215 research outputs found

    Predicting Landslides Using Locally Aligned Convolutional Neural Networks

    Full text link
    Landslides, movement of soil and rock under the influence of gravity, are common phenomena that cause significant human and economic losses every year. Experts use heterogeneous features such as slope, elevation, land cover, lithology, rock age, and rock family to predict landslides. To work with such features, we adapted convolutional neural networks to consider relative spatial information for the prediction task. Traditional filters in these networks either have a fixed orientation or are rotationally invariant. Intuitively, the filters should orient uphill, but there is not enough data to learn the concept of uphill; instead, it can be provided as prior knowledge. We propose a model called Locally Aligned Convolutional Neural Network, LACNN, that follows the ground surface at multiple scales to predict possible landslide occurrence for a single point. To validate our method, we created a standardized dataset of georeferenced images consisting of the heterogeneous features as inputs, and compared our method to several baselines, including linear regression, a neural network, and a convolutional network, using log-likelihood error and Receiver Operating Characteristic curves on the test set. Our model achieves 2-7% improvement in terms of accuracy and 2-15% boost in terms of log likelihood compared to the other proposed baselines.Comment: Published in IJCAI 202

    PREDICTION OF DEFORMATION CAUSED BY LANDSLIDES BASED ON GRAPH CONVOLUTION NETWORKS ALGORITHM AND DINSAR TECHNIQUE

    Get PDF
    Abstract. Around the world, the occurrence of landslides has become one of the greatest threats to human life, property, infrastructure, and natural environments. Despite extensive research and discussions on the spatiotemporal dependence of landslide displacements, there is still a lack of understanding concerning the factors that appear to control displacement distribution in landslides because of their significant variations. This paper implements a Graph Convolutional Network (GCN) to predict displacement following the Moio della Civitella landslide in southern Italy and identify factors that may affect the distribution of movement following the landslide. An interferometric technique, known as permanent scatter interferometry (PSI), has been developed based on Synthetic Aperture Radar (SAR) satellite imagery to derive permanent scatter points that can be used to represent the deformation of landslides. This study utilized the GCN regression model applied to PSs points and data reflecting geological and geomorphological factors to extract the interdependency between paired data points, resulting in an adjacency matrix of the interval [0, 0,8). The proposed model outperforms conventional machine learning and deep learning algorithms such as linear regression (LR), K-nearest neighbors (KNN), Support vector regression (SVR), Decision tree, lasso, and artificial neural network (ANN). The absolute error between the actual and predicted deformation is used to evaluate the proposed model, which is less than 2 millimeters for most test set points

    Riverside Landslide Susceptibility Overview: Leveraging Artificial Neural Networks and Machine Learning in Accordance with the United Nations (UN) Sustainable Development Goals

    Get PDF
    Riverside landslides present a significant geohazard globally, posing threats to infrastructure and human lives. In line with the United Nations’ Sustainable Development Goals (SDGs), which aim to address global challenges, professionals in the field have developed diverse methodologies to analyze, assess, and predict the occurrence of landslides, including quantitative, qualitative, and semi-quantitative approaches. With the advent of computer programs, quantitative techniques have gained prominence, with computational intelligence and knowledge-based methods like artificial neural networks (ANNs) achieving remarkable success in landslide susceptibility assessments. This article offers a comprehensive review of the literature concerning the utilization of ANNs for landslide susceptibility assessment, focusing specifically on riverside areas, in alignment with the SDGs. Through a systematic search and analysis of various references, it has become evident that ANNs have emerged as the preferred method for these assessments, surpassing traditional approaches. The application of ANNs aligns with the SDGs, particularly Goal 11: Sustainable Cities and Communities, which emphasizes the importance of inclusive, safe, resilient, and sustainable urban environments. By effectively assessing riverside landslide susceptibility using ANNs, communities can better manage risks and enhance the resilience of cities and communities to geohazards. While the number of ANN-based studies in landslide susceptibility modeling has grown in recent years, the overarching objective remains consistent: researchers strive to develop more accurate and detailed procedures. By leveraging the power of ANNs and incorporating relevant SDGs, this survey focuses on the most commonly employed neural network methods for riverside landslide susceptibility mapping, contributing to the overall SDG agenda of promoting sustainable development, resilience, and disaster risk reduction. Through the integration of ANNs in riverside landslide susceptibility assessments, in line with the SDGs, this review aims to advance our knowledge and understanding of this field. By providing insights into the effectiveness of ANNs and their alignment with the SDGs, this research contributes to the development of improved risk management strategies, sustainable urban planning, and resilient communities in the face of riverside landslides

    Machine Learning for Informed Representation Learning

    Get PDF
    The way we view reality and reason about the processes surrounding us is intimately connected to our perception and the representations we form about our observations and experiences. The popularity of machine learning and deep learning techniques in that regard stems from their ability to form useful representations by learning from large sets of observations. Typical application examples include image recognition or language processing for which artificial neural networks are powerful tools to extract regularity patterns or relevant statistics. In this thesis, we leverage and further develop this representation learning capability to address relevant but challenging real-world problems in geoscience and chemistry, to learn representations in an informed manner relevant to the task at hand, and reason about representation learning in neural networks, in general. Firstly, we develop an approach for efficient and scalable semantic segmentation of degraded soil in alpine grasslands in remotely-sensed images based on convolutional neural networks. To this end, we consider different grassland erosion phenomena in several Swiss valleys. We find that we are able to monitor soil degradation consistent with state-of-the-art methods in geoscience and can improve detection of affected areas. Furthermore, our approach provides a scalable method for large-scale analysis which is infeasible with established methods. Secondly, we address the question of how to identify suitable latent representations to enable generation of novel objects with selected properties. For this, we introduce a new deep generative model in the context of manifold learning and disentanglement. Our model improves targeted generation of novel objects by making use of property cycle consistency in property-relevant and property-invariant latent subspaces. We demonstrate the improvements on the generation of molecules with desired physical or chemical properties. Furthermore, we show that our model facilitates interpretability and exploration of the latent representation. Thirdly, in the context of recent advances in deep learning theory and the neural tangent kernel, we empirically investigate the learning of feature representations in standard convolutional neural networks and corresponding random feature models given by the linearisation of the neural networks. We find that performance differences between standard and linearised networks generally increase with the difficulty of the task but decrease with the considered width or over-parametrisation of these networks. Our results indicate interesting implications for feature learning and random feature models as well as the generalisation performance of highly over-parametrised neural networks. In summary, we employ and study feature learning in neural networks and review how we may use informed representation learning for challenging tasks

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Computational approaches to Explainable Artificial Intelligence:Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.</p

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Financiado para publicaciĂłn en acceso aberto: Universidad de Granada / CBUA.[Abstract]: Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.Funding for open access charge: Universidad de Granada / CBUA. The work reported here has been partially funded by many public and private bodies: by the MCIN/AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project, by the Consejeria de Economia, Innovacion, Ciencia y Empleo (Junta de Andalucia) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects, and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa, the Margarita-Salas grant to J.E. Arco, and the Juan de la Cierva grant to D. Castillo-Barnes. This work was supported by projects PGC2018-098813-B-C32 & RTI2018-098913-B100 (Spanish “Ministerio de Ciencia, InnovacĂłn y Universidades”), P18-RT-1624, UMA20-FEDERJA-086, CV20-45250, A-TIC-080-UGR18 and P20 00525 (ConsejerĂ­a de econnomĂ­a y conocimiento, Junta de AndalucĂ­a) and by European Regional Development Funds (ERDF). M.A. Formoso work was supported by Grant PRE2019-087350 funded by MCIN/AEI/10.13039/501100011033 by “ESF Investing in your future”. Work of J.E. Arco was supported by Ministerio de Universidades, Gobierno de España through grant “Margarita Salas”. The work reported here has been partially funded by Grant PID2020-115220RB-C22 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”. The work of Paulo Novais is financed by National Funds through the Portuguese funding agency, FCT - Fundaça̋o para a CiĂȘncia e a Tecnologia within project DSAIPA/AI/0099/2019. Ramiro Varela was supported by the Spanish State Agency for Research (AEI) grant PID2019-106263RB-I00. JosĂ© Santos was supported by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014–2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2022/33, and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00). The work reported here has been partially funded by Project Fondecyt 1201572 (ANID). The work reported here has been partially funded by Project Fondecyt 1201572 (ANID). In [247], the project has received funding by grant RTI2018-098969-B-100 from the Spanish Ministerio de Ciencia InnovaciĂłn y Universidades and by grant PROMETEO/2019/119 from the Generalitat Valenciana (Spain). In [248], the research work has been partially supported by the National Science Fund of Bulgaria (scientific project “Digital Accessibility for People with Special Needs: Methodology, Conceptual Models and Innovative Ecosystems”), Grant Number KP-06-N42/4, 08.12.2020; EC for project CybSPEED, 777720, H2020-MSCA-RISE-2017 and OP Science and Education for Smart Growth (2014–2020) for project Competence Center “Intelligent mechatronic, eco- and energy saving sytems and technologies”BG05M2OP001-1.002-0023. The work reported here has been partially funded by the support of MICIN project PID2020-116346GB-I00. The work reported here has been partially funded by many public and private bodies: by MCIN/AEI/10.13039/501100011033 and “ERDF A way to make Europe” under the PID2020-115220RB-C21 and EQC2019-006063-P projects; by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” under FPU16/03740 grant; by the CIBERSAM of the Instituto de Salud Carlos III; by MinCiencias project 1222-852-69927, contract 495-2020. The work is partially supported by the Autonomous Government of Andalusia (Spain) under project UMA18-FEDERJA-084, project name Detection of anomalous behavior agents by DL in low-cost video surveillance intelligent systems. Authors gratefully acknowledge the support of NVIDIA Corporation with the donation of a RTX A6000 48 Gb. This work was conducted in the context of the Horizon Europe project PRE-ACT, and it has received funding through the European Commission Horizon Europe Program (Grant Agreement number: 101057746). In addition, this work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract nummber 22 00058. S.B Cho was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).Junta de AndalucĂ­a; CV20-45250Junta de AndalucĂ­a; A-TIC-080-UGR18Junta de AndalucĂ­a; B-TIC-586-UGR20Junta de AndalucĂ­a; P20-00525Junta de AndalucĂ­a; P18-RT-1624Junta de AndalucĂ­a; UMA20-FEDERJA-086Portugal. Fundação para a CiĂȘncia e a Tecnologia; DSAIPA/AI/0099/2019Xunta de Galicia; ED431G 2019/01Xunta de Galicia; GPC ED431B 2022/33Chile. Agencia Nacional de InvestigaciĂłn y Desarrollo; 1201572Generalitat Valenciana; PROMETEO/2019/119Bulgarian National Science Fund; KP-06-N42/4Bulgaria. Operational Programme Science and Education for Smart Growth; BG05M2OP001-1.002-0023Colombia. Ministerio de Ciencia, TecnologĂ­a e InnovaciĂłn; 1222-852-69927Junta de AndalucĂ­a; UMA18-FEDERJA-084SuĂ­za. State Secretariat for Education, Research and Innovation; 22 00058Institute of Information & Communications Technology Planning & Evaluation (Corea del Sur); 2020-0-0136

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9
    • 

    corecore