0.019m) with field 

measurements. More recently, Pokswinski et al. (2021) reviewed the effectiveness of TLS data 

for extracting fuels, forestry, and vegetation variables. Furthermore, structural parameters 

derived from the analysis of the point cloud coupled with 3D modeling techniques can be 

utilized in many forestry and ecology applications (Huang et al., 2011a; Shi et al., 2018; Torresan 

et al., 2018). 

Quantitative Structure Modelling (QSM) is one of the 3D modeling approaches developed 

to reconstruct architecture from LiDAR point clouds. QSM utilizes a cylinder-fitting procedure 

through either a segmentation-based or skeleton-based method. TreeQSM utilizes a 

segmentation approach to partition the point cloud from the LiDAR scans into small surface 

patches (https://github.com/InverseTampere/TreeQSM). The model building occurs by covering 

the point cloud with the small surface patches using a building-block approach. Once complete, 

the model is segmented into branches, and reconstructed with appropriately sized cylinders 

fitted to each segment (Åkerblom et al., 2015; Raumonen et al., 2013). The output files from 

TreeQSM provide structural attributes computed from the QSM.  

TreeQSM has been recognized as an established tool for reconstructing and assessing 

structural parameters of individual trees (Arseniou et al., 2021; Calders et al., 2015; Fan et al., 

2020; Lau et al., 2018; Raumonen et al., 2013; Reich et al., 2021). For example, Calders et al. (2015) 

used a slightly modified version of the Raumonen et al. (2013) methodology to extract single 

trees from TLS data and create QSMs for 65 trees in a eucalypt open forest in Victoria, Australia. 

These authors estimated aboveground biomass from the QSM models, and found a high 

agreement with the values obtained from destructive sampling, with a concordance correlation 

coefficient (CCC) of 0.98. Furthermore, Åkerblom et al. (2017) successfully used TreeQSM to 

model trees and automatically recognize various tree species. 

Most QSM methods derived from LiDAR and TLS have thus far focused on the 3D 

reconstruction of different tree varieties, with little attention given to understory vegetation, 

such as shrubs. Therefore, our objective for this paper is to evaluate the possibility of 

reconstructing shrubs from TLS data using a QSM approach, and to determine if either TLS 

point density or shrub shape and complexity influence the accuracy of the QSMs. To achieve 

this, we first reconstruct shrubs of varying architectural characteristics and complexities, using 

the TLS data and the TreeQSM approach. Thereafter, we validate and test the fidelity of the 

QSMs by comparing them to the original point cloud and the manual measurements. We 
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conclude with an evaluation of the potential of QSM approaches for identifying invasive species 

and the extraction of essential architectural information. 

 

 Materials and Methods  

 Shrub Selection and Plant Trait Measurements 

The shrubs selected to investigate the QSM reconstructions came from a plant nursery in 

Pittsburgh, PA, USA. We based our selections to ensure a wide variety of geometrical and 

architectural traits, choosing ten shrubs with different heights, complexities, branching patterns, 

and crown shapes.  

To prepare our shrubs for scanning and measurement, we carefully picked off all leaves 

from branches exposing the architectural form of each shrub. By only having the woody 

structure we can determine how well the QSM can delineate the shrub architecture, without it 

being occluded by leaves. We then manually measured the aboveground height of the leaf-off 

shrubs to the closest centimeter (cm). Additionally, we recorded the DBB (diameter before 

branching) of the main stem(s) and the diameter of shrub branches to the nearest millimeter 

using a digital Vernier Caliper.  

We determined branching patterns and branch order using centrifugal ordering, where each 

branch was given a unique BranchID. We adapted our BranchID methodology from Borchert & 

Slade's, (1981) botanical method and by Lau's et al. (2018) branch coding strategy. The first 

branch order started at the main stem(s) and followed a dendroidal pattern. A new branch order 

was assigned every time a branch furcated into approximately equal parts. We color-coded up 

to six branch orders of each shrub using the same color scheme and created a unique BranchID 

for each measured branch. Additionally, we recorded the orientation of every branch with 

respect to the first-order branch. The BranchIDs were paired with the QSM results for accuracy 

assessment. Figure 1 illustrates the branching order strategy and unique BranchID label 

assigned to the measured branches.  
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 Figure 1. (a) Diagram of branching order strategy, where 'S' represents the shrub number. 

First branching order red (R), second branching order (G), third branching order blue (B), fourth 

branching order yellow (Y), fifth branching order white (W), and sixth branching order colored 

red again, but represented by (RR). The numbers behind the branching order letter represent 

the number of branches within that specific order. (b) Example of unique branch ID's for a few 

branches from shrub 4.  

 
We defined the complexity of each shrub as the sum of three architectural traits: degree of 

ramification, the average bifurcation ratio, and the number of branches in the shrub relative to 

the total branches of all shrubs. Each of these measures is described in more detail below.  

We calculated the degree of ramification (Rd) as the rate of change of the branch cross-

sectional area (assumed to be circular) from the maximum crown width (cw) to the stem before 

branching (Eq 1). Rd provides a measure of the density of the shrub branches, and is adapted from 

the approach of Harris and Pannell, (2010) and Roddy et al., (2019). Higher values are associated 

with denser branching and a more compact architecture (Pérez-Harguindeguy et al., 2013; 

Walter et al., 2021). 

 

𝑅𝑑 =
𝐵𝑟𝑎𝑛𝑐ℎ 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑎𝑡 max 𝑐𝑤−𝐵𝑟𝑎𝑛𝑐ℎ 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑎𝑡 𝐵𝑂𝑓

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐵𝑂𝑓 𝑎𝑛𝑑 𝑐𝑤
      (1) 

 

Where BO is the branching order and the subscript f indicates the first branching order.  

We measured the overall bifurcation ratio (López-López et al., 2017; Orozco-Aguilar et al., 

2019) of one representative stem per shrub (OBR) using (Eq. 2)  

 

𝑂𝐵𝑅 =  ∑
𝑁𝐵𝑂𝑥

𝑁𝐵𝑂𝑥−1

ℎ
𝑥=𝑙+1  (2) 

a) b) 
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Where NBOx represents the shrub’s number of branches for branch order x, and l represents 

the lowest branch order (1), and h the highest branch order for that particular shrub. 

The shrub’s branch proportion (Bt) is the number of branches of an individual shrub expressed 

as a percentage of the total number of branches of all the shrubs (Eqn 3)  

 

𝐵𝑡,𝑖 = 𝑁𝑡𝑜𝑡𝑖/ ∑ 𝑁𝑡𝑜𝑡𝑦
10
𝑦=1  (3) 

 

Where Ntot is the total number of branches for a particular shrub, subscript y is an index for 

the shrub number, and subscript i is the shrub of interest. 

Finally, to characterize the shrub's complexity, we combined Rd, OBR, and Bt, to generate a 

composite value. This variable was then normalized to produce a final metric, Sc, with a range 

between 0 and 1, where higher values are associated with more complex shrubs (Eq. 3) (Borchert 

& Slade, 1981; S. Zhang et al., 2021; Zheng et al., 2021a).   

 

𝑆𝑟𝑎𝑤𝑖 = 𝑅𝑑𝑖 + 𝐵𝑡,𝑖 + 𝑂𝐵𝑅𝑖 (4) 

 

𝑆𝑐,𝑖 =
𝑆𝑟𝑎𝑤𝑖−𝑆𝑟𝑎𝑤𝑚𝑖𝑛

𝑆𝑟𝑎𝑤𝑚𝑎𝑥−𝑆𝑟𝑎𝑤𝑚𝑖𝑛
 (5) 

 

Where Sraw is the complexity raw sum before normalization, subscript i is an index 

representing the shrub number (i = 1, 2, 3… 10), and subscripts min and max indicate the shrubs 

with the maximum and minimum values of Sraw. 

 

 TLS data acquisition 

We used a FARO® Focus S350 terrestrial laser scanner to acquire leaf-off scans of our shrubs 

(FARO Technologies, Inc., www.faro.com). This scanner is compact, lightweight, and 

specifically designed for indoor and outdoor applications. The instrument’s performance 

specifications include: field of view of 300° vertical and 360° horizontal, wavelength of 1550 nm, 

beam divergence of 0.3 mrad (1/e), and ranging error of approximately 1 mm. In addition, the 

scanner has an integrated camera, which acquires high-resolution RGB images that can be co-

registered post-scanning.  

We collected scans between January and March 2021 at an indoor location, which eliminated 

the effect of wind or other disturbances. Eight 145 mm diameter spherical targets were placed at 

different heights in the scanned region, and used for co-registration of the scans (Figure 2). We 

performed scans from four different viewpoints around the shrub, and at two different 

resolutions, resulting in eight scans (four low-resolution and four high-resolution scans). For the 
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high-resolution scans, the laser scanner acquisition time for each scan was approximately 18 

minutes with the following parameter settings: ½ resolution; 3x quality; scan size of 20480 x 8533; 

174 Million points (MPts), and a point distance of 3.1 mm/10 m. The point distance interval 

specifies the maximum distance at which the scanner can accurately measure points with the 

selected settings. These settings were based on guidelines from best practice information for 

FARO scanning (FARO® Knowledge Base, 2021). For the low-resolution scans, we used the 

"Indoor…10 m" predefined factory scan settings with the following optimized parameters: scan 

duration of approximately 5 minutes, 3x quality, and scan size of 5156 x 2134 with a resolution of 

11 MPts.  

 
Figure 2. Top view of indoor scan location layout, showing TLS scanner (grey rectangles), 

shrub, and spherical target locations (represented by circles; double circles indicate elevated 

target locations).   

 
To describe the overall shrub form, we implemented a 3D convex hull onto the shrub point 

cloud with the Qhull algorithm (Barber, 2020). The convex hull was then enclosed within a mesh 

representing shapes associated with three common growth form categories (Figure 3): columnar 

(growing upright), rounded (globose), vase-like (inverted conical) (Lenard, 2008; Lio & Dewi, 

2018; Yan et al., 2019). Finally, we labeled the shrub according to the mesh growth form category 

that most closely described the convex hull shape; if there was no acceptable fit, the growth form 

category was labeled as irregular (no apparent shape) 
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Figure 3. Examples of shrub form categories described by applying a 3D convex hull to the 

point cloud and enclosing that shape with mesh based on common growth form shapes. 

 

 Quantitative Structure Modelling (QSM) 

 

 The purpose of the shrub reconstruction is to reflect the architecture of the shrub, 

including its 3D geometry and topology. Our reconstruction procedure consisted of a multi-step 

process. First, we extracted the point cloud and converted it into a useable modeling format. We 

employed the following steps for each shrub to achieve this: 

• Co-register the four individual point cloud scans at each of the two resolutions (low and 

high) using FARO® Scene software (FARO® SCENE software). 

• Create a bounding box around the individual shrub. 

• Extract and export the point clouds within these bounding boxes to .las format for further 

analysis in CloudCompare v 2.12 Software (http://cloudcompare.org/). 

• Separately export the high and low-resolution point clouds for each shrub. 

• Remove features unrelated to the aboveground portion of the shrub (e.g., planter, targets) 

from the point cloud. 

• Apply noise and Statistical Outlier Removal (SOR) filters to remove artifacts and the final 

.las files.   

 

We then applied the TreeQSM algorithm to the cleaned individual shrub point clouds to 

generate QSM representations of the high- (hereafter referred to as QSM_H) and low-resolution 

(hereafter referred to as QSM_L) datasets. TreeQSM is open-source code developed by Pasi 

Vase-like Rounded Column

ar

http://cloudcompare.org/
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Raumonen and available via Github (https://github.com/InverseTampere/TreeQSM). The 

algorithm is a semi-automatic script run within MATLAB software (MATLAB, 2018).  

The main TreeQSM input parameter is the surface patch diameter d, used for the first 

uniform-size cover, and the minimum and maximum values for the second cover. Following 

previous works and the "Optimization of input parameters" section in the TreeQSM manual 

(Calders et al., 2015; Raumonen, 2020), we fitted a range of values between 0.001 to 0.5 for 

parameter d for each shrub. Then, using visual inspection, we selected a single optimal d value 

for the entire collection of shrubs. Since TreeQSM is optimized for trees, it uses meters as a unit; 

to suit this study's needs, we adjusted the units to millimeters. 

The TreeQSM approach includes a random function, resulting in a slight variation each time 

the model is run, even when the parameters remain unchanged (Calders et al., 2015). Therefore, 

we ran the model twelve times for each shrub, and at each resolution, in order to characterize 

the distribution of results generated.  

 

 Accuracy Assessment  

First, we performed a brief qualitative assessment based on a visual inspection of the models 

to identify gross errors, incompleteness, and overall visual accuracy. We kept the six most 

representative models for every shrub for further analysis. We characterized the model 

robustness by the mean standard error and range of the TreeQSM iterations.  

We manually performed branch-to-branch pairing of the TreeQSM models and our manual 

shrub measurements using our color-coded unique ID system and orientation measurements 

(Figure 2). To speed up this process, for each shrub, we manually paired one QSM with the 

manual measurements, and then used mesh boolean intersection algorithms (Badillo & Parfenov, 

2022; Magalhães et al., 2017) to pair the remaining iterations. Mesh intersection algorithms have 

the capability to find overlapps between 3D objects . In addition, we employed mesh boolean 

difference algorithms to locate branches not in the first manually paired QSM in order to assign 

additional branches where needed (Zhou et al., 2016). Following the approach of Lau et al. (2018) 

and Wang et al. (2020), branches without a corresponding QSM branch were excluded from 

accuracy assessment matrices (except for the branch detection analysis).  

We also compared the six QSM iterations of each shrub with the associated point cloud. 

First, we extracted a subset of points from the TLS point cloud at various height bins and 

randomly selected a subset. Next, we extracted the corresponding cylinder slices from the six 

associated QSM models. Using the cloud-to-mesh algorithm in CloudCompare, we generated a 

summary measure of the distance between the TLS reference points and the corresponding mesh 

in the QSM, based on the Hausdorff distance calculation (Figure 4) (Kumazaki & Kunii, 2020; 

Mohammadi et al., 2021; Wu et al., 2021).  

https://github.com/InverseTampere/TreeQSM
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Figure 4. Example of accuracy validation of TLS-QSM for Shrub 1 (a) Point cloud query 

point extraction from height bins. (b) QSM query cylinder slice extraction (c) Example of the 

first section for Hausdorff distance calculation where red indicates point cloud and greens 

various QSM iteration slices.  

 

Destructive sampling measurements are the only true way to validate plant properties 

(Disney et al., 2018). To evaluate the performance of the QSM_L and QSM_H models, we used 

linear regression analysis to compare the average of the six QSM models to the associated 

manual measurement. We calculated the Mean Absolute Error (MAE) and the root-mean-

squared error (RMSE), along with the coefficient of determination (R2). For branch detection, we 

calculated the average total number of branches as a percentage of the reference measurements 

(Atkins et al., 2018; Calders et al., 2015; Disney et al., 2018; Kumazaki & Kunii, 2020; Lau et al., 

2018). Additionally, we computed the absolute and relative error of the QSM branch diameters 

by diameter class, to explore how accuracy varies as a function of branch size. Moreover, to 

explore the effect of architectural traits on modeling accuracy, we also summarized the 

diameters by shrub form and complexity. 

 

 Results  

 Manual Measurements and Qualitative Evaluation 

The diameters of the shrubs ranged from 1 to 32 mm, and the shrub heights ranged from 36 

to 121 cm (Table 1). The ten shrubs had a total of 1347 branches, and a branching order that 

ranged from two to six. The categorization of the ten shrubs using the convex hull and the best-

fit mesh identified three examples of each shrub form (columnar, vase-like, rounded), and one 

shrub, Vaccinium Corymbosum, was classified as irregular as it did not fit any of the three standard 

growth forms. The normalized complexity measure, Sc, calculated from equation 5, indicated that 

a) b) c) 
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shrub 4, Rhododendron Klondyke, had the lowest complexity due to low Rb, OBR, and NBO. Its 

branches are arranged in an open architecture, with fewer branch orders and less bifurcation. 

Conversely, shrub 9, Ilex x Meserveae had the highest complexity due to its densely packed 

branches, higher branch count, and higher ramification. Higher ramification suggests that the 

branch cross-sectional area at the crown width was greater than the branch cross-sectional area 

before branching (Table 1, Figure 5). 

 

Table 1. Summary of shrubs characteristics and calculated traits 

 

Shrub ID 
Shrub Common Name  

(Scientific Name) 
Height (cm) 

Branch Diameter 

Range (mm) 

Shrub 

Form  
BOh Sc 

1 
Winterberry Holly 

(Ilex Verticillate) 
121 1-29 Columnar 5 0.27 

2 
Highbush Blueberry 

(Vaccinium Corymbosum) 
54 2-7 Irregular 4 0.14 

3 
Alder-leaved Buckthorn 

(Rhamnus Alnifolia) 
64 2-15 Vase-like 6 0.92 

4 
Azalea 

(Rhododendron Klondyke) 
95 4-27 Vase-like 3 0.00 

5 
Lodense Privet 

(Ligustrum vulgare) 
43 3-8 Columnar 4 0.53 

6 
‘Rosebud’ Azalea 

(Rhododendron Rosebud) 
36 2-5 Rounded 2 0.06 

7 
Southern Arrowwood 

(Viburnum Dentatum) 
57 0.5-32 Rounded 6 0.32 

8 
Barberry ‘Concorde’ 

(Berberis Thunbergii) 
40 3-10 Rounded 3 0.2 

9 
Meserve Holly 

(Ilex x Meserveae) 
62 3-24 Vase-like 6 1.00 

10 
Sky Pencil 

(Ilex Crenata) 
71 3-15 Columnar 4 0.32 

 

A qualitative inspection of Figure 5 shows that the main architecture of the shrubs was 

generally well represented by the TreeQSM models, with only a small percentage of branches 

occluded or modeled incorrectly. The reduction of the point density did not notably alter the 

overall representation of the architecture. However, branch connectivity was less consistently 

well-modelled, particularly for the lower resolution point clouds, which had more occluded and 

inaccurately modeled branches than the high resolution point clouds. Shrub models with lower 

complexity generally had higher levels of completeness and correct placement of branches. 

Furthermore, the denser and more architecturally complex shrubs models included artifacts not 

in the original point cloud.  
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Figure 5. Examples of shrub representation as point clouds and QSM models. Top row:  

shrub 4, the shrub with the lowest complexity (Sc). Bottom row: shrub 9, the shrub with the 

highest complexity. (a) photo of shrub (b) low-resolution TLS point cloud. (c) Reconstructed 

QSM_L using TreeQSM. (d) High-resolution TLS point cloud and (e) reconstructed QSM_H 

using TreeQSM 

 

 

 Shrub height and branch detection 

Both QSM_L and QSM_H calculated shrub heights showed a good linear fit with the 

measured shrub heights. QSM_L had an R2 of 0.98, an RMSE of 5.18 cm, and an MAE of 4.43 

cm. Except for shrub 3, there were only slight variations between iterations. The QSM_H had a 

marginally higher R2 of 0.99, and lower RMSE and MAE of 3.20 cm and 2.40 cm, respectively. 

Although the derived heights plotted close to the 1:1 line, the TreeQSM data consistently 

underestimated the shrub heights. 

The average number of branches correctly detected and modeled by QSM_H(correct) was 

nearly 80%, whereas QSM_L(correct) only successfully detected 56% of branches across the six 

repetitions of the ten shrubs (Table 3). QSM_H(correct) and QSM_L(correct) refers to branches 

that are located and paired correctly with the manually measured branches. The 

QSM_H(correct) standard deviation was also notably smaller than the QSM_L(correct) branch 

Shrub 4 

Shrub 9 
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detection standard deviation, indicating less variability when detecting and reconstructing 

branches in the high resolution data. When all the identified branches are included in the total 

branch count, including the incorrectly labeled branches (e.g., QSM_H(error_included)), not 

surprisingly, the total number of branches increased, and these increased number of branch 

estimates are closer to the measured number (Table 3). The erroneously modeled branches 

inflated branch detection percentages by nearly 11% and 26% for QSM_H and QSM_L, 

respectively.  

 

Table 3. Percentage of manually measured branches detected by QSM_H and QSM_L 

 

Model Reference 

Branch Count 

Average QSM 

branch Count  

Average 

Std. dev 

% branches 

detected 

QSM_H(Correct) 1347 1059.33 12.98 78.64 

QSM_L(Correct) 1347 748.50 21.46 55.57 

QSM_H(error_included) 1347 1203.00 10.50 89.31 

QSM_L(error_included) 1347 1098.00 18.60 81.51 

 

 Branch Diameter  

For the QSM_L, the prediction of branch diameter had an R2 was 0.94 with RMSE of 0.79 

mm and MAE of 0.61 mm. The regression results for the QSM_H had a slightly lower R2 of 0.91 

and higher RMSE and MAE than the QSM_L. However, the slope of the QSM_H linear fitting 

line was closer to the 1:1 line than that of QSM_L. Both sets of models underestimated branch 

diameter. The standard errors of the models indicate that the QSM_L models had extensive 

ranges of modeled values for the same branch. Moreover, the variability of the modeled values 

increased for smaller branch diameters.  

Plots of the predicted versus measured branch diameters indicate that the model 

performance differed for 0-5 mm and >5 mm branch diameters, and therefore separate 

regression analyses were carried out for these two diameter intervals. For diameters smaller 

than 5mm, the TreeQSM models generally overestimated the branches, with both the QSM_L 

and QSM_H models exhibiting relatively low R2 values of 0.44 and 0.37, respectively, and high 

standard errors. In contrast, branch diameters larger than 5 mm were predicted much more 

accurately. The regression slope of QSM_L is 0.93 (green line, Figure 6a) and of QSM_H is 0.99 

(blue line, Figure 6b), which is very close to the 1:1 diagonal line.  
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Figure 6. Linear regression of modeled vs measured bush branch diameter for branches > 5 

mm in diameter for QSM_L (a) and QSM_H (b)  

 

For QSM_L, 13% of detected branches were overestimated (0.6 mm thicker on average) and 

diameters larger than 5 mm were underestimated by 9% (1.12 mm thinner on average, Figure 7a). 

Notwithstanding that the QSM_H had a higher branch count, it performed better for branch 

diameter classes larger than 5 mm, with an average percentage error of only 2.6% (Figure 7b). For 

branches larger than 10 mm, the QSM_H diameters were only slightly overestimated. 

Furthermore, the range in diameter predictions for any one branch was generally smaller for 

QSM_H than for QSM_L. However, the main difference between the two model methods was that 

QSM_L predominantly underestimated diameters, whereas QSM_H predominately 

overestimated diameters. Comparing the two QSM point densities, we found that of the 750 

branches detected by QSM_L, there was an average relative error of 10%, and of 1347 branches 

detected by QSM_H, there was a slightly smaller average relative error of 8%. Both methods 

generally overestimated the smallest diameter class.  

 

 

 

 

 

 

 

 

(a) QSM_L  (b)   QSM_H 
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Figure 7. Table of average absolute and average relative error of shrub branches by diameter 

class with the corresponding graph for L_QSM (a) and H_QSM (b). The dashed red line indicates 

zero error. The error bar represents the range of modeled diameters, and the small circles are 

average error. Negative values indicate underestimation, and positive values show 

overestimation.   

 

 Influence of Architectural Traits on Model Accuracy 

 

The final objective of this study was to determine whether architectural traits influence the 

accuracy of the models. We classified shrubs into one of four categories of shrub complexity (Sc): 

Low= Sc ≤ 0.25, Medium = Sc  between 0.25 and 0.5, High = Sc  larger than 0.5 and less than 0.75 and 

very high = Sc  ≥ 0.75. As the shrub's complexity increases, the percentage of branches detected 

decreases for both modeling methods. However, this change in accuracy for the QSM_L method 

is greater than for the QSM_H method (Table 4, Figure 8a). Overall, the QSM_H maintains a high 

level of accuracy, above 75%, which remains relatively constant as the shrub complexity increases. 

We found that the QSM_L method accurately detected branches in low-complexity shrubs 

(72.69%); however, the accuracy of branches detected for highly complex shrubs fell to 56.47%. 

For example, of the 117 branches of medium complex shrubs, 81 branches were undetected by 

QSM_H, while for the most complex shrubs with 685 branches, QSM_H did not detect 

approximately 150 branches. 

(a)                                L_QSM 

Diameter 

Class (mm) 

Mean 

Abs. 

Error 

Std. 

Dev 

Relative 

Error 

(%) 

Branch 

Count 

0-5 0.92 0.60 27.20 887 

5-10 -0.42 0.33 -7.16 417 

10-15 0.19 0.16 1.6 25 

15-20 0.13 0.14 0.80 11 

20+ 0.23 0.08 0.89 7 

 

 

Diameter 

Class (mm) 

Mean 

Abs. 

Error 

Std. 

Dev 

Relative 

Error 

(%) 

Branch 

Count 

0-5 0.46 0.60 13.15 433 

5-10 -0.42 0.33 -12.50 288 

10-15 -1.17 0.43 -10.07 15 

15-20 -1.12 0.46 -6.08 7 

20+ -1.77 0.43 -7.02 7 

(b)                                H_QSM 
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For shrub form, the rounded crown-shaped shrubs had more branches detected with both 

QSM_H and QSM_L methods, 83% and 68%, respectively. Similarly, the columnar-shaped shrubs 

had the least number of branches detected in both QSM methods (Table 4, Figure 8b). The 

maximum difference in branch detection between the various shrubs forms was approximately 

12% for QSM_H and 16% for QSM_L.  

 

Table 4. Percentage of manually measured branches detected as a percentage by shrub 

complexity and shrub form for QSM_H and QSM_L (shaded) 
 

Model Reference 

Branch Count 

Average QSM branch 

Count  

Average 

Std. dev 

% branches 

detected 

Shrub Complexity 

QSM_H(Low) 119 100.67 2.44 84.59 

QSM_L(Low) 119 86.50 4.09 72.69 

QSM_H(Medium) 177 138.17 5.42 78.06 

QSM_L(Medium) 177 105.17 9.83 59.42 

QSM_H(High) 366 285.00 14.56 77.87 

QSM_L(High) 366 196.67 31.22 60.14 

QSM_H(V.High) 685 535.50 38.54 78.18 

QSM_L(V.High) 685 386.83 55.21 56.47 

Shub Form 

QSM_H(Columnar) 316 225.00 10.71 71.20 

QSM_L(Columnar) 277 144.17 20.13 52.05 

QSM_H(Vase-like) 733 581.33 26.03 79.31 

QSM_L(Vase-like) 733 416.83 37.24 56.87 

QSM_H(Rounded) 239 198.67 5.13 83.12 

QSM_L(Rounded) 210 143.83 12.37 68.49 

  

Figure 8. (a) Percentage of branches detected by QSM_L (green) and QSM_H (blue) for 

increasing degrees of complexity.* Axis started at 50% to highlight differences.  (b) Percentage of 

branches detected for QSM_L and QSM_H grouped by shrub form.  

(b) (a) 
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Additionally, to gain insight into how shrub architecture influenced modeling, we evaluated 

branch diameter accuracy for varying shrub complexities and by shrub form. We performed 

regression analysis on the QSM_H method to observe whether there was a significant difference 

between the accuracy of diameters. We observed a gradual decline in R2 as the Sc value increased, 

ranging from 0.97 for the least complex group to 0.84 for highly complex shrubs (Table 5). 

Furthermore, we noted that the shape form R2 stayed relatively consistent (0.9-0.92) regardless of 

shrub form. Only shrub 2, which we could not categorize into a common growth form, had a 

lower R2 of 0.63. 

 

Table 4. Coefficient of determination results comparing manually measured diameters to 

modeled diameters for QSM_H by complexity and by shrub form 

 

 

Shrub Complexity 

Branch diameter 

prediction vs. 

model R2 

Shrub Form 

Branch diameter 

prediction vs. 

model R2 

Low 0.97 Columnar 0.90 

Medium 0.94 Rounded 0.92 

High 0.87 Vase-like 0.92 

Very high 0.84 Irregular 0.63 

 

 

 Discussion 

 Accuracy of shrub traits 

The qualitative evaluation of the QSM models indicates that while the models 

successfully captured the overall shrub form, incorrectly modeled or occluded branches were 

more common with the low density TLS data. In general, the quality of TLS data varies with the 

type of TLS instrument used and also its characteristics, scan setup and layout, co-registration 

and the processing of the point cloud (Disney et al., 2018; D. Wang et al., 2020). We kept the 

model input parameters (patch diameter and ball radius) consistent for all the shrubs over the 

multiple model runs for each shrub, after having optimized them based on initial experiments 

with the shrubs. It is important to note that changing these parameters would likely change the 

resulting QSM models. Furthermore, the parameters we chose may not be suitable for all shrubs, 

and therefore should be modified for each new study, prior to collecting data. The TreeQSM 

user’s manual Raumonen (2020) provides detailed information on the optimization procedure.    
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Spurious branches were occasionally included in the models. Lau et al., (2018) also found 

their models sensitive to incorrectly added cylinders. These errors were often due to artifacts or 

empty areas in the point clouds due to occlusion. Paynter et al. (2018) found inconsistencies in 

the TLS scan information, and even with multiple scans occlusion still occurred. For our study, 

both low and high point cloud resolutions had high R2 values for predicting shrub height, 

although the margin of error for height estimations for QSM_L shrubs was larger. Wagers et al. 

(2021), with their research focusing on small (<5 m) spruce trees, also found a strong relationship 

between measured and modeled QSM heights. However, previous work on tree QSMs by 

Torresan et al. (2018) reported underestimations for tree heights under 10 m, and other studies 

on larger trees did not obtain accurate height estimations (Huang et al., 2011b; Krooks et al., 

2014; Liang & Hyyppä, 2013; Srinivasan et al., 2015). We suspect that these low accuracies can 

be attributed to TLS beam divergence and uncertainties in treetop visibility, as other trees often 

obscure the treetops.  

The large standard errors of the model repetitions highlighted the variability in diameter 

predictions when run on the same input data. Standard error was notably higher for smaller 

diameter branches, even for the QSM_H models. We suspect these errors are due to partial and 

noisy branch reconstructions from TLS occlusion and a less dense point cloud, making the 

diameter estimates unreliable, especially for smaller diameters. Previous QSM studies achieved 

similar results (Calders et al., 2015; Fan et al., 2020; Hackenberg et al., 2015). For example, Lau 

et al., (2018) evaluated tropical trees and identified limitations for accurately estimating branch 

diameters smaller than 20 cm. Even more recently, Demol et al., (2022) and Wilkes et al., (2021) 

found that the accuracy of QSM branch diameter estimates was much lower for smaller 

diameters.  

The absolute and relative error by diameter class gives insight regarding which diameters 

are estimated accurately and where the QSM may need improvement. The QSM_L had a 

relatively high percentage of errors for all diameter classes, whereas the primary source in the 

QSM_H resulted from the '0-5 mm' diameter class. Both methods overestimated the smallest 

diameter class. These results are comparable to Demol et al.'s (2022) research on small branches 

of Fraxinus excelsior trees. They noted that branches with diameters smaller than 5 cm accounted 

for more than 80% of the overestimation of all branches. Similarly, Wilkes et al.'s (2021) branch 

architecture comparison results showed smaller branches were overestimated. According to 

Calders et al. (2015) and Torresan et al. (2018), overestimation is possibly related to TLS data 
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input quality and QSM reconstruction error. We consider that in our study, overestimation is 

likely due to cylinder overfitting in the QSM reconstruction process and the distance between 

points in the sparse point cloud. 

 Influence of shrub characteristics on QSM accuracy 

We found that shrub architectural form and complexity have a notable effect on model 

accuracy metrics such as the percentage of branches detected. As suspected, accuracy decreased 

as complexity increased for QSM_L. We observed a gradual decline in R2 as the shrubs' 

complexity (Sc) value increased. However, for the QSM_H method, the percentage of branches 

detected for low complexity shrubs initially declined (approximately 10%), then stabilized at 

75% as shrub complexity increased. Although the portion of branches detected remains 

relatively constant, we noted that the count of branches that were not detected nevertheless 

increased as shrub complexity increased. The decrease in branch detection is conceivably due to 

intricate branching patterns causing occlusion of the internal architecture of the shrub as well as 

small twigs not captured by the TLS point cloud. Our research highlights a strong relationship 

between the TLS input data and the TreeQSM results, confirming the results of previous work 

(Lau et al., 2018; Raumonen et al., 2013; Zheng et al., 2021b).  

The experimental results also indicate that shrub growth form significantly affects 

modeling accuracy (p-value < 0.05). Previous studies have shown that TLS data can be used to 

classify the plant architectural form. However, we did find similar studies on how architectural 

form influences accuracy (Jiang et al., 2019; Tomșa et al., 2021). In summary, the modeling 

algorithms provide realistic results for less complex shrubs like Rhododendron Klondyke. 

However, the reconstruction is less accurate for architectures that are more complex. 

 Conclusions 

Our study assessed the accuracy of TLS data in reconstructing various shrub species' 

architectural traits. In this study, we tested high (QSM_H) and low (QSM_L) lidar density point-

cloud data to model ten architecturally different shrubs. We demonstrated that with the 

TreeQSM algorithm, we could reconstruct the overall architecture of the shrubs using QSM_L 

and QSM_H methods. The derived heights from both approaches produced a high coefficient 

of determination. However, the QSM_H method could detect branches with better accuracy 

than the QSM_L method. In addition, our analysis showed accurate reconstruction for larger 

diameters (> 5 mm), while more work is needed for modeling smaller diameters. Furthermore, 
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the complexity of the shrub (i.e., more branches, more compact, higher bifurcation, smaller 

diameter branches, etc.) affect the accuracy of the 3-D architectural model.  

In general, we noted trade-offs between TLS point-cloud density, the complexity of the 

shrub, model input parameters, and processing time. For example, the more detailed the input 

data, the longer the preparation and processing time; however, this does produce more precise 

results. Therefore, the desired resolution of the 3-D models, and the complexity of the shrubs 

scanned, should be considered in designing the experimental setup to generate the appropriate 

point cloud density. Other trade-offs may include TLS technology available, project budget and 

timeline, as well as project significance.  

Further research into optimizing QSM algorithms for understory vegetation is still 

needed, especially for complex architectures. Future work should include fine-tuning input 

parameters and evaluating other parameters, such as volume estimations. A key focus of future 

research should also include improving QSM modeling to account for and better resolve 

uncertainties from TLS occlusion. We also need to test the feasibility of leaf modeling and 

models derived from in-situ TLS data. In addition, future studies could include scaling up from 

single shrub level to multiple shrub or plot level studies. Despite these future research needs, 

the methodology used in this study already demonstrates the generally high accuracy of shrub 

models generated using existing TLS instrumentation. QSM shrub reconstructions are non-

destructive, versatile representations of plant architecture.  Many fields, including forestry, 

agriculture, ecology, silviculture, and fire behavior, would benefit from these detailed 3D shrub 

models.  
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Abstract: Three-dimensional (3D) architectural plant traits are associated with plant 

flammability and influence fire behavior. Understanding vegetation flammability, especially in 

the understory, is essential for minimizing fire-related risks. However, fuel-related studies often 

focus on canopy fuels with little attention given to understory vegetation. In this study, we 

assessed the 3D architectural drivers of understory flammability by evaluating the use of 

architectural metrics derived from the TLS point cloud and 3D reconstructions of the shrubs. 

The study area was located in a fire-prone longleaf pine forest ecosystem using eight species 

based on their representativeness in the understory. We found that the same shrubs species were 

clustered together, and each species was associated with a unique combination of flammability 

and architectural traits. The final correlation results suggest that higher crown depth-to-height 

(CD:H) and lower crown width-to-height (CW:H) ratios are less flammable. In contrast, shrubs 

with lower CD:H and larger CW:H are generally more flammable. These results demonstrate 

the potential of using QSM to provide metrics that are complementary to TLS data, potentially 

improve flammability predictions, and increase our understanding of the linkages between 

flammability and architectural traits. Furthermore, this study represents the first effort 

comparing flammability obtained through TLS-derived architectural trait analysis, including 

novel shrub topology metrics. 

 

Keywords: Terrestrial light detection and ranging; Quantitative Structure Models (QSM); 

architectural traits metrics; flammability; fire behavior 
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 Introduction 

Fire has played an essential role for centuries in the natural structure of ecosystems 

throughout North America and the world. It helps maintain biodiversity by creating a mosaic 

of diverse habitats for flora and fauna, specifically by clearing out invasive species, affecting 

species competition, and recycling nutrients back into the soil (Chiodi et al., 2019; Gale et al., 

2021; Pausas & Bond, 2020). Importantly, fire also assists in removing fuels, which, left 

unchecked, can cause more devastating wildfires (Linn et al., 2002; Primer, 2016; Warner et al., 

2020). Each year, more than 50,000 wildfires are reported in the United States (NICC, 2021). 

Although large western forest fires draw considerable attention, the southeastern coastal plain 

accounts for nearly 40% of fire occurrences annually (NICC, 2021). Additionally, prescribed fires 

for forest management and agriculture occur more frequently in this region than elsewhere in 

the country (Lear & Harlow, 2002; Melvin, 2021).  

With a long history of frequent low-intensity fires and regular lightning strikes, the 

southeastern coastal plane has favored dominance by fire-adapted pine forest ecosystems with 

incendiary-type understory vegetation (Noss, 2018; Peet et al., 2018). In this type of fire regime, 

understory fuels comprise a major portion of plant diversity, act as ladder fuels and significantly 

influence fire behavior processes and patterns (Bailey et al., 2007; Bright et al., 2016; Gale et al., 

2021). Therefore, understanding vegetation flammability, especially in the understory, is 

essential for minimizing fire-related risks. In addition, characterizing how these fuels influence 

flammability may provide insight into wildland fire behavior, including intensity, severity, and 

spread as well as species coexistence patterns and plant succession (Halpern & Antos, 2022; 

Schwilk, 2003; Skowronski et al., 2020; Varner et al., 2015; Wyse et al., 2016).  

Current flammability studies vary in approaches and methods. Most research on plant 

flammability occurs in laboratory settings, focusing either on small (leaves, plant components, 

litter, etc.) or large fuel bed scales (Ganteaume et al., 2014; Morandini et al., 2019; Tumino et al., 

2019). Moreover, investigations of individual plants only consider a small number of traits and 

even fewer architectural traits (Morandini et al., 2019; Schwilk, 2003; Tachajapong et al., 2008). 

Due to logistics, plant dimensions, and difficulties in taking controlled measurements, limited 

results are available on full-scale plants and their burning characteristics under field conditions 

(Pausas & Moreira, 2012; Skowronski et al., 2020; White & Zipperer, 2010).    
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Furthermore, fuel characterization is typically represented by two-dimensional 

components (surface area, mass, bulk density, etc.). These measurements provide valuable 

information for fire modeling and behavior analysis. However, they tend to oversimplify the 

understory fuels and do not capture the architectural variability or other three-dimensional (3D) 

functional traits (Bright et al., 2016;  Rowell et al., 2020). Studies have shown that 3D plant 

functional traits influence fire dynamics and are associated with flammability (García et al., 2017; 

Loudermilk et al., 2022; Skowronski et al., 2020). For example, more architecturally complex 

plants with dense branching patterns of smaller twigs and dead material with low moisture 

content have a higher chance of igniting, rapidly combusting, and spreading to adjacent fuels 

(Dent et al., 2019; Peet et al., 2018; Santacruz‐García et al., 2019). Additionally, 3D understory 

architecture variations affect turbulent fluxes of energy and airflow, which can either aid 

combustion by supplying the fire with additional oxygen or act as barriers creating higher wind 

drag to impede fire intensity and spread (Banerjee et al., 2019; Parsons et al., 2017;  Skowronski 

et al., 2020). Plant architecture also influences vegetation moisture content, affecting fire ignition 

and spread in low-intensity fires (Loudermilk et al., 2022). 

Remote sensing technologies, particularly Light Detection and Ranging (LiDAR), have 

opened up opportunities for understory fuel characterization. LiDAR produces a 3D point 

cloud, which provides information regarding the vertical and horizontal distribution of 

vegetation (Åkerblom et al., 2017; Calders et al., 2018). Terrestrial Laser Scanning (TLS), or 

ground-based LiDAR, provides a below canopy perspective of the understory, allowing for 

higher resolution point clouds and better architectural approximations than airborne LiDAR 

(Atkins et al., 2018; Moorthy et al., 2011; Rowell et al., 2016). Numerous studies have shown the 

potential of using TLS data to measure plant functional traits, including height estimation, 

diameter at breast height (DBH), canopy structure and shape, and to distinguish foliage from 

woody plant material (Lau et al., 2018; Shi et al., 2018; Skowronski et al., 2007; Su et al., 2018).  

Recently, quantitative analysis advancements have enabled derivation of 3D models from 

TLS data. These models, known as quantitative structure models (QSM), create object-based 

depictions of plant topology and geometry from the point clouds (Burt et al., 2018; M. Disney, 

2019; Raumonen et al., 2013). QSMs isolate and model the woody structure of trees, making it 

possible to estimate architectural properties. For example, Bayer et al. (2013) showed that QSMs 

have the potential to predict branch angles, branch length, and branch bending. Lau et al. (2018) 

further demonstrated the use of QSM algorithms to reconstruct the woody structure of tropical 
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rainforest trees. The QSM model accurately calculated branching orders, tree volume, and 

length and diameter of specific branches. Numerous other studies also successfully used QSM 

to approximate ecological properties (Åkerblom et al., 2015; Bournez et al., 2017; Raumonen et 

al., 2013; Calders et al., 2018; Disney, 2019; Du et al., 2019; Martin-Ducup et al., 2020). However, 

QSM algorithms have predominantly focused on 3D tree reconstruction for forestry and ecology 

applications, with little attention given to understory vegetation or using derived traits for fire 

behavior analysis. 

The main objective of our study was to evaluate the use of TLS and QSM data to 

characterize understory fuels for fire behavior analysis. We addressed this by (1) measuring 

TLS- and QSM-derived architectural traits on dominant understory species, (2) experimentally 

analyzing flammability of these species and (3) evaluating the use TLS and QSM architectural 

metrics for predicting variability in shrub flammability.  

 

 Methods 

  Study Area 

We conducted our research in the Middle Aucilla Conservation Area (MACA) within the 

Aucilla Wildlife Management Area (AWMA), approximately 7 miles south of the town of 

Lamont, Florida (Figure 1a). Using a stratified sampling approach, we located and set up 

twenty-five 5m by 5m plots within MACA. We then randomly selected 12 of these plots for this 

study, while the others were utilized for a different 3D fuel characterization study (Figure 1b).  

The study site was representative of mesic flatwoods, the most common natural 

community type remaining in the southeastern Coastal Plain (FWC, 2016; Noss, 2018). Our 

study site had relatively flat terrain and low-lying elevation (lower than 14 m above mean sea 

level). The area is dominated by either slash (Pinus elliottii var. densa) or longleaf pine (Pinus 

palustris) overstory with dense short shrub understory with a few scattered sections of ferns and 

grasses (Figure 1c). Characteristic understory species include saw palmetto (Serenoa repens), 

gallberry (Ilex glabra), tarflower (Bejaria racemosa), Darrow's blueberry (Vaccinium darrowii), and 

dwarf live oak (Quercus minima). These flatwoods essential to the biota of this region, providing 

habitat for numerous wildlife species, including rare species such as the red-cockaded 

woodpecker, flatwoods salamander, Florida black bear, and gopher tortoise.  
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Frequent low-intensity fires (2-5 years) are the leading environmental factor maintaining 

these ecosystems. As a result, most animal and plant life inhabiting these communities have 

adapted to periodic fires or depend on them for their existence. Although some periodic fires 

occur under natural conditions, the Florida Fish and Wildlife Conservation Commission (FWC), 

in collaboration with other agencies, employs prescribed management practices in the AWMA. 

Using prescribed fires ensures that historic natural communities are maintained in this area by 

limiting the build-up of mid-story fuels and controlling hardwood encroachment.  

Our research area was representative of a four to five-year fire return interval. 

Additionally, we selected our timeframe based on when environmental conditions were most 

conducive to fires. As such, our fieldwork took place during May 2021, which is historically one 

of the driest months for the state. On average for the months of May and June, the Wildland Fire 

Danger Index (FDI), a continuous reference scale for estimating the likelihood of fire ignitions, 

ranges from moderate to very high probability of wildland fires.  

  

Figure 1. (a) Middle Aucilla Conservation Area study site within Florida, USA. (b) Approximate 

locations of the 25 stratified study plots with green circles representing the 12 randomly selected plots 

used in this study. (c) Representative photo of typical vegetation within the study area.   

Data source: 

NAIP Imagery 

(b) (c) 

Pine Forest Ecosystem 
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 Sampling and TLS Collection 

For this study, we selected the eight most dominant shrub species across the 12 plots. We sampled 

ten replica plants of each of the eight species (Table 1). To facilitate comparisons between the species and 

the burn experiments, we constrained our sampling of the ten plants, keeping heights per species similar. 

First, we chose and flagged our species samples in all the plots. Although not used in this study (for 

future scaling up studies), we acquired TLS data at two scales before conducting the in-field 

measurements. At the study site scale, the entire area was scanned systematically every 50 m, and at the 

plot level, each plot was scanned from four viewpoints on the plot’s boundary.   

Field measurements included above-ground height, height to first branch(s), crown 

widths (North-South and East-West), number of stems, and dead branch/stem count. We also 

recorded the spatial arrangement of the selected shrub indicating whether the shrub was 

isolated or growing within a cluster of other shrubs. Thereafter, we carefully uprooted the 

flagged species, preserving the shrub architecture as much as possible, and moved them to an 

indoor location in pots that retained the root system and surrounding soil. Where species grew 

in clusters, we uprooted surrounding species to include in burn experiments (section 2.3). We 

harvested the shrubs samples in increments over multiple days to ensure plants represented 'in-

field' conditions during the acquisition of measurements, scanning, and subsequently, for 

selected shrubs, burning.  

 

Table 1. List of eight dominant shrub species collected with mean height (cm) and standard deviation 

(Std dev.) across the ten replicas. 

 

After harvesting the samples, we moved them to an indoor location to minimize the 

effects of wind and other disturbances. We carefully set up between 2 to 8 shrubs (depending 

on the sizes) in a circular pattern at our 6m x 5m site. We recorded branch orders using 

Scientific Name Common Name 

USDA 

Abbreviation 

Mean height of 

replicas (cm) 

Std 

dev. 

Vaccinium darrowii Darrow's Blueberry VADA 95 10.60 

Vaccinium stamineum Deerberry VAST 139 16.82 

Vaccinium arboreum Farkleberry VAAR 148 5.73 

Ilex coriacea Gallberry ILCO 161 14.54 

Ilex glabra Inkberry  ILGL 142 5.89 

Quercus minima Dwarf Live Oak QUMI2 82 3.24 

Serenoa repens Saw Palmetto SERE2 121 6.77 

Cyrilla racemiflora Swamp Titi CYRA 162 22.87 
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centrifugal ordering and diameter before branching (DBB). Using a unique branch identification 

methodology, we also recorded ten random branch diameters for each shrub. More information 

on the branch identification methodology is provided in the previous paper (Manuscript 1). 

Next, we placed eight 145mm diameter spherical targets at different heights around the room 

and collected LiDAR scans using a FARO® Focus S350 TLS (FARO Technologies, Inc., 

www.faro.com). The scanner uses a phase-based scanning technique, in which the returned 

signal is compared to the wave pattern of the emitted laser beam; and the displacement is 

determined via the phase shift (FARO® Knowledge Base, 2021). The advantage of using phase-

based scanners is a higher accuracy and resolution within the short distances measured. Since 

we place our shrubs within 10 m of the scanner, the FARO® Focus is an optimal choice for this 

study. The scanner has respectively a 300° vertical and 360° horizontal field of view. It uses a 

laser with a 1550 nm wavelength with a beam divergence of 0.3 mrad. 

We performed eight scans from various positions around the room, with two scans from 

the center, one with a low scanner position (0.5 m) and one with a higher scan position (1.5 m). 

The acquisition time for each scan was approximately 18 minutes using 3x quality and ½ 

resolution settings. Each scan captures about 174 Million points (MPts), and has a range accuracy 

of 3.1 mm at a 10 m distance from the scan. In addition, the integrated camera captured high-

resolution true color images that we used for co-registration post-scanning. We based our 

decision to use these specifications on previous studies' findings (Manuscript 1, Lingfors et al., 

2017). We repeated the process of scanning in intervals until all shrubs were measured and 

scanned. Finally, we processed the raw LiDAR point cloud using FARO Scene software and 

saved the outputs as .laz files for further processing and analysis. 

 

 

 

 

 

 

 
 
 

Figure 2. (a) Top view of indoor scan location layout, displaying TLS scanner (rectangles), 

target and approximate shrub locations. (b) Point cloud extract from one TLS scan position (red 

rectangle) 

http://www.faro.com/
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 Controlled Field burns and flammability trait measurements 

After we completed the scanning and measurements, we carefully relocated six replicas 

of each shrub species to Tall Timbers research station in Tallahassee, Florida, for controlled 

experimental field burns. Here we prepared 1 m by 3 m burn plots to replicate MACA field 

conditions as close as possible. To achieve this, we replanted the sampled shrub in front of a 

ruled metal rod towards the end of the burn plot. If the sampled shrub grew within a cluster in 

MACA, we also replanted those shrubs around our sampled shrub. After that, we layered pine 

needle litter within the burn plot. We placed mixed litter collected from around the specific 

shrub in MACA around the shrub. Finally, we set up an RGB camera at the base of the plot to 

record each experiment and a Forward Looking InfraRed (FLIR) A655sc fixed thermal infrared 

camera placed perpendicular to the sampled shrub to capture fuel temperatures throughout the 

experimental burns (Figure 3). The FLIR sensor has a spectral range of 7.5 – 14.0 μm and features 

a 640 x 480 pixel microbolometer that can detect temperatures up to 660 °C (FLIR A655sc, FLIR 

Systems, Inc., Wilsonville, Oregon, USA). 

 

 

Figure 3. Top and side view of burn plot layout. The red rectangle depicts sampled shrub 

location. 
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With the assistance of fire science technicians, we ignited the plot along a line 

perpendicular to the wind with hand-held drip torches from the base edge. Burns occurred 

within 48 hours from the time when the shrubs were harvested in the field. The average daytime 

temperature during burns ranged between 25 and 28°C; relative humidity ranged from 48 to 

52%, and wind speed was approximately 6 to 8m/s. After each burn, we cleared the burn plot of 

debris before setting up the next sampled shrub. If the fire did not completely consume the 

sampled shrub, we set up the LiDAR scanner and scanned the remaining shrub architecture. We 

used the scans for consumption percentage calculations. During each burn, we recorded various 

flammability traits. Table 2 outlines the different methods applied for measuring and calculating 

the various flammability traits from the TLS and QSM reconstructions. Similar flammability 

measurements have been employed by Morandini et al. 2019; Santacruz‐García et al. 2019; 

Tumino et al. 2019; Wyse et al. 2016 and others. 

 

Table 2. Description of shrub flammability trait measurements and calculations. 

 

Traits Abbreviatio

n 

Measurement method 

Flaming duration (sec) FD Difference in seconds between time of ignition and end of flaming 

Maximum flame height (cm) FH_MAX Estimation of maximum height of flame during flaming from metal 

rod  

Flame height ratio  FH The ratio of maximum flame height to shrub height  

Peak temperature (°C) TPEAK Peak temperature recorded during combustion (not including litter) 

Peak Radiative Heat Flux 

(W·m-2) 

RHFPEAK The peak radiative heat flux during the flaming duration (not 

including litter)  

Consumption (%) % Con Difference in volume as a percentage calculated from lidar derived 

QSM of shrub before and after the burn.  

Relative burn rate (cm3 sec-1) RBR Shrub volume consumption difference divided by the flaming 

duration  

 

 

 Shrub trait measurements 

We preprocessed the TLS data of the six shrubs used in our fire experimental burns for 

analysis using FARO Scene software. Thereafter, we clipped the individual shrub's point clouds 

and cleaned these data in CloudCompare software (Girardeau-Montaut, 2016). Using the 

processed point cloud data, we estimated the North-South and East-West crown width 

(CWNS/EW) from the diameters fitted to the convex hull of the shrub crown. We used these data 
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to approximate the average crown width (Avg_CW) and crown area (CA) with an elliptical 

formula (Zhu et al., 2020). To characterize how much of the shrub consisted of foliage, we 

calculated the crown depth-to-shrub height ratio (CD:H), where crown depth is defined as the 

difference between maximum shrub height and height to first branching order as recorded 

manually (Martin-Ducup et al., 2020). We also computed the crown depth to average crown 

width (CD:CW) and average crown width to height (CW:H). Lastly, we calculated shrub-form 

metrics independent of shrub size by defining relative height bins of 0-20% (H_B1) of the 

maximum height (HMax), 20-40% of HMax (H_B2), 40-60% (H_B3), 60-80% of HMax (H_B4), and 

80%-HMax (H_B5). Within each relative height bin, we calculated the percentage of returns. Using 

the Z-values, we computed the descriptive statistics (mean, median, standard deviation (std. 

dev), skewness, and kurtosis) for the entire point cloud of each shrub.  

In order to create QSM models for each shrub, we needed to separate the foliage from the 

woody points. We used the well-recognized LeWoS methodology Wang et al. (2020) developed 

to achieve this. LeWoS is adapted from previous work by Vicari et al. (2019); it is an automatic 

algorithm with some manual fine-tuning parameters that separate leaf and woody components 

from point cloud data. It utilizes recursive point cloud segmentation and regularization 

procedures and yields overall accuracies upward of 90%. For this study, we tested four feature 

similarity tuning thresholds (0.1, 0.125, 0.15, and 0.2) and selected the point cloud that visually 

best represented the woody portion of the shrub. We set these thresholds based on the results 

from Wang et al. (2018). Once separation was completed, we extracted only the woody points 

and reconstructed the individual shrubs using the QSM method developed by Raumonen et al. 

(2013) and further adapted for shrubs in a previous study (Manuscript 1), where we described 

the reconstruction process in detail. We further refined these models using the aRchi package in 

R (R Core Team, 2013) to compute topology metrics (Martin-Ducup et al., 2020). For improved 

visualization, we make use of the QSM add-in feature for Blender 3.1 open-source software 

(https://www.blender.org/). Figure 4 shows an example of the processing steps from point cloud 

to the final QSM. 
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Figure 4. a) Cleaned and processed point cloud b) LeWoS leaf/wood separation 

algorithm. c) Filtered point cloud with only woody attributes. d) QSM model. e) Paths created 

with aRchi package (colored by branch order). f) Final visualization after enhancement using 

QSM add-on within Blender software. 

We recorded the highest branching order (BOH) of every shrub, total branch count (BC), 

and the shrub's average diameter of the first (AvgD_BOF) and last branch orders (AvgD_BOH). 

The first-order branching was defined as the first ramification from the shrub's main 

stem(s)/trunk. Then, we calculated the average branching angle (BA) per shrub using the mean 

zenithal angle of all segments (branches) except the main stem(s)/trunk. This metric indicates 

the growing orientation of branches, with higher branching angles associated with shrubs with 

on average a more horizontal-orientated branching pattern. Moreover, we calculated the fork 

rate (FR) as the mean number of ramifications per height bin calculated by modifying the aRchi 

'ForkRate' function from open source code available from Github (https://github.com/umr-

amap/aRchi/blob/main/R/ForkRate.R). A lower fork rate designates less complex branching 

patterns. In contrast, a higher fork rate would suggest a more complex branching habit (i.e., 

many branches), with branches often growing outward rather than upward. We also recorded 

the estimated woody volume from the QSMs. Table 3 summarizes the frequently utilized shrub 

traits along with the measurement descriptions. 

https://github.com/umr-amap/aRchi/blob/main/R/ForkRate.R
https://github.com/umr-amap/aRchi/blob/main/R/ForkRate.R


  Chapter 2       

47 

 

 

Table 3. Description of shrub trait measurements from TLS and QSM. 

 

Architectural Traits Measurement 

TLS 

Point cloud (All) Mean, median, standard deviation, skewness, and kurtosis of z-

values 

Point cloud (relative height bins) Percentage of point clouds within each of the five bins, where 

the bin is 20%,40%,60%,80% and 100% of the maximum height 

of the shrub 

Crown depth to height ratio (CD:H) Maximum shrub height divided by the height of foliage cover  

Crown width to height ratio (CW:H) Average crown width divided by the height of the shrub 

Crown width to crown depth ratio 

(CW:CD) 

Average crown width divided by the crown foliage cover height 

Crown area (CA) Ellipsoid area formula from estimated crown widths 

QSM 

Fork rate (FR) Average number of forks per relative height bin 

Branch count (BC) Total number of branches  

Branch angle (BA) Average zenithal angle of all branches (except the main stem(s)) 

Branch diameters Average branching diameter of first and last branch order 

estimated from QSMs 

Volume Volume of woody portion of shrub obtained from QSM 

Highest Branching Order Recorded the highest ramification of shrub branches 

 

Since the moisture content of vegetation significantly influences fire behavior and plant 

flammability (Banerjee et al., 2019; Castro et al., 2003; Grootemaat et al., 2015), we used the four 

remaining samples of each shrub species to obtain leaf moisture content. We systematically 

removed the leaves and weighed them to give us their fresh weight (g). Thereafter, they were 

stored in a Ziplock plastic bag until we could dry them in an oven for two days at 80 °C (Krix & 

Murray, 2018; Pérez-Harguindeguy et al., 2013), after which we re-measured the dried leaves 

and calculated fuel moisture content (MC) as a percentage (Eq.1).  

 

𝑀𝐶 =  
𝐿𝑊𝐹𝑟𝑒𝑠ℎ−𝐿𝑊𝐷𝑟𝑦

𝐿𝑊𝐷𝑟𝑦
 × 100       (Eq.1) 

where LWFresh is the fresh weight of the shrub leaves in grams and LWDry is the weight of 

dried shrub leaves in grams. The average MC percentage from the four replicas of each shrub 

species was calculated and attributed to the burned shrubs species. 
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 Statistical Data Analysis 

We calculated the Pearson Correlation Coefficients between the TLS and QSM-derived 

traits to determine associations between shrub traits. Given the inherent multicollinearity of 

shrub characteristics, we computed principal component analysis (PCA) to explore correlation 

patterns between various shrub species. PCA is a traditional multivariate statistical method that 

rescales features to a common scale and is used to solve multicollinearity and reduce the number 

of predictive variables without losing a significant amount of information  (Alam et al., 2019; 

Engber & Varner, 2012). We performed an initial PCA on all the architectural shrub traits. Then, 

we used the squared cosine to identify variables that were poorly represented by the PCA, 

removed them, and reran the PCA with the remaining variables. The squared cosine indicates 

the contribution of a component to the squared distance of the variable to the origin and is a 

measure of the importance of the given variable (Abdi & Williams, 2010).  

We further used PCA as a preliminary analysis to determine flammability patterns 

among each species and to select influential flammability variables, explaining at least 70% of 

the variation. Following the PCA, we performed a partial least squares (PLS) analysis to find 

associations between the explanatory variables (shrub traits) and the most influential 

flammability variable(s) as determined by our PCA. The PLS was performed on the QSM-

derived and TLS traits separately as well as in conjunction to evaluate which traits (QSM or TLS 

or combined) promote flammability and influence these metrics. Finally, we used the first PCA’s 

of the flammability and architectural traits to compare species flammability by traits (García et 

al., 2017; Wyse et al., 2016). We used a combination of R software environment (R Core Team, 

2013) and JMP 
® statistical software (JMP Pro ® Statistical Software, 2021) to run our analyses.  

 Results 

 Shrub Architectural Diversity  

Using the squared cosines of our initial PCA results of all the architectural shrub traits, 

we found that height, standard deviation, skewness, percentage of points in all height bins 

(except 4), and the average diameter of the first branching order of the shrubs, had low cos2 

values (≤ 0.25) for both of the first two principal components (Table 4). A low cos2 indicates that 

these variables are not well represented by the first two principal components, despite the fact 

they explained 53% of the variability.  
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Table 4. Squared cosines of all TLS and QSM architectural traits depicting the variable 

contribution for the first two components. 

 

Trait Variable 
Cos2 

PC 1 (30.98%) PC 2 (21.88%) 

Total Stems 0.711 0.132 

Height 0.085 0.280 

CD:H 0.044 0.413 

Avg_CW 0.517 0.050 

CA 0.595 0.057 

CW:H 0.652 0.259 

CW:CD 0.326 0.006 

Mean 0.146 0.666 

Median 0.098 0.661 

Std. dev 0.006 0.200 

Skewness 0.001 0.120 

Kurtosis 0.166 0.419 

%B1 0.235 0.205 

%B2 0.232 0.248 

%B3 0.000 0.154 

%B4 0.432 0.178 

%B5 0.102 0.173 

BA 0.774 0.011 

FR 0.214 0.504 

BC 0.139 0.406 

BOH 0.602 0.007 

Volume 0.379 0.001 

AvgD_BOF 0.251 0.097 

AvgD_BOH 0.627 0.030 

MC 0.408 0.192 

*Values in bold correspond to each trait variable for which the squared cosine is the largest of the principal components 

The rerun of the PCA without these variables represented 65% of the total variability 

within the first two biplot axes (Figure 5a). PC 1 (41.52%) is associated with shrubs that have 

larger branching angles and a higher number of branch orders on the positive side of the axis. 

On the negative horizontal axes, PC 1 is associated with shrubs with larger diameters for the last 

branching order, which have more stems and a wider crown (high CW:H). PC 2 (23.77%) 

primarily represents shrubs with higher fork rates and are taller on the positive side of the 

vertical axis, and shrubs with fuller crowns (high CD:H) on the opposing side of the axis. The 

architectural variable contributions (in percentages) to PC 1 and PC 2 are illustrated in Figure 

5b. BA and total stem architectural traits had the highest contribution for PC 1, with 11.65% and 

11.62%, respectively, while the mean (17.37%) and median (15.41%) had the highest contribution 

for PC 2.  
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Within the multivariate space delimited by PC 1 and PC 2, shrub species are denoted by 

unique colored points. From this biplot, we observed that individual members of each shrub 

species are generally clustered in close proximity. The Serenoa repens shrub replicas, which have 

a large number of stems and wider crown are clustered in the negative quadrant (Figure 5a, q4), 

Cyrilla racemiflora, Vaccinium arboretum, Ilex coriacea and Ilex glabra shrubs are primarily grouped 

in the positive quadrant (Figure 5a, q2), and Quercus minima shrubs towards the center of the 

PCA biplot. 

 

Figure 5. a) PCA of shrub architectural traits with points representing the shrub replicas' 

mean score, colored by shrub species. b) Variable percentage contribution to PC1 and PC2.  

Pearson's correlation tests demonstrated significant (p <0.05) interrelationships between 

trait variables, shown in bold in Table 5. All the shrub traits displayed some significant 

relationship with two or more other traits. The average crown width, crown area, average 

diameter of the last branching order, and CW:H ratio demonstrated a significantly strong 

positive (r < 0.7) relationship with the total number of stems. Conversely, the average branching 

angle of shrubs revealed a strong negative (r < -0.7) correlation with the total number of stems 

as well as the CW:H ratio. The average crown width also had a significantly strong positive 

correlation with CW:H and the average branch diameters of the last branching order. However, 

it only presented a moderate negative correlation with BOH (r = -0.64; p <0.05) and branching 

b

) 
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angle (r = -0.66; p <0.05). The TLS-derived CW:CD ratio and percentage of returns in bin four (% 

B1) and QSM-derived branch count variables only had low to moderate correlations with other 

traits. We found that the CW:H ratio statistic showed a strong negative correlation with moisture 

content (r = -0.70; p <0.05), branching angle (r = -0.72; p <0.05) and fork rate ( r = 0.71; p <0.05). 

Moreover, we noted that the height of the shrubs was not significantly (p >0.05) correlated to 

most of the other variables, whereas the branching angle and the average diameter of the last 

branching order were.   

 

Table 5. Pearson's correlations among shrub architectural traits. Values in bold indicate a significant 

(p <0.05) correlation, green highlighted cells display strong positive correlations, and grey highlighted 

cells show strong negative correlations.  
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Height -0.28                 

CD:H 0.53 -0.46                

Avg_CW 0.78 0.11 0.18               

CA 0.83 0.04 0.25 0.99              

CW:H 0.88 -0.48 0.46 0.81 0.84             

CW:CD 0.35 -0.08 -0.45 0.62 0.58 0.56            

Mean 0.09 0.51 -0.36 0.23 0.22 -0.08 0.21           

Median 0.02 0.41 -0.39 0.14 0.13 -0.11 0.25 0.93          

Kurtosis 0.00 0.00 -0.42 0.00 0.01 -0.02 0.34 0.54 0.52         

% B4 0.37 -0.02 0.07 0.20 0.25 0.21 0.07 0.61 0.44 0.55        

BA -0.87 0.19 -0.39 -0.66 -0.73 -0.72 -0.32 -0.31 -0.22 -0.15 -0.58       

FR -0.57 0.71 -0.57 -0.33 -0.37 -0.71 -0.17 0.41 0.36 0.26 -0.06 0.43      

BC -0.09 -0.01 0.15 0.11 0.04 0.08 -0.07 -0.54 -0.46 -0.54 -0.65 0.36 -0.28     

BOH -0.65 -0.04 -0.18 -0.64 -0.69 -0.54 -0.33 -0.39 -0.28 -0.24 -0.62 0.79 0.18 0.35    

VOL -0.36 0.70 -0.01 -0.07 -0.12 -0.47 -0.43 -0.03 -0.05 -0.46 -0.42 0.40 0.50 0.38 0.15   

AvgD_BOH 0.70 0.14 0.09 0.74 0.78 0.57 0.45 0.49 0.35 0.30 0.58 -0.76 -0.09 -0.40 -0.86 -0.15  

MC -0.63 0.61 -0.33 -0.39 -0.43 -0.70 -0.40 0.13 0.08 -0.14 -0.15 0.52 0.67 -0.15 0.28 0.66 -0.15 

 

 Shrub flammability 

The correlation circle for the PCA of the shrub flammability data (Figure 6a) 

demonstrated that peak temperature and peak radiative heat flux during the combustion of 

shrubs are positively correlated. Similarly, the FH:SH ratio and percentage consumption are 
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positively correlated, but both are negatively correlated with the highest branching order left on 

the shrub after we burned it. Furthermore, the first two components of the PCA explained most 

of the data's variation (79%). The first PC axis explained 61% of the variation and had an 

eigenvalue of 3.6. It was predominantly associated with consumption components (% 

consumption and BOH_AB) and combustion components (Tpeak, RHFpeak, and FH:SH). Whereas 

the second PC axis explained approximately 19% of the variation with nearly four times smaller 

eigenvalue of 1.1, it was mainly associated with the sustainability component we calculated as 

the relative burn rate (RBR).  

Figure 6b illustrates large flammability differences among most species. By looking at PC 

1, which explained the most variation, we see that Ilex coriacea and Ilex glabra species are 

clustered together and associated with highest branch orders left after the burn. The PCA results 

also indicate that Vaccinium darrowii and Serenoa repens had similar flammability characteristics 

and were associated with higher maximum temperatures, maximum radiative heat fluxes, flame 

height to shrub height ratios and greater consumption of the shrub by the fire.  

 
*Table 1 provides the shrub's scientific name with corresponding USDA abbreviations used in the figure. 

 

Figure 6. a) PCA correlation circle of flammability components and histogram of 

eigenvalues. b) PCA biplot of flammability variables with points representing the shrub replicas' 

mean score, colored by shrub species.  
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As mentioned before, % Con and FH:SH are correlated with each other and inversely 

correlated with BOH_AB, and TPEAK and RHFPEAK are correlated with each other. However, TPEAK 

and RHFPEAK are approximately orthogonal to % Con and FH:SH and thus not likely correlated. 

As such, we further investigated TPEAK and % Con as they had the highest variable contribution 

and loading factors in PC 1 that were unrelated.  

Overall, we observed different responses between the shrub species during the 

experimental burns. Serenoa repens and Vaccinium darrowii had the highest measures for both 

flammability metrics and remained relatively consistent for shrub replicas of the same species 

(Figure 7). We found the most peak temperature variation among the same species in Quercus 

minima and Vaccinium stamineum shrubs, with maximum temperatures ranging from 309°C to 

575°C and 239°C to 532°C, respectively (Figure 7a). Ilex coriacea and Ilex glabra shrubs had the 

lowest percentage of consumption and peak temperatures, with mean % Con of 14% and 39% 

and mean TPEAK of 120°C and 132°C, respectively (Figure 7). Our experimental burn results also 

highlighted a stark difference between peak temperature and percentage consumption for 

Cyrilla racemiflora (High TPEAK, Low % Con) and Vaccinium arboreum (Low TPEAK, Higher % Con).  

 

 Figure 7. a) Boxplot of eight species' maximum temperature ranges during experimental 

burns for shrub replicas. b) Boxplot of percentage consumption per species from the six 

replicates. 

 

b) a) 
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 Architectural traits linked to flammability  

PLS results for TPEAK using only TLS traits explained 73.85% of the variation for the first 

two factors and 68.88% for only the QSM-derived traits. The combined results for TPEAK increased 

the total explained variation for the first two factors to 76.52%. The fitted parameters of two 

factors for TPEAK had R2Y of 0.75, 0.71, and 0.77 for TLS, QSM and Combined traits, respectively. 

R2Y in PLS analysis is equivalent to adjusted R2. Similarly, looking at the PLS results for % Con, 

we noted that with only TLS traits, 71.85% of the variation was explained for the first two factors 

and 70.72% when using the QSM-derived traits. The combined results for % Con explained 

82.45% of the total variation. Our results showed an R2Y of 0.84 when using all the architectural 

traits to predict the percentage of consumption. Whereas using only QSM (R2Y = 0.81) or TLS 

(R2Y = 0.78) traits had slightly lower R2Y values. 

 Furthermore, we used the variable importance plot (VIP) and scaled and centered model 

coefficients to determine which predictor variables (shrub traits) are most predictive of TPEAK and 

% Con for the combined PLS models. A variable is considered 'important' if its VIP value is 

greater than 0.8 (Olah et al., 2004; Pertille et al., 2022; H. Yu et al., 2010). The VIP results highlight 

the importance of the kurtosis statistic, CW:H and CD:H ratio’s as TLS variables in predicting 

both TPEAK and % Con (Figure 8). The VIP index results (Figure 8b) for most QSM traits (BA, 

Volume, BC, BOH, and average diameters) for predicting TPEAK are smaller than 0.8, while six of 

the nine QSM traits had a significant contribution for predicting % Con.  

Figure 9 shows a significant association between the first components of the flammability 

metrics and architectural metrics. The left side of the x-axis is characterized by large CD:H 

ratio’s, larger branching angles and smaller CW:H ratios. Conversely the right side of the x-axis 

represents wider, flatter shrubs with closer to the ground having a small CD:H ratio and high 

CW:H ratio. Additionally, shrubs toward the right of the x-axis have lower branching angles 

and larger overall volumes. The y-axis represents an increase in flammability based on the first 

component of the flammability assessment (Figure 6). This correlation suggests that shrubs with 

generally have higher CD:H and lower CW:H are less flammable than shrubs (Ilex coriacea and 

Ilex glabra) while shrubs with lower CD:H and larger CW:H are generally more flammable 

(Serenoa repens). 
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Figure 8. a) Standardized coefficient plot related to % Con and TPEAK b) Variable 

importance plot for the PLS model for predicting % Con and TPEAK, where the horizontal red 

dashed line is a VIP threshold of 0.8. The asterisk (*) represents QSM-derived architectural traits, 

and ** indicates traits attributed to both TLS and QSM. 

 

Figure 9. Flammability index of shrub species eatimated by artitectural traits using the 

first axis of the flammability and architectural trait PCA’s.  
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 Discussion 

Our study provides one of the first methodologies incorporating TLS and QSM 3-

dimensional metrics to describe shrub architectural diversity and investigate shrub 

flammability. The advantage of QSM is that no additional fieldwork is required as we can derive 

QSMs from TLS data. Furthermore, the geometric reconstruction of shrub architecture provides 

detailed topology measurements (i.e. branch counts, branch diameters, branch orders and 

angles), which cannot be extracted from the point cloud directly (M. Disney, 2019; Janoutová et 

al., 2021).  

Using these metrics to investigate architectural diversity among species, we found a high 

degree of covariation among shrubs traits, with two or more traits being significantly (p <0.05) 

correlated with each other. This is to be expected as similar selective pressures, environmental 

conditions, and natural growth patterns influence the evolutionary physiology of shrubs 

(Singhal et al., 2021; Tumino et al., 2019; Yang et al., 2022). The results of the PCA of all (TLS and 

QSM) shrub architectural traits indicate that various shrub species were characterized by 

different combinations of traits, and species in the same genus tend to be clustered (Figure 5a). 

For example, VADA and VAST (Vaccinium genus) are grouped in q3; ILCO and INGL are 

clustered in q2 and belong to the Ilex genus (Figure 5a).  

The results from the flammability PCA highlighted correlations between flammability 

components and allowed us to reduce dimensionality for further analysis. Since the first two 

axes explained a high percentage (79%) of the variation, with PC 1 explaining 61% of the 

variation and having an eigenvalue of four times larger than PC 2, it was possible to use this to 

deduce associations among shrub replicas and flammability components (Santacruz‐García et 

al., 2019).  As with the architectural traits, we found that shrubs of the same species had similar 

flammability metrics. Generally, the PCA results also indicated Vaccinium darrowii and Serenoa 

repens had considerably higher maximum temperatures, radiative heat fluxes and relative flame 

heights, suggesting that these shrubs burned at higher intensities (Loudermilk et al., 2009). 

These results, in conjunction with their having a higher percentage of consumption, indicated 

that these species were more flammable than others in our experimental burns (Alam et al., 2019; 

Engber & Varner, 2012). Conversely, shrubs with a higher number of branch orders left after 

experimental burns, and a lower percentage of consumption, temperatures, and radiative heat 

fluxes, are associated with less intense fires and lower overall flammability (Grootemaat et al., 

2015; Varner et al., 2015). Specifically, we found that Ilex coriacea and Ilex glabra species fell in 
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this category. This contradicts other flammability studies on these species that found them 

highly flammable (Brose & Wade, 2002; Geron & Hays, 2013; Miller & Corby, 2022). We suspect 

our results were attributed to the fact that these shrubs had a higher height to the canopy (CD:H) 

and grew relatively isolated; thus, they did not have enough ladder fuels for fire to reach the 

canopies (Parkins et al., 2023; Warner et al., 2020). Additionally, other uncontrolled variables 

may have influenced their flammability since our experimental burns took place in the field and 

not in a laboratory setting. This further highlights the need to investigate the links between plant 

traits and flammability components and to conduct field-based experiments.  

Numerous studies have indicated that functional traits influence flammability (Alam et 

al., 2019; Calitz et al., 2015; Potts et al., 2022; Tumino et al., 2019). However, these studies are 

often limited to small scales (leaves) or large scales (the fuel bed). In addition, research often 

focuses on only a few traits, and architectural traits are usually directly measured from the shrub 

and not derived from TLS data. As such, this study provides a new approach to linking 

architectural traits to flammability. The PLS models for TLS and QSM-derived traits separately 

and in combination, all performed well (R2Y > 0.7) and highlighted drivers that promote 

flammability components, specifically for predicting TPEAK and % Con. However, it should be 

noted that we did observe a slight increase in prediction accuracy when combining QSM and 

TLS traits. The VIP information suggested that TLS traits such as CW:H and CD:H are important 

drivers in fire intensity and combustibility. We found that QSM traits are not good assessors for 

predicting TPEAK. However, for predicting consumability the QSM traits outperformed TLS traits 

(VIP > 0.8).  Other studies found similar results from direct measurements of crown metrics 

(Alam et al., 2019; Burger & Bond, 2015; Long et al., 2006). Wilson et al. (2022) derived fuel 

structure from TLS data at a forest level and found the probability of fire severity decreased as 

the canopy base height increased, and the distance between the canopy base and understory 

increased. We did not find any supporting literature relating directly to QSM traits used to 

measure flammability. However, biomass, volume, and branching arrangement, which can be 

extracted from QSM, have been linked to various flammability components (Hogenbirk & 

Sarrazin-Delay, 1995; Pausas & Moreira, 2012; Schwilk, 2003). We should mention that using 

TLS and QSMs traits to predict flammability has some potential issues. Occlusion in the TLS 

data may influence the accuracy of TLS derived metrics. Additionally, as most in-field TLS 

collection are done leaf-on, leaves may occlude smaller branches (Calders et al. 2015; Gonzalez 

de Tanago et al. 2018) and uncertainties may occur when creating the QSM reconstructions 

(Hackenberg et al. 2015a; Momo et al. 2020; Burt et al. 2021). 
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 Conclusions 

Our study demonstrated the use of TLS and QSM-derived architectural shrub traits to 

investigate trait patterns and species diversity for dominant southeastern shrubs. Although TLS 

has been used to characterize the architecture of vegetation, we included additional novel 

metrics related to the topological architecture of shrubs. This allowed us to identify similarities 

and highlight species differences with regard to the vertical architectural structure, including 

shrub branch ramification, branching angle, woody volume etc. Using TLS combined with QSM 

opens up new approaches for studying vegetation structure and provides 3-dimensional fuel 

information that can be incorporated into fire models.  

In addition, our field experimental burn methodology provides valuable insight into in-

field flammability components of understory shrubs. Since many other studies explore the 

flammability of vegetation in laboratory settings or only use a proportion of the plant, our 

research aids in closing the gap between laboratory and field by linking shrub traits to 

flammability metrics at a plot scale. Overall, our analysis demonstrated a significant relationship 

between TLS and QSM architectural traits and field measures of flammability. Specifically, the 

separate TLS and QSM traits had high coefficients of determination for predicting the 

percentage of mass-consumed (consumability) and maximum temperatures of shrubs while 

burning (combustability). The QSM traits even outperformed the TLS-dervived traits in 

predicting consumability. Moreover, our results indicated an increased accuracy when 

combining the TLS and QSM traits to predict these flammability components. 

 These results demonstrate the potential of using QSM to provide metrics that are 

complementary to TLS data, potentially improve flammability predictions, and increase our 

understanding of the linkages between flammability and architectural traits. Furthermore, our 

results highlight the importance of incorporating topological vegetation structure in fire 

behavior studies. However, further research into optimizing QSM algorithms and extracting 

traits for understory vegetation is still needed, especially for complex architectures. 

Additionally, future research could include incorporating other flammability components or 

using them in combination. We will also consider scaling up from single shrub level 

measurements to multiple shrubs and investigating flammability for combinations of 

understory species in future studies.  
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Abstract:  

In this study, we assessed the 3D architectural drivers of understory flammability by 

evaluating the use of architectural metrics derived from the TLS point cloud and 3D 

reconstructions of the shrubs. The study area was located in a fire-prone longleaf pine forest 

ecosystem using eight species based on their representativeness in the understory. We found 

that the same shrubs species were clustered together, and each species was associated with a 

unique combination of flammability and architectural traits. The final correlation results suggest 

that higher crown depth-to-height (CD:H) and lower crown width-to-height (CW:H) ratios are 

less flammable. In contrast, shrubs with lower CD:H and larger CW:H are generally more 

flammable. These results demonstrate the potential of using QSM to provide metrics that are 

complementary to TLS data, potentially improve flammability predictions, and increase our 

understanding of the linkages between flammability and architectural traits. Furthermore, this 

study represents the first effort comparing flammability obtained through TLS-derived 

architectural trait analysis, including novel shrub topology metrics. 

 

Keywords: Terrestrial light detection and ranging; Quantitative Structure Models (QSM); 

architectural traits; woody shrubs 



 Chapter 3 

77 

 

 Introduction 

Forests are one of the most biologically diverse terrestrial ecosystems globally. 

Consequently, they play a vital role in ecosystem processes, support numerous biological 

communities, offer primary production resources, and mitigate climate change through carbon 

sequestration and storage (Aravanopoulos, 2016; Hu et al., 2021; Waser et al., 2015). As such, 

there is a need for accurate information for quantifying forest resources and monitoring their 

dynamics (Liao et al., 2022; Vagizov et al., 2021). With recent advancements in remote sensing 

technologies, there have been considerable improvements in retrieving forest parameters. In 

particular, lidar (light detection and ranging) systems can capture the three-dimensional 

structure of forests and provide estimations of forest parameters (Andersen et al., 2005; Hu et 

al., 2021; Skowronski et al., 2011b).  

Previous studies have implemented lidar to derive height, aboveground biomass, 

volume, density, basal area, and canopy attributes at a plot or individual tree level (Coops et al., 

2021; Gao et al., 2022; Hu et al., 2021; Xu et al., 2021). For example, Silva et al. used canopy height 

profile statistics from airborne laser scanning (ALS) to map stem biomass of even-aged 

eucalyptus plantations in Brazil (Silva et al., 2015). Using TLS-based variables, 

Mayamanikandan et al.’s study illustrated that volume estimations can be derived with 

relatively low (5.13%) bias relative to manual, field-based measurements (Mayamanikandan et 

al., 2019). Saarinen et al. investigated the feasibility of using terrestrial laser scanning (TLS) for 

estimating tree volume at a single-tree level. They found that volume estimation accuracy 

increased as the number of scans increased and that accuracy depended on the distance of the 

TLS from the tree (Saarinen et al., 2017). Skowronski et al. also noted the value of using 

downward scanning aerial lidar in conjunction with upward sensing profiling lidar to better 

characterize the three-dimensional (3D) tree canopy structure in comparison to only using aerial 

data (Skowronski et al., 2011a). Since individual tree characteristics and stand-level canopy and 

subcanopy densities, volumes, and biomass  are valuable inputs to many ecological algorithms 

and remote sensing models, prior studies have aimed to develop and/or assess technologies and 

methods to obtain forest parameters as efficiently and accurately as possible. Moreover, the 

associated accuracy assessment typically involves comparing the lidar-derived variables to 

sampled in-situ measurements using empirical modeling techniques. This poses challenges for 

larger study areas where extensive ground reference data are needed and in situations where 

the variable of interest is difficult to actually measure or estimate using field methods. 
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Comprehensive field data collections are expensive, laborious, and time-consuming, and 

inconsistencies in collection methods may arise (Fassnacht et al., 2018; Parker et al., 2004; 

Vandendaele et al., 2022; Xu et al., 2021). According to Westfall and Woodal, there were 

inconsistencies for more than half of the measured forest fuel attributes in a large-scale sampling 

effort conducted as part of the Forest Inventory and Analysis (FIA) program of the United States 

Department of Agriculture (USDA) Forest Service (Westfall & Woodall, 2007). 

Furthermore, lidar-based measurements are also subject to some uncertainty. 

Uncertainties propagate from errors in the sensor position due to incorrect global positioning 

system (GPS) information, interference from the atmosphere, instrument effects such as 

afterpulse (noise induced from laser firing), returns per pulse, or sensor calibration (Gonsalves, 

2010; Gonzalez et al., 2010; Vicari et al., 2019). Inherent complexity of forest stands at both the 

plot- and individual-tree levels, as well as terrain variability, affect lidar acquisition accuracy 

(Andersen et al., 2005; Moorthy et al., 2011). For example, Clark et al.’s study documented that 

higher vegetation densities reduced the probability of detecting the ground surface and limited 

the ability to discriminate sub-canopy returns (Clark et al., 2004). Lidar-based estimations are 

further influenced by the point density, sensing distance, and angle of transmission of the TLS 

laser pulses. Specifically, lidar pulses that reach the uppermost part of the canopy have a larger 

footprint due to the beam divergence inherent to a specific instrument (M. Disney, 2019). 

Further, the number of single location scans that are collected and subsequently merged to 

characterize a plot impacts the point-cloud’s spatial resolution and, consequently, the amount 

of occlusion of and by vegetation structure (Malambo et al., 2019). Numerous studies have tried 

to minimize the impact of occlusion (e.g., Loudermilk et al. (2012), Abegg et al. (2021) and Rowell 

et al. (2016, 2020b;  Rowell et al., (2015)) through characterizing stands by obtaining scans from 

multiple scan positions. However, these studies still noted limitations; artifacts and errors are 

induced by external factors, such as weather conditions (wind, fog, or precipitation) and by 

mixed effects caused by laser pulses intersecting multiple small branches or compact, dense 

vegetation [9,25-29]. Finally, the processing procedure from raw point clouds to lidar-estimated 

models or summary metrics further confounds uncertainties. This includes georeferencing, co-

registration and merging, segmentation, subsetting, and classifying the point cloud data 

(Alonso-Benito et al., 2016; Calders et al., 2020). Tao et al. (2021) noted geolocation errors of up 

to 6 m for TLS-derived stem positions. Frazer et al. (2011) investigated the uncertainty between 

plot size and co-registration. They found that the impact of co-registration errors was more 
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pronounced in spatially heterogenous plots with taller vegetation in comparison to plots with 

more homogeneity. These studies highlight the complexity of lidar acquisition and processing, 

along with the need to investigate it under unbiased conditions. 

To overcome the abovementioned study limitations, we propose using synthetic data and 

simulated lidar datasets to investigate the accuracy of lidar-derived estimations of stand-level 

characteristics and the effect of occlusion within forest plots of varying complexity (i.e., tree and 

shrub density and configuration). These datasets are quantitatively similar to lidar datasets 

created within the “real” world, with the added advantage of having no positional noise within 

the point cloud, the ability to register multiple scans without any co-registration error, and 

ability to model against known stand-level metrics as opposed to those estimated using field 

methods (Fassnacht et al., 2018; Wang et al., 2013). This allows for comparisons between 

methods for estimating stand characteristics, means to summarize three-dimensinal point 

distributions, and techniques and workflows to empirically estimate metrics of interest without 

having the confounding variables of noise, errors, and lack of accurate ground measurements 

to model against. There is also the added advantage of testing multiple configurations with little 

to no added expenseIn a review on enhancing forest inventories using remote sensing, White et 

al. commented that synthetic data could vastly improve our understanding of the relationship 

between forest structure and lidar attributes (White et al., 2016). Goodwin et al. further 

emphasized the potential of synthetic data for testing forest metrics calculated from lidar data 

(Goodwin et al., 2007). We argue that such simulated studies can inform best practices for 

designing field collection protocols and comparing methods for empirically estimating stand-

level metrics. We further argue that exploring these problems in a synthetic space can inform 

expected accuracies and outcomes when using TLS to characterize real forest stands when 

model against real ground data. Further, this experimental framework can be expanded to 

explore other research questions, such as the impact of noise, co-registration error, field data 

uncertainty or abundance, and varying means to summarize the point cloud into a set of metrics 

for incorporation into empirical modeling. 

A few prior studies have proposed simulating lidar data of forest stands using simplified 

ray-tracing methods. Sun and Ranson (2000) developed a full waveform lidar simulator that 

captured the horizontal and vertical structure of geometrically simple (elliptical and conical) 

forest stands. Similarly, Wang et al. used simple geometric shapes to generate artificial forest 

stands and simulate aerial lidar (ALS) sampling. However, they filtered out the understory and 
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interpolated the canopy to a 2-dimensional raster to calculate forest metrics (L. Wang et al., 

2013). Disney et al. made use of more detailed tree models and ray-tracing canopy scattering 

methods to simulate lidar responses. They investigated canopy height retrieval under a range 

of conditions (different scan angles and sampling density). They found that the simulated lidar 

height generally underestimated ‘real’ canopy height; however, their research did not include 

any understory vegetation and they noted that their methodology needs further validation and 

testing as exact parameters were not known (Disney et al., 2010). 

In this study, we present a practical workflow to create realistic trees and shrubs, and 

forest stands with varying densities, which are subsequently scanned with simulated discrete-

return terrestrial lidar. Using these synthetic datasets, our main objectives were to (1) evaluate 

the impact of scan density and occlusion for modeling forest parameters, (2) to quantify how 

scanner location patterns influence TLS acquisitions in forests, and (3) compare the prediction 

accuracy of empirical ML algorithms (random forests (RF), k-nearest neighbor (kNN), and 

support vector machines (SVM)) for estimating total tree and shrub volume and surface areas 

using metrics derived from the TLS data and the plot-level volume and surface area 

measurements.  We argue that this experimental framework can be expanded to explore other 

research questions, such as the impact of noise, co-registration error, field data uncertainty, and 

varying means to summarize the point cloud into a set of metrics (i.e., feature space) for 

incorporation into empirical modeling. 

 

 Methods 

 Synthetic Plot Generation 

Real-world forest stands are complex terrestrial biomes, comprising diverse vegetation 

that frequently overlap and/or grow intertwined and can occur on rugged, variable terrain and 

contain varying levels of litter and downed woody debris. However, since we are trying to 

demonstrate the validity of this method and predict forest parameters accurately, we decided to 

simplify our forest stand but still keep it representative of a natural forest plot. Since, mixed 

evergreen-deciduous forests are one of the most abundant forest types in the Northern 

Hemisphere (Loidi Arregui & Marcenò, 2022), we decided to imitate this natural forest for our 

study. Specifically, in North America, these forest ecosystems expand over a large portion of the 

eastern United States and southern Canada. Eastern United States mixed forests are dominated 
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by evergreen conifers (eastern white pine (Pinus strobus) and Hemlock (Tsuga canadensis)) and 

broadleaf deciduous trees, including various oak (Quercus), maple (Acer) and hickory (Carya) 

species (Fei & Yang, 2011; Hartley et al., 2022; U.S. National Park Service, 2022; Zhang et al., 

2022). Moreover, these forests form part of the World Wildlife Fund’s (WWF) global priority 

ecoregions for conservation due to their high levels of biodiversity of both fauna and flora 

(Olson & Dinerstein, 2002).  

 We developed our forest plots within the BlenderTM version 3.10. 
(http://www.blender.org) open source 3D model creation software. The generation of these 

forest plots is a multi-step process. First, we constructed a 20 m x 20 m filled planar mesh as our 

forest floor (hereafter referred to as the ground plane). A mesh is a collection of faces, edges, and 

vertices that make up a 3D shape (van der Walt, 2021). Our plots had flat terrain as slope and 

ruggedness would induce uncertainty and influence our accuracy assessment (Campbell et al., 

2018; Contreras et al., 2017; Estornell et al., 2011). Blender uses a Cartesian coordinate system 

(X,Y,Z); as such our plane center was located at (0,0,0). The initial tree models were imported 

from the ‘Tree Vegetation Pro V5’ (VegPro) add-on tool created by Bproduction 

(https://bproduction-3d.com/). VegPro contains an extensive 3D model library of diverse and 

varied trees, shrubs, tropical plants, tree hedges, and ornamental plants, all optimized for 

BlenderTM. We used two generic evergreen pine models and two broadleaf deciduous trees 

(maple and oak) models for our artificial overstory. We also included one woody shrub model 

with two stems for the understory.  

In order to automatize the plot creation process, we used the embedded Python 

application programming interface (API). The plot generation started by randomizing (with 

predefined constraints) the number and placement of each tree/shrub model within the 20 m by 

20 m ground plane. We set a distance condition on the randomization in such a manner that no 

tree or shrub trunks or crowns overlap. Although this type of distribution is unrealistic, it 

ensures discrimination between models and allows for accurate calculations of forest 

parameters such as surface area and volume. Additionally, we customized each tree/shrub 

model by randomizing the scale, rotation, and crown size. These customizations change the 

orientation, minimum and maximum height, and scale the model crowns and trunk diameters 

by a percentage of the initial model (Mi) (original from VegPro). We set thresholds on the 

customization parameters to ensure model sizes are comparable to their real-world 

counterparts. The structural parameter thresholds for these models are summarised in Table 1.      

http://www.blender.org/
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Table 1. Initial model dimensions and randomization thresholds of 3D models placed 

within a forest plot. 

Model 
Mi  Height 

(Z) 

Mi Crown Dimensions 

(X, Y)  

Randomization Threshold 

(min, max)  

Random Rotation 

 (X, Y, Z) 

Pine 1 15.0 m 5.0 m, 6.0 m 60%, 130% (±4°, ±4°, 360°) 

Pine 2 10.0 m 4.0 m, 4.5 m 60%, 130% (±4°, ±4°, 360°) 

Oak 12.0 m 5.0 m, 6.0m 60%, 130% (±4°, ±4°, 360°) 

Maple 8.0 m 3.8 m, 3.8 m 50%, 150% (±4°, ±4°, 360°) 

Shrub 1.5 m 2.2 m, 1.8 m 40%, 150% (±4°, ±4°, 360°) 

             *Mi is the initial model dimensions before randomization 

Once a plot has been generated, we ensure all trunks and leaves are assigned “materials.” 

The materials function describes the surface properties of the model, which defines how the 

model will appear when rendered and how the lidar simulator will interact with it. For example, 

the type of material (reflective or diffuse) will impact the intensity of the reflected beam; while 

the opacity of the model surface will determine the travel distance of the laser beam (i.e., for 

translucent objects, rays will continue past a model intersection point to simulate transmission). 

We assigned the same material properties to all models except the base color, where a slightly 

darker green hue was used for deciduous tree leaves. Our stem/trunk material was opaque, and 

we used the default VegPro stem/trunk surface parameters. The specular (brightness), 

roughness, and metallic parameters were 1.0, 0.55, and 0, respectively, on a scale from 0 to 1.0. 

Similarly, we used a default VegPro leaf material. However, we set it to have a hatched 

transparency, allowing light to disperse through the canopy. A specular reflection parameter 

value of 1.0 would have a high intensity, and the angle of incidence would be reflected in a 

single outgoing direction. Surface roughness and metallic values of 0 would represent a glossy 

object that is not metallic (admin_stanpro, 2018; Poirier-Quinot et al., 2017). It should be noted 

that no spectral reflectance metrics were calculated from the TLS point cloud, so these color 

metrics were primarily used for visualization and not used to generate predictor variables as 

input to the ML modeling workflow.  

We executed the script within a loop to create 200 randomized plots. After each iteration, 

we calculated each tree and shrub volume and surface area (see section 2.3), saved the blender 

file, and removed all tree and shrub models in the scene before initializing the next model 
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iteration and subsequent plot generation. We illustrate an example of one densely packed and 

one sparse mixed-forest plot model in Figure 1 below.  

 

Figure 1. a) Example of a densely populated forest plot with zoomed insets of oak and 

pine leaf structure. b) Example of a sparsely populated forest plot with zoomed insets 

illustrating opaque trunk and hatched transparency for canopy  

 

 Simulated lidar 

To simulate the TLS scans, we used a range scanner simulation add-on in Blender called 

Blainder (Reitmann et al., 2021), developed by Lorenzo Neumann and freely available from 

github (https://github.com/ln-12/blainder-range-scanner). We implemented that add-on using 

its Python API within Blender. The lidar functionality of the range scanner is based on a ray 

tracing approach. Ray tracing is a global illumination algorithm based on the emission of rays 

to determine the visibility of three-dimensional objects from a certain point (Gusmão et al., 2021; 

Scratchpixel, 2022; Yun et al., 2019). Previous works from Disney et al. ( 2000; 2010) provide a 

detailed review of ray tracing for remote sensing and the latter specifically for forests. Briefly, 

the algorithm traces the beam path from the center of the scanner (camera) for each pixel on the 
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https://github.com/ln-12/blainder-range-scanner
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screen, until it collides with an object in the virtual scene. When the collision occurs, the distance 

is calculated, and object attributes are recorded. Diffuse sampling beams are generated at an 

intersection with a scene object, sending further beams on possible routes by which they diffuse 

(scatterer) based on the object’s material properties. After each measurement, the direction of 

the beam is adjusted horizontally and/or vertically according to the sensor configuration ( 

Disney et al., 2000; Goodwin et al., 2007; Reitmann et al., 2021).   

In our study, we used a rotating sensor type with a horizontal and vertical field of view 

of 360°, with a step size of 0.2° in both the X and Y direction. This gave us a total of 3.24 Million 

points per scan. The step size determines the resolution of the sensor; step sizes closer to zero 

would have higher resolutions. This approach assumes that there is no beam divergence and 

that the beam width is constant. We simulated one scan from the center (SC = 0,0,0) of the forest 

plot at a height of 2 m (0,0,2) and a scan from each corner of the plot (CS 1-4) (Figure 2, triangles). 

For the corner plot scans, we placed the virtual camera (origin of the scanner) 2 m away from 

the ground plane, the coordinates (X,Y,Z) relative to the plot center are as follows: CS 1 = (12,12, 

2), CS 2 = (12,-12, 2), CS 3 = (-12,12,2) and finally CS 4 = (-12,12,2). We did not set a maximum 

distance limit that the beam could travel; instead, we enclosed our plot in a 30 x 30 x 30 m box 

(6 planes) with an opaque material (Figure 2, blue planes). This acted as a wall and allowed us 

to capture all pulses that would otherwise have no associated return. Having these points are 

helpful for determining occlusion and accounting for all transmitted laser pulses in subsequent 

calculations. We visualize the top and side view of our plot and camera setup in Figure 2. The 

final step was to save these scans in .laz format for further analysis. Similar to the plot 

generation, we automated the lidar simulation process using the Python API and ran it for the 

200 synthetic plots.  
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Figure 2. Scanner location configuration within the virtual plot (light brown square) with 

30 m square box (blue planes). For visualization purposes, the top view excludes the top and 

bottom sides of box, while the side view excludes the front plane.   

 

 Measured metrics 

To assess the impact of density and location of hypothetical lidar on forest parameter 

estimates, we calculated various summary metrics from the point cloud data. We calculated 

metrics based on only the center scan as well as the aggregation of all scans (center and four 

corners). Our analysis was performed on imported .las files within the R open-source data 

science environment and language (R Core Team, 2020). We only used the Z-values for our 

metric calculations; the true color (RGB) and intensity values would not be realistic since we 

assigned the same materials to all objects.   

The calculated point cloud metrics are summarized in Table 2. First, we calculated the 

total number of returned points and the number of points intersecting the box. This allows for a 

calculation of the percent of points striking the box, which would indirectly correlate with the 

area and volume of trees and shrubs within the plot. Next, the box was clipped out, leaving only 

the returns within each forest plot. We performed point cloud manipulation (filter, clipping, 

etc.) using the lidR (Roussel et al., 2020; Roussel & Auty, 2021) and rlas (Roussel et al., 2022) 

packages. Next, we summarized the data relative to height strata. We filtered the point cloud 
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data into height bins of 0.0-2.0 m, 2.0-4.0 m, 4.0-6.0 m, 6.0 8.0 m, and > 8.0 m. We chose these 

height bins based on typical shrub and canopy heights within mixed deciduous forests. Within 

each height bin, we calculated the metrics summarized in Table 2. We summarized all point 

returns within our 20 m x 20 m plot, non-ground returns within the 20 m x 20 m plot, and returns 

within each of the five height strata. This resulted in a total of 54 variables for each of the 200 

plots.  

 Table 2. Summary metrics generated from point cloud data.  

mn = mean, md = median, std = standard deviation; skew = skewness; kurt = kurtosis 

 

 Modeling and Validation 

We calculated the volume and surface area of the individual virtual trees and shrubs 

within the Blender Python API using the ‘bMesh Module’(BMesh Module (Bmesh) — Blender 

Python API, n.d.). These data were exported and summed per plot for modeling purposes. To 

assess how well the simulated point cloud metrics estimate the known measurements, we 

employed three machine learning algorithms, namely RF, kNN, and SVM. These models were 

trained using the simulated lidar metrics as the predictor variables and the known volume and 

surface area from the 3D plots as the dependent variables.  

In the last decade, machine learning-based algorithms have gained significant attention, 

especially in the field of remote sensing (Hamilton et al., 2020; Hartley et al., 2022; Lary et al., 

2016; Maxwell et al., 2018; Yu, 2022). Since our study’s purpose was to predict volume and 

surface area from a large set (30+) of predictor variables, we decided that machine learning 

algorithms would be better suited than statistical regression approaches for this study. 

Subset Variable Count 

Entire point cloud 

(including box) 
% of returns from only box  1 

20 m x 20 plot 

Ground count 1 

% of returns in plot that were ground 1 

Not ground count 1 

% of returns in plot that were not ground 1 

Not ground in plot 
Height quantiles (10% through 90% by 10%) 9 

Height mn, md, std, skew, and kurt 5 

By height strata 

Not ground count in strata 5 

% of not ground returns in plot from within strata 5 

Height mn, med, std, skew, and kurt 25 
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Furthermore, these models could account for complex variable interactions, correlated predictor 

variables, and non-linear relationships.  

SVM is a supervised learning algorithm that attempts to find the optimal hyperplane, 

defined as the boundary that provides the largest margin or separating distance between classes 

or groups, in n-dimensional space. When classes cannot be separated using a linear hyperplane, 

the data can be projected to a higher dimensional space, a process known as the kernel trick, in 

which the separating boundary may be more linear (Fletcher, 2009; Hamilton et al., 2020). kNN 

is a non-parametric model that uses similarity (based on distance functions) to predict new data 

points; specifically, new samples are compared to the k closest samples from the training set 

within the multidimensional feature space (Duda & Hart, 2006). Ensemble learning, methods 

that generate many classifiers and aggregate their results, has recently gained much interest. RF 

regression models, developed by Breiman, are ensemble decision tree algorithms where the tree 

is ‘grown’ with some randomization (Wright & Ziegler, 2017). Decision trees use recursive 

binary partitioning to split the data into more homogeneous subsets and generate rulesets to 

perform classification or regression. Within RF specifically, each tree in the ensemble uses a 

subset of the training samples, which are selected using bootstrapping (i.e., random sampling 

with replacement). Also, only a subset of the predictor variables is available for splitting at each 

decision node. The goal of using a subset of the training data and variables is to reduce the 

correlation between trees and minimize overfitting. In other words, a set of weak classifiers are 

collectively strong and generalize well due to reduced overfitting. 

Our models for predicting surface area and volume were trained in R (R Core Team, 2020) 

using the caret package (Kuhn, 2021). RF was implemented through caret using the ranger 

package (Wright & Ziegler, 2017) while SVM was implemented using the kernlab package 

(Karatzoglou et al., 2007). We included a center and scale pre-processing transformation for all 

our models since kNN and SVM make use of distance-based calculations and require all 

predictor variables to be consistently scaled. For RF, the number of random predictor variables 

available for splitting at each node hyperparameter (mtry) was uniquely optimized for each 

model or feature space using ten-fold cross-validation and a grid search to test ten values.  The 

ntree parameter (number of trees to grow) was set to 500. In a review article by Belgiu et al. on 

RF algorithms for remote sensing applications, they noted that a ntree of 500 provides stable 

predictions and satisfactory results (Belgiu & Drăguţ, 2016). For kNN and SVM algorithms, the 
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k and cost parameters were optimized, and the best hyperparameter was selected based on the 

lowest RMSE. 

To obtain multiple results and to characterize the variability in model performance, we 

trained and assessed 50 model replicates using different training and testing partitions, selected 

using a bootstrapping method in which a random set of 75% of the samples (150 plots) was used 

to train a model, and the remaining 25% (50 plots) were withheld for model validation. It should 

be noted that hyperparameter optimization was performed separately for each replicate so as 

not to induce data leakage by using the withheld samples for a specific run to perform the 

hyperparameter optimization or center and scaling. Using the withheld data, we calculated the 

R-squared and root mean square error (RMSE) metrics using the yardstick (Kuhn & Vaughan, 

2021) package in R (R Core Team, 2020) for model validation.  

 Results 

 We aimed to create randomized forest plots with varying densities. Table 3 provides 

descriptive statistics highlighting volume and surface area variability across our 200 synthetic 

plots. Figure 3 shows the distribution of surface area (a) and volume (b), as represented using 

violin and boxplots for all plots, as well as a histogram showing variability within individual 

plots. The mean volume and surface area across all plots were 711.80 m3 and 4,778.62 m2, 

respectively. The least dense plot (plot 181) had a volume of 8.15 m3 while the densest plot (plot 

140) had a volume of 2,625.12 m3. Plot 181 only consisted of two pine trees and six small shrubs. 

In contrast, plot 140 consisted of 11 shrubs, six pine trees, and nine deciduous trees.  

Table 3. Descriptive statistics of known volume and surface area across the 200 synthetic 

plots.  

Descriptive Statistic Volume (m3) Surface Area (m2) 

Minimum 8.10 292.073 

Maximum 2625.12 10281.53 

1st Quartile 357.93 2564.77 

Median 611.91 4694.18 

3rd Quartile 1010.69 6925.20 

Mean 711.80 4778.62 

Standard deviation  499.38 2504.90 

Interquartile range (IQR)  483.89 3232.39 
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Figure 3. Distribution of known forest metrics. (a) Violin plot of the distribution of surface 

area across the 200 plots and histogram of individual plot surface areas. (b) Violin plot of the 

distribution of volume across all 200 plots with a histogram of individual plot volumes 

 

Table 4 provides descriptive statistics highlighting the amount of occlusion as a 

percentage across the 200 synthetic plots. We calculated occlusion from the ‘holes’ on the box 

that enclosed our plot. Ideally, if there were no occlusion, the box walls would be completely 

covered by the maximum amount of points produced by the scan. If there is an object between 

the wall and the scanner, beam from the scanner would intersect with the object and not reach 

the wall. In Figure 4, we use a stacked bargraph to illustrate the difference in the amount of 

occlusion in the plots when using only one scan versus using multiple scan locations (i.e., center 

scan and four corners). When using multiple scans the mean percentage of occlusion across all 

plots decreased nearly 2-fold, from 10.53% to only 5.14%. Moreover, there is a large difference 

in the occlusion variance (33.21%) across plots when using only one scan. This suggests that 

density within the plot affects the occlusion from the center scan.       
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Table 4. Descriptive statistics of the percentage of occlusion across all sites and surface 

area across the 200 synthetic plots.  

 

Descriptive Statistic Middle Scan Only All Scans 

Minimum 0.838 0.680 

Maximum 25.837 13.261 

Mean 10.526 5.138 

Variance  33.212 6.145 

Standard deviation  5.763 2.479 

 

 

Figure 4. Bargraph depicting the percentage of occlusion for all scans (blue) and only the 

middle scan (green) per plot 

Figure 5 shows the distribution of RMSE, calculated by predicting the withheld 50 

validation plots based on 50 model replicates using different training and testing partitions with 

the results differentiated by scan density, ML algorithm, and the metric being predicted. The 

RMSE is in the units of the predicted metrics (i.e. cubic m for volume and square m for surface 

area). Figure 6 presents the same results relative to the R-squared metric. For the surface area 

results as assessed with the RMSE metric (Figure 5a), we see that the middle scan generally had 

higher RMSE values across all algorithms, suggesting poorer performance in comparison to 

using all scan locations. Similarly, the volume predictions using the RMSE metric also had 

higher error values across all algorithms when only using the middle scan for predictions. 

Overall, the algorithms had smaller interquartile ranges for using all scans except for the SVM 

area metric as compared to only the middle scan. When making area predictions using metrics 
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generated from all scans, the mean RMSEs were 1,258.12 m2, 1,520.07 m2, and 1,323.19 m2 for the 

RF, kNN, and SVM algorithms, respectively. The volume predictions using the RMSE metric 

also had variability across the algorithms and scan density, the mean RF RMSEs were 307.10 m3 

and 381.61 m3, mean kNN RMSEs were 363.77 m3 and 414.14 m3, and SVM mean RMSEs were 

289.22 m3 and 393.26 m3, for all scans and middle, respectively.   

Figure 5. Distribution of RMSE results for RF,kNN, and SVM across 200 plots. (a) For area prediction 

for all scans and middle scans only. (b) For volume prediction for all scans and middle scan only. 
 

Performance and correlation for the volume predictions were generally poorer than those 

for the surface area predictions. We hypothesize that this is due to the occlusion of internal 

structure by modeled leaves and dimensionality, meaning predictions for the surface area is 

only in 2 dimensions, whereas volume predictions are in 3 dimensions. This adds another level 

of complexity for prediction. Overall, we found high R2 values when predictions were made 

from metrics calculated from multiple scans, especially for surface area with a mean R2 value of 

0.76, 0.63, and 0.68, for RF, kNN, and SVM, respectively. The RF algorithm had the highest 

overall R2 value (0.86) for area prediction, while SVM had the highest R2 value (0.78) for volume 

prediction. For the single scan predictions, RF had the highest R2 values for both area and 

volume predictions. The interquartile range was relatively consistent for all predictions across 

all the algorithms, with a difference of just 0.035 between the largest and smallest interquartile 

ranges. 
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Figure 6. Distribution of R2 results for RF,kNN, and SVM across 200 plots. (a) Area 

prediction for all scans and middle scans only. (b) Volume prediction for all scans and middle 

scan only. 

 

 Discussion and Future work 

Applications relying on point cloud data, either directly or using information from them 

for sustainable forest management, have increased over the last decade (Contreras et al., 2017; 

Hernando et al., 2022; Hudak et al., 2008; White et al., 2016). Thus, understanding how plot scale 

forest structure and TLS scan location configuration influence the accuracy of forest metrics 

would be valuable for optimizing lidar acquisition for forest monitoring and remote sensing 

applications. Our study provides a replicable semi-automated approach for creating synthetic 

forest plots and simulating lidar point clouds. Furthermore, due to the benefit of known forest 

parameters, with set characteristics (materials, illumination source) and no noise within the 

simulated point cloud, it is possible to evaluate the impact of occlusion and performance of 

various methods and the errors associated with predictions.   

Results from this study demonstrated that the lidar scan location affected prediction 

accuracy. In particular, occlusion is strongly related to the sampling density and plot 

complexity. For a single scan from the middle, the average R2 across all models and predictions 

was 0.49, whereas the average R2 across all models and predictions increased to 0.67 when using 
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the four corners and a center scan. Moreover, the mean RMSE for the multiple scan location for 

surface area and volume was smaller than the RMSE from just the center scan location. We argue 

that this is because the multi-scan configuration captures the plot structure from multiple angles 

and more laser beams enter the tree crown through gaps, which minimizes objects' occlusion 

within the plot. The point cloud density is also increased to optimize the detection and variable 

prediction of vegetation elements. These results are similar to findings from studies based on 

real-world data (Calders et al., 2020; Hyyppä et al., 2008; Saarinen et al., 2017; Watt & Donoghue, 

2005). For example, Wilkes et al. (2017) investigated TLS sampling configurations for deriving 

forest plot scale structure metrics and concluded that increasing the number of scan locations 

will always improve accuracy, regardless of scanner specifications or sampling approach. More 

similar to our approach, Yun et al. (2019) adopted a computer simulation methodology to 

investigate virtual scanning patterns for estimating total leaf area. Their results found that only 

25–38% of leaf area was retrieved and occlusion occurred on leaves distal to the scanner when 

the target tree was scanned from a single position. However, when three virtual scans were 

performed around a tree, the accuracy of leaf area recovery reached approximately 60–72%, and 

occlusion was restricted to just the crown center. 

We further assessed modeling algorithms and errors associated with forest parameter 

estimations. When comparing RF, kNN, and SVM machine-learning algorithms, we noted that 

RF using the R2 metric for parameter optimization performed slightly better than kNN and SVM 

for forest parameter (surface area and volume) predictions with a mean R2 of 0.62,0.52 and 0.58 

for RF, kNN and SVM respectively. We hypothesize that RF performs better overall as it has the 

capability to deal with complex relationships between large amounts of data. Moreover, RF 

models use an ensemble of trees to improve robustness. Wang et al. (2016) noted that RF is 

regarded as one of the most precise prediction methods for regression-type modeling. RF has 

also been widely applied in remote sensing and has been publicized as reliable (Belgiu & Drăguţ, 

2016; Mutanga et al., 2012; Wang et al., 2016).   

We need predictor variables as inputs for these models to estimate forest parameters from 

the lidar. This is often in the form of metrics derived from the point cloud; in our study, these 

are the metrics derived in Table 2. We used these metrics to predict surface area and volume, 

while research using synthetic data for biomass estimations by Fassnacht et al. (2018) did not 

consider any metrics derived from the point cloud, but instead restricted their analysis to metrics 

derived from canopy height models (only using the upper portion of lidar). Consequently, 
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although they employed RF for predictions, a comparison between these two studies is difficult. 

Other studies have also utilized synthetic data to understand uncertainty and error propagation. 

Lovell et al. (2005) modeled trees using simple geometric shapes (cones, ellipsoids, and 

cylinders), creating plantation stands and simulated small footprint lidar data to determine the 

optimal acquisition parameters for measuring tree height. Disney et al. (2010) used five 

experiments to quantify the impact of pulse density, scan angle, footprint size, and canopy 

structure for estimating canopy height and gave a detailed conclusion on each of these variables' 

impact on canopy height estimation accuracy. However, different techniques were employed in 

both these studies to evaluate uncertainties. Therefore, comparisons between studies pose a 

challenge and highlights the need for a replicable method for evaluating lidar uncertainty.  

Since we used this as a feasibility study for evaluating simulated lidar, some 

simplifications were made. This included using a limited number of vegetation species and 

having no overlapping trees and shrubs in the stand. In addition, all species had uniform foliage 

density and were assigned the same material characteristics, and we had flat ground terrain and 

a constant laser pulse. Future studies could develop more realistic forest stands and investigate 

multifarious lidar-related aspects from acquisition to prediction. This could include 

investigating the effect of added noise to the point, for example, by simulating wind or beam 

divergence. The impact of distance from the scanner on prediction accuracy or how scan density 

affects other forest parameters besides volume and surface area. It would also be useful to 

evaluate other metrics and algorithms for prediction. The focus of our future work will be to 

incorporate real-world objects, such as trees or shrubs modeled by quantitative structure models 

into the virtual space for further analysis.  

 

 Conclusion 

In this study, we present a semi-automated approach for creating forest stands and 

simulating lidar. We further investigate the impact of scan location for modeling forest 

parameters. Using the simulated lidar-derived metrics, we found that the number of scan 

positions and forest complexity influences the amount of occlusion and subsequently prediction 

accuracy. Therefore, choosing an optimized scanning strategy can minimize the effect of 

occlusion and increase data quality.  
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Furthermore, we highlight the potential for using synthetic remote-sensing datasets to 

examine the lidar acquisition and scanning characteristics under controlled parameter sets that 

can be implemented across different forest stand complexities. This research allows us to 

reexamine existing methods and optimize workflows, data collection, and algorithm selection. 

Additionally, deep learning models are being incorporated into remote sensing applications and 

the need for large datasets for training models is increasing, as such synthetic datasets can 

provide a potential solution to this challenge as large realistic datasets can be generated in a 

precise, timely, and cost-effective manner. Finally, it should be noted that the approach is not 

just limited to creating forest plots, but has a wider application in remote sensing as well as other 

fields. 
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OVERALL CONCLUSION 

 The paucity of understory research, specifically relating to characterizing 

architectural traits and their relationship with flammability, was the motivation for this 

dissertation research.  Chapter one presents a workflow for reconstructing and characterizing 

the architectural structure of woody shrubs using a TLS-based QSM approach. Metrics derived 

from the modeled shrubs were correlated with manual measurements, demonstrating that the 

models successfully characterized shrub architecture. We noted, however, that shrub 

complexity, point cloud density, and uncertainty affected model accuracy. 

 In chapter two, we further adapted and tested the TLS-based QSM for understory 

shrubs by applying the methodology to shrubs from fire-dependent pine forest ecosystems. 

Here, we incorporate TLS and QSM 3D metrics to investigate shrub flammability. To measure 

shrub flammability, we conducted experimental burns, and recorded flammability traits. 

Overall, our analysis demonstrated a significant relationship between TLS and QSM 

architectural traits and field measures of flammability. Moreover, our results indicated an 

increased accuracy when combining the TLS and QSM traits to predict these flammability 

components. The ability to accurately characterize the 3D structure of fuels allows for more 

realistic fire behavior modeling scenarios and improvement in forest monitoring applications. 

Techniques that utilize TLS have demonstrated to be robust and accurate in estimating 

forest structure parameters (Moskal & Zheng, 2012; Wilson et al., 2022). However, there is still 

some degree of uncertainty. In order to evaluate modeling accuracies, we needed a ‘perfect’ 

dataset. As no data in the real world is without uncertainty, in the final chapter of this 

dissertation, we developed semi-automated computer-modeled synthetic forest plots and 

simulated TLS. This allowed us to evaluate the impact of scan location and plot complexity on 

occlusion as well as accurately compare machine learning algorithms for predicting ‘known’ 

forest parameters. The results from this research allow us to re-examine existing methods and 

optimize workflows, data collection, and algorithm selection. Additionally, as remote sensing 

applications lean towards deep learning methodologies, the need for large datasets for training 

models is increasing. Since large realistic datasets can be generated cost-effective and accurately, 

we see synthetic datasets as a potential solution to this challenge  

In conclusion, the TLS and QSM provide a range of novel measurement approaches that 

is useful for characterizing understory vegetation structure in 3D.
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APPENDIX 

Due to the nature of this work using large data files, all data, scripts and models can be 

accessed by email request through dropbox.  

A list of available folders are listed below: 

Appendix A:  

TLS and QSM data for ten architecturally different shrubs (Manuscript 1) 

Appendix B:  

TLS and QSM data for all understory vegetation used in manuscript 2 

Raw flammability results from FLIR data 

Script for calculating metrics 

Appendix C: 

Synthetic plots (blender software files) 

Synthetic plots simulated LiDAR scans (.laz) 

Scripts for calculating metrics 

Scripts for machine learning predictions 
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