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ABSTRACT

The way we view reality and reason about the processes surrounding us
is intimately connected to our perception and the representations we form
about our observations and experiences. The popularity of machine learning
and deep learning techniques in that regard stems from their ability to form
useful representations by learning from large sets of observations. Typical
application examples include image recognition or language processing
for which artificial neural networks are powerful tools to extract regularity
patterns or relevant statistics. In this thesis, we leverage and further develop
this representation learning capability to address relevant but challenging
real-world problems in geoscience and chemistry, to learn representations
in an informed manner relevant to the task at hand, and reason about
representation learning in neural networks, in general.

Firstly, we develop an approach for efficient and scalable semantic seg-
mentation of degraded soil in alpine grasslands in remotely-sensed images
based on convolutional neural networks. To this end, we consider different
grassland erosion phenomena in several Swiss valleys. We find that we are
able to monitor soil degradation consistent with state-of-the-art methods
in geoscience and can improve detection of affected areas. Furthermore,
our approach provides a scalable method for large-scale analysis which is
infeasible with established methods.

Secondly, we address the question of how to identify suitable latent
representations to enable generation of novel objects with selected prop-
erties. For this, we introduce a new deep generative model in the context
of manifold learning and disentanglement. Our model improves targeted
generation of novel objects by making use of property cycle consistency in
property-relevant and property-invariant latent subspaces. We demonstrate
the improvements on the generation of molecules with desired physical
or chemical properties. Furthermore, we show that our model facilitates
interpretability and exploration of the latent representation.

Thirdly, in the context of recent advances in deep learning theory and the
neural tangent kernel, we empirically investigate the learning of feature rep-
resentations in standard convolutional neural networks and corresponding
random feature models given by the linearisation of the neural networks.
We find that performance differences between standard and linearised
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networks generally increase with the difficulty of the task but decrease
with the considered width or over-parametrisation of these networks. Our
results indicate interesting implications for feature learning and random
feature models as well as the generalisation performance of highly over-
parametrised neural networks.

In summary, we employ and study feature learning in neural networks

and review how we may use informed representation learning for challeng-
ing tasks.
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INTRODUCTION

The ability to draw conclusions from a plethora of information is a powerful
advantage not only for individuals or organisations, but also for a society
as a whole. And the ramifications of this ability can be profound. Acquiring
large bodies of detailed observations of complex phenomena can assist in
developing an understanding of their inner mechanisms and unravelling
important correlations or causations. A prominent example of this is per-
sonalised medicine, where analysing extensive electronic health records
of individuals is expected to revolutionise medicine by assisting medical
experts in improving identification of disease characteristics and providing
tailored therapies for patients (Zhang et al., 2019; Wilkinson et al., 2020).
From a practitioner’s point of view, it appears sensible to make use of these
rich sources of knowledge in a great variety of applications. Yet collecting
intimate information of individuals like health records or, more generally,
other personal data on preferences or behavioural patterns might allow
for unprecedented intrusions (Liu et al., 2021). In many different domains,
these kinds of insights may be used to exert some sort of influence over
individuals by rewarding desirable behaviour and penalising undesirable
actions. Therefore, it is of tremendous societal relevance to reach a con-
sensus on how we can benefit from the abundance of data while having
regulatory frameworks on the usage in place. Furthermore, we need to
find answers to who maintains control over the data, and where limitations
of this powerful inference ability should lie. While these discussions are
already ongoing and the benefits appear within reach, it still remains chal-
lenging to make use of big data and live up to the promises of — what is
very broadly referred to as — artificial intelligence®.

1.1 MACHINE LEARNING FOR CHALLENGING PROBLEMS

In order to move forward in this endeavour, it might be instrumental to
ask: How do we generally approach a problem in statistics and machine
learning? In his influential paper on the two cultures of statistical modelling

1 Deep learning & machine learning < artificial intelligence.



INTRODUCTION

(Breiman, 2001), Leo Breiman describes two different approaches in statistics
which he calls the data modelling and algorithmic modelling culture. Both aim
to identify a functional relationship of inputs or predictors x with outputs
or responses y for which a true unknown function, given by nature, is
assumed to exist.

In the data modelling culture, the unknown function is approximated
by a (stochastic) parametric model for inference and the quality of this
approximation is assessed. This corresponds to the more traditional view
on statistics and is illustrated by the solid path in Figure 1.1. A simple
example is linear regression where response y is regressed on predictor
x. Having this explicit model, devised by an expert, permits examining
properties of the model and predicting responses i’ to novel inputs x’.
This is a typical approach pursued in the natural sciences which enables
us to understand complex phenomena in nature. In physics, for instance,
differential equations are used to describe the relation between predictor
and response variables.

777777 » output y

Figure 1.1: Illustration of the data modelling and algorithmic modelling culture
(Breiman, 2001). We attempt to design a model which maps predictors x to
responses y, either by (i) an explicit parametric model of the underlying un-
known function or (ii) a black box algorithmic model like a neural network with
no explicit model for the unknown function but which provides predictions y’
for novel inputs x’.

On the other side, algorithmic modelling considers the unknown function
to be potentially too complex for us to formalise appropriately. Thus, we
attempt to identify an algorithmic approach to obtain a model which does
not explicitly grant us any insight into the unknown function, and hence
into nature, but is highly predictive for an input x’ to provide the correct
response y’. This is a common setting in machine learning and, in particular,
deep learning and is illustrated by the dashed path in Figure 1.1. Because
we do not have an explicit parametric model, these approaches never open
the black box of the unknown function and thus do not enable us to examine
its properties directly. A common example of these black box models are



1.1 MACHINE LEARNING FOR CHALLENGING PROBLEMS

artificial neural networks which are powerful models to extract statistics and
learn useful representations, as they are universal function approximators,
fundamentally (Cybenko, 1989; Hornik, 1991).

In recent years, machine learning and deep learning methods were able
to achieve remarkable results in diverse domains like computer vision
(Krizhevsky et al., 2012; Dosovitskiy et al., 2021), natural language pro-
cessing (Socher et al., 2011; Devlin et al., 2018; Brown et al., 2020), and
speech recognition (Graves et al., 2013; Zhang et al., 2018b), to name a few.
They also find increasing acceptance in fields of science like physics, chem-
istry, or biology with relevant advances in, for example, finding (surrogate)
solutions to partial differential equations (Karniadakis et al., 2021), drug
development (Chen et al., 2018a; Gémez-Bombarelli et al., 2018), or protein
folding prediction (Tunyasuvunakool et al., 2021). Although these neural
network approaches can often convince with predictive performance, their
flexibility makes them notoriously difficult to be interpreted. Additionally,
there are no clear guidelines for deciding when to use which architecture
other than broad classes of architectures for particular problem settings.
Commonly, the flexibility is restricted in an informed way by an inductive
bias which encodes prior assumptions on how the algorithmic model is
supposed to generalise to novel inputs. Convolutional neural networks are
an example of employing such an inductive bias where convolutional filters
reflect the assumption of local relationships in the data, like maintaining
information about adjacent pixels in an image or adjacent time steps in
time series data.

Although Breiman argues in favour of the algorithmic modelling culture,
black box models come with the important drawback of reduced inter-
pretability and explainability (Marcinkevi¢s and Vogt, 2020). In some cases,
like classifying the content of an image, it might be acceptable not to know
the exact mechanisms which led to a particular classification result and
erroneous results are less relevant if the predictive accuracy is generally
high. However, in more sensitive application domains like medicine or
autonomous driving, erroneous predictions can have severe consequences.
A certain degree of (post-hoc) understanding of how model predictions are
influenced is necessary for deployment in practice (Durdn and Jongsma,
2021). In other words, it appears desirable to find a bridge between the two
cultures towards a more traceable algorithmic modelling culture.

With these introductory considerations we want to highlight the great
potential of machine learning and deep learning methods in addressing
challenging problems. This thesis focuses on representation learning and
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how to make use of deep learning to solve relevant real-world problems. By
employing and further developing the ability of neural networks to learn
powerful representations, (i) we address an important segmentation task in
the geosciences, (ii) we include inductive biases to learn informed latent rep-
resentations with improved generative capability for relevant applications
in chemistry, and (iii) we reason about learning feature representations in
common neural network architectures.

1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS

In this thesis, we develop and apply deep learning methods for a geoscience
application as well as for an example in chemistry. Figure 1.2 illustrates the
different areas of contribution in this thesis. A particular focus is put on
encoder-decoder architectures learning compressed (latent) representations,
as depicted in the first and second circle. The fundamental questions we
address in this thesis cover:

¢ Can we make use of recent advances of convolutional neural networks
and encoder-decoder architectures for relevant applications in the
geosciences like soil degradation detection?

e How can we explicitly guide the learning of latent representation en-
codings in these architectures to increase generative abilities relevant
to our down-stream application?

* In the context of recent advances in deep learning theory, what is
the effect of increasing the size of deep neural networks on their
performance and learning feature representations?

To provide insights and answers to these questions, we make the following
contributions and structure the thesis as follows.

In Chapter 2 we introduce a challenging geoscience task which has a
particular application focus in this thesis.

To put our methodological contributions into context, we review fun-
damental topics of machine learning and the current state-of-the-art in
Chapter 3.

We then present a deep learning approach based on an encoder-decoder
architecture for efficient and scalable mapping of erosion phenomena in
remotely-sensed high resolution imagery in Chapter 4. We show that our
U-Net approach competes with state-of-the-art remote sensing methods for
identifying erosion sites, but allows application to more extensive scales
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Figure 1.2: Illustration of contribution areas in this thesis. We develop and ap-
ply neural network approaches for relevant applications in geosciences and
chemistry. A particular focus is on devising methods for learning informed
latent representation encodings. We further reason about learning feature
representations in common neural network architectures.

than feasible with established methods. The main content of this chapter
is adapted from our publication Samarin et al. (2020)*> and focuses on
the Urseren valley in the Swiss Alps. Section 4.6 extends the scope and
considers multiple valleys in Switzerland for learning to identify degraded
soil.

Improving similar encoder-decoder architectures in the presence of rel-
evant side information is the topic of Chapter 5. We introduce a novel
method leveraging cycle consistency to learn informed latent encodings
which enable, for instance, targeted generation of novel compounds or
drugs in chemistry. The main content is adapted from our publication
Samarin et al. (2021). The results in Section 5.5.3 extend the publication and
study our model with respect to disentangling relevant generative factors
of a dataset.

A more theoretical consideration of the learned feature representations
of convolutional neural networks is conducted in Chapter 6. We provide an
empirical study of the performance of wide neural networks and random
feature models. This chapter is adapted from Samarin et al. (2022). Section

2 Part of the content was covered in the dissertation of Zweifel (2021), too.
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6.5 extends these results to a different framework which allows us to
consider infinitely wide neural networks.

Finally, this thesis jointly concludes our contributions in the last Chapter
7 and provides an outlook on future directions.

1.3 LIST OF PUBLICATIONS

The following publications have been the result of some of the work pre-
sented in this thesis:

Mesh-free Eulerian Physics-Informed Neural Networks.

Fabricio Arend Torres, Marcello Negri, Monika Nagy-Huber, Maxim
Samarin, and Volker Roth.

In preparation, 2022.

Learning Invariances with Generalised Input-Convex Neural Networks.
Vitali Nesterov, Fabricio Arend Torres, Monika Nagy-Huber, Maxim
Samarin, and Volker Roth.

In preparation, 2022.

Feature Learning and Random Features in Standard Finite-Width Convolu-
tional Neural Networks: An Empirical Study.

Maxim Samarin, Volker Roth, and David Belius.

Conference on Uncertainty in Artificial Intelligence (UAI), 2022.

Learning Conditional Invariance through Cycle Consistency.

Maxim Samarin3, Vitali Nesterov3, Mario Wieser, Aleksander Wiec-
zorek, Sonali Parbhoo, and Volker Roth.

German Conference on Pattern Recognition (GCPR), 2021.

Investigating Causal Factors of Shallow Landslides in Grassland Regions of
Switzerland.

Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine
Alewell.

Natural Hazards and Earth System Sciences (NHESS), 2021.

Learning Extremal Representations with Deep Archetypal Analysis.
Sebastian Keller, Maxim Samarin, Fabricio Arend Torres, Mario Wieser,
and Volker Roth.

International Journal on Computer Vision (IJCV), 202o0.

3 Both authors contributed equally to this publication.
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e Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery
with a U-Net Convolutional Neural Network.
Maxim Samarin3, Lauren Zweifel3, Volker Roth, and Christine Alewell.
Remote Sensing, 2020.

* Deep Archetypal Analysis. (Honourable Mention Paper Award)
Sebastian Keller, Maxim Samarin, Mario Wieser, and Volker Roth.
German Conference on Pattern Recognition (GCPR), 2019.






SOIL DEGRADATION IN THE SWISS ALPS

A particular application focus in this thesis is put on detection of soil degra-
dation in Swiss alpine grasslands as a challenging task with great relevance
in ecology. The intactness of soil is relevant to the ecosystem as soil not only
represents a habitat for microbes and wildlife, with an estimated 360 000
soil animal species (Decaéns et al., 2006), but also plays important roles in
the water and nutrient cycle. Moreover, soil acts as a major carbon storage,
being a larger reservoir of carbon than is contained in the atmosphere and
vegetation combined (FOA, 2015). The alpine region, in particular, is a sen-
sitive environment with its high diversity of soils, landscapes, wildlife, and
vegetation (FOA, 2015). Due to their exposure to extreme climate conditions
and steep terrain, Swiss alpine grassland areas can be strongly affected by
soil erosion. Occurrence of erosion phenomena can have natural causes, like
removal of topsoil through snow gliding, snow melt, or heavy precipitation
events, to name a few, but also anthropogenic influences like disturbed
vegetation due to land-use practice (Fuhrer et al., 2006; Meusburger and
Alewell, 2008; Nearing et al., 2004). In case studies focusing on the Urseren
valley in the Central Swiss Alps, it was shown that soil degradation has
increased in the previous decades and is expected to further increase in
a changing climate (Meusburger and Alewell, 2008; Zweifel et al., 2019).
In that regard, findings of the Climate Scenarios for Switzerland (CH2018)
indicate that this development can be expected to exacerbate on a larger
scale. Historically, the average temperature in Switzerland has increased
by 1.5°C between the pre-industrial era 1864 — 1900 and the reference pe-
riod 1981 — 2010 and is expected to further increase by at least 0.6 —1.9°C
towards the end of this century (CH2018, p. 61). This projection already
assumes immediate concerted actions to reduce CO; emission to virtually
zero. At the same time, mean precipitation over Switzerland is expected to
increase in winter and decrease during summer (CHz2018, p. 59), while the
sum of winter snowfall and surface snow cover are expected to decrease
(CH2018, p. 63). These changes in precipitation and snowfall dynamics in
connection with increasing temperature are believed to accelerate snow
melt and reduce surface snow. Additionally, more frequent and more in-
tense heavy precipitation events are to be expected, particularly in winter

9
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(CH2018, p. 126). This development is expected to heavily affect alpine soils
(Meusburger and Alewell, 2014).

With this perspective, a reliable quantification of soil degradation on large
scales is crucial. However, considering, for instance, half of Switzerland as
relevant for studying soil degradation in alpine grasslands, not only the
large spatial extent but also the data size of about 1 TB for a single coverage
of the area make this task a challenging big data problem®, exceeding
applicability of established methods. Therefore, we develop an efficient
and scalable deep learning approach for mapping erosion phenomena in
high resolution aerial imagery? in Chapter 4. In our work, we focus on the
Urseren valley as our main case study region3 and consider the following
four erosion classes outlined in more detail in Zweifel (2021). Figure 2.1
shows examples of these erosion classes on photographs and Figure 4.3 in
Chapter 4 provides examples on aerial images.

SHALLOW LANDSLIDES: This grassland erosion phenomenon is charac-
terised by a removal of vegetation cover leading to patches of bare soil at
usually steep slopes. Most shallow landslides range in size between 2 — 200
m? and several examples are illustrated in Figure 2.1a. Typical causes for
the occurrence are heavy precipitation events or snow cover displacement,
but also slope instabilities caused by livestock.

LIVESTOCK TRAILS: Livestock can further impact soil through trampling
paths and leads to characteristic thin line structures typically perpendicular
to slopes in steep terrain as depicted in Figure 2.1b (orange outline). Cattle
traversing the pastures leads to damages of the vegetation and removal of
soil which can initiate further soil degradation.

SHEET EROSION: We summarise reduced vegetation cover with often
less distinct boundaries in this class. Sheet erosion describes the process of
topsoil removal through water flow of usually already damaged vegetation
areas. Typical causes for damages are droughts or extreme precipitation
events, overgrazing and instabilities caused by livestock. In Figure 2.1b
(yellow outline) more easily visible examples of sheet erosion are shown.

In this example we base the calculation on high resolution aerial imagery (RGB) of 0.25 x 0.25
m? spatial resolution.

This research was conducted in close collaboration with Lauren Zweifel and Christine Alewell
of the Environmental Geosciences group at the University of Basel.

The picture on the title page shows the Urseren valley on 20th September 2018 and was
recorded by the author during a field trip.
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Figure 2.1: Photographs of the considered soil erosion phenomena in the Urseren
valley (20" September 2018). (a) Shallow landslides. (b) Exemplary patches of
livestock trails (orange), sheet erosion (yellow), and areas affected by manage-
ment (blue) are highlighted. Further examples on aerial images are provided
in Figure 4.3.

11
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MANAGEMENT EFFECTS: Direct anthropogenic influence through agri-
cultural activity affecting vegetation at typically lower elevations in the
valley is summarised in the last class. Frequent examples include heavy-
machinery affecting the fields, over-fertilisation, or other land-use practices
which lead to reduced vegetation cover with more distinguishable geomet-
ric patterns standing out against the surrounding vegetation. Similar to
the previous class, we expect that sheet erosion promotes soil erosion in
this class as the dominant erosion process. Furthermore, sites affected by
management display a strong seasonal dependence (e.g. due to the harvest
season). Figure 2.1b (blue outline) shows such an example of grassland
affected by management which led to distinct parallel lines.



FUNDAMENTAL CONCEPTS OF MACHINE LEARNING

In this chapter, we review the most relevant fundamental concepts of ma-
chine learning necessary for the subsequent chapters and summarise some
of the state-of-the-art results in current deep learning research. Related work
more closely connected to the individual contributions is covered in more
detail in the respective chapters. We base the presentation on the standard
machine learning textbooks by Bishop (2006) and Murphy (2012), as well as
the kernel textbook by Scholkopf and Smola (2002) and we consider the text-
book by Ye (2022) which covers more recent developments in deep learning.
In the following, we put a larger focus on regression tasks. In the area of
supervised machine learning, two types of tasks are prevalent: classification
and regression. In both, we attempt to identify functional relationships
between inputs and either categorical (classification) or real-valued outputs
(regression). Another important area is unsupervised machine learning
which is concerned with knowledge discovery like clustering, dimensional-
ity reduction, and discovering latent factors. We touch upon this topic in
context of latent variable models. In the following sections, we start with
more basic machine learning topics and motivate kernel methods from
linear models, review Gaussian processes, and identify their connections to
deep learning. We then discuss relevant encoder-decoder architectures in
context of deep latent variable models and semantic segmentation.

3.1 FROM LINEAR MODELS TO KERNEL METHODS
A common starting point to theoretically study a phenomenon is to simplify
the problem setting and consider a linear model for the problem at hand.

We first review the basics of linear models and then see how kernels extend
these models to the non-linear setting.

3.1.1 Linear Regression

In many domains, a typical task consists in regression of the responses
y € R against the predictors or covariates x € R%*. For a (training) dataset

13
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D= {(xn,yn)}nNzl, let us denote by X € RN*dx the design matrix collecting
N independent variables x,,n € {1, ..., N}, in the rows of this matrix and
by Y € RV the corresponding responses for one-dimensional dependent
variables ;. A simple linear regression model is then given by

Y=Xw+e€ (3.1)

with model parameters or weights w € R%.* We commonly assume that
the residual error or noise term € € RV is sampled from a Gaussian
distribution, i.e. €, ~ N'(0,02 ,.)- An approach to solve Equation (3.1) is
given by ordinary least squares (OLS) which makes use of the /,-norm or

the mean squared error (MSE) loss

z

1

1
J(w) = ﬁ”Y—XwH% = ﬁn ) (Yn — <xnrw>)2 (3-2)

where (x, w) = Zfil x;w; denotes the scalar or inner product and f(x) =
(x,w) with f: R%* — R is the linear model. Minimising this objective
function leads to

Viw)=X"Y-X"Xw=0, (3.3)

wors = (XTX)_1 xTy. (3-4)

Is Equation (3.2) a good choice for an objective function if we assume a
linear relationship between predictors and responses? By the Gauss-Markov
theorem, we can indeed show that the parameters woys provide the best
linear unbiased estimator compared to any other linear method.

Theorem 1 (Gauss-Markov Theorem) For the linear regression given in Equa-
tion (3.1) with design matrix X, response vector Y, and noise vector €, the least
squares estimator worg provides the minimum-variance linear unbiased estimator
of the model parameters w, if and only if the following assumptions are fulfilled: (i)
E [ex] = 0, (ii) Var(e,) = 02, < o, (iii) Cov(ey, €/) = 0,Vn,k # 1 € {1,..., N},
and (iv) X has full rank.

We refer to Johnson and Wichern (1992) for a proof of this theorem. Why
would we require any other linear approach? One reason is that not all
assumptions might be fulfilled in practice. Typical examples are that (ii)

To simplify the notation, we drop the additional bias term wy in Equation (3.1) and in the
following.



3.1 FROM LINEAR MODELS TO KERNEL METHODS

noise homoscedasticity, i.e. same finite variance, is violated or that (iv) X is
not of full rank due to collinearity in the matrix, i.e. correlation between
two predictor vectors x; and x;. Another reason is that we might want
to reduce variance in our solution by increasing the bias, in other words
prefer a biased estimator. To see this, let us consider the expected value

for the MSE of the parameter estimate @ from the optimal parameters w*.
Under the true data distribution p(D|w*), we can calculate expected values.

Let us further denote by w = E [w@] the expected value of the parameter
estimate under different datasets D. This allows us to derive the classical
bias-variance trade-off (Geman et al., 1992; Murphy, 2012):

E|(@ - w")’| = E|((@ - @) + (@ - w"))’] (3.5)
- E[(w— w)z] +2(w - w*)E [ — @] + (@ — w*)? (3.6)
= [(w - w)Z] + (@ —w*)? 37)

The first term in Equation (3.7) is the variance of estimator @, while the
second term is the squared mean deviation from the optimal parameters or
the squared bias of estimator . We will review the bias-variance trade-off
in context of highly over-parametrised neural networks in more detail (see
Figure 3.3).

If our goal is to reduce the MSE and variance, we might be willing to
choose a biased estimator. An approach in this direction is ridge regression?
which penalises the /,-norm of parameters w. With restricting the norm we
regularise the solution wyjqge by diminishing over-fitting of the solution to
training data and reduce the variance, i.e. sensitivity to small changes in
the training data. Adding a regularisation term to the previous objective in
Equation (3.2) leads to the ridge regression objective

1 1
J(w) = 5l = Xuwl|§ + SV [w]3 G8)
1Y ) 1,&
= 9N Z (Yn — (xn, w))" + EA, Z w12 (3.9)
n=1 i=1
and the corresponding solution

—1
Wridge = (/\ﬂdx + XTX) xTy. (3.10)

2 Also known as Tikhonov regularisation.
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The effective regularisation is controlled by the Lagrange hyperparameter3
A and 1; denotes the dy-dimensional identity matrix. This kind of regu-
larisation is also referred to as fp-regularisation or weight decay, as the
weight norm is biased towards smaller values. In case of (multi-)collinearity
or linear dependencies in X, we notice that X' X becomes singular and
thus non-invertible. Adding small values A on the ridge of the first term in
Equation (3.10) thus stabilises the inversion from a numerical perspective.
There are also other regularisation approaches, of which the Least Absolute
Shrinkage and Selection Operator (LASSO) is particularly popular one
(Tibshirani, 1996). The LASSO employs the ¢1-norm, i.e. the absolute value,
which additionally allows variable selection as parameters w; are forced to
Zero.

3.1.2  Bayesian Perspective on Ridge Regression

We can motivate Equation (3.8) also from a Bayesian perspective and the
Gaussian model for the likelihood

exp (—1on Y - Xuw)|
p(Y|w)=N (Xw aﬁmse]ld ) = ( Tnoise ) (3.11)

(2 NUHOISE ) dX

conditioned on the model parameters w. By taking the negative log-
likelihood,

1

Y-X
—log (L (w | Y)) = -2 Tnoise | wDZ )
log (/2710200

1
Csly—Xwl3, (12

we obtain the correspondence between the negative log-likelihood and
objective function of OLS in Equation (3.2) up to the normalisation for
sample size N and constant terms C, which, however, do not play any role in
the minimisation. In other words, woy g is the maximum likelihood solution.
If we further assume a Gaussian distribution for the prior distribution
over the parameters, i.e. p(w) = N (0,031, ), we can make use of Bayes’
theorem to obtain the posterior distribution

p(Y | w)p(w)

p(w|Y) = oY)

o p(Y | w)p(w). (3.13)

3 On a technical note, we require A = NA’ for consistency of notation.
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To arrive at the maximum a posteriori (MAP) estimate, we use

1 _ 1 _
—log (p(w | Y)) o 502 Y~ Xuwl3+ 302 wlE G

noise 2

and rewrite the objective for the minimisation as
1 2 1 2
SIY = Xwlz + S [wlz (3.15)

with A = 02 .. /o2. This corresponds to the objective function of ridge
regression in Equation (3.8). As we have seen, wyjqge is the MAP estimate

for the assumed Gaussian likelihood and prior.

3.1.3 Kernel Methods

However, in most cases the simplification to linear models severely limits
the hypothesis class of functions relevant to our problem setting. A common
approach in machine learning is to address this limitation by considering

a mapping of the input space into a higher-dimensional feature space.

Figure 3.1 illustrates the principal idea on a classification example. In
cases where a linear model is not sufficient, we can [ift the problem into
a higher-dimensional representation. In feature space we can make use of
the established linear approach, which corresponds to a non-linear model
in the original input space. Coming back to the regression setting, we lift

o 7
o O
0 O o
Input space Feature space

Figure 3.1: Feature mapping ¢ maps data points from the input space into a
higher-dimensional feature space. A linear model separates two classes in
feature space for which a more complex decision boundary in input space
would have been required.
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predictors x, with the feature mapping ¢: R% — R?,x, — ¢(x,) into a
p-dimensional feature space. We rewrite the linear regression model of
Equation (3.1) to

Y=®(X)w+e (3.16)

where w € R? and @ € RN*? is the feature matrix. Considering again the
same objective function as in Equation (3.8) but this time for kernel ridge
regression (KRR), the (MAP) solution is given by

WKRR = (Aﬂ,, +oX) @ (X))il ®(Xx)y (3.17)
—ox)" (cp X)® (X)" + )\HN)il Y (3.18)

N
=@(X) w= ) anp(xy) (3.19)

n=1

where we introduce the dual variable & = (® (X) @ (X) + A]lN)fl Y, ie.
« € RN. Note that in Equation (3.18) we use a matrix identity to change the
size of the matrix to be inverted (Murphy, 2012). Depending on which of
the two dimensions, i.e. the number of samples N or number of features p,
is larger, one or the other computation is more favourable numerically. This
is important because we might even use an infinite-dimensional feature
space. The insight of Equation (3.19) reveals that the solution for wggr lies
in the span of the data samples even if the feature space is much larger, i.e.
N « p, or possibly infinite. But is a large, potentially infinite-dimensional
feature space beneficial? The brilliance of this approach comes with the
observation that we never need to evaluate the feature mapping ¢ directly,
which is known as the kernel trick. Let us consider that we have an infinite-
dimensional feature space with p = o in the following. In order to predict
the response for a new test point x € R4, we evaluate

f(x) = (¢(x), wkrr) (3.20)
— o) @ (X)T (cp X))@ (X)" + /\]lN>71 Y (3.21)
= K(x, X) (K+Aly) "ty (3.22)

with kernel x(x,, X)) = (¢(x4), ¢(xm)), kernel matrix K € RN*N with
Kym = «(xn,xm), Vun,m € {1,.,N}, and K(x,X) = [K(x,xl),...,K(x,xN)]T.
Instead of explicitly calculating the feature vectors ¢ (x), it is sufficient to
evaluate kernels (x;,, x;) representing the inner products of feature vectors.
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Note that this is a completely non-parametric approach and data points are
directly represented by the kernel matrix. Another way to write this is by
combing Equations (3.19) and (3.20) to

N N

fx) = (@), D] andp(xn)) = D an (@(x), plxn)) =

n=1 n=1

K(x,x,) (3.23)

HMZ

where we make use of the dual variable a, and kernel x(x, x,;) only. This
important results is known as the representer theorem. The significance
of this theorem is that even for infinite-dimensional feature mappings ¢,
the solution lies in the span or linear combination of N kernels. In order to
state the theorem more formally, we require the subsequent definitions and
base the derivation on Scholkopf and Smola (2002). In the following, let X
denote a non-empty set.

Definition 1 (Kernel) The function x: X x X — R is called kernel if there exists
an inner product space H and a feature mapping ¢: X — H such that Vx,x' € X

K (x'x/) = <¢(x)/ ¢(x/)>7.[ . (3.24)

Definition 2 (Positive Definiteness) We call a symmetric function x: X x X —
R positive definite if Yxp, X € X and Yo, &y € R

Z Z nlm (%, Xm) = 0. (3-25)

Furthermore, let us identify H as a Hilbert space which is a real or complex
inner product space and is a complete metric space, i.e. every Cauchy
sequence of points in H has its limit in H. With this, we can more directly
specify the Hilbert space in which kernels operate on.

Definition 3 (Reproducing Kernel Hilbert Space) Let x: & x X — R be a
positive definite kernel and H a Hilbert space of functions f: X — R. We call x a
reproducing kernel of H and H a reproducing kernel Hilbert space, if Vx,x' € X':
(i) x has the reproducing property, ie. Vf € H: f(x) = (f,x(-,x))y, and in
particular (x(-,x),x(-,x'))5, = x(x,x'), as well as (ii) M is a linear span of
{x(,x):xe X}

Note that f € H can be viewed as the infinite vector of function coefficients
while f(x) € R is the evaluation of the function at point x € X'. The last
definition further implies that the kernel is symmetric in its arguments, that
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x(-,x) = ¢(x) € H is a valid feature mapping and both the (centered) kernel
x(-,x) and ¢(x) are functions. We denote the norm induced by the inner
product of the reproducing kernel Hilbert space (RKHS) as || f|| with

IfI3 = (f o = D) f7 < 0. (3.26)
=1

With this, we are ready to state the main theorem.

Theorem 2 (Representer Theorem) Let x: X x X — R be a positive definite
kernel with corresponding RKHS H. Let {(xy,yn)}\_, be the training dataset
with x, € X and y, € R. Let R: [0,0) — R be a strictly monotonic increasing
reqularisation function and n, € R, n € {1,.., N}. Then for an arbitrary loss
function J: (X x IRZ)N
optimisation problem

— R v {0}, any minimiser f € H for the reqularised

£+ = argmin | ({Gen,yn, f) il ) + R (Ifl) - (G27)

feH

admits a representation of the form

N
Frx) =) anr (x,x0) . (3.28)
n=1

We refer to Scholkopf and Smola (2002) for the proof. The representer
theorem provides a mathematical basis for kernel methods and shows that
the solution in Equation (3.23) which we obtained for the MSE loss and
ridge regularisation applies more generally to any loss | and regulariser K.
Importantly, the theorem enables using kernels corresponding to an infinite
number of feature mappings or basis functions. For instance, the popular
radial basis function (RBF) kernel

1
x (x,x") = exp (‘MHX - x'll%) , (329)

bw

where ¢, is the bandwidth parameter, can be shown to be formed by
an infinite number of feature mappings involving Hermite polynomials
(Rasmussen and Williams, 2006). But we only need to evaluate the kernel
in input space to make use of these infinite features. Furthermore, kernels
can be interpreted as similarity measures of data points in the input space.
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Thus, engineering kernels for devising task-relevant similarity measures

or feature representations is a key task in working with kernel methods.

Techniques for constructing valid kernels are, for example, provided in
Chapter 6.2 of Bishop (2006). Although the kernel trick allows us to lift our
problem into a higher-dimensional feature space without the necessity to
operate in this space directly, an important limitation of kernel methods is
storing the kernel matrix K which scales quadratically with the dataset size
N.

3.2 GAUSSIAN PROCESS

There exists a close connection of what we have seen so far to Gaussian
processes, on which we elaborate in this section. Informally, a Gaussian
process extends the notion of random variables to random functions, with
a more formal definition given in the following.

Definition 4 (Gaussian Process) Let T be an arbitrary (finite) index set. We
call the stochastic process {X(t) | t € T} a Gaussian process if YN € IN and
{t1,....tn} < T, the random variables (X(t1),..., X(tn)) have a joint Gaussian
distribution.

In our regression setting, the random variables are the function values f(x)
for x € R% with f: R% — R as before. A Gaussian process (GP) is fully
specified by its mean function m(x) and its (positive definite) covariance
function x(x, x’) and we write the GP as

f(x) ~ N (m(x), x(x, ")) (3.30)

with
m(x) = E[f(x)], (3-31)
Kk(x, &) = E[(f(x) —m(x)) (f(x) —m(x))]. (3-32)

For the training set D = {(x4,yx)})_; with design matrix X € RN *xdx and
response vector Y € RV as before, we denote the mean vector as u =
[m(x1),....m(xyn)]" and the covariance matrix as K with Ky, = (X, Xm),
n,me {1,.., N}. This leads to

(f(x1), s f(xN)) ~ N (1, K) (3.33)
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which provides the GP prior distribution p (f | X) = N (u,K) for the re-
gression function f (X) = [f(x1), ..., f(xn)] . Without loss of generality, we
can assume m(x) = 0 as the flexibility of GPs allows modelling the mean
arbitrarily well (Murphy, 2012). Similarly to Equations (3.1) and (3.16), we
consider a GP regression model with noisy responses

Y=f(X)+e (3.34)

and € ~ N(0,02,..). For predicting responses f for a test set matrix X, we
compute the posterior predictive distribution p(fs« | X«, X,Y). By definition,

the joint prior distribution is given by

2
OrblE m) e

with Ky = x(Xy, X) and Ky = (X, X ).* We make use of the favourable
properties of Gaussian distributions (see e.g. the Gaussian identities in
Rasmussen and Williams (2006)) and we see that the posterior predic-
tive distribution p(fs« | X+, X, Y) conditioned on the observations has the
following form:

p(fs | Xie, X,Y) = N (ps, Ks) (336)
-1
ps = Ky (K + O—I%Oise]]‘N> Y (3-37)
—1

We notice that the posterior mean p. in Equation (3.37) corresponds to
the kernel ridge regression result in Equation (3.22) with A = 02 ... More
explicitly, if we consider only one test point x,, we get

N
poo = K (2, X) (K4 ALN) 'Y = K (x5, X) & = )k (X, %) (3.39)

n=1

which retrieves the representer theorem in Equation (3.28), using the dual
variable &« = (K + )k]lN)_l Y as in Equation (3.19). In other words, we obtain
the same result with a Bayesian approach to kernel methods. The treatment
in Sections 3.1.2 and 3.1.3 can be seen as the weight-space view on GP

4 With a slight abuse of notation, x(Xy, X) indicates all covariance functions of training and

testing data point pairs and similarly x (X4, Xy ) for all testing data point pairs.
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regression with random variables w, while in this section we considered the
function-space view with random functions f. In particular, the covariance
function is positive definite and thus can be viewed as a valid kernel
function, which is the reason for the same notation. Additionally, the
covariance enables quantifying the uncertainty of the prediction. However,
as before, the kernel or covariance matrix K scales quadratically with
training set size N and the matrix inversion scales cubically with N, which is
an important limitation of the applicability of exact inference with Gaussian
processes in practice. These computational shortcomings have motivated
several advancements in the direction of approximate inference as, for
example, low-rank approximations of the covariance matrix K (Liu et al.,
2020).

3.3 DEEP LEARNING BASICS

We have seen that we can choose or design a feature mapping ¢ or kernel
x relevant to our problem setting. Informally, deep learning might be
characterised by attempting to learn the feature mapping ¢ from data and
thus provide adaptive basis functions. In the following, we show that kernel
methods, as covered so far, and neural networks can be viewed as duals of
each other. In this section, we first focus on some basics of neural networks
and motivate neural network approaches more formally. In the subsequent
sections, we consider infinitely-wide neural networks and their connection
to Gaussian processes. Lastly, we focus on deep latent variable models
and encoder-decoder architectures, as well as deep learning approaches for
semantic segmentation.

3.3.1 Multilayer Perceptron

We motivate the general idea of neural networks in Figure 3.2. A Multilayer
Perceptron (MLP), also referred to as feedforward neural network, generally
consist of a combination of an input layer, one to several hidden layers, and
an output layer. The illustrated three-layer MLP>

flx, W) =W TaWTewhTy)) (3-40)

processes an input x € R% and parametrises a function f: R% — R% in a
sequential manner, where ¢ is an element-wise non-linear activation func-

5 As before, we drop all additional bias terms to simplify the notation.
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Figure 3.2: [llustration of a three-layer Multilayer Perceptron (MLP). Two hidden
layers process the input and retrieve a feature mapping ¢ (x, V). This learned
representation is used for predicting the output f(x, W) in the last layer. Units
are depicted by grey circles, edges represent parameters w € W.

tion, like the rectified linear unit (ReLU) o(-) = max{0,-}. The parameter
or weight matrices {W(l), . W(L)}, with W) ¢ Rii-1xd; map activations
from layer I — 1 to the subsequent layer /, with ] € {1, ..., L} enumerating the
different layers starting from the first hidden layer with [ = 1 to the output
layer with [ = L. In a fully-connected MLP all neurons or units of one layer
are connected to all units of the subsequent layer and dy = d, as well as
di = dy. Hence, d; denotes the number of units or the width of layer [. Let
us denote by V = {W(), W=D} the set of all parameters except for
those mapping to the output layer and by W = {V, W(L)} the set of all pa-
rameters. Typically, the parameters are initialised as draws from a Gaussian
distribution and updated during training. To this end, the gradients with
respect to a cost or loss function J(W), like the MSE loss we used so far, are
obtained with the backpropagation algorithm implementing the chain rule
of derivatives (Bryson and Ho, 1969; Rumelhart et al., 1986). With the goal
of minimising loss J(W), the parameters w € W are iteratively adjusted by
optimisation methods like (stochastic) gradient descent or Adam (Kingma
and Ba, 2015a).
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3.3.2  Neural Network Regression Model

Returning to the same regression setting as before with d, = 1 and noise
~ N(0, Un01se) we can write the neural network regression model as

Y=f(X,W)+e=dXV)wh t+e (3.41)

where w(l) € R9-1 and feature matrix ® € RN xdL-1 je. the rows cor-
respond to the feature mapping ¢: R* — R?-1 for an individual data
point x. Formulating the model in this way, we obtain a correspondence
to Equations (3.1), (3.16), and (3.34), but we make the dependence on the
parameters W explicit as these are successively updated during the train-
ing. Therefore, we can view a neural network as learning a non-linear
feature mapping ¢(x, V) and employing a linear model parametrised by
w(L) to predict the response. More explicitly, we can formulate the MSE
loss function for this linear model as

0= i 3 (1 (a0 1 (w0 0

where we used weight decay or /;-regularisation of the last layer weights.®
Minimising this objective with respect to w(") leads to the (MAP) solution”

||MZ

(yn—<¢(xm V), (L)>)¢(xn,V) (3-43)

N 1
NN = 7
A s

N
Z P(xn, V) = @(X,V) & (3.44)

with dual variable « and &, = % (yn — <¢(xn, V),w(L)>). Rewriting the

loss function in terms of this dual variable & and simplifying the notation
to ® = ®(X, V), leads to the dual loss function

J (o) = % (yn - <¢(xn,V),<DTlX>>2 + %/\/ <<I>Ttx,<I>T4x> (3.45)
l

M=

1
(YTY 20 TKY + uTKsz> + E)\’aTKa (3.46)

6 Note that in a more general setting all parameters in W are regularised, typically.
7 As before, we require A = NA’ for consistency of notation.
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where we made use of the kernel matrix K = ®® " as defined in Section
3.1.3. For VJ(«) = 0, we obtain the solution to the minimisation

a=(K+Ay)ty (3-47)

which retrieves the results for « we encountered for kernel methods in
Equation (3.19) and Gaussian processes in Equation (3.39). This shows the
duality of kernel methods and neural networks: While neural networks
parametrise and learn the (non-linear) feature mapping ¢(x, V) by opti-
mising parameters W, kernel approaches only require inner products of
features and solve the task by considering appropriate kernel functions
k(x,x") and the dual parameters a.

3.3.3 Over-Parametrised Neural Networks

Neural networks offer a great flexibility for learning features or represen-
tations in data-driven manner. A key component of the success of neural
network approaches lies in employing models with an extensive number of
parameters. Let us denote by p the number of parameters in W. At odds
with standard statistical learning theory (Vapnik, 1999), a common premise
in deep learning is that over-parametrisation does not harm generalisation
on a test set (Neyshabur et al., 2019), which is a common setting for state-of-
the-art neural network architectures with millions or billions of parameters
(Krizhevsky, 2014; Devlin et al., 2018; Dosovitskiy et al., 2021; Brown et al.,
2020). This is due the observation that highly over-parametrised neural
networks seem not to suffer from overfitting to the training set in the
regime where the number of parameters p exceeds the number of samples
N. As illustrated in Figure 3.3, a characteristic double descent behaviour in
over-parametrised neural networks is observed (Spigler et al., 2019; Belkin
et al., 2019; Advani et al., 2020; Nakkiran et al., 2021). Similar results can
be obtained for random forests and AdaBoost (Wyner et al., 2017) in the
over-parametrised regime, too.

In the classical regime of p < N, we observe the established bias-variance
trade-off, which we derived in Equation (3.7). In this regime, we reach
an optimum of intermediate model complexity ppy and locally minimal
generalisation error. Increasing the model complexity from this point on
improves the training error but leads to an increase in the test error, thus an
increasing generalisation gap or, in other words, overfitting. For p ~ N, we
reach the interpolation threshold pinter Where the model is complex enough
to perfectly fit every training data point. However, we observe empirical
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that with further increasing model complexity, i.e. over-parametrisation,
the test error monotonically decreases and overfitting is reduced up to
the point that highly over-parametrised models, i.e. p » N, provide lower
generalisation errors overall. Note that we use the number of parameters
as a typical proxy for the model complexity. More appropriate measures
include training procedure aspects into the notion of model complexity like
the effective model complexity (EMC) (Nakkiran et al., 2021) and are related
to established notions like Rademacher complexity or Vapnik-Chervonenkis
(VC) dimension. However, deriving (tight) generalisation bounds on the
test error is a challenging task in deep learning (Jiang et al., 2020).

Error,

pBv Pinter Model complexity

Figure 3.3: Illustration of the double descent phenomenon. The train error
(dashed) and test error (solid) are plotted against the model complexity. The
interpolation threshold piner (dotted) separates two regimes. The classical
regime of the bias-variance trade-off is encountered below piyter in which
increasing model complexity can result in an increase of the generalisation
error. This leads to a local optimum of intermediate model complexity ppy
(dotted) and locally minimal generalisation error. Above pjnter We obtain the
modern interpolating regime where models with high model complexity lead
to a monotonically decreasing generalisation error. The shaded area depicts
the overfitting regime in which models with a complexity close to pinter lead
to overfitting.

Therefore, a fundamental difference between the classical bias-variance
trade-off and the recent "weak but plentiful features interpolating setting"
(Belkin et al., 2020) is suggested. The remarkable generalisation is achieved
even without explicit regularisation (Valle-Perez et al., 2019). While most of
the investigation focus on the monotonically decreasing test error, studies
like Neal et al. (2018) or Hastie et al. (2022) perform a theoretical analysis
for a modern take on the bias-variance trade-off. But the phenomenon
is still yet to be understood. Popular lines of argument attribute these
results to particular features of optimisers like SGD, the local curvature
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of stationary points of the loss function or that deep neural networks are
intrinsically biased towards "simple" functions (Valle-Perez et al., 2019). In
this thesis, we empirically study the generalisation performance of such
highly over-parametrised neural networks in Chapter 6.

3.4 NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

We review highly over-parametrised neural networks more closely by con-
sidering the infinite width limit. Early work by Neal (1996) and Williams
(1996) in that direction showed that two-layer MLPs with randomly ini-
tialised parameters and a single hidden layer consisting of infinitely many
units converge to Gaussian processes. In recent years, these results were
extended to deep MLPs (de G. Matthews et al., 2018; Lee et al., 2018) as
well as other deep neural network architectures like convolutional neural
networks (Novak et al., 2018; Garriga-Alonso et al., 2019), recurrent neural
networks (Yang, 2019a), or transformers (Hron et al., 2020). In the following,
we highlight some of the main results.

3.4.1 Neural Network Gaussian Process

We focus on MLPs with L layers at initialisation and successively take
the width of each hidden layer to infinity. The derivation is based on Lee
et al. (2018). Let us denote by z) = WDTx(=1) the pre-activations and
by x() = ¢(z()) the activations in layer [. We initialise the parameters

as Wj(,i‘) ~ N(0,02/d;_) for layer | with d; units and j € {1,...,.d;_1},i €
O]

{1,...,d;}. For an input x and a unit z;’ in layer [, we can write8

di—y
zfl)(x) = Z Wi(,?x](l_l) (3-48)
j=1
(1-1) (1-1) ey (-2
X; (x)=0 (z]. (x)) = O’(Z Wi x ) (3-49)
k=1

(2)

Let us consider first the case of I = 2, such that z;"’(x) corresponds to
the outputs fi(x, W) of a single hidden layer MLP with x(¥) = x and

8 Note that we again drop the bias terms to simplify the notation. The presented derivation still

holds if bias terms are included, but becomes more involved; see e.g. de G. Matthews et al.
(2018) or Lee et al. (2018) for more details.
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dp = dy. Because we initialise the network parameters as independent

(1)

and identically distributed (i.i.d.) random variables, activations X; and

1) ()N o s :
x]( ;7 (x) is distributed according to

a Gaussian distribution for d; — oo by the Central Limit Theorem, as it
is an infinite sum of ii.d. terms. And accordingly, the activations for all
inputs {252) (x1), ...,zgz) (xN)} have a joint Gaussian distribution, which is
the definition of a Gaussian process (see Definition 4). Therefore, we obtain
the GP

are independent for i # j. Then z

2P @) ~ N (1 (x), €D (x,1)) (3-50)
m@® (x) = B [zfz) (x)] =0 (3.51)
KD x) = E [z 020 )] = 2B [P0 ()| Gs2)

1 1
where mean m(? vanishes because the parameters have zero mean. By in-

duction, we extend the result to subsequent layers in the same manner. Con-
sider a GP zflil) which is identical and independent for alli € {1,...,d;_1}.
As before, we have a sum of i.i.d. random variables such that for d;_; — o
activations {zl(l) (x1), ...,zfl)(xN)} are jointly Gaussian and Zl(l) ~ N(0,xD)y
is a GP with zero mean and covariance

k@ (x, ') = UZUIEZZ_(I—nNN(O,K(z_l)) [‘7 (zflil)(x)) v (Zflil)(x’)ﬂ - (353)

The required expected value is equivalently obtained by integrating against
the joint distribution of zfl_l)(x) and zfl_l) (x') (Lee et al., 2018), which is
a two-dimensional Gaussian distribution with zero mean and covariance

matrix
(1-1) (1=1) (y o
-1y oy — [ x) k(X)) ‘
(x,x") <K(l—1>(x’,x) () (3.54)

(I=1)

i

(I=1)

Thus, we may rewrite Equation (3.53) with u = z (x)and v =z /(x')

as
K (x, %) = 0LE () a0ty [0 (1) 7 (0)]. (3-55)
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This suggests a recursive relationship between covariance matrices K() and
KU=1 which allows calculating the final covariance K() in an iterative
fashion. For the starting point we obtain a covariance matrix with entries

K0 x) = 2E [0 (0x 0 ()] = 2E[(x#)] =2 H) (356)

for centered inputs x, x’. In summary, we derived a GP prior which corre-
sponds to an MLP with infinitely wide hidden layers. This was achieved by
sequentially increasing layers to infinite width and obtaining a layer-wise
GP which is for this reason referred to as Neural Network Gaussian Process
(NNGP). In a slightly more informal way than presented in Equation (3.55),
we can write the covariance or kernel function Knngp of the NNGP as

gix)= lim o E[(fEw) W) G

min{dl,...,dL_l }H(X)

where f’ and f/ are different output dimensions of output vector f € R%
which is an NNGP with f(X, W) ~ N (0, Kyngp) and the expected value
is with respect to the distribution of parameters W. In order to predict
an output for test point x., we can make use of the posterior predictive
distribution derived in Equation (3.36). Note that the considered setting
corresponds to a mostly untrained neural network as we consider the
MLP at initialisation and without training. Connecting to the derivation
in Section 3.3.2, we can view an NNGP as using an infinite-dimensional
random feature mapping ®(X, V) and performing Bayesian inference for
prediction. In this vein, the NNGP can be viewed as a weakly-trained neural
network in the infinite-width limit where only the last-layer-weights are
adjusted.

3.4.2 Neural Tangent Kernel

However, the appeal of deep learning is that — by training a neural network
approach — we are able to learn feature mappings relevant to our problem
setting. Therefore, it is desirable to extend the insights gained in the last
section to GPs corresponding to fully-trained networks. The Neural Tangent
Kernel (NTK) (Jacot et al., 2018) provides an attempt in this direction and
we present some of the main results of NTK theory following Lee et al.
(2019).
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3.4.2.1 Training Dynamics of an MLP

We again focus on MLPs with L layers. Different from before, we initialise
the parameters as o) ~ N (0,1) such that W](? = (ow/+/ dl_l)w](,li), which

ji

is known as the NTK parametrisation. Let w() € R%-1% denote the vector
of parameters of layer / in matrix W) € R4-1%4 and w € R” the vector
containing all parameters in W. Similarly, we denote by f(X, w) € RN% the
vector of network outputs f(x, w) € R%. Further, let w; be the training time
or iteration dependent parameters at time ¢ and wy denoting the parameters
at initialisation (before training). Considering the training of the MLP under
gradient flow, i.e. infinitesimal step size or learning rate #, and full batch
gradient descent, the evolution of parameters w and outputs f is given by
the ordinary differential equations (ODEs)

@i = Vo f(X,w) Vi (wr), (3.58)
(X, w1) = Vo f(X, i)y (3.59)
= —Vof (X, )V f(X,w) Vi](w), (3.60)

where w; is the derivative of w; with respect to time and | the loss func-
tion which is supposed to be minimised. Note that V,, f(X, w;) € RN%*?
denotes the Jacobian and V¢](wt) € RN% is the gradient of the loss with
respect to output f(X, w;). Although we use gradient flow, we keep the
dependency on hyperparameter 7 for later consideration. Let us denote by
®§L) = ®§L) (X, X) € RN4>Ndy the empirical finite-width neural tangent kernel
at time t with

0" (X, X) = Vu f(X, @)V f(X ) (361
L

= D Vetr X, @)V o (X, wp) T (3.62)
I=1

Hence, the corresponding feature mapping of data point x is given by the
gradient of the network output, i.e. ®(x, wi) = Vo f(x, wy).

3.4.2.2 Training Dynamics of a Linearised MLP

Let us consider the linearisation of the previous MLP in weight-space and
use the linear model given by the first order Taylor expansion

fin(x,ut) = f(x,wo) + Ve f(x, wo)ut (3.63)
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where we introduce parameters u; = w; — wp providing the deviation of
the parameters w; from their initial values. In this expansion, the first
term captures the output of the MLP at initialisation, while the second term
provides the changes of the output during training assuming a linear model.
The time evolution of this linear model is thus described by ODEs

iy = Vo f(X,wo) Vi J(u), (3.64)
Fin(X, u) = =@V 5 J(uy). (3.65)

For the MSE loss, we can obtain closed form solutions given by

ut =~V f(X, w0) "0 (1ng, — exp(—10"1) (F(X, wp) ~ ¥), (3.66)
fiin(X, 1) = (Ing, — exp(-105”D)Y + exp(—1O D F(X, wo).  (3.67)

This result highlights that the dynamics of the parameters u; and network
outputs fiin (X, u;) are fully described by kernel G)(()L) and we have explicit
solutions without ever training the linearised network. In other words, we
only require the random feature mapping ®(x, wy) = Vo f(x, wp) fixed at

initialisation.
3.4.2.3 Infinite-Width Limit

The relevance of the network linearisation becomes more apparent when we
consider the infinite-width limit of the standard MLP f and its linearisation
fiin- To this end, we need the limiting infinite-width NTK ©.

Theorem 3 (Neural Tangent Kernel (Jacot et al., 2018)) For an MLP of depth
L at initialisation, with a Lipschitz non-linearity o, and in the limit as the layer

widths dy, ..., d;—1 — o0, the NTK @gL) converges in probability to a deterministic
limiting kernel
L L
oM - ol ®1,,. (3.68)

The scalar kernel @SXL)): R% x R%* — R is defined recursively by

oW (x, ) — M (x, %), (3.69)
@%H)(x, x) = o) (2, 2 ) (x, ) + 6D (%), (3.70)



3.4 NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

where

K(L+1)(

Q
—
=

R\
=
[—

(3.71)
(3.72)

X, xl) = lEfNN(o,K(D) [‘7 (f(x))

KD (2, 2) = By e [0 (F(2)) 6

Q
—
=

R\
=
[—

taking the expectation with respect to a centered Gaussian process f of covariance
K(L), and where ¢ denotes the derivative of 0.

We refer to Jacot et al. (2018) for the proof and more details. We want
to highlight that the scaling in the NTK parametrisation is of particular
relevance which ensures applicability of the law of large numbers in the
proof. Note that the recursive definition of the kernel is similar to what
we have seen for the NNGP (see Section 3.4.1). In particular, Equations
(3.53) and (3.71) correspond to each other with / = L +1 and notm% that
the variance in NTK parametrisation is 1 as well as that f(x) L

Furthermore, we identify (X, X) = @éo) (X, X) and note that the act1vat1on
function ¢ to be Lipschitz is generally fulfilled for popular choices like
ReLUs. By Theorem 3, we can compute the infinite-width NTK © in an
iterative fashion, similar to Knngp, and the exact form only depends on
the network architecture and depth, the choice of activation function ¢
and the initialisation of parameters w. With this in place, we can study the
infinite-width behaviour of fj;, more closely. Note that we use a similar
notation as introduced for the joint GP prior in Equation (3.35) and denote
all layer widths jointly by d = {dy, ...,dr—1} in the following corollary.

Corollary 1 (Adjusted from Lee et al. (2019)) For every test point in xy € X,
and t = 0, fii,(x, ut) converges in distribution as d — oo to a Gaussian with mean
and covariance given by

w(Xy) =0,071C(1)Y, (3.73)
Z(Xs, Xs) =KnNGPss + @O C(H)KnngpC(H)O 1O,
— (.07 1C(t)Knncps + h.c.), (3-74)

with matrix C(t) = (Ing, — exp(—1®t)). Therefore, over random initialisation,
lim¢ o0 limy_, o0 frin (%, ut) has a Gaussian distribution with mean and covariance
given by Equations (3.73) and (3.74) but with C(t) = Ina, for lim¢—co.

This provides a GP for linearised networks in terms of the NTK ©® and
NNGP kernel Knngp- Note that hi.c. denotes the Hermitian conjugate. Fi-
nally, we connect the infinite-width limit of a standard MLP and its lineari-
sation with the following theorem. Let ||-||r denote the Frobenius norm.
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Theorem 4 (Adjusted from Lee et al. (2019)) Let d = di = .. = dp and
Neritical = 2(Amin () + Apax (©)) ™1, where A iy max denotes the min / max eigen-
value of ©, and assume Ay, (©) > 0. If the learning rate 1 < Yeriricar, then for
all x € R% with |x|, < 1, with probability arbitrary close to 1 over random
initialisation and for d — o

wi — W, 1
supl (3,1) = fn (w0 o sup 402, supljoy - @) - O )

t=0 t=0 t=0
Moreover, under the same assumptions, f(x,w;) converges in distribution to

the Gaussian given by Equations (3.73) and (3.74) for d — oo, and to the same
Gaussian distribution but with C(t) = Iy, for d,t — oo.

We refer to Lee et al. (2019) for the complete proof and more details. In
summary, Theorem 4 states that, under certain conditions, standard MLPs
are linearised networks in the infinite-width limit and that for large width
networks, the training dynamics are closely approximated by linearised
dynamics. These dynamics involve the time-dependent finite-width NTK

@t(L) which converges to the deterministic NTK @ in the infinite-width

limit by Theorem 3.9 For wide networks, the time-dependent NTK @EL)
exhibits little variance and stays close the finite-width NTK at initialisation

G)(()L). Furthermore, Theorem 4 defines an NTK-GP which corresponds
to fully-trained neural networks in the infinite-width limit. Performing
kernel regression with NTK @, as shown in Equation (3.22) and revisited
in Equation (3.37), leads to

f(xs) = ©,071Y (3.75)

which is equivalent to the mean in Equation (3.73) for t — o (and thus
City=1 Nd,)- Motivated by these results, we study standard and linearised
convolutional neural networks at different widths in more detail in Chapter
6, and additionally consider the kernel regression results of the NNGP
kernel and NTK in the infinite-width limit.

3.5 DEEP LATENT VARIABLE MODELS

In the previous sections, we showed connections between kernel methods
and neural networks. Under particular conditions, we are able to compute

Follow up work refines these results and provides bounds on the required widths dy, ..., d;_1;
see e.g. Arora et al. (2019).
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kernels corresponding to infinite-width neural networks which are Gaus-
sian processes. These results are of great theoretical relevance and advance
the development of a more rigorous theory of deep learning. However,
popular deep learning approaches and finite networks escape these consid-
erations, and rigorous statements about the learned feature mapping ¢ are
challenging due to the non-linear and sequential concatenation of different
layers. In practice, we make prior assumptions, as for example on the type
of architecture, which can be viewed as inductive biases steering learning
and generalisation. A popular and broader type are encoder-decoder archi-
tectures. In contrast to the idea of lifting the data into a higher-dimensional
feature representation as presented so far, these architectures typically en-
code inputs into a lower-dimensional representation which captures the
relevant information necessary to decode the output of interest. For the
remainder of this chapter, we focus on the guiding idea of compression and
start by considering latent variable models in the context of deep learning.

3.5.1 Latent Variable Models

Latent variable models (LVMs) are statistical models which differentiate
between observable or manifest random variables X or Y and latent random
variables Z which are unobserved or hidden. We denote the realisations
or observed values of these random variables by x € R%, y e R%, and
latent values by z € R%. As before, let D = {(xn,y,)}N_; denote our
(training) dataset. Typically, latent variables Z serve as a bottleneck with
d, < dy and thus as a compressed representation of X with likelihood
p(X = x5 | Z = z,) and prior p(Z = z,) for a data point n € {1,..., N}."®
Hence, LVMs describe a generative process for the observed data D. De-
pending on the form of the likelihood and the prior, different LVMs are
defined. Typical examples include (i) mixture models like the mixture of
Gaussians with discrete latent variables for different cluster assignments,
(ii) factor analysis with continuous variables modelling observed variables
as linear combinations of latent factors of which (iii) principal component
analysis is a particular special case, (iv) canonical correlation analysis with
shared or correlated latent variables for observed variables X and Y as well
as independent latent variables, or (v) independent component analysis.
However, all of these LVMs constitute models in which linear relationships
between observed and latent variables are assumed.

10 To stay consistent with the notation in the previous sections, we denote probability densities

by p and adopt the convention of dropping the random variable, i.e. p(X = x) = p(x).
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In the context of deep learning, deep generative models typically rep-
resent non-linear (deep) latent variable models. Deep generative models
(DGMs) are a broad class of (usually) unsupervised machine learning ap-
proaches. A common feature of these neural network approaches is that they
attempt to approximate high-dimensional probability distributions based
on a large number of samples which enables likelihood estimation and
generating of novel objects following the underlying distribution (Ruthotto
and Haber, 2021). Popular DGMs include variational autoencoders (VAEs)
(Kingma and Welling, 2014; Rezende et al., 2014), generative adversarial
networks (GANSs) (Goodfellow et al., 2020), normalising flows (Rezende
and Mohamed, 2015), and recently diffusion models (Sohl-Dickstein et al.,
2015; Song and Ermon, 2019; Ho et al., 2020). In the following, we focus on
the VAE and extensions of bottleneck models.

3.5.2 Variational Autoencoder

The overarching goal of generative modelling is to learn a latent repre-
sentation of the intractable probability distribution p(x) of the input data
points x. For this purpose, we devise a deterministic generator or decoder g:
R% — R% which allows us to map samples of a tractable latent distribution
p(z) into the input domain such that g(z) ~ x generates samples in input
space. We can approximate decoder g with a neural network parametrised
by 6. By using the likelihood pg(x|z) for decoder gy(z) and the prior p(z),
we cast the task as computing the marginal likelihood or evidence

po(x) = f po(x|2)p(z)dz. (3.76)

The evaluation of the high-dimensional integral, however, is intractable in
general. Using Bayes’ theorem, we can write the marginal likelihood as

_ poxl2p(z)

po(z|x) (3-77)

po(x)
Maximising the marginal likelihood with respect to 0 is again infeasible.
While we can define a model for the likelihood pg(x|z) and choose a prior
p(z), the posterior pg(z|x) is generally intractable. In case of real-valued
data, a typical choice for the likelihood is the Gaussian distribution

- 1 _
po(x|z) = (27105.) /2 exp (—zvdeﬂge(z) - x||%) (3.78)
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where 02 < denotes the decoder noise variance. The negative log-likelihood
of this equation corresponds to the MSE loss, which we have previously
derived in Equation (3.12). A key feature of VAEs is to approximate the pos-
terior pg(z|x) with a family of tractable probability distributions through a
variational inference approach. To this end, we introduce a (inference) neu-
ral network, the encoder, parametrised by ¢ which defines the approximate
(variational) posterior

9 (z]x) ~ pe(z|x). (3.79)

A multivariate Gaussian distribution with N (pg(x), diag((ri (x))) is a typ-
ical choice for g¢. Thus, the encoder learns the mean p4(x) and variance
(73, (x)™ for different inputs x while using the same set of parameters ¢,
which is referred to as amortised inference. We provide a schematic illus-
tration of the model in Figure 3.4 where the upper branch corresponds to
the underlying idea of the VAE. Note that the dashed line in the figure
indicates that the latent representations z are obtained as samples from
N(pg(x), diag((rg, (x))). In order to quantify the error in the approximation,
we can make use of the statistical distance defined in the following.

Definition 5 (Kullback-Leibler Divergence) Consider two probability distribu-
tions P and Q defined on the same probability space X. Then the relative entropy
or Kullback-Leibler divergence is defined as

Dia (P1Q) = [ ptx)tog ;’Egdx (3.80)

if P and Q are distributions of continuous random variables with p and q denoting
the probability densities, respectively, and

Dy (PIQ) = 3 P(x) log ) (381)

= Q(x)
if P and Q are discrete probability distributions.

Note that by this definition, the Kullback-Leibler (KL) divergence is (i)
non-symmetric with Dy, (P||Q) # Dxr (Q|P) and (ii) non-negative with

11 For numerical reasons, we learn the log-variance log(tré, (x)) in practice.
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Dx1, (P||Q) = 0 and equals zero if and only if P = Q. With this in place, we
can derive a tractable expression for the marginal log-likelihood

log po(x) = By, (z|x) [log pe(x)] (3.82)
Pe(x, 2) ¢ (z|x)

=~ Egye |08 qi(zx)] #Egy [log 10T 68

= ELBOy o(x) + Dk (94 (2|%)| po(z|x)) (3-84)

> ELBOy o(x) (3-85)

where we identify two important terms in Equation (3.83). The second term
is the KL divergence between the approximate and true posterior g4 (z|x)
and pp(z|x) which is non-negative. Thus, we can view the first term as
a variational lower bound to the marginal log-likelihood, known as the
evidence lower bound (ELBO). Note that the second term not only provides
a measure of distance between approximate and true posterior, but also
quantifies the gap or tightness of the ELBO and marginal log-likelihood.
For the ELBO we can derive

ELBOgy,0(x) =, (z|x) [log(pe(x, 2)) —log(qe(z]x))] (3.86)
=E,, (z|x) [l08(po(x|2)) +log p(z) —log(qg(z|x))]  (3.87)
= E,, (z|x) [log(pe(x|2))] — Dk (74 (z1%)[p(2)) (3.88)

where the first term in the expectation of Equation (3.88) is the log-likelihood
and the second term is KL divergence between prior and approximate pos-
terior. Note that the goal is to maximise the ELBO. Casting this into a
minimisation problem, we obtain the objective function of the VAE as

J(#,0) = Ey(s) [Egy a1y [~ 0g(po(xl2)] + D (40 (z10)p(2)) | (3:89)

> 1 D) By, ey [ 08(po(2)] + Dic. (ap ()1 p(2)) - (390
i=1

In practice, we estimate the expectation with respect to the intractable
distribution p(x) with Monte Carlo samples, i.e. we compute the mean
with respect to s data samples which typically is a mini-batch of the input
data. The first term in the expectation of Equation (3.90) is the negative log-
likelihood which can be interpreted as a reconstruction error of the input x.
Considering a Gaussian decoder as given in Equation (3.78) and its negative
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log-likelihood in Equation (3.12) motivates the use of the MSE loss for the
reconstruction loss. The second term in the expectation of Equation (3.90)
can interpreted as a regulariser which biases the approximate posterior
towards the prior distribution of latent variables z. A typical choice for
the prior is a standard normal distribution A/ (0,1,,). Having both prior
and approximate posterior as Gaussian distributions enables a closed-form
expression for the KL divergence. However, the objective function of the
VAE reveals a potential conflict between reconstruction fidelity and the
regularisation towards a standard normal distribution, which cannot be
fulfilled simultaneously. Two viable approaches are to introduce a Lagrange
hyperparameter § which scales the regularisation term relative to the
reconstruction error, as pursued in the B-VAE (Higgins et al., 2017), or to
balance the reconstruction error through the decoder noise 073, in case of a
Gaussian decoder. Another popular choice for the decoder likelihood is the
Bernoulli distribution with

dx
po(x|z) = | [ ge(2)F (1 — go(2)) 1~ (3.91)
i=1

whose negative log-likelihood gives rise to the (binary) cross-entropy loss
and thus is particularly suitable for binary data.

The encoder and decoder networks can be implemented by any kind of
architecture suitable for processing the input data, like MLPs, convolutional
neural networks, or graph neural networks. In order to learn the encoder
parameters ¢ with a derivative-based minimisation, the reparametrisation
trick (Kingma and Welling, 2014) is used where the latent sample z ~
(¢ (z|x) can be written as function of noise variable e ~ N'(0,1,) as

z(e) = pgp(x) + diag (0’3,(x)> €. (3.92)

3.5.3 Deep Variational Information Bottleneck

An information theoretic approach to compression models is the Informa-
tion Bottleneck (IB) principle (Tishby et al., 1999). Consider the following
setting: For a random variable X corresponding to a signal we want to
identify a compression given by a random variable Z which maintains
meaningful or relevant information about a relevance random variable Y,
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Pil :
> o
[ : Z

H] 189.6 kcal/mol

Encoder Decoder

Figure 3.4: Schematic illustration of a hybrid model combining VAE and DVIB
decoder branches as used in Chapter 5. The encoder processes the input x, e.g.
a representation of a molecule, and parametrises the mean g (x) (depicted
by crosses x) and variance tré(x) (depicted by circles) used to map x into
lower-dimensional latent space Z (different colours depict different mappings
of x). These latent codes are decoded by two different decoder branches: The
upper branch corresponds to the standard VAE setting and reconstructs input
x, e.g. the molecule representation. The lower branch corresponds to the DVIB
setting and predicts a property y, e.g. the band gap energy of the molecule.

satisfying the Markov chain Z < X < Y. In order to formulate the IB
problem, we make use of the notion of mutual information.

Definition 6 (Mutual Information) Let X and Y be two random variables with
joint distribution P(X,Y) and marginal distributions P(X) and P(Y). The mutual
information is defined as

I(X;Y) = Dgr (P(X,Y)[|P(X)P(Y)) - (3.93)

Informally, the mutual information (MI) measures the amount of informa-
tion we obtain about one random variable by observing the other random
variable. Note that this definition implies that the Ml is (i) symmetric with
I(X;Y) = I(Y; X) and (ii) non-negative with I(X;Y) > 0. The IB variational
problem is then defined as

min I[(X;Z) - AI(Z;Y). (3.94)
P(Z|X)

A low MI in the first term I(X;Z) corresponds to a high level of com-
pression, while a low MI in the second term I(Z;Y) represents that little
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relevant information about Y is preserved in Z. Thus, parameter A controls
the trade-off between the compression of X and preservation of relevant
information about Y. The solution provides the optimal conditional distri-
bution of Z given X. Generally, no analytical solutions exists but numerical
approximations can be used (Tishby et al., 1999). For the special case of a
joint Gaussian distribution,

2Zx  Xxy
X,Y)~N|oO, .
(X,Y) ( (Z)T(Y 5 )) (3.95)

provides the Gaussian information bottleneck for which the solution to
Equation (3.94) is also a Gaussian distribution. The random variable Z
can be represented through the linear transformation Z = AX + ¢, with
€ ~ N(0,%¢) and projection matrix A, and thus is distributed according
to V(0,27) with £7 = AZx AT + . For the optimal Z, we obtain X, = 1
and the mutual information between X and Z is then equal to

[(X;Z) = log |AZx AT +1], (3.96)

where | - | denotes the determinant of the matrix. For further details on the
Gaussian IB we refer to Chechik et al. (2005). By additionally assuming that
the projection matrix A is diagonal, we obtain a sparse compression Z (Rey
et al., 2014). This can be motivated by observing that a full-rank projection
AX' of X" does not change the mutual information I(X; X’) = I(X; AX'). A
reduction in mutual information can only be achieved by a rank-deficient
matrix A, i.e. by setting diagonal elements to zero.

The deep variational information bottleneck (DVIB) is a variational ap-
proximation to Equation (3.94) based on neural networks (Alemi et al.,
2017). For this, we rewrite the objective function as

J(¢,0) = 1p(X;Z) — My o(Z;Y) (3.97)

where the conditional distributions p(z|x) and pg(y|z) are parametrised by
neural networks and represent the encoder and decoder, respectively. This
is similar to the VAE setting in the previous section, but for a supervised
problem. A schematic illustration of the model is shown in Figure 3.4 where
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the lower branch corresponds to the underlying idea of the DVIB. Following
Wieczorek and Roth (2020), we can derive

Ip(X;Z) = D (pg (21x)p(x) | p(2)p(x)) (3.98)
=E, ) [DxL (pg(z|%)[p(2))] (3.99)

and
tga(z:Y) = Dt ( [ paebs piplp(Ip) (3.100)

= ]Ep(x,y) []Ep¢(z|x) [log Pe(y|z)]] - ]Ep(y) [lOg P(}/)] (3.101)

where the last term in Equation (3.101) is the (differential) entropy. Note
that in addition to Markov chain Z < X < Y also X < Z < Y holds for
the DVIB by construction. Wieczorek and Roth (2020) showed that only the
latter Markov chain is required which leads to the lower bound provided in
Equation (3.101). A thorough analysis of the differences between the IB and
DVIB approach is provided in Wieczorek and Roth (2020). Comparing the
DVIB objective function given by Equations (3.97), (3.99), and (3.101) with
the VAE objective function given in Equation (3.90) shows a correspondence
between these models. Their connection is discussed in Alemi et al. (2017)
in more detail.

In Chapter 5 we make use of a hybrid approach which combines both
decoders of the VAE and DVIB in a unifying framework, as depicted in
Figure 3.4. The latent representation z is used for both the reconstruction
of the initial input x as well as for the prediction of a continuous target y.
In the hybrid model, we adopt the presented VAE approach and use the
approximate posterior g4(z|x) as well as Gaussian decoders and add the
additional loss in Equation (3.101) to the model objective. Similar models
were used in our work on deep archetypal analysis (Keller et al., 2019, 2021),
in the symmetry-transformation information bottleneck (STIB) (Wieser et al.,
2020) or the chemical VAE (Gomez-Bombarelli et al., 2018).

3.6 SEMANTIC SEGMENTATION

An important class of neural network architectures are convolutional neural
networks (CNNs). The guiding idea behind this type of network is the
prior assumption that local relationships in the data, like correlation of
adjacent pixels in an image, are relevant in certain tasks, e.g. recognition of
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objects in images. Typical applications are classification, object detection,
or recognition tasks in images, but also other applications which involve
data arranged in matrices or sequences. The first architectures of that
kind were proposed in the 1980s (Fukushima, 1980; LeCun et al., 1989)
and were inspired by biological hierarchical models of the primary visual
cortex (Hubel and Wiesel, 1959) and their resemblance to the convolution
operation in mathematics. A CNN can be regarded as a particular kind of
MLP, where certain connections between units of different layers in Figure
3.2 are missing and some connections share the same parameters. This
defines convolutional layers which employ filters that apply the convolution
operation to map an input image to a feature map. By concatenating several
such layers, convolutional filters map between feature maps and can learn
increasingly complex features. The filters can be thought of as randomly
initialised matrices, often of size 3 x 3, which stride over the input or
feature map and store the sum of all element-wise products in the resulting
feature map. During training, these filters are updated in order to extract
meaningful features. In addition, pooling layers are used to down-sample
feature maps. Reducing the resolution incorporates a local invariance to
small shifts of objects in the input image. A common choice are max pooling
layers which take the maximum of 2 x 2 adjacent pixels. The last part of a
CNN typically consists of fully-connected layers similar to the MLP. Figure
3.5 illustrates such a CNN known as LeNet-5 (LeCun et al., 1998), which can
be viewed as the foundation of many CNNs proposed in the last years. The

Conv. Pool. Conv. Pool. Dense

Figure 3.5: Illustration of a convolutional neural network. The different layers
consist of convolutional layers, pooling layers, and fully-connected (dense)
layers. Feature maps and hidden units are depicted at the different layers.

recent popularity of CNNs was sparked with AlexNet (Krizhevsky et al.,
2012) and a great variety of other CNN families followed, like ResNets (He
et al., 2016), R-CNNs (Girshick et al., 2014), YOLO models (Redmon et al.,
2016), and many others. Recently, transformer approaches (Vaswani et al.,
2017) like the vision transformer (Dosovitskiy et al., 2021) challenge the
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dominance of CNNs in vision applications. In Chapter 6, we focus on LeNet
and AlexNet and study these CNNs as well as their linearised versions at
different network widths and for increasingly difficult classification tasks.
Apart from classification tasks, CNN approaches are particularly useful
in semantic segmentation. An example for such a segmentation task is
illustrated in Figure 3.6 on the left. An aerial image containing a shallow
landslide (see Chapter 2) is shown. The provided segmentation mask high-
lights the relevant pixels belonging to the erosion classes. In Chapter 4 we
present a CNN approach for efficient and scalable segmentation of such
erosion sites based on the U-Net (Ronneberger et al., 2015), which has a
particular focus in this thesis. The U-Net is a fully-convolutional network
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Figure 3.6: Semantic segmentation with the U-Net. On the left an input image
(top) and the segmentation result (bottom) with highlighted region of interest
(in magenta) are shown. The U-Net can be viewed as an encoder-decoder
architecture. In the upper part, a compressed representation of the input is
learned. In the lower part, the compressed representation is decoded into a
segmentation map. Skip connections allow high-frequency information to pass
from the encoder to the decoder.

(Long et al., 2015) and can be viewed as a multi-scale encoder-decoder
architecture, as illustrated in Figure 3.6. The main components are convolu-
tion, max pooling, dropout, and transposed convolution operations with
rectified linear unit (ReLU) activations ¢(-) = max{0,-}. The transposed
convolution operation'? is used to up-sample single pixels from a feature
map to typically 2 x 2 pixels in the subsequent feature map. Thus, it can be
viewed as an inverse operation to max pooling. Lastly, dropout is employed
a regularisation approach which sets a subset of unit activations to zero.

12 Sometimes referred to as up-convolution, fractionally-strided convolution, or deconvolution.
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For instance, with a dropout probability of 50% about half of the units are
randomly set to zero for a single training iteration. This usually improves
the stability and accuracy of prediction outcomes.

In the encoder part (top layers in Figure 3.6), a compressed representation
of the input is learned by sequences of two convolutional layers with ReLU
activations followed by a max pooling layer. The bottleneck of this architec-
ture is given by the feature maps before the first transposed convolution
operation (bottom right in Figure 3.6). Note that in the depicted U-Net
with two max pooling steps, one pixel in the bottleneck feature maps is
the result of 32 x 32 processed pixels in the input image which is referred
to as the receptive field. In the decoder part (bottom layers in Figure 3.6),
the compressed representation is expanded to the original image size™
by sequences of transposed convolutional layers with ReLU activations
followed by two convolutional layers and ReLU activations. An important
aspect of the U-Net is the usage of skip connections, in which feature
maps from the encoder part are appended to the feature maps obtained
through the transposed convolutions to provide high-frequency details in
the decoder part. Finally, a 1 x 1 convolutional layer performs a convolution
only on the channel dimension and provides the segmentation maps for the
individual classes. In the last step, a pixel-wise softmax activation function
o(z); = exp(zi)/z;fl;1 exp(zj), i,j € {1,...,d:}, rescales the activations for
each pixel to the [0, 1] interval. We cover more application relevant details
in Chapter 4.

The U-Net has experienced a great popularity in semantic segmentation
tasks, due to its relative architectural simplicity and applicability in domains
with small training sets, in particular in biomedical but also in geoscience
applications. A great number of extensions was proposed leading to a large
zoo of different U-Net architectures. Prominent examples include the 3D-
U-Net (Cicek et al., 2016), U-Nets with additional skip-connectivity (Zhou
et al., 2018; Huang et al., 2020a), or the unifying framework of the nnU-Net
(Isensee et al., 2021), but also many more. U-Nets are also used for inverse
problems (Jin et al., 2017; Han and Ye, 2018). Building on the success of
models employing the attention mechanism (Vaswani et al., 2017), recent
extensions incorporate attention into U-Nets like (Oktay et al., 2018) and
find applications in geoscience as for deforestation detection (John and
Zhang, 2022). Furthermore, U-Net-like architectures (Hatamizadeh et al.,

Note that the output size depends on the padding used in the convolutional layers. If no
padding is used, the output size is smaller than the input image size as pixels on the borders
are missing. With padding, the original image size is retrieved.
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2022; Chen et al., 2021) based on the vision transformer were proposed. An
additional direction develops probabilistic approaches to semantic segmen-
tation like the Bayesian U-Net (Dechesne et al., 2021) or the (hierarchical)
probabilistic U-Net (Kohl et al., 2018, 2019) for segmentation in presence of
label ambiguity. We review these approaches as potential extensions of our
work in Chapter 7.
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The intactness of soil is of great relevance for plants, animals, humans, and
the ecosystem as a whole. Soil erosion in alpine grasslands poses a major
threat to ecosystem services of alpine soils. Natural causes for the occurrence
of soil erosion are steep topography and prevailing climate conditions in
combination with soil fragility. To increase our understanding of ongoing
erosion processes and support sustainable land-use management, there is a
need to acquire detailed information on spatial occurrence and temporal
trends. Existing approaches to identify these trends are typically laborious,
lack transferability to other regions, and are consequently only applicable
to smaller regions. In order to overcome these limitations and create a
sophisticated erosion monitoring tool capable of large-scale analysis, we
develop a model based on the U-Net, a fully-convolutional neural network,
to map different erosion processes on high-resolution aerial images (RGB,
0.25 — 0.5 m pixel resolution).

In a first study, we train a U-Net on a high-quality dataset consisting
of labelled erosion sites mapped with object-based image analysis (OBIA)
in the Urseren valley (Central Swiss Alps) for five aerial images (16-year
period). We use the U-Net model to map the same study area and con-
duct quality assessments based on a held-out test region and a temporal
transferability test on new images. Erosion classes are assigned according
to their type (shallow landslide and sites with reduced vegetation affected
by sheet erosion) or land-use impacts (livestock trails and larger manage-
ment affected areas). We show that results obtained through OBIA and the
U-Net follow similar linear trends for the 16-year study period, exhibiting
increases in total degraded area of 167% and 201%, respectively. Segmen-
tations of eroded sites are generally in good agreement, but also display
method-specific differences, which lead to an overall precision of 73%, a
recall of 84%, and an Fq-score of 78%.

In a second study, we extend the U-Net training to eight different grass-
land valleys all over Switzerland and evaluated on the same test region
in the Urseren valley as well as another spatially separated region, the

Part of this chapter has been published in Samarin et al. (2020). The content related to the
publication was covered in the dissertation of Zweifel (2021), too.
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Turbach valley. Incorporating multiple valleys with diverse conditions, we
show an improvement of segmentation results which generally leads to
more sites being predicted as degraded area and retrieves 94% of the U-Net
segmentation sites of the first study. Furthermore, similar linear trends
for the 16-year study period in the Urseren valley are obtained with a
relative increase of 132% of total degraded area in the U-Net prediction as
compared to the 167% in the OBIA baseline.

Our results show that the U-Net approach is transferable to spatially
and temporally unseen data, i.e. to regions within the Urseren valley but
also beyond (as shown for the Turbach valley) and data from new years.
Therefore, it is a suitable method to efficiently and successfully capture
the temporal trends and spatial heterogeneity of degradation in alpine
grasslands. Additionally, the U-Net is a powerful and robust tool to map
erosion sites in a predictive manner utilising large amounts of new aerial
imagery.

4.1 MONITORING SOIL DEGRADATION

As introduced in Chapter 2, soil degradation is a major ecological threat
which affects many areas of the world and can be accelerated by land-use
management and changing climate parameters, such as precipitation and
temperature (EEA, 2009; Fuhrer et al., 2006; Meusburger and Alewell, 2008;
Nearing et al., 2004; Scheurer et al., 2009). In Switzerland, some alpine
grassland areas are strongly affected by soil erosion due to the steep terrain
and extreme climate conditions. While soil erosion occurs naturally in these
environments — in the form of landslides (triggered by snow gliding or
heavy precipitation events) or sheet erosion (the process of the removal of
topsoil caused by rain drops’ impacts and overland flow) — there are also
anthropogenic influences (e.g. agricultural activities) which can accelerate
erosion rates (Meusburger and Alewell, 2008; Tasser et al., 2003; Zweifel
et al., 2019). For example, livestock keeping can lead to overgrazing and
trampling in favoured grazing areas. Over time, livestock trails develop
and trampling and grazing can lead to a reduction in vegetation cover,
which in turn is prone to sheet erosion (Apollo et al., 2018; Torresani et al.,
2019). Additionally, livestock keeping can cause instabilities on slopes and
ultimately result in landslides (Wiegand and Geitner, 2010). We provide
visual illustrations of these erosion phenomena in Figures 2.1 and 4.3.
Therefore, erosion processes have strong temporal and spatial dynamic
components, which is why large-scale understanding and detailed map-
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ping over time and space is of great importance for long-term sustainable
management practices.

Alpine areas are difficult to access and erosion features can affect sub-
stantial areas, making a comprehensive understanding of ongoing erosion
processes unattainable from the ground. Larger-scale erosion studies for
Switzerland have mainly been approached with the help of soil erosion
modelling — e.g. the (revised) universal soil loss equation (Alder et al,,
2015; Bircher et al., 2019; Meusburger et al., 2010, 2012; Prasuhn et al.,
2013; Schmidt et al., 2018, 2019a,b). To achieve a thorough understanding
of potential soil erosion threats, it is important to combine model outputs
with observations for validation purposes (Fischer et al., 2018). The latter
is especially crucial in mountainous and grassland areas, where model
suitability has been questioned (see discussion in Alewell et al. (2019)).
High-resolution aerial imagery offers the opportunity to remotely assess
and map the spatial extent of bare soil sites and sites with strongly reduced
vegetation cover, allowing certain constraints to be overcome, such as the
inaccessibility or extent of a study area. Object-based image analysis (OBIA)
is an approach commonly used to identify urban and natural “objects” on
satellite and aerial imagery and has been successfully used in the past to
map various forms of soil erosion (D’Oleire-Oltmanns et al., 2012; Eisank
et al., 2014; Guzzetti et al., 2012; Holbling et al., 2015, 2016, 2020; Martha
et al.,, 2012; Shruthi et al., 2011; Wang et al., 2020; Wiegand et al., 2013;
Zweifel et al., 2019). OBIA creates image segments by grouping pixels with
similar properties together, which can then be classified based on object
information (spectral, spatial, textural, and contextual) with expertly de-
veloped classification rules including various machine learning classifiers.
OBIA is a method suitable for smaller study areas, but large-scale studies
become difficult to manage. Limitations including processing times, a lack
of work-flow transferability to other scenes, and the involvement of manual
steps hinder efficient spatial up-scaling of projects. In past years, deep
learning methods have progressively been applied in the field of remote
sensing for image classification tasks and segmentation tasks (Ma et al,,
2019; Heydari and Mountrakis, 2019; Huang et al., 2018; Yuan et al., 2020).
In this study, we apply a deep learning method to demonstrate that it is ca-
pable of mapping and classifying soil erosion features on aerial images in a
fast, objective, reliable, and scalable manner. We apply a fully-convolutional
neural network (CNN) framework using the U-Net architecture developed
by Ronneberger et al. (2015). In general, the U-Net architecture offers itself
to semantic segmentation tasks with limited training data. The U-Net and
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variations of this architecture have become increasingly popular for remote
sensing tasks. Many applications focus on urban settings for road (Yuan
et al., 2019; Zhang et al., 2018¢; Alshaikhli et al., 2019; Wulamu et al., 2019)
or building extraction (Xu et al., 2018; Yi et al., 2019; Ivanovsky et al., 2019;
Mboga et al., 2019) from satellite and aerial imagery. Applications in a
natural environment are constrained by the limited availability of high-
quality labelled training data. Despite this limitation, the U-Net has been
applied in cloud detection on satellite images (Yang et al., 2019), mapping
of woody vegetation (Flood et al., 2019), segmentation of plant species
(Kattenborn et al., 2019), forest damage assessment (Hamdi et al., 2019),
the extraction of Antarctic glacier and ice shelf fronts (Baumhoer et al.,,
2019), and archaeological studies (Bundzel et al., 2020), to name a few. Our
annotated training data has been generated by mapping erosion sites on
aerial images using OBIA for a valley in the Central Swiss Alps (Urseren
valley, Canton of Uri). We compare the U-Net results to OBIA mapping for
a held-out test region (area of 17 km?), which was not used for training (9
km?) for the years 2000, 2004, 2010, and 2013. Additionally, we investigate
both the temporal and the spatial transferability of the U-Net method by
mapping a new test aerial image not seen during training (2016). Our main
objectives of this study are twofold: firstly, to show that the fully automated
U-Net approach is capable of reproducing the high-quality soil erosion
mapping and the temporal trends as they were attained with OBIA for the
same study site; secondly, to show that the U-Net approach generalises well
to new aerial images, i.e. can be used in a predictive manner to perform
adequate segmentation of previously unseen input data. In contrast, the
OBIA procedure typically eludes such predictive usage and needs to be
adjusted for each new aerial image. The capabilities and the fully automated
nature of the U-Net approach make it a highly promising tool for efficient
large-scale erosion mapping, e.g. alpine-wide analysis of soil erosion in
semi-natural ecosystems such as grasslands and bush-land.

4.2 CASE STUDY: URSEREN VALLEY

The Urseren valley (26 km?) is an alpine valley located in Central Switzer-
land in the southern part of the Canton of Uri, as illustrated in Figure 4.1.
The valley has a NE/SW orientation, and exhibits steep slopes (average an-
gle of 27°) and rough terrain. The valley is geologically divided into two
distinct sections and separated by the river Reuss: The northern slope is part
of the Aarmassif (granite), and the southern slope belongs to the Goatherd
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massif (gneiss). Located between these two massifs near the valley floor
is the so-called Urseren-Garvera zone (Mesozoic sediments) (Wyss, 1986).
The dominant soil types in the catchment are Podzols and Cambisols, with
Leptosols commonly found on steep slopes (classified after IUSS Working
Group WRB (2006)).
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Figure 4.1: The Urseren valley is located in the Central Swiss Alps in the Canton
of Uri. The left map contains the topographic map of Switzerland (from low
elevations in green to high elevations in brown to white). The right image
contains an aerial image of the Urseren valley overlaid on a hill-shade map of
the area.

The 30-year average temperature (1990 — 2019) of the closest meteorolog-
ical station in Andermatt (1438 m a.s.l.) is 3.9°C. The average temperature
has increased by 0.7°C during the last 10 years (compared to the average
of 1980 — 2009). The average rainfall during the last 30 years was 1384 mm
with an average maximum 3-day precipitation intensity of 123 mm/3 d. The
average seasonal (November—April) snow height is 58 cm with maximum
snow heights during February/March (average of 103 cm) (data provided
by MeteoSwiss, 2020). The dominant land-covers are grassland (including
dwarf-shrubs consisting of Calluna vulgaris, Rhododendron ferrugineum,
and Juniperus sibirica), which is mainly used for grazing (i.e. sheep and
cattle) and haying, shrubs (mainly Alnus viridis and Sorbus aucuparia), and
debris/bare rock areas (Meusburger and Alewell, 2008). Shrub encroach-
ment due to land abandonment and extensification is present in the valley.
Avalanches and snow gliding occur frequently in the Urseren valley, facili-
tated by the deforested state of the slopes. The dominant erosion processes
in this region are (shallow) landslides, sheet erosion, and erosion caused
by land-use management (livestock, machinery, and manuring). Additional
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information on the Urseren valley and occurring erosion processes can be
found in Alewell et al. (2015); Meusburger and Alewell (2008); Zweifel et al.

(2019).
4.3 DATASETS FOR SOIL DEGRADATION ANALYSIS

In the following we present the datasets used in our study. Table 4.1 sum-
marises the datasets used for the mapping procedure conducted with the
U-Net which were also the basis for the training dataset produced with
OBIA (Zweifel et al., 2019).

Table 4.1: Summary of raster datasets used in this study. All geodata sets © swis-
stopo. The aerial image of 2016 (*) was only used for testing the generalisation
of the U-Net model.

Dataset Derivative Resolution Recording Date

Aerial Image 0.5m 24 August 2000

(RGB bands) 0.5m 9 September 2004
0.25m 20 July 2010
0.25m 1 August 2013
0.25 m 20 July 2016

Digital Terrain Slope 2m

Model Aspect 2m

(grey scale) Curvature 2m

4.3.1  Aerial Imagery

The aerial images of SwissImage are high-resolution georeferenced or-
thophotos (product of Swisstopo (2010)). Five aerial images covering the
Urseren valley were used in the time from 2000 to 2016. These images have
a spatial resolution of 0.5 or 0.25 m (Table 4.1). Spectral information is
available in the visible range (red, green, and blue spectral bands). All aerial
images have slightly different properties (e.g. spatial resolution, colour
distribution, and lighting conditions) but were always recorded during the
growing season between late July and early September.
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4.3.2 Digital Terrain Model

The digital terrain model (DTM) SwissALTI3D is the surface model of
Switzerland without vegetation and development and has a spatial resolu-
tion of 2 m (product of Swisstopo (2014)). Based on the elevation information
of the DTM we derived the slope, aspect, and curvature (plan and profile)
using ArcGIS (Version 10.5). The DTM provides valuable information and
offers context to the aerial images. Zweifel et al. (2019) have shown that
for their study using OBIA, the DTM and its derivatives were essential for
successful erosion mapping and classification.

4.3.3 Training Data

The data used to train the U-Net model consists of aerial imagery, DTM
information, and training labels (see Section 4.4.3 for the training process).
To train our U-Net model, a subsection (9 km?) of the Urseren valley (26
km?) was used with the corresponding OBIA-mapped features, see Figure
4.2. Four of the aerial images were used during training, leaving out the
year 2016. By separating a subsection for training, we validated the spatial
transferability of the model within the larger valley region. In addition,
by omitting 2016, we tested the spatial and temporal transferability when
applying the U-Net to a different image with properties not known during
training.

4.3.3.1  Training Labels

The training labels come in the form of mapped erosion sites with at-
tributed erosion classes from a previous study by Zweifel et al. (2019).
This dataset was created with a semi-automatic method using an OBIA
approach described in Section 4.4.1, which made use of the same aerial
imagery and DTM information as used for the U-Net. Mapped erosion
objects are available for the entire Urseren valley for all five aerial images
(2000, 2004, 2010, 2013, and 2016). Based on random sample evaluation by
experts, this dataset has an average overall accuracy score of 85.4% (Zweifel
et al., 2019). The training labels consist of four different erosion classes
which we introduced in Chapter 2 and which are illustrated in Figure 4.3:
shallow landslides (areas with displaced topsoil layers and clear boundaries
to the surrounding vegetation), livestock trails (elongated tracks caused
by livestock trampling, mostly perpendicular to the slope), sheet erosion
(patches with reduced vegetation cover), and management effects (large
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areas damaged by heavy machinery, over-fertilisation, or intense grazing in
fenced-off areas).

Training Testing

Testing

2000

2004

2010

2013

® Shallow Landslides
© Sheet Erosion
© Livestock Trails
® Management Effects

0 05 1 2 km
I

2016

Figure 4.2: Training (9 km?) and testing (17 km?) areas are marked on the aerial
image with examples of OBIA training labels for 2000 (map on the left). On
the right-hand side is an overview of all available years and the sections used
for training and testing. All training areas contain OBIA training labels (not
shown) for the respective years (2000 — 2013). Training labels vary for each
year due to the continuous evolution of soil erosion sites. The entire area of
the image taken in 2016 was used only for testing.

Figure 4.3: Examples for the labels used for training the U-Net model. From left
to right: shallow landslides, livestock trails, sheet erosion, management effects.

4.4 METHODOLOGY

Our methodology consists of two major parts: the training process and
the prediction process, with an overview depicted in Figure 4.4. To train
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the U-Net model we use OBIA labels together with the respective aerial
image information (RGB) and DTM information for a dedicated training
area (9 km?). The U-Net assigns pixel-wise probability values and thus
provides information about the likelihood of pixels belonging to a specific
erosion class. Based on these probabilistic assignments, hard segmentations
are produced by thresholding. The following sections will describe the
methodology in further detail.

Training Process Prediction Process Final Classification

Curvature Map of erosion features

Curvature

Semantic Segmentation:
selection of
probability thresholds

[

Class assignment with
pixel-wise probabilities

New Data

Tiling of input
194 x 176 m

Output

Figure 4.4: An overview of the developed workflow on the basis of the U-Net
showing examples of input files for training and prediction purposes. The
output shows one of four erosion classes, namely, shallow landslides, with four
different probability thresholds.

4.4.1  Object-Based Image Analysis

Object-based image analysis (OBIA) combines a segmentation algorithm
with classification techniques ranging from decision trees to various su-
pervised machine learning algorithms which assign generated segments
(or object primitives) to erosion classes. We used the software eCognition
Developer (version 9.3.2) implementing a multi-resolution segmentation
algorithm for grouping pixels with similar properties to object primitives.
Input data consisted of aerial imagery (RGB), the excess green vegetation
index, and information from the DTM and its derivatives (slope, aspect,
and curvature). The object primitives contained information on their spa-
tial, spectral, textural, and contextual properties based on all input data.
Given these extracted feature sets, a random forest classifier was trained on
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manually selected samples in order to identify bare soil sites or sites with
reduced vegetation cover. Subsequently, an additional decision tree was
assigned specific erosion classes based on the typical appearances of objects
previously identified containing bare soil or reduced vegetation cover. These
erosion classes consist of shallow landslides, livestock trails, sheet erosion,
and management effects. Note that the entire workflow needed to be per-
formed on every input image to accommodate for varying image properties.
Therefore, OBIA-labels for different input images can be considered to be
obtained from independent models (i.e. differently calibrated settings). A
detailed description of the workflow is presented in Zweifel et al. (2019).

4.4.2 Neural Network Architecture

In this study, we make use of the U-Net architecture (Ronneberger et al.,
2015) illustrated in Figure 4.5. The U-Net is a fully-convolutional neural
network which consists of a contracting part and an expansive part, i.e. an
encoder-decoder architecture. We have introduced the U-Net in Section 3.6
and provide some more details relevant to our study in the following.

In the contracting part (upper part in Figure 4.5), a sequence of two
convolutional layers with ReLU activations followed by max pooling layer
processes the input.! With each max pooling application, the sizes of the
resulting feature maps are halved, while the number of features is doubled
for the subsequent convolutional layer. In the expansive part (bottom part), a
sequence of transposed convolutional layers with ReLU activations followed
by two convolutional layers and ReLU activations is applied to restore the
original image size. Feature maps from the contracting part are appended to
the feature maps obtained through the transposed convolutions to provide
fine-detail features in the expansive part. Finally, a 1 x 1 convolutional layer
followed by a pixel-wise softmax activation function provides the final
segmentation output where each channel represents the segmentation map
for the individual classes. The softmax function rescales the activations for
each pixel to the [0, 1] interval. More explicitly, for a pixel f in the output
map F, the softmax yields a prediction p.(f) which can be interpreted
as the probability of pixel f to belong to class ¢ € {1,...,C}. The neural

Note that a common technique for standardising activations in CNNs and U-Nets is batch
normalisation. However, in our experiments we did not notice an effect whether we used it or
not. Thus, we do not employ batch normalisation.
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Figure 4.5: The employed U-Net architecture: In the first (upper) part, the input
is contracted into a compressed representation (right). In the second (lower)
part, the compressed representation is expanded into a segmentation map
with pixel-wise class probabilities. The input consists of the input RGB image
(three channels) and the DTM derivative maps for the aspect, curvature, and
slope (one channel each). The resulting output provides a segmentation map
for each considered class: Shallow landslides (indicated by 1 in the output),
livestock trail (2), sheet erosion (3), management effects (4), and a class for
non-assignable pixels (5).

network is trained with the cross-entropy loss which penalises incorrect
class assignments with

- = Z > ye(f)log(pe(f)) (4.1)

feF ceC

where N = |F| is the number of pixels and y.(f) is the ground truth
class assignment for pixel f, i.e. 1 if ¢ is the correct class and 0 other-
wise. For any pixel f in the input image, the softmax prediction p(f) =
(P1(f), p2(f), .. pc(f)) provides the probabilities for the classes ¢ € {shallow
landslide, sheet erosion, livestock trail, management effect, non-assignable}
-eg.

p(f) = (055, 0.1, 0.2, 0.05, 0.1). (4.2)

erosion class probabilities

In addition to the four erosion classes, a class for non-assignable pixels
is introduced which represents the class for all remaining (potentially
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ambiguous or vegetation covered and thus stable) objects. The U-Net pro-
vides pixel-wise class probabilities like in Equation (4.2) as the probabilistic
output. In the following, for each erosion class we will refer to the full-
probability result when only entries for the specific class of this output are
considered without applying a threshold (e.g. the first entries for shallow
landslides). For the final hard segmentation, we would like to obtain the
dominant erosion class and apply different probability thresholds that con-
trol to which extent candidate segments are obtained. We only consider the
erosion classes and identify the class with the largest probability for pixel f
as the dominant erosion class. If the selected erosion class probability does
not meet the threshold, the respective pixel is considered as a background
pixel. For example, in Equation (4.2), argmax {0.55, 0.1, 0.2, 0.05} implies
that shallow landslide is the dominant class and pixel f is predicted to be a
shallow landslide pixel with a probability of 55%. At a threshold of 0.5, the
class probability exceeds the threshold and pixel f is assigned to the shallow
landslide class, while with a stricter threshold of 0.6 the pixel is considered
to be a background pixel. With this kind of threshold segmentation, the
final erosion class labels are obtained.

4.4.3 Training Process

In order to learn how to identify erosion sites, precise boundaries for the
different erosion classes are required for training the U-Net. Inadequate
training labels can deteriorate the spatio-temporal generalisation capability
of the U-Net. In this study, we used high-quality training labels provided
by the OBIA approach (see Section 4.3.3.1), and we considered the resulting
erosion class areas as the ground truth segmentation in this investigation. To
process the input images efficiently, we divided the aerial images into tiles
of size 194 x 176 m which correspond to 388 x 352 pixels at 0.5 m resolution
(2000, 2004) and 776 x 704 pixels at 0.25 m resolution (2010, 2013, 2016).
The same is done for the maps of the DTM derivatives aspect, curvature,
and slope.

Adjacent tiles overlap such that a 20 m (40 and 80 pixels, respectively)
margin of one tile is contained in an adjacent tile. Figure 4.6 illustrates the
resulting tiles for different years. The higher resolution tiles were down-
sampled so that all input tiles are of size 388 x 352 pixels. No data aug-
mentation was employed, as we expect object size and orientation (e.g.
north/south exposure) to be relevant features. As described previously, the
U-Net was trained from scratch with tiles extracted from the training area



4.4 METHODOLOGY

of the years 2000 to 2013, with a total of 1292 training samples. A U-Net of
depth 3 with initially 32 (root) filters was used (see Figure 4.5), resulting
in 467 525 network parameters. The network was trained for 300 epochs
with a batch size of 20, using the Adam optimizer (Kingma and Ba, 2015b)
with a learning rate of 0.001 and a dropout rate of 0.1. We used TensorFlow
version 1.10 (Abadi et al., 2015) for our implementation which is based on
the U-Net implementation by Akeret et al. (2017). The full source code of
our analysis pipeline is available under the GNU General Public License
v3.0.2

2000 2004 2010 2013
X MW g -

DTM

Figure 4.6: Example of input RGB images for training for the years 2000, 2004,
2010, and 2013 with a size of 194 x 176 m (corresponding to 388 x 352 pixels
at 0.5 m resolution). The images show examples of eroded area on grassland
slopes (livestock trails, shallow landslides). Below, the corresponding aspect,
curvature, and slope maps are displayed (for all years the same DTM informa-
tion is used). To obtain the samples, the aerial images of the respective years
(see Figure 4.2) and the DTM derivatives were divided into smaller tiles.

4.4-4 Details on the Evaluation

For the evaluation, only sites with an area of at least 4 m? were considered,
which we treated as the minimum reasonable object size. This is in line with
the definition used in Zweifel et al. (2019). After choosing an appropriate
probability threshold, the quality of the segmentation results was assessed
with the precision score (producer’s accuracy), recall score (user’s accuracy),

2 https:/ /github.com/bmda-unibas/ErosionSegmentation
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and their harmonic mean, the F; score. We considered objects which overlap
in both the OBIA and U-Net results as true positives and weight true
positives, false positives, and false negatives by the areas of the respective
segments. Ultimately, our goal was to evaluate the total degraded area on
the held-out test area of the training years (2000, 2004, 2010, and 2013) and
the test year 2016 in comparison to the OBIA ground truth results. The
emphasis here was to study the temporal trend and relative increase in
degraded area as obtained from the different methods. We performed a
linear regression to provide the linear trend over the time period from 2000
to 2016.

4.5 RESULTS AND DISCUSSION FOR THE URSEREN VALLEY

The U-Net provides pixel-wise probabilities for each erosion class, which
allows for assessing the certainty of predictions by studying the resulting
heat maps (see Figure 4.7 for an example). In practice, this rich informa-
tion is further post-processed by applying a threshold on the pixel-wise
probabilities to form well-delineated segments. In the following, we present
both results on the (full-probability) heat maps and results obtained with a
selection of different probability thresholds. The latter enables a more direct
comparison to the segmentation results obtained with OBIA. All results
were obtained on the held-out test area (see Figure 4.2). Note that the data
from 2016 was not used for training.

4.5.1  Segmentation of Soil Erosion Sites

The trained U-Net provides satisfying segmentation results which are
demonstrated in Figure 4.7 for exemplary segments of shallow landslides
and livestock trails. The heat maps illustrate the full-probability output of
the U-Net and display the certainty in the class assignment (upper panel).
By selecting different thresholds, hard class assignments can be achieved
which lead to slightly different segment shapes depending on the threshold
(lower panel). We selected thresholds of 0.2 and 0.8 to display the impacts
of a wide range of probability thresholds on the delineation of segments.
In general, choosing lower thresholds allows for the identification of a large
number of potential erosion sites, while a higher threshold reduces the
number of segments and also has an effect on the margins of these object,
i.e. shrinks the segments to the most certain area. The probability threshold
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is a free parameter which can be chosen guided by application requirements
or user preferences, or in our case to match baseline results (OBIA).
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Figure 4.7: Visualisation of U-Net mapped shallow landslides (left) and livestock
trails (right) for 2016. The lower panel shows segmentation results with dif-
ferent probability thresholds: the lighter colour indicates a lower probability
threshold (0.2) and the darker colour indicates a higher probability threshold
(0.8). Lower thresholds lead to larger and more numerous segments. For the
same region (background omitted for better visualisation), the upper panel
shows the full-probability heat map output of the U-Net: darker colours indi-
cate higher probabilities.

In order to evaluate the accuracy of the proposed U-Net approach, we
consider the OBIA results for 2016 as the ground truth baseline, which
are independent of all other years, as OBIA was separately applied to the
aerial image of 2016. For the comparison, we selected a threshold value of
0.3, as this led to the best agreement between U-Net and OBIA segments
with respect to the total degraded area (see Section 4.5.3). OBIA relies on a
dedicated, multi-resolution segmentation algorithm which provides clear
objects to start with, which can then be classified. In contrast to OBIA, the U-
Net approach does not have such a procedure and thus provides less control
over segment shapes, as these are determined by pixel-wise thresholding.
Consequently, there are cases in which both OBIA and U-Net identify areas
as erosion sites but the boundaries of these objects might differ slightly.
In that respect, our results for the U-Net show that erosion sites with
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clear, unambiguous boundaries such as shallow landslides (and some very
clear cases of livestock trails) generally have better overlaps with the OBIA
baseline and contiguous objects are better identified (see Figure 4.8 on the
left). Boundaries of more diffuse erosion sites predicted by the U-Net show
a slight mismatch with the OBIA baseline (see Figure 4.8 on the right).
In these cases, the correct delineation of sites belonging to management
effects or sheet erosion is in general a challenging task which is mirrored in
the less accurate matching of the segmentation results from the different
methods. Additionally, these erosion classes have similar appearances and
are comprised of either bare soil or vegetation areas with strongly reduced
vegetation cover which are prone to similar erosion processes (mainly
erosion by water run-off), and they differ only in the origin of the damage.
Management affected sites are mostly located near the foot of the slope,
are mainly used for the production of hay, and can show signs of heavy
machinery usage. Sheet erosion, on the other hand, can be found throughout
the entire valley and can be caused not only by livestock trampling and
grazing, but also climate-related factors, such as drought, precipitation, and
snow-melt (Alewell et al., 2008; Meusburger and Alewell, 2014; Konz et al,,
2010, 2012; Zweifel et al.,, 2019). Still, both methods are able to identify
a great majority of overlapping objects. More quantitatively, we obtained
scores for a threshold value of 0.3, as presented in Table 4.2.

Table 4.2: Scores for the U-Net with a threshold value of 0.3 for the test aerial
image of 2016. U-Net results are compared to OBIA baseline results.

Scores U-Net

Recall 84%
Precision 73%
Fq 78%

The precision score indicates that 73% of the predicted U-Net segments
have corresponding OBIA segments, and about 27% of predicted U-Net
segments do not directly correspond to any OBIA segments. On the other
hand, the recall displays that 84% of the OBIA segments are maintained
and the remaining 16% of OBIA segments are not identified by the U-Net.
Both these findings suggest that the U-Net successfully identifies a majority
of OBIA segments (recall score), but provides more segmented erosion
sites than OBIA (false positives). Segments contributing to the 27% false
positives can still be valid erosion sites which are not captured by OBIA, as
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Figure 4.8: Comparison of segmentation results of OBIA and the U-Net (proba-
bility threshold of 0.3) for the aerial image of the year 2016. This aerial image
was not used during training of the U-Net model and the depicted sections are
located in the held-out test area. Lighter colours show OBIA results; darker
colours (shaded) are results of the U-Net.

it is known that OBIA tends to give a conservative estimate of the degraded
soil (Zweifel et al., 2019). Therefore, it is important to note that these scores
mainly highlight the difference between U-Net segmentation with respect
to the OBIA segmentation baseline, and it is possible that one method
captures valid erosion sites which the other method misses (see example
shown in Figure 4.9 on the right).

Most cases of false positive predictions can be related to objects which
are similar in appearance to the erosion classes, and the reason for misclas-
sification can be recognised in many cases upon manual inspection. False
positives are typically patches with rocks located at higher elevations which
are classified as shallow landslides (see Figure 4.9 on the left), or varied clas-
sification of sites affected by management and sheet erosion. Nonetheless,
singular rocks on grassland areas are successfully left unclassified. These
kinds of disagreements are inherent to the U-Net approach, which attempts
to identify regularities in the training data and thereby includes objects
which share some similarities. In clear cases, such as very small object
sizes or predictions at certain altitudes where a particular class of erosion
phenomena is not expected, a post-processing step can address these erro-
neous classifications. Another way of avoiding segmentation ambiguities
is to employ pre-processing steps to identify sub-regions of interest for
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Figure 4.9: Examples of two different types of false positives: On the left-hand
side, the U-Net identifies some rock surfaces as sheet erosion (yellow) and
shallow landslides (purple). For both erosion classes, thresholds of 0.2 and 0.8
are shown. Lower threshold choices are linked to more of such false positives.
Depicted on the right-hand side are livestock trails with OBIA and the U-Net
(threshold of 0.2). Here, the U-Net is capable of identifying more livestock
trails correctly compared to OBIA.

target objects which share some kind of regularity in their appearance, for
instance, in the shape of the objects (Guirado et al., 2017). For the purpose
of this study, however, no pre-processing steps were used in the U-Net
procedure to ensure objective comparison with OBIA.

4.5.2  Threshold Selection

In similar studies, the matter of threshold selection is usually not addressed
or a fixed threshold value is used. This can be suitable for studies with
binary output classes (e.g. (Baumhoer et al.,, 2019; Zhang et al., 2018¢)),
but can also be problematic for gradual transitions of classified objects, as
discussed by Kattenborn et al. (2019). Other studies employ deep learning
approaches for classification of the object primitives in the OBIA framework
where object boundaries are already well-defined (Fu et al., 2019; Zhang
et al.,, 2018a; Lu et al., 2020). In our setting, threshold selection can be used
to adjust segmentation results in relation to pre-existing knowledge (i.e.
segmentation results of other methods such as OBIA), which led to the
best fit with a threshold selection of 0.3 for this study (with respect to the
total degraded area; see Section 4.5.3). Additionally, varying thresholds
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may be applied to make necessary adjustments for different classes with
varying appearances. As a standard comparison, a held-out dataset of the
ground truth segmentation required for training can be used to determine
appropriate probability thresholds if necessary. In the absence of appro-
priate pre-existing knowledge or in cases where visual assessment is not
possible, it is advisable to use a range of probability thresholds which
capture a variety of segment estimations and assess uncertainty ranges of
the estimates.

4.5.3 Trend Analysis of Soil Erosion Sites

In order to study the temporal trend in the extent of soil degradation,
we applied the U-Net to the series of five aerial images of the Urseren
valley between 2000 and 2016 (see Section 4.3.3.1). We compare the full-
probability U-Net results and the results for the different thresholds to the
baseline results of the OBIA approach in Figure 4.10. In the first case, the
heat map results are added up to form an estimate of degraded area per
erosion class. The resulting outcomes of the full-probability U-Net output
match the OBIA results closely with respect to the total degraded area. Due
to their methodological differences, slight deviations in the segmentation
results and the resulting (total) degraded area were expected. The same
holds true for the U-Net results with a threshold of 0.3. This threshold was
identified to exhibit the most suitable agreement with OBIA segmentation
results with respect to the total degraded area. It can be observed that for
test year 2016, the OBIA and U-Net threshold 0.3 results agree very well
(in the shaded area in right plot of Figure 4.10). As expected, the U-Net
results display an increase in degraded area for decreasing thresholds.
Nevertheless, in all considered U-Net results, the same temporal trends
of decrease and increase from one year to another are observed, as in the
OBIA baseline. This observation is also supported by the linear regression
results, which in all cases provide similar linear temporal trends. In order
to quantify the relative increase in degraded area, we consider the values
for 2000 and 2016 obtained from the linear regression line. Again, the
threshold dependency with respect to the total degraded area is observed
(top panel in Figure 4.11). However, for the relative increase in degraded
area (quotient of values for 2016 and 2000), the results become mostly
independent of the selected threshold (bottom panel in Figure 4.11). To
assess the statistical uncertainty of the linear regression fit and thus the
relative increase, one standard deviation each of the fitted parameters (slope
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Figure 4.10: Linear trend of the total degraded area in the held-out test region
(see Figure 4.2). (a) Results for a range of different threshold values in the
U-Net approach as compared to the OBIA baseline. (b) Results for the suitable
threshold value 0.3 and the full-probability results are given. Qualitatively, a
similar increase or decrease of degraded soil in the individual years is retained
in all models. The linear interpolation provides a similar temporal trend of
increase in degraded soil in all cases. In particular, the full-probability and
threshold 0.3 results of the U-Net approach show good agreement with the
OBIA baseline. The linear trends with lower and higher thresholds surround
the OBIA result. The years 2000 to 2013 provide a result on the spatial general-
isation of the U-Net (years used for training), while the result for 2016 (shaded
column) in addition provides a temporal generalisation result (aerial image
of 2016 was not used for training). Note that the OBIA approach needs to be
trained on all aerial images.

and intercept) is considered to obtain the two most extreme linear trends
which are possible within the uncertainty of the fitted parameters. This
means the steepest and flattest linear trends with respect to one standard
deviation in the parameters are identified, which leads to the error bars for
the total degraded area as depicted in Figure 4.11. As the relative increase
considers the ratio of these quantities, the error bars are relatively larger
for the relative increase of degraded area. In particular, for a threshold
of 0.8, the statistical uncertainty increases due to the comparably small
degraded area detected. The obtained U-Net results show similar relative
increases of degraded area which fall within the uncertainty range of
each other depicting the statistical uncertainty in the linear regression
fit (one standard deviation). The U-Net results are in good agreement
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Figure 4.11: Comparison of total degraded area in years 2000 and 2016 for the
baseline (OBIA) and the U-Net approach with different thresholds. The total
degraded area was obtained from the interpolation results of each year (top
panel). In all approaches, an increase of degraded area in the Urseren valley is
observed with threshold-specific differences in the total extent. However, the
relative increase in degraded area (bottom panel) shows that assessing the trend
of soil degradation can be done independently of the threshold, as all results
fall within the statistical uncertainty of the linear regression fit. Note that the
statistical uncertainty for U-Net 0.8 increases due to the comparably small total
degraded area detected. The error bars depict the statistical uncertainty of one
standard deviation.

compared to the baseline method, with an increase of 167% in the test
region. This in turn is in line with the increase of 156% 4 18% reported
in Zweifel et al. (2019) for the full Urseren valley, where +18% depicts the
estimated propagated error based on expert accuracy assessment (and not
the statistical uncertainty in the linear regression fit). Importantly, it has
been established that OBIA tends to underestimate the extent of degraded
soil (Zweifel et al., 2019). Therefore, the steeper relative increase obtained
by the U-Net results is plausible and potentially reflects the increase of
degraded area more accurately. Furthermore, the fact that the relative
increases for the different probability thresholds coincide with each other
within the statistical uncertainty of one standard deviation of the linear
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regression fit is further evidence for the applicability and robustness of
the U-Net approach. Assessing the relative development of aggregated
measures, such as the total area of degraded soil, is therefore less sensitive
to the choice of threshold. The results on the linear trend (Figure 4.10) and
the relative increase of total degraded area (Figure 4.11) highlight that the
probabilistic output of the U-Net aligns with the OBIA results very well.
Thus, it is not necessarily required to study these quantities by choosing a
threshold, i.e. hard segmentation. In our investigation we assess predictions
in the held-out test region (see Figure 4.2) for two validation cases: (i)
testing the erosion site prediction of the test region for years for which
conditions (colour, shading, vegetation, etc.) were available during training
(2000 — 2013) and (ii) testing the predictions for a new test year for which
conditions were unknown during training (2016). In the first case, our results
provide evidence that the trained U-Net transfers well to adjacent regions
with similar conditions, as observed during training, which demonstrates
the spatial generalisation capability of the U-Net approach. Furthermore, the
latter validation case gives evidence of suitable erosion site segmentation
with the U-Net approach in completely new aerial images with conditions
not encountered during training, which in addition highlights the temporal
generalisation capability of the approach. For the individual erosion classes,
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Figure 4.12: Total degraded area prediction of the U-Net with individually se-
lected thresholds best suited for every erosion class on the held-out test region.
The thresholds were selected according to a detailed threshold analysis (not
shown) to be: 0.2 for shallow landslides, 0.2 for livestock trails, 0.3 for sheet
erosion, 0.5 for management effects. Although deviations in the total degraded
area persist, the linear trends of the two methods almost coincide.
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we examine the results for the full U-Net model output and for a threshold
of 0.3 (see Figure 4.13). Especially for sheet erosion and management effects,
which contribute to a great amount of the total degraded area, the choice of
0.3 as a threshold for the hard segmentation is appropriate. In the case of
livestock trails, the full-probability U-Net results capture the behaviour in
the baseline more appropriately. The individual results highlight that an
erosion-class-specific choice of the probability threshold can be reasonable
in applications such as ours. We provide a result on such a mixture of
thresholds for the linear trend for the years 2000 to 2016 in Figure 4.12. The
linear trend for the years 2000 to 2016 exhibits good agreement with the
OBIA baseline (similar to Figure 4.10 on the right). Therefore, although
the temporal development of aggregated measures is less dependent on
the threshold, choosing different probability thresholds enables flexibility
in the number of identified segments and segment boundaries in the U-
Net approach. This is especially the case when examining the temporal
development with regard to the degraded area per individual erosion class

(Figure 4.13).
4.5.4 Deep Learning and OBIA

Deep learning methods for similar applications are predominantly trained
with manual labels, and often the objects of interest are precisely defined,
such as roads, buildings, or damaged trees in forests (Zhang et al., 2018¢;
Mboga et al., 2019; Hamdi et al., 2019). In our application, the objects are
less clearly defined, and some of the segment boundaries concerning both
the mapped and omitted areas might be more disputable. The boundaries
of objects are often ambiguous due to smooth transitions, especially for
erosion sites with reduced vegetation cover. Imprecise delineation of the
objects of interest negatively impacts the generalisation capability and
applicability of deep learning techniques, and can potentially be a limiting
factor for this kind of approach. In particular, it can have a detrimental
effect on the accuracy of the U-Net approach if the ground truth misses a
great number of relevant objects. Therefore, we do not rely on manual labels
of the objects of interest, which might suffer from subjective assessments,
require labour-intensive work, and usually are unable to achieve pixel-level
precision. Instead, we showcase that any kind of segmentation technique,
such as OBIA in our study, can be used as a basis to provide training data
to successfully employ a convolutional neural network for segmentation of
natural features, such as the erosion sites in our application.
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Figure 4.13: Mapped degraded area in the test region by erosion class for both
the OBIA and U-Net methods (full-probability results and threshold value 0.3).
Comparing the two methods, class-specific differences for the yearly degraded
area and linear trends can be observed. Moreover, by selecting appropriate
thresholds for each erosion class, similar linear trends in both methods can
be attained (see Figure 4.12). The years 2000 to 2013 provide a result on the
spatial generalisation of the U-Net (years used for training), while the result
for 2016 (shaded column) in addition provides a temporal generalisation result
(aerial image of 2016 was not used for training).
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Similar studies have compared OBIA to deep learning approaches for the
detection of landslides on remotely sensed data with the goal of enabling
large-scale analysis. In Prakash et al. (2020) the comparison was done on
the basis of landslide inventories. A study of different machine learning
and deep learning methods was conducted by Ghorbanzadeh et al. (2019),
who used field observations with manual corrections as the ground truth
segments. These studies show that deep learning approaches improve
segment detection by comparison of the segmentation performances of the
different methods. In our study, we leverage the fact that OBIA is a well-
suited approach for segmentation tasks on small scales, and thus derive
our baseline trends and the ground truth segments from it. Other work
like the detection of shrubs on high resolution satellite imagery by Guirado
et al. (2017) similarly shows that CNN approaches can outperform OBIA
in certain cases. That study relied on manually delineated ground truth
segments and used dedicated pre-processing steps to identify regions of
interest to perform classification of candidate patches. Combining OBIA
and CNN approaches was also studied with regard to using CNNs in the
classification step of the OBIA framework (Fu et al., 2019) or using features
learned by the CNNs to improve inputs to the OBIA workflow (Pan et al.,
2019). In our study, OBIA provides the necessary high-quality ground truth
segmentation, but our workflow is not bound to OBIA, and any other
reliable approach can be used for this too.

The presented results of this study substantiate that the U-Net approach
can perform on a par with OBIA. Moreover, the transferability to new data,
the insensitivity of trends in aggregated measures to threshold selection, and
the flexibility of fitting the U-Net results to existing knowledge or competing
segmentation methods — apart from manual inspection of segmentation
results — render the proposed approach advantageous for a great variety of
applications. Furthermore, large-scale analysis is facilitated by improved
running times. For training and prediction, an Nvidia GeForce Titan X
Pascal GPU was used. In our study, training required approximately 6.5
h, while the prediction for the full Urseren valley took 12 min. This is a
significant improvement over the semi-automatic OBIA approach, which
takes up to a few days to achieve satisfying results for the Urseren valley.
For large-scale studies (e.g. alpine-wide analysis) the U-Net-based process
can efficiently be parallelised using several GPUs, resulting in even faster
prediction times.
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Studying soil degradation in the Swiss Alps requires segmentation of a
great variety of diverse sites with different conditions and driving factors
for the occurrence of erosion phenomena. Based on the U-Net solely trained
on the Urseren valley, such an investigation of causal factors for shallow
landslides in different grassland regions of Switzerland was performed in
Zweifel et al. (2021). Ideally, a tool for mapping on an alpine-wide scale
reflects these diverse settings while training the method. For this purpose,
we extend the previous investigation by considering nine representative
grassland regions in a multi-valley analysis and compare to the single-valley
analysis of the Urseren valley in the previous sections. The location of the
considered sites is illustrated in Figure 4.14, which include seven alpine
regions, one foothill region (Hornbach valley) and one region in the Swiss
Jura mountains (Baulmes) adopted from Zweifel et al. (2021). The selected
sites vary in area, elevation, and orientation of the valley, with an overview
given in Table 4.3. As in the single-valley analysis, the Urseren valley is
included as one of the regions.

Figure 4.14: Overview of valleys considered in the multi-valley analysis: (1) Baul-
mes, (2) Hornbach, (3) Chrauch, (4) Arosa, (5) Piora, (6) Rappe, (7) Entremont,
(8) Urseren, (9) Turbach. Green sites were used during training, red only for
evaluation. Higher elevations are indicated by lighter colours.
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Table 4.3: Summary of sites in the multi-valley analysis. All aerial images have a
pixel resolution of 0.25 m, except for aerial images of the Urseren valley for
2000 and 2004 with 0.5 m pixel resolution.

Study Site  Area Elevation Orientation Recording
(km?) (m a.s.l.)  of Valley Year

1 Baulmes 21 615-1512 NE/SW 2014
2 Hornbach 17 800—1256 NW/SE 2015
3 Chrauch 32 1421 -2432 N/S 2014
4 Arosa 50 1613 —2535 NNE/SSW 2014
5 Piora 21 1848 —2554 E/W 2015
6 Rappe 16 1427 — 2533 NE/SW 2015
7 Entremont 50 1808 —2823 N/S 2013
8 Urseren 26 1514 — 2840 NE/SW 2000 — 2016
9 Turbach 28 1208 — 2367 NNW/SSE 2013

4.6.1  Adjustments in Methodology

In the following, we make some adjustments in the training process and the
dataset. In the single-valley analysis, it became apparent that low (relative)
coverage of particular erosion classes in the OBIA ground truth segmen-
tation led to low prediction probabilities for these classes. Livestock trail
segments, for instance, tend to be under-represented and more affected
sites can be identified (see Section 4.5.3). In order to reflect this in the opti-
misation process, we adjust the categorical cross-entropy loss in Equation
(4.1) with class weights, i.e.

~ 5 2 X weyel ) log(pe()- 43)

feFceC

The class weights are chosen according to the frequency of labelled pixels
of the respective erosion class in relation to all labelled pixels, attributing
lower weights to more prominently covered classes. We identify weights
w, € {0.2998,0.4485,0.1211,0.1206,0.01} for classes ¢ € {shallow landslide,
livestock trail, management effect, sheet erosion, non-assignable}, i.e. we
include an additional weight of 0.01 to the dominant class of non-assignable
(background) pixels.
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As a change in the architecture (see Figure 4.5), we use same padding
in convolution layers, i.e. feature maps are padded with zeros ensuring
that the feature map size is conserved after each convolution. This leads to
output predictions being of the same size as the inputs and no overlapping
tiling of patches is required (as described in Section 4.4.3). We find that
this change from valid padding (i.e. no padding) to same padding does not
have an influence on the overall segmentation results.

For convenience, input aerial images (as well as the DTM derivatives) are
divided in 300 x 300 pixels input patches. For training, only patches with at
least one annotated erosion site are used. In other words, patches in which
all pixels belong to the non-assignable (background) class are excluded from
the training set. No down-sampling is applied in the multi-valley analysis,
i.e. all images preserve their original pixel resolution, which in most cases
is 0.25 m. Only for the aerial images of the Urseren valley of 2000 and 2004
a pixel resolution of 0.5 m is used. The images for the DTM derivatives
with 2 m pixel resolution are up-sampled to match patch resolution. We
train on eight of the nine considered valleys (green sites in Figure 4.14),
where we again divide the Urseren valley in a train and test area (see
Figure 4.2). We exclude both the Urseren valley aerial image of 2000 and
2016 from the training. Additionally, we choose the Turbach valley as a
validation region due to its spatial separation and almost orthogonal valley
orientation (NNW /SSE) to the Urseren valley (NE/SW). These choices lead
to a dataset of 9263 training images and 1899 validation images (Turbach
valley only) which correspond to areas of 55 km? and 11 km?, respectively.
Furthermore, we test on the excluded test area of the Urseren valley (17
kmz) and have two test cases with different pixel resolution (0.5 m for 2000,
0.25 m for 2016). As before, no data augmentation is applied and most
hyperparameters are chosen as in the single-valley analysis (see Section
4.4.3). We train the U-Net for 300 epochs with an initial learning rate of
0.001 but divide by a factor of ten every 200 epochs and reduce the batch
size to 8 samples per iteration.

4.6.2  Results and Discussion of Multi-Valley Analysis

In the following, we evaluate the temporal trends of soil degradation in
the Urseren valley similar to the single-valley analysis. For this, the U-Net
was trained in ten independent reruns with the same hyperparameters
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and the mean degraded area over all ten runs is considered.3 Furthermore,
we take a closer look at the segmentation results for the Urseren valley
(2016) and Turbach valley (2013), i.e. for test aerial images not considered
during training. For visualisation, we choose the segmentation results of
the training run which achieved the highest test accuracy.

4.6.2.1  Temporal Trends in the Urseren Valley

We focus on the same setting as in the single-valley analysis and study the
five aerial images of the Urseren valley between 2000 and 2016 on the test
area (see Figure 4.2). As before, we consider the full-probability prediction
of the U-Net in both the single-valley and multi-valley setting, as well as
the threshold of 0.3 which was identified as an appropriate threshold in the
previous analysis. Figure 4.15a provides a comparison of the multi-valley
results and Figure 4.15b a comparison of the single-valley and multi-valley
setting for the 0.3 threshold to the OBIA baseline.

Generally, a larger total extent of degraded area is predicted in the multi-
valley setting. The predictions in the single-valley setting follow much
more closely the OBIA baseline. In all cases, increasing linear trends are
obtained, with the results for the years 2010 and 2013 deviating more
markedly from the linear regression line. On the basis of the linear in-
terpolation, we obtain relative increases of total degraded area of 132%
(0.3 threshold) and 130% (full-probability) from 2000 to 2016 in the multi-
valley setting on average. These relative increases are close to the OBIA
baseline result of 167% and fall within the uncertainty of the OBIA and
single-valley results (see Figure 4.11). Taking a closer look into the specific
erosion classes provides a similar picture illustrated in Figure 4.16. Gener-
ally, for all erosion classes larger predictions of degraded area are achieved
in the multi-valley setting. This is particularly the case for sheet erosion.
Considering again the linear interpolation for the relative increase of de-
graded soil per erosion class from 2000 to 2016, we obtain relative increases
of {26%, 114%,893%, 125%} (0.3 threshold), and {40%, 158%, 716%, 105%}
(full-probability) in the multi-valley setting (on average) compared to the
OBIA baseline results of {23%,396%, 671%,103%} for shallow landslides,
livestock trails, management effects, and sheet erosion.

The multi-valley results in Figures 4.15 and 4.16 show the sample means with error bars
indicating the sample deviation. The linear trend is obtained with respect to the mean results.
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Figure 4.15: Linear trend of the total degraded area in the held-out test region
of the Urseren valley (see Figure 4.2). (a) Results for the U-Net trained in
the multi-valley setting (mean of ten independent runs) for full-probability
and 0.3 threshold outputs compared to the OBIA baseline. (b) Comparison
of U-Net predictions for 0.3 threshold in the (original) single-valley (same
as in Figure 4.10b) and (new) multi-valley training setting. The multi-valley
setting leads to generally larger degraded area predictions. Considering the
linear interpolation in the multi-valley setting, we obtain a relative increase of
132% on average (0.3 threshold) close to the OBIA baseline result of 167% (see
Table 4.11). Aerial images of years 2000 and 2016 were not considered during
training (shaded columns).

4.6.2.2  Segmentation Results in Multi-Valley Setting

These results suggest that training in the multi-valley setting leads to over-
segmentation compared to the OBIA baseline (and also the single-valley
setting), with more sites being segmented as erosion phenomena. In partic-
ular, a large increase in sites segmented as sheet erosion is observed, which
contributes significantly to the predicted total degraded area. Additionally,
a larger extent of livestock trails is identified. However, the linear relative
increases of the multi-valley setting show in most cases a good correspon-
dence to the OBIA baseline. But the deviation of the trend line is more
strongly pronounced, in particular for the results of the years 2010 and 2013.
This might be related to the fact that most training patches come from aerial
images recorded in 2013 to 2015 resulting in a more strongly pronounced
imbalance towards this time window than in the single-valley analysis. On
the other hand, different pixel resolutions (0.5 m for 2000 and 2004, 0.25 m
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Figure 4.16: Mapped degraded area in the Urseren valley test region by erosion
class for both the (original) single-valley and (new) multi-valley training setting
(mean of ten independent runs), as well as the OBIA baseline. U-Net results for
the 0.3 threshold are shown. Generally, the multi-valley setting leads to larger
predictions for degraded area, in particular for sheet erosion. Considering the
linear interpolation in the multi-valley setting, we obtain relative increases of
{26%, 114%, 893%, 125%} (on average) compared to the OBIA baseline results
of {23%,397%, 671%,103%}. Aerial images of years 2000 and 2016 were not
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for all other) do not seem to have a large impact on segmentation results,
with the relation of increasing or decreasing (total) degraded areas being
similar between the results in the multi-valley setting as compared to the
relations in single-valley setting.

Studying the segmentation results more qualitatively documents the
observed over-segmentation well. Exemplary sites for all erosion classes
are illustrated in Figures 4.17 (livestock trails), 4.18 (sheet erosion), 4.19
(shallow landslides), and 4.20 (management effects) for the Turbach and
Urseren valley. On the one hand, as already noted in the single-valley
analysis, additional segments are often plausible and extend the OBIA
segments to potentially missed erosion sites. Therefore, considering these
examples as false positives might not be justified or at least disputable. This
is particularly the case for livestock trails, which are more and often better
covered in the U-Net predictions of the multi-valley setting (see examples
in Figure 4.17). This can be related to the fact, that occurrences of the
geometrically more regular shaped livestock trails in different valleys with
different orientations allow the U-Net to generalise better for this erosion
class. On the other hand, however, we observe a clear over-segmentation of
sheet erosion sites. This highlights the character of the erosion class which
comprises sites of disturbed vegetation with generally diffuse boundaries
which make clear assignments to this class more challenging. Similarly to
the single-valley analysis, areas with rocks at higher elevations and sites
of disturbed soil which cannot be clearly assigned to the other classes are
typical examples of false positive segments of sheet erosion (see examples
in Figure 4.18). Some of these false positives can be addressed by a post-
processing which eliminates more rocky areas at higher elevations which
are no longer grassland areas. Furthermore, a separate and more careful
consideration of the sheet erosion class can be conducted in a down-stream
application.

More quantitatively, for the test aerial image of the Urseren valley in
2016, 94% + 1% of the segmented pixels in the single-valley setting are
predicted as erosion site pixels in the multi-valley setting, too. Furthermore,
we compare the U-Net segmentation results for the complete Urseren valley
of 2016 as well as the Turbach valley of 2013 to the OBIA baseline. Table 4.4
summarises the scores. It should be noted that we adjusted the computation
of these scores in the multi-valley setting. We consider pixels to be true
positives only where U-Net and OBIA segments overlap perfectly. All pixels
missing in the U-Net segmentation are consider false negatives and all
additionally U-Net-segmented pixels are viewed as false positives. This is a
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Figure 4.17: Livestock trails are often more appropriately covered in the U-Net
segmentation results (light orange) than in the OBIA baseline (transparent red).
Segmentation results (top) are shown for an exemplary site (bottom) in the
Turbach valley (2013) which was not used for training. Note that the OBIA
segments overlay U-Net segments which generally overlap well.
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Figure 4.18: More sites are identified as sheet erosion in the U-Net segmentation
(yellow) than in the OBIA baseline (transparent orange). Segmentation results
(left) are shown for an exemplary site (right) in the Turbach valley (2013) which
was not used for training. Note that OBIA segments overlay U-Net segments
and differences are more noticeable.
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Figure 4.19: Shallow landslides segments agree well in both the OBIA baseline
(transparent pink) and the U-Net segmentation (dark purple), which generally
identifies more sites. Segmentation results (top) are shown for an exemplary
site (bottom) in the test area of the Urseren valley for the test year 2016
which was not used for training. Note that the OBIA segments overlay U-Net
segments and generally overlap well. Differences typically consist in larger
U-Net segments which contain the OBIA segments.
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Figure 4.20: Grassland areas affected by management display a good agreement
of the U-Net segmentation (dark blue) with the OBIA baseline (transparent
cyan). Segmentation results (left) are shown for an exemplary site (right) in the
test area of the Urseren valley for the test year 2016 which was not used for
training. Note that the OBIA segments overlay U-Net segments and identify
similar sites affected by management, but more sites being recognised by the
U-Net prediction.
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stricter definition of true positive than in the single-valley analysis, where
the average area between overlapping segments was considered as true
positive to account for different shapes of otherwise matching segments.
In the single-valley definition, the recall score will be close to 100% due to
relatively over-segmentation in the multi-valley U-Net results. This is also
the reason why low values for the precision in both valleys are attained.

Table 4.4: Scores in the multi-valley setting with a threshold value of 0.3 for the
test aerial images of Urseren 2016 and Turbach 2013. For both valleys, U-Net
predictions are compared to the OBIA baseline segmentation. The scores were
obtained for all ten individual runs and sample mean and sample standard
deviation are reported.

Scores Urseren Turbach

Recall 84% + 1% 68% + 4%
Precision 20% +1% 22% + 2%
Fq 33% +1% 34% +2%

In the multi-valley setting, training with an Nvidia GeForce Titan X
Pascal GPU (as in the single-valley setting) took about 40 hours due to the
larger training set. As before, obtaining the prediction matrix takes tens of
minutes, while storing the results in commonly used shape files can take
about an hour for the aerial images of the Turbach or Urseren valley at a
pixel resolution of 0.25 m. Considering the Swiss alpine region of about
20000 km?, performing the prediction and creating these shape files could
take up to 30 days in this estimation. However, the task can be parallelised
efficiently, reducing the production time significantly.

4.7 CONCLUSION

While OBIA is the state-of-the-art approach for mapping objects on remotely
sensed images, it suffers from limitations that render this approach unsuit-
able for larger-scale studies. High-quality segmentation results come at the
expense of a lack of transferability of parameter settings from one input
image to another, manual adjustments, and a need for expert knowledge
in applying the method to the specific task which together lead to long
processing times. In particular, the first aspect generally hinders OBIA in
a predictive setting for new images. To overcome these shortcomings and
enable large-scale analysis, we compared OBIA to a fully-convolutional
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neural network approach which learns relevant features for segmentation
by itself and thereby emulates some of the expert knowledge necessary
to apply OBIA. We demonstrated that the U-Net approach is capable of
performing as well as OBIA with respect to identifying trends in the spatial
and temporal development of degraded soil, and can therefore replace
OBIA in large-scale studies. Spatial patterns and temporal trends of both
methods agree well; nevertheless, some generated segmentation results
might partially not overlap (F; = 78% in the single-valley analysis). Specif-
ically, we show that the U-Net (threshold 0.3) provides relative increases
of total degraded area in the Urseren valley (201% in the single-valley and
132% multi-valley analysis) which match the estimates of OBIA (167%).
This novel approach allows for individual threshold choices for the most
successful representation of ongoing soil erosion processes. This is typically
possible if some prior knowledge about erosion processes and the spatial
extent of degraded soil is available, or if visual assessment is feasible, to
which probability thresholds can be calibrated. In our study, we made use
of training labels generated with OBIA. However, any kind of (high-)quality
training labels can be used, and the U-Net erosion site segmentation is not
limited to combined use with OBIA.

In summary, we show that with our approach we can perform erosion
site prediction close to similar approaches such as OBIA which provide
accurate segmentation results on small scales. A particular strength of
the proposed approach is that similar trends are achieved with a more
efficient, automatic, and objective method for mapping erosion sites. We
require the U-Net approach to be trained only once and obtain much better
transferability of the method to new images. Moreover, the approach is
insensitive to the threshold choice with respect to trends of aggregated
measures, and the improved running times make large-scale analysis of soil
erosion is Swiss alpine grasslands feasible.

Still, our model is only as good as the training data; i.e. high-quality
training data are important for adequate U-Net performance. Applications
should include a variety of different sample regions to incorporate rele-
vant erosion-type-specific conditions during training, like the orientation
of erosion sites in the multi-valley analysis. Furthermore, the U-Net can
use as many layers of information as required. A unique feature of fully-
convolutional neural networks is that inputs of any size and any number of
channels can be used, i.e. RGB images with DTM derivatives. Additional
maps can be easily incorporated (see Figure 4.5), which might include more
information, such as environmental properties or images with additional
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spectral information. In that regard, the U-Net has the advantage of con-
tinual learning; i.e. it can be trained further to incorporate conditions of
completely new regions and erosion-type-specific properties. Generally, the
U-Net model can be employed in a similar fashion for other segmentation
tasks in remote sensing and other inputs, such as UAV or satellite imagery.
The requirement for the input data is that the spatial resolution allows for
identifying the target objects well enough.
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INFORMED LATENT SPACE ENCODING
THROUGH SIDE INFORMATION

Identifying meaningful and independent factors of variation in a dataset is
a common but challenging learning task which is frequently addressed by
means of deep latent variable models. This task can be viewed as learning
symmetries preserving the value of a chosen property along latent dimen-
sions. Such a target property can be, for instance, the orientation of an object
in space or a chemical property of a compound. With a generative model
we try to learn latent dimensions which allow separating property from
other object information as much as possible. However, existing approaches
exhibit severe drawbacks in enforcing this property invariance in the latent
space. We address these shortcomings with a novel approach to cycle con-
sistency. Our method involves two separate latent subspaces, one for the
target property and the other for the remaining object information. In order
to enforce invariance as well as sparsity which facilitates interpretation
of the latent space, we incorporate semantic knowledge by using cycle
consistency constraints relying on property side information. The proposed
method is based on the deep variational information bottleneck and, in
contrast to other approaches, allows using continuous target properties and
provides inherent model selection capabilities. In this chapter, we demon-
strate on synthetic and molecular data that our approach identifies more
meaningful factors which lead to sparser and more interpretable models
with improved property invariance. Furthermore, we showcase the disen-
tanglement capability of our approach on the dSprites benchmark dataset.

5.1 INVARIANCES IN LATENT ENCODING

Understanding the nature of a generative process that provides us our
observed data typically involves uncovering explanatory factors of variation
which are responsible for the observations. But the relationship between
these factors and our observation usually remains unclear. A common as-

Part of this chapter has been published in Samarin et al. (2021).
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sumption is that the relevant factors can be expressed by a low-dimensional
latent representation Z (Locatello et al., 2019). Therefore, popular machine
learning methods involve learning appropriate latent representations to dis-
entangle factors of variation. Learning disentangled representations is often
considered in an unsupervised setting which does not rely on the prior
knowledge about the data such as labels (Chen et al., 2016; Higgins et al.,
2017; Chen et al., 2018b; Kim and Mnih, 2018; Lin et al., 2020). However,
it was shown that an inductive bias on the dataset and learning approach
is necessary to obtain disentanglement (Locatello et al., 2019). Inductive
biases allow us to express assumptions about the generative process and to
prioritise different solutions not only in terms of disentanglement (Higgins
et al., 2017; Bouchacourt et al., 2018; Klys et al., 2018; Robert et al., 2019;
Wieser et al., 2020), but also in terms of constrained latent space encodings
(Keller et al., 2019, 2021), preservation of causal relationships (Wieczorek
and Roth, 2016), or interpretability (Wu et al., 2017).

We consider a supervised setting where semantic knowledge about the
input data allows structuring the latent representation in disjoint subspaces
Zy and Z; of the latent space Z by enforcing conditional invariance. With
this we mean that conditioning on part of the latent space, i.e. Zj, allows
property-invariant sampling in the latent subspace Z;. In such supervised
settings, disentanglement can be viewed as an extraction of level sets or
symmetries inherent to our data X which leave a specified property Y
invariant. An important application in that direction is the generation of
diverse molecular structures with similar chemical properties (Wieser et al.,
2020). The goal is to disentangle factors of variation relevant for the property.
Typically, level sets L, are defined implicitly through

Ly(f) = {(x1, - xa,) | f(x1,00 %a,) = ¥} (5.1)

for a property y which implicitly describes the level curve or surface with
respect to inputs [x1, ..., xz,] | € R%. The topic of this chapter is to identify
a sparse parametrisation of level sets which encodes conditional invariances
and thus selects a correct model. Several techniques have been developed to
steer model selection by sparsifying the number of features, e.g. Tibshirani
(1996); Tishby et al. (1999), or compressing features into a low-dimensional
feature space, e.g. Rey et al. (2014); Alemi et al. (2017); Wieczorek et al.
(2018). These methods improve generalisation by focusing on only a subset
of relevant features and using these to explain a phenomenon. Existing
methods for including such prior knowledge in the model usually do not
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include dimensionality reduction techniques and perform a hand-tuned
selection (Klys et al., 2018; Wieser et al., 2020; Keller et al., 2021).

In this chapter, we introduce a novel approach to cycle consistency —
relying on property side information Y as our semantic knowledge — in
order to provide conditional invariance in the latent space. By ensuring that
our method fulfils cycle consistency and provides similar results for gener-
ated samples when fed back to the network, we achieve more disentangled
and sparser representations. Our work builds on Wieczorek et al. (2018),
where a general sparsity constraint on latent representations is provided,
and on Klys et al. (2018); Wieser et al. (2020), where conditional invariance
is obtained through adversarial training. We show that our approach ad-
dresses some drawbacks in previous approaches and allows us to identify
more meaningful factors for learning better models and achieve improved
invariance performance. Our contributions may thus be summarised as
follows:

* We propose a novel approach for supervised disentanglement where
conditional invariance is enforced by a novel cycle consistency con-
straint on property side information. This facilitates the guided ex-
ploration of the latent space and improves sampling with a fixed

property.

* Our model inherently favours sparse solutions, leading to more inter-
pretable latent dimensions and facilitates built-in model selection.

* We demonstrate that our method improves on the state-of-the-art
performance for conditional invariance as compared to existing ap-
proaches on both synthetic and molecular benchmark datasets.

5.2 RELATED WORK
5.2.1 Deep Latent Variable Models and Disentanglement

Because of its flexibility, the variational autoencoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014) is a popular deep latent variable model
in many areas such as fairness (Louizos et al., 2016), causality (Louizos
et al.,, 2017), semi-supervised learning (Kingma et al., 2014), and design
and discovery of novel molecular structures (Kusner et al., 2017; Gémez-
Bombarelli et al., 2018; Nesterov et al., 2020). The VAE is closely related to
the Information Bottleneck (IB) principle (Alemi et al., 2017; Tishby et al.,
1999) as discussed in Section 3.5.3. Various approaches exploit this relation
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like the deep variational information bottleneck (DVIB) (Achille and Soatto,
2018; Alemi et al., 2017). Further extensions were proposed in the context
of causality (Chicharro et al., 2020; Parbhoo et al., 2020a,b) or archetypal
analysis (Keller et al., 2019, 2021).

The B-VAE (Higgins et al., 2017) extends the standard VAE approach and
allows unsupervised disentanglement. In unsupervised settings, there exists
a great variety of approaches based on VAEs and generative adversarial
networks (GANSs) to achieve disentanglement such as FactorVAE (Kim and
Mnih, 2018), B-TCVAE (Chen et al., 2018b) or InfoGAN (Chen et al., 2016;
Lin et al., 2020). Partitioning the latent space into subspaces is inspired by
the multi-level VAE (Bouchacourt et al., 2018), where the latent space is
decomposed into a local feature space that is only relevant for a subgroup
and a global feature space. In supervised settings, several approaches such
as Lample et al. (2017); Creswell et al. (2018); Klys et al. (2018); Wieser
et al. (2020) achieve disentanglement by applying adversarial information
elimination to select a model with partitioned feature and property space.
In such a setting — and different to unsupervised disentanglement — our goal
is supervised disentanglement with respect to a particular target property.

Another important line of research employs the idea of cycle consistency
for learning disentangled representations. Presumably the most closely
related work to this study is conducted by Jha et al. (2018); Wieser (2020).
There, the authors employ a cycle-consistent loss on the latent represen-
tations to learn symmetries and disentangled representations in weakly
supervised settings, respectively. Moreover, in Wieser et al. (2020), the au-
thors use adversarial training and mutual information estimation to learn
symmetry transformations instead of explicitly modelling them. In contrast,
our work replaces adversarial training by using cycle consistency.

5.2.2  Model Selection via Sparsity

Several works perform model selection by introducing sparsity constraints
which penalise the model complexity. A common sparsity constraint is
the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani,
1996). Extensions of the LASSO propose a log-penalty to obtain even sparser
solutions in the compressed IB setting (Rey et al., 2014) and generalise it
further to deep generative models (Wieczorek et al., 2018). Furthermore,
the LASSO has been extended to the group LASSO, where combinations of
covariates are set to zero, the sparse group LASSO (Simon et al., 2013), and
the Bayesian group LASSO (Raman et al., 2009). Perhaps most closely related
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to our work is the 0i-VAE (Ainsworth et al., 2018), which incorporates a
group LASSO prior in deep latent variable models. These methods employ
a general sparsity constraint to achieve a sparse representation. Our model
extends these ideas and imposes a semantic sparsity constraint in the form
of cycle consistency that performs regularisation based on prior knowledge.

5.3 PRELIMINARIES
5.3.1 Deep Variational Information Bottleneck

We focus on the DVIB (Alemi et al., 2017) which is a method for informa-
tion compression based on the IB principle (Tishby et al., 1999). We have
introduced the DVIB in Section 3.5.3 and provide the main statements for
this chapter in the following.

The objective is to compress a random variable X into a random variable
Z while being able to predict a third random variable Y. The DVIB is closely
related to the VAE (Kingma and Welling, 2014; Rezende et al., 2014). The
optimal compression is achieved by solving the parametric problem

min Ip(X;Z) — Alpo(Z;Y), (5-2)
where [ is the mutual information between two random variables (see Defi-
nition 6). Hence, the DVIB objective balances maximisation of Iy 9(Z;Y), i.e.
Z being informative about Y, and minimisation of I(X; Z), i.e. compres-
sion of X into Z. We assume a parametric form of the conditionals pg(z|x)*
and pg(y|z) with ¢ and 0 representing the parameters of the encoder and
decoder network, respectively. Parameter A controls the degree of compres-
sion and is closely related to B in the B-VAE (Higgins et al.,, 2017). The
relationship to the VAE becomes more apparent with the definition of the
mutual information terms:

Ip(X;Z) = By [Drr(pg(z1x)|p(2))], (5:3)
1p0(Z:Y) > Epy) [Epy e 08 P02 | + 1Y), (5.9)

with Dk being the Kullback-Leibler divergence (see Definition 5), and h(Y)
the entropy.

Note that we adopt the notation as in Section 3.5. We indicate the probability density by
p(X = x) = p(x), dropping the random variables in the notation.
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5.3.2  Cycle Consistency

We use the notion of cycle consistency similar to Jha et al. (2018); Zhu et al.
(2017). The CycleGAN (Zhu et al., 2017) performs unsupervised image-to-
image translation, where a data point is mapped to its initial position after
being transferred to a different space. For instance, suppose that domain
X consists of images of summer landscapes, while domain Y consists of
images of winter landscapes (see Figure 5.1). Function f : x — y is used to
transform a summer landscape x € X to a corresponding winter landscape
y € Y. Similarly, function g : y — x maps y back to the domain X. The goal
of cycle consistency is to learn a mapping ¢ such that to g(y) = £ is close to
the initial x and thus g o f is approximately the identity. The discrepancy
between x and £ is referred to as the cycle consistency loss. We minimise the
loss ||g(f(x)) — x||1 to obtain an almost invertible mapping.

Figure 5.1: Illustration of the cycle consistency idea. Mappings f : X — Y and
g Y — X are learned such that go f is approximately the identity. The
distance A between x € X and g(f(x)) = £ is minimised through the cycle
consistency loss.

5.4 METHODOLOGY

Our model is based on the DVIB to learn a compact latent representation,
i.e. an encoder-decoder architecture. The input X and the output Y may be
complex objects and can take continuous values. As a relevant example,
we consider molecules with their respective molecular properties in this
chapter. Unlike the standard DVIB, we do not only want to predict ¥ from
an input X, but also want to generate new X by sampling from our latent
representation. As a consequence, we add an additional second decoder
that reconstructs X from Z (similar to Gomez-Bombarelli et al. (2018) for
decoder Y in the VAE setting), leading to the adjusted parametric objective

glgg Ip(X;Z) = A(Ip,0(Z;Y) + I < (X; Z)), (5.5)
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where ¢ are the encoder parameters, and 8 and T describe network param-
eters for decoding Y and X, respectively.
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Figure 5.2: Overview of the proposed approach. (a) Firstly, we learn a sparse
representation Z from our input data X which we separate into a property
space Zp and an invariant space Z;. Grey boxes indicate the (sparsely) selected
latent dimensions. Given this representation, we try to predict the property ¥
and reconstruct our input X. Grey arrows indicate that Y = decy(Zp) instead
of Zy is used for decoding X (see Section 5.4.4). (b) Secondly, we sample new
data in two ways: (i) uniformly in Z to get new data points X and Y (orange
data), (i) uniformly in Z; with fixed Zy to get X* at fixed Y (cyan data). We
concatenate the respective decoder outputs. (c) Lastly, we feed the concatenated
input batch X¢ = (X, X, X*) into our model and calculate the cycle consistency
loss | Y — Y/|| 4 ||Y = Y'||2 + ||Y — Y*||2 between the properties.

5.4.1 Learning a Compact Representation

Formulating our model as a DVIB allows leveraging properties of the
mutual information with respect to learning compact latent representations.
To see this, first assume that X and Y are jointly Gaussian distributed which
leads to the Gaussian Information Bottleneck (Chechik et al., 2005) which
we introduced in Section 3.5.3. The solution Z can be found analytically
and proved to be Gaussian. In particular, for X ~ N(0,Zx), the optimal
Z is a noisy projection of X: Z = AX + ¢, where ¢ ~ N(0,1). The mutual
information between X and Z is then equal to

[(X;Z) = log |AZx AT +1], (5:6)
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where | - | denotes the determinant of the matrix. If we now assume A to
be diagonal, the model becomes sparse (Rey et al., 2014). This is because
a full-rank projection AX’ of X’ does not change the mutual information
since I(X;X") = I(X; AX’). A reduction in mutual information can only
be achieved by a rank-deficient matrix A. In general, the conditionals Z|X
and Y|Z in Equation (5.2) may be parametrised by neural networks with X
and Z as input. The diagonality constraint on A does not cause any loss
of generality of the DVIB solution as long as the neural network encoder
fp makes it possible to diagonalise A fp(X) f(p(X)TAT (see Wieczorek et al.
(2018) for more details). In the following, we consider A to be diagonal and
define the sparse representation as the dimensions of the latent space Z
selected by the non-zero entries of A. Recalling Equation (5.6), this allows
us to approximate the mutual information for the encoder in Equation (5.3)
in a sparse manner

Ip(X; Z) = Llog|diag(f(X)f(X)T) + 1, (5.7)

where 1 is the all-one vector and the diagonal elements of A are subsumed
in the encoder fp.

5.4.2  Conditional Invariance and Informed Sparsity

A general sparsity constraint is not sufficient to ensure that latent dimen-
sions indeed represent independent factors. In a supervised setting, our
target Y conveys semantic knowledge about the input X, e.g. a chemical
property of a molecule. To incorporate semantic knowledge into our model,
we require a mechanism that partitions the representation such that it en-
codes the semantic meaning not only sparsely but preferably independently
of other information concerning the input.

To this end, the central element of our approach is cycle consistency
with respect to target property Y, which is illustrated in steps (b) and
(c) in Figure 5.2. The idea is that reconstructed X or newly sampled X
with associated prediction Y and Y are expected to provide matching
predictions Y and Y’ when X and X are used as an input to the network.
This means, if we perform another cycle through the network with sampled
or reconstructed inputs, the property prediction should stay consistent.
The partitioning of the latent space Z in the property subspace Zy and
the invariant subspace Z; is crucial. The property Y is predicted from Z,
while the input is reconstructed from the full latent space Z. Ensuring cycle
consistency with respect to the property allows putting property-relevant
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Figure 5.3: Probabilistic graph of our model. (a) Dashed red arrows indicate
probabilistic links: (1) yz is a deterministic transformation of X, while Z =
(Zo, Z1) is sampled from ./\/(yz,arzloise) (see Section 5.4.1 and 5.4.4); (2) the mean
squared error loss corresponds to the negative log-likelihood of a Gaussian
distribution (see Section 3.1.2) where X is the (unbiased) estimate for the mean
with (noisy) sample X (similarly for Y and Y). (b) Probabilistic relationship
between random variables Zy, Z;, X, and Y. Fixing Zy renders X and Y
conditionally independent, i.e. X 1L Y | Zj.

information into the property subspace Zy. Furthermore, the latent space
is regularised by drawing samples which adhere to cycle consistency and
provide additional sparsity. If information about Y is encoded in Z;, this
will lead to a higher cycle consistency loss. In this way, cycle consistency
enforces invariance in subspace Z;. By fixing coordinates in Zy, and thus
fixing a property, sampling in Z; results in newly generated X with the
same property Y. More formally, fixing Zy renders random variables X
and Y conditionally independent, i.e. X 1 Y | Zj (see Figure 5.3). We
ensure conditional invariance with a particular sampling scheme: We fix
the Zy coordinates and sample in Z; to obtain generated X* all with a fixed
property Y. Using these inputs allows to obtain a new prediction Y* which
should be close to the fixed target property Y. We choose the ¢,-norm for
convenience and define the full cycle consistency loss by

Jeycle = IV =Yz + 1Y = Y[l + [V = Y*]l2. (5-8)
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5.4.3 Proposed Framework

The resulting model combines sparse DVIBs with partitioned latent space
and a novel approach to cycle consistency, which drives conditional in-
variance and informed sparsity in the latent encoding. This allows latent
dimensions in Zj relevant for prediction of Y to disentangle from latent
dimensions in Z; which encode remaining input information of X. The
objective function is given by

](‘Pr 0,7)= I¢(X? Z)— )\(Irp,T(ZOr Z1; X) + I¢,B(ZO; Y) - ﬁ]cycle)' (5.9)

The proposed model performs model selection as it inherently favours
sparser latent representations. This in turn facilitates easier interpretation
of latent factors because of the built-in conditional independence between
property space Zg and invariant space Z;. These adjustments address some
of the issues of the STIB (Wieser et al., 2020) relying on adversarial training,
mutual information estimation (which can be difficult in high-dimensions
(Song and Ermon, 2020)) and bijective mapping which can make the training
challenging. In contrast to the work of Jha et al. (2018); Wieser (2020), we
use a general sparsity constraint on the encoder (see Section 5.4.1) and
impose a novel cycle consistency loss on the predicted outputs Y instead
of the latent representation Z. A reason to consider Y rather than Z is that
varying latent dimensionality leads to severe problems in the optimisation
process as it requires an adaptive rescaling of the different loss weights. To
overcome this drawback, we close the full cycle and define the loss on the
outputs.

5.4.4 Implementation

In Algorithm 1, we provide more details on the implementation with the
individual steps being depicted in Figure 5.2. As outlined in Section 3.5.3,
we use a variational inference approach to approximate the true posterior
distribution pg(z|x) by q¢(z[x), as it is common for VAEs. Furthermore,
we only learn the mean pz of the latent representation. We optimise the
variance o2 as a free parameter or fix the variance to 1, but do not learn the
variance from data. For this reason, we will refer to 03 = o2 ;.. as sampling
noise.

In the first part of our training algorithm, we map the input X to the
latent representation Z (I. 5) which is partitioned into two subspaces Z
and Z; (1. 6). From Z; we make a prediction for Y (1. 7). We choose to
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concatenate the decoded Z (instead of just Zy) with Z; in order to decode
X, ie. X = decx(Z;,Y = decy(Zp)). This is an additional measure to
ensure that Zy contains information relevant for property prediction Y
and prevents superfluous remaining information about the input X in
property space Zy. We use Gaussian decoders (see Equation (3.78)). Thus,
both reconstruction and prediction loss (terms Iy and Ip g in Equation
(5.9)) are approximated by MSE losses. In the second part of our method,
we draw samples in two ways (ll. 12 — 14): (i) uniformly in Z to obtain
Y and X and (ii) uniformly in Z; with fixed Zy to get X* at a fixed Y.
The samples are drawn from a uniform distribution within the interval
of minus two sample standard deviations to plus two sample standard
deviations (in the respective latent dimension). We chose uniform sampling
to regularise the latent dimensions evenly. In the third step, we concatenate
the reconstructed and sampled data to a new input X¢ = (X, X, X*) and
perform a second cycle through our model (I. 17). Using the new encoding
Z§ allows to decode property predictions Y/, Y/, Y* (l. 19) and calculate
the cycle consistency loss according to Equation (5.8) (1. 20). All required
expectations are approximated with Monte Carlo estimates. We update
the model parameters ¢, 0, and 7 by taking a gradient step using the loss
function Equation (5.9). Lastly, we increase the compression parameter A
by an annealing factor I (1. 24; predefined by hyperparameter tuning) after
every epoch, similar to learning rate scheduling. The described algorithm
can be trained with any kind of gradient descent method until convergence.
A TensorFlow (Abadi et al., 2015) implementation is available under the
GNU General Public License v3.0.2

5.5 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of our proposed method with respect to (i)
selection of a sparse representation with meaningful factors of variation
(i.e. model selection) and (ii) enforcing conditional independence in the
latent space between these factors. To this end, we conduct experiments
on a synthetic dataset with knowledge about appropriate parametrisations
to highlight the differences to existing models. Additionally, we evaluate
our model on a real-world application and a standard disentanglement
benchmark with a focus on conditional invariance and generation of novel
samples. To assess the performance of our model, we compare our approach
to two state-of-the-art baselines: (i) the B-VAE (Higgins et al., 2017) which is

2 https://github.com/bmda-unibas/CondInvarianceCC
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Algorithm 1 Pseudocode of our method employing property cycle consis-
tency for conditional invariance.

Input: input x, target y
1: for each epoch do
22 sample i mini-batches of x and y
for each mini-batch i do
Part 1
encode x; into z; ~ q4(z; | x;)
split z; in zp and z;
decode z( to obtain §; ~ pe(F; | zo)
decode (f;, z1) to obtain ®; ~ p(%; | §i, z1)
calculate reconstruction and prediction losses

e XN WA

10:

11 Part 2: Sampling

12: sample (i) Z and (ii) £} randomly from uniform prior
U(—2 - Osignal, 2 * Tsignat) in (i) full z and (ii) only in z1, resp.

13: decode Z to obtain #; ~ pe(7; | Zo)

14: decode (#;, 21), (9, £7) to obtain &; ~ p-(%; | #;, Z1),
X~ pe(® 191 27)

15:

16: Part 3: Cycle consistency

17: encode x¢ = (&;, X;, &7) into z§ ~ q¢ (25 | &;, X;, &)

18: split z§ in z5 and z§

19: decode z§ to obtain §, 4/, 7+ ~ pe(9., ¥}, 47 | )

20: calculate cycle consistency loss:

19; = Gillz + |15 — Fill2 + 19: — 77 [12
21:
22 update ¢, 0, T by taking a gradient step
23:  end for
24 increase A by annealing factor [
25: end for
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a typical baseline model in disentanglement studies and (ii) the symmetry-
transformation information bottleneck (STIB) (Wieser et al., 2020) which
ensures conditional invariance through adversarial training and is the direct
competitor to our model. We adapt the -VAE by adding a decoder for
property Y (similar to Gomez-Bombarelli et al. (2018)) which takes only
subspace Z as input. The latent space of the adapted B-VAE is split into two
subspaces as in the STIB and our model, but has no explicit mechanisms to
enforce invariance. This setup can be viewed as an ablation study in which
the B-VAE is the basis model of our approach without cycle consistency
and sparsity constraints. The STIB provides an alternative approach for the
same goal but with a different mechanism.

The objective of the supervised disentanglement approach is to ensure dis-
entanglement of a fixed property with respect to variations in the invariant
space Z;. This is a slightly different setting than in standard unsupervised
disentanglement and therefore standard disentanglement metrics might be
less insightful and are not considered. Instead, in order to test the property
invariance, we first encode the inputs of the test set and fix the coordinates
in the property subspace Zy which provides prediction Y. Then we sample
uniformly at random in Z; (plus/minus one standard deviation), decode
the generated X and perform a cycle through the network to obtain Y.
This provides the predicted property for the generated X. If conditional
invariance between X and Y at a fixed Zj is warranted, the mean absolute
error (MAE) between Y and Y should be close to zero. Thus, all models
are trained to attain similar MAEs for reconstructing X and, in particular,
predicting Y, to ensure a fair comparison.

5.5.1 Synthetic Dataset

In the first experiments, we focus on learning level sets of ellipses (d, = 2)
and ellipsoids (dy = 3) mapped into five dimensions (d) = 5). We consider
these experiments as they allow a clear interpretation and visualisation of
fixing a property, i.e. choosing the ellipse curve or ellipsoid surface, and
known low-dimensional parametrisations are readily available. To this end,
we sample uniformly at random data points Xoriginal from & ([-1, 1]dx) and
calculate the corresponding one-dimensional properties Yyriginal (dy =1)
with
2 2
Y- x7/4+ x5/2 (dy =2), (5.10)
X2/4+x3/2+ x5 (dy=3).
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We then rotate the ellipses / ellipsoids in the X;X;-plane by n/4 = 45°
and add Gaussian noise € ~ A (0,0.04). In Figure 5.4, we illustrate the two-
dimensional case of the ellipse because it is easier to visualise. Equation
(5.10) implicitly defines level sets, i.e. the ellipse curves or ellipsoid sur-
faces (see Figure 5.4a). Common (sparse) parametrisations consider polar
coordinates

(x,y) = (rcos @, rsing) (5.11)

for the ellipse and spherical coordinates
(x,y,z) = (rcos ¢sind, rsin ¢ sind,r cos 9) (5.12)

for the ellipsoid, with radius r € [0, ®0), (azimuth) angle ¢ € [0,27) in the
X1X5-plane, and polar angle ¢ € [0, r] measured from the X3 axis.

In a real-world scenario, we typically do not have access to the underlying
data generating process providing Xorigina1 and the (noisy) property Yoriginal
but a transformed view on these quantities. To reflect this, we map the input
Xoriginal into a five dimensional space, i.e. Xoriginal € [—1, N> X
RN*%: | and property Yoriginal into three dimensional space, i.e. Yoriginal €

IRZJ\r]Xdy — Y e RV*% with the number of samples N and dimensions
dy =1{2,3},d,=1,d,, = 5and d’y = 3. We do so by filling up the additional
dimensions with random numbers sampled from the Gaussian N (0,0.0001)
and performing a (fixed) random rotation Ry € SO(d), = 5) and Ry €
SO(d’y = 3) on the resulting matrices to obtain input X and property Y.
The goal of our experiment is to identify a low-dimensional parametri-
sation which captures the underlying radial and angular components,
i.e. identify latent dimensions which correspond to parameters (7, ¢) and
(r, ¢, 9). Note that for a particular level curve or surface the radius depends
on the angles, i.e. r(¢) or r(¢, 9), respectively. But for fixed angles, there
is a unique relationship between the level set y and the radius r and thus
for any angle. A representation of r allows reconstructing y and the angle
representations allow generating the data points on the level curve / surface.

ARCHITECTURE AND TRAINING: For all models, the encoder and the
input decoder consist of two fully-connected hidden layers. The property
decoder consists of one fully-connected hidden layer. Each hidden layer
has 256 units. The latent space is chosen to be eight-dimensional, d, = 8§,
with three dimensions d,, = 3 reserved for property subspace Zy and
five dimensions d,, = 5 for invariant subspace Z;. We choose a generous
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Figure 5.4: Input data for ellipse (dy = 2) example. Data points (N = 10000)
are uniformly sampled in [—1,1]?, properties Y are binned for illustration
purposes with different colours indicating different level sets. Original input
data (a) without noise and (b) with additional noise € ~ A (0, 0.04) on property
Y (before mapping into higher dimension).

latent space size here with d;, = d}, = 5 and d, = d’y = 3 to evaluate the
sparsity and model selection. Choosing larger dimensions for the latent
subspaces than in the data provides no additional benefit. This is because
we expect the latent representation to be low-dimensional compared to
the input and not higher-dimensional, typically. The (adapted) p-VAE
and STIB are trained in the standard published way. Note that in our
model, the noise level is fixed at onpise = 1 W.lo.g. (see Section 5.4.1).
For our model in the synthetic experiments, we add a small additional
variance of 10 in Equation (5.7) in the last dimension, i.e. adjusting all-
one vector (1,...,1, 1)T - (1,.., 1,10)T. We found that this adaption does
not drastically affect the learned parametrisation or sparsity but encodes
the assumption about discontinuities, for instance, an angular parameter
spanning [0, 27r). This helps to reduce the gap of the discontinuity when
illustrating the latent traversal. Training data is sampled from the generating
process with an independent test dataset being fixed at the beginning of
training. The model is trained with an Adam optimiser (Kingma and Ba,
2015a), a learning rate of 10~% and a batch size of 60.

RESULTS: All models attain similar MAEs for X reconstruction and Y
prediction but differ in the property invariance as summarised in Table
5.1. Our model learns more invariant representations with several factors
difference with respect to the property invariance in both experiments.
In Figure 5.5a, signal vs. noise for the different models is presented. The
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Figure 5.5: Results for ellipses in original input space (dx = 2). (a) Illustration of
standard deviation in the different latent dimensions, where property subspace
Zy spans dimensions 1 — 3 and invariant subspace Z; spans dimensions 4 — 8.
We consider a latent dimension to be selected if the signal exceeds the noise,
i.e. orange bars are visible. Only our model selects the expected numbers of
parameters. (b) Illustration of latent traversal in our model in latent dimension
8 in the original input space for fixed values in the property space dimension 1
(different colours). The selected dimension 8 represents the angular component
¢ and reconstructs the full ellipse curves. The latent traversals of all latent
dimension 4 to 8 in our model can be found in Appendix Figure A.1.
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Figure 5.6: Results for ellipsoids in original input space (dy = 3). (a) Illustration of
standard deviation in the different latent dimensions, where property subspace
Zy spans dimensions 1 — 3 and invariant subspace Z; spans dimensions 4 — 8.
We consider a latent dimension to be selected if the signal exceeds the noise,
i.e. orange bars are visible. Only our model selects the expected numbers of
parameters. (b,c) Illustration of latent traversal in our model in latent dimen-
sions 6 and 8 in the original input space for fixed values in the property space
dimension 1 (different colours). The selected dimension 6 in (b) represents the
polar angle ¢, while dimension 8 in (c) can be related to the azimuth angle
¢. (d) Samples in all selected dimensions (i.e. 6 and 8) reconstruct the full
ellipsoid. We intentionally did not sample the ellipsoid surfaces completely to
allow seeing surfaces underneath. The latent traversals of all latent dimension
4 to 8 in our model can be found in Appendix Figure A.2.
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standard deviation 0jgn, is calculated as the sample standard deviation of
the learned means in the respective latent dimension. The sampling noise
Onoise 18 optimised as a free parameter during training. We consider a latent
dimension to be informative or selected if the signal exceeds the noise.
The sparsest solution is obtained in our model with one latent dimension
selected in the property subspace Zy and one in the invariant subspace
Z1. In Figure 5.5b, we examine the obtained solution more closely in the
original data space by mapping back from d} = 5 to dy = 2 dimensions. We
consider ten equidistant values in the selected Zy dimension 1 and sample
points in the selected Z; dimension 8. The different colours represent fixed
values in Zj, with latent traversal in Z; dimension 8 reconstructing the full
ellipse. This means, the selected latent dimension 8 contains all relevant
information at a given coordinate in Zj, while dimensions 4 to 7 do not
contain any relevant information. See Appendix Figure A.1 for the latent
traversals of all latent dimension 4 to 8. We can relate the selected dimension
1in Zy to the radius r and dimension 8 in Z; to the angle ¢.

For the ellipsoid (dy = 3) in Figure 5.6a, we obtain qualitatively the same
results as for the ellipse. Again, only our model selects the correct number
of latent factors with one in Zjy and two in Z;. The latent traversal results
are more intricate to interpret. For latent dimension 6, we obtain a represen-
tation which can be interpreted as encoding the polar angle ¢ (see Figure
5.6b). Traversal in latent dimension 8 (see Figure 5.6¢) yields closed curves
in three dimensions which can be viewed as on orthogonal representation
to dimension 6 and be interpreted as an encoding of the azimuth angle ¢.
In Figure 5.6d, the last plot shows sampling in the selected Z; dimensions
for fixed Z (i.e. property Y) and reconstructs the full ellipsoid. Appendix
Figure A.2 provides the latent traversal results for all latent dimension 4
to 8. Although B-VAE and STIB perform equally well on reconstructing
and predicting on the test set, these models do not consistently lead to
sparse and easily interpretable representations which allow direct traversal
on the level sets as shown for our model. The presented results remain
qualitatively the same for reruns of the models.

5.5.2  Small Organic Molecules

As a more real-world example, we consider generation of novel molecules
with desirable properties in drug and material design. This task is chal-
lenging due to the large, unstructured, and discrete molecular space with
the number of potentially drug-like molecules being estimated to range
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Table 5.1: Mean absolute errors (MAE) for reconstruction of input X, prediction
of property Y, and the property invariance on the test set. MAEs on the
transformed 5-dimensional input X and the 3-dimensional property Y are
provided.

Ellipse Ellipsoid

Model X Y Invar. X Y Invar.

B-VAE 0.03 025 0.058 0.02 025 0.153
STIB 0.03 025 0.027 0.03 025 0.083

Ours 0.04 025 0.006 0.05 0.25 0.006

between 107 to 10°0 (Gomez-Bombarelli et al., 2018). A systematic synthesis
and testing of novel compounds is not only resource but also time intensive
and thus impractical. Therefore, an informed prescreening of candidate
compounds with fixed properties, as presented through our method, can be
a highly useful tool, potentially. To this end, we consider the QMg dataset
(Ramakrishnan et al., 2014) which includes 133 885 organic molecules. The
molecules consist of up to nine heavy atoms (C, O, N, and F), not including
hydrogen. Each molecule includes corresponding geometric, energetic, elec-
tronic and thermodynamic properties obtained from Density Functional
Theory computations. In our experiments, we select a subset with a fixed
stoichiometry (C7O,Hjg) which consists of 6093 molecules. As the chemical
property, we choose the band gap energy.

ARCHITECTURE AND TRAINING: For the input X we use the bag-of-
bonds (Hansen et al., 2015) descriptor as a translation, rotation, and permu-
tation invariant representation of molecules, which involves 190 dimensions.
We standardise X and Y, i.e. we compute z-scores. For the encoder and de-
coder of our model, we employ two fully-connected hidden layers with 1024
units each. The property prediction network consists of two fully-connected
hidden layers with 128 units each. For activation, a ReLU activation func-
tion is used. The number of latent dimensions is set to d, = 17, where Z
consists of one dimension and Z; consists of the remaining 16 dimensions.
To evaluate the property invariance, we first adjust the regularisation loss
weights for a fair comparison of the models. The weights for the irrelevance
loss in the STIB model and the invariance loss terms in our model were
increased until a drop in reconstruction and prediction performances com-
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Table 5.2: Mean absolute errors (MAE) for reconstruction of input X, prediction
of property Y, and the property invariance on the test set. MAEs on property
Y (band gap energy) and property invariance are given in kcal mol L.

Molecules

Model X Y Invar.

B-VAE 0.01 4.01 5.66
STIB 0.01 4.08 3.05

Ours 0.01 4.06 1.34

pared to the B-VAE results was noticeable. The model is trained with an
Adam optimiser, a learning rate of 104, and a batch size of 250. Each model
is trained on a 5750 training set and evaluated on a 300 out-of-sample set.

RESULTS: Table 5.2 summarises the results. On a test set of 300 molecules,
all models achieve similar MAE of 0.01 for the reconstruction of X. For pre-
diction of the band gap energies Y an MAE of approximately 4 kcal mol ™
is achieved. The invariance is computed on the basis of 25 test molecules
and 400 samples generated for each reference molecule. Similarly to the
synthetic experiments, the STIB model performs almost twice as well as
the B-VAE, while our model yields a distinctly better invariance of 1.34
kcal mol ™! among both models. With this result, we can generate novel
molecules which are very close to a fixed property. This capability is illus-
trated in Figure 5.7. For two reference molecules in the test set, we generate
2000 new molecules by sampling uniformly at random with one standard
deviation in the invariant subspace Z; and keeping the reference property
value, i.e. fixed Zy coordinates. We show three such examples in Figure
5.7a and select the nearest neighbours in the test set for visualisation of the
molecular structure. For all samples, the box plots in Figure 5.7b illustrate
the distribution in the predicted property values. The spread of predicted
property values is generally smaller than the model prediction error of 4.06
kcal mol ™! and the predicted property of a majority of samples is close to
the target property value.
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Figure 5.7: Illustration of the generative capability of our model for two reference
molecules (rows). (a) The first molecule is the reference molecule with a fixed
reference band gap energy. We display three samples and their predicted band
gap energies out of 2000 samples. (b) Box plots for distribution of predicted
property. The star symbol marks the fixed reference band gap energy. The
shaded background depicts the prediction error range of the model.

5.5.3 Disentanglement in dSprites

Finally, we illustrate the disentanglement capability of our approach on the
dSprites dataset (Matthey et al., 2017). The dataset comprises 737 280 images
of three shapes (square, ellipse, heart) on six different scales, 40 orientations
and 32 x 32 positions for coordinates (x,y). In the following, we consider
six independent settings for the target property Y where we choose either
the (i) x-position, (ii) y-position, (iii) shape, (iv) scale, (v) orientation, or
(vi) jointly (x,y) position, scale, and orientation as the respective target
property. In the last setting all factors except for the shape are used as
target properties and we refer to this setting as no shape. In the settings
involving the orientation as a property, we reduce rotations to the [0, 71/2) or
[0°,90°) interval, which is a reduction of the dataset to a quarter or 184 320
images. This is necessary because rotating a square by 77/2 = 90° results
in orientations indistinguishable from the original orientation without any
rotation. Rotations exceeding this interval lead to squares which look exactly
alike but have different orientation values.3 Therefore, we omit these cases
in our supervised problem setting, which would otherwise hinder the

The same holds true for ellipses and rotations exceeding the interval [0, 77) or [0°,180°). Thus,
considering only rotations in [0, 7r/2) or [0°,90°) also avoids ambiguity in orientation labels
for ellipses, too.
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training and thus generalisation capability of our approach. Furthermore,
orientation and shape values are normalised to the [0, 1] interval.

ARCHITECTURE AND TRAINING: The encoder and input decoder are
defined analogous to the FactorVAE architecture for dSprites (Kim and
Mnih, 2018). On the encoder side, the greyscale input images of 64 x 64
pixels are processed by four convolution layers with {32,32, 64, 64} feature
maps, respectively. The resulting feature maps are then flattened and a
fully-connected layer with d, hidden units parametrises the means y7 in
the latent space. On the input decoder side, the latent code Z is processed
by two fully-connected layers with 128 and 1024 hidden units as well
as four transposed convolution layers which perform up-sampling with
{64,32,32,1} feature maps, respectively. In all (transposed) convolution
layers, a filter size of 4 x 4 and strides of size 2 are used. In all layers, ReLU
activations are employed except for the fully-connected layer mapping
to the latent space and the last transposed convolution layer. Inspired by
the B-VAE decoder for the dSprites dataset (Higgins et al., 2017), in the
property decoder the latent code Z; is processed by three fully-connected
layers with {1200, 1200,4096} hidden units and ReLU activations followed
by a final fully-connected layer with sigmoid activation which maps to
the property output. We choose the latent dimensionality to match the
number of underlying factors of variation in dSprites, i.e. d, = 5. In the
different settings, the property subspace is of size d,, = 1 for the single
target property settings (i) to (v) and d, = 4 for the multi-target property
setting (vi). With these choices the latent representation is already of the
desirable sparsest size. The primary goal is to study disentanglement of
latent dimensions and latent subspace Zy and Z; in our approach. As before,
our model is trained with the Adam optimiser, a learning rate of 107, and
a batch size of 256. In these experiments, we only consider our approach
and train the model for 2000 000 iterations, reporting the results at the end
of training. A random training and test set split of 80%/20% is used.

RESULTS: For contextualisation, we consider the mean model which
predicts the mean image and mean property — obtained over the whole
training set — for any kind of input image. Table 5.3 provides the quan-
titative results for all six settings of target properties. In summary, the
(test) input reconstruction MAE is at least an order of magnitude and the
(test) property prediction MAE at least one to two orders of magnitude
lower than the prediction of the mean model. Generally, the MAEs for the
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Table 5.3: Mean absolute errors (MAE) for reconstruction of input X, prediction
of property Y, and the property invariance on the test set. Six different model
settings are considered with different target properties. No shape indicates that
all factors except the shape are used as target properties. For contextualisa-
tion, we consider the mean model which predicts the mean image and mean
property — obtained over the whole training set — for any kind of input image.

Our model Mean model
Property X Y Invar. X Y
X 25 0.0033 0.0041 308  0.2581
y 21 0.0037 0.0036 308  0.2581
shape 30 0.0007 0.0010 308 0.2222
scale 28 0.0016 0.0021 308  0.1500

orientation 14 0.0013 0.0018 308 0.2778
no shape 25 0.0139 0.0118 308  0.9439

property invariance and model error for predicting the property match.
This is in contrast to the previous experiments where the model prediction
error exceeded the property invariance (see Tables 5.1 and 5.2). However, by
design of the dataset, properties can be disentangled from other factors and
thus low property prediction errors are attainable which limit the errors for
the property invariance.

More qualitatively, we observe disentanglement between latent subspaces
Zy and Z;. Figure 5.8 shows for different sprites a latent traversal in prop-
erty subspace Zj in the different target property settings. We select sprites
of the test set, fix the latent coordinates in the invariant subspace Z; and
change latent coordinates in property subspace Zj, enabling us to gener-
ate (artificial) samples with different values for the property. For the one
target property settings, values are changed from small (negative) to large
(positive) values in the respective latent dimension. In the setting with four
properties, one of the latent dimensions in subspace Zy was selected and
values were chosen from small (negative) to large (positive) values. While
the target property varies, as for example the position of the sprite in the
image or its orientation, all other factors remain conserved. In the no shape
setting, the latent traversal indeed changes all property factors, i.e. (x,y)
coordinates, scale, and orientation, while the shape is unchanged.
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Figure 5.8: Latent traversal in property subspace Z. Different sprites of the test set
(reconstruction results outlined in red; first column) are selected and several
models with different target properties (rows) are consider: (i) x-position,
(ii) y-position, (iii) shape, (iv) scale, (v) orientation, and (vi) jointly (x, )
position, scale, and orientation (10 shape). The property value is varied from
small (negative) to large (positive) values in the latent subspace Z; at fixed
latent coordinates in the invariant subspace Z; and the corresponding samples
are generated (second to last column). The model allows varying the target
property while leaving the other factors of variation unchanged, as is illustrated
for the selected sprites.

X

orientation scale shape y

no shape

The opposite case is considered in Figure 5.9 with a latent traversal in
the invariant subspace Z;. For sprites of the test set, the latent coordinates
in the property subspace Z; are fixed — corresponding to fixed property
values — and latent coordinates in the invariant subspace Z; are sampled
uniformly at random. The generated samples conserve the property, e.g. a
particular size or shape, while all other factors vary. It should be noted that
the shape is the only discrete factor, but due to the continuous latent space,
continuous transitions between the shapes are generated, too.

Although we observe disentanglement between the latent subspaces Zj
and Zj, this is not generally the case for the individual latent dimensions.
While the results on the ellipsoid experiment suggest that we can, for
instance, identify correspondence between latent dimensions and angular
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Figure 5.9: Latent traversal in invariant subspace Z; at a fixed property. Different
sprites of the test set (reconstruction results outlined in red; first column)
are selected and several models with different target properties (rows) are
consider: (i) x-position, (ii) y-position, (iii) shape, (iv) scale, (v) orientation, and
(vi) jointly (x,y) position, scale, and orientation (no shape). The coordinates in
latent subspace Zj (i.e. property values) are fixed, coordinates in the invariant
subspace Z; are drawn uniformly at random and the corresponding samples
are generated (second to last column). The model allows fixing the target
property while changing the other factors of variation, as is illustrated for the
selected sprites.

y

shape

orientation scale

no shape

components (see Figure 5.6), this is not guaranteed in general. Sampling
along a particular latent dimension in subspace Zy or Z; might change
several factors of variation. This is illustrated, for instance, in the latent
traversal of Zj in one latent dimension for the no shape setting, where all
properties vary in this latent dimension (see last row in Figure 5.8).

5.6 CONCLUSION

Our extensive evaluation corroborates that sparsity constraints and cycle
consistency lead to sparse and interpretable models facilitating model se-
lection. The results in Figures 5.5a and 5.6a demonstrate that our method
identifies the sparsest solution in comparison to the standard disentangle-
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ment baseline B-VAE and the direct competitor STIB, which do not address
sparsity explicitly. Furthermore, the experiments on ellipses and ellipsoids
show that only our model also identifies a correct parametrisation. It cor-
rectly learns the radius r in the property subspace Z; as it encodes the
level set, i.e. the ellipse curve or ellipsoid surface given by property Y. The
angular components ¢ and ¢ are correctly — and in particular independently
— learned in the invariant subspace Z; (see Figures 5.5b as well as 5.6b and
5.6¢). This is a direct consequence of the cycle consistency on the property
Y. It allows for semantically structuring the latent space on the basis of
the semantic knowledge on property Y. Finally, these results highlight that
our method is able to inherently select the correct model. Although the
B-VAE and STIB are capable of attaining similar reconstruction and predic-
tion errors, a reconstruction of level sets in these models requires a more
complicated combination of latent dimensions and hinders interpretation.
Therefore, only our model makes an interpretation of the learned latent
representation feasible.

We showed that cycle consistency enforces conditional invariance. Tables
5.1 and 5.2 show that for all experiments, our model exhibits the best prop-
erty invariance at otherwise similar reconstruction and prediction errors.
The B-VAE has no mechanisms to ensure invariance and thus performs
worst. But although the STIB relies on adversarial training to minimise
mutual information (MI) between Z; and Y, the alternating training and
MI estimation can pose practical obstacles, especially in cases with high-
dimensional latent spaces. Our cycle-consistency-based approach has the
same benefits and is more feasible. In particular, our approach can operate
on arbitrarily large latent spaces in both Zy and Z1, because of the inherent
sparsity of the solution. Typically, an upper limit for the size of property
subspace Z( and invariant subspace Z; can be defined by the dimensional-
ity of the property Y and input X (see Figures 5.5 and 5.6). Noteworthy —
although our model is trained and tested on data in the interval [—1,1]%,
dy = {2,3} — the results generalise well beyond this interval, as long as
a part of the level curve or surface was encountered during training (see
Figure 5.5b). This can be directly attributed to the regularisation of the la-
tent space through additional sampling and cycle consistency of generated
samples. These mechanisms impose conditional invariance which, in turn,
facilitates generalisation and exploration of new samples by sharing the
same level set or symmetry-conserved property.

In particular, conditional invariance can be viewed as supervised dis-
entanglement of subspaces. Learning invariances or symmetries is closely
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related to disentanglement. We considered supervised settings in which
semantic knowledge on a property Y serves as an inductive bias to drive
the disentangling structure in the latent representation Z. This formulates
the disentanglement task as performing disentanglement with a focus on a
down-stream task, like predicting novel compounds with particular band
gap energies, and does not require the full latent representation to factorise
into disentangled latent dimensions. For representative examples of the
dSprites benchmark dataset, Figures 5.8 and 5.9 qualitatively illustrate that
our approach allows separating factors of variation and conditional gener-
ation. Additionally, we demonstrate the applicability of our approach in
multi-property settings.

Finally, we show that conditional invariance improves targeted molecule
discovery. Conditional invariance is of great importance for the generative
potential of our model. In Figure 5.7 we exemplary explored the molecular
structures for two reference molecules. By sampling in the invariant space
Z1, we discover molecular structures with property values which are very
close to the fixed targets, i.e the mean absolute deviation is below the
model prediction error. Our experiment demonstrates the ability to gener-
ate molecules with self-consistent properties which rely on the improved
conditional invariance provided by our model. This facilitates the discovery
of novel molecules with desired chemical properties.
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FEATURE LEARNING AND RANDOM FEATURES
IN FINITE DEEP NEURAL NETWORKS

Although deep learning achieves remarkable results in different applica-
tions in computer vision or natural language processing, the mathematical
treatment of how and what these models learn is a challenging task. In
that regard, the Neural Tangent Kernel (NTK) is an important milestone
in the ongoing effort to build a theory for deep learning. Its prediction
that sufficiently wide neural networks behave as kernel methods, or equiv-
alently as random feature models arising from linearised networks, has
been confirmed empirically for some wide architectures. We extend these
findings by comparing the performance of two common finite-width con-
volutional neural networks, LeNet and AlexNet, to their linearisations
explicitly at different network widths and on common benchmark datasets
like MNIST and modified versions of it, CIFAR-10, and an ImageNet subset.
We demonstrate empirically that finite-width neural networks — generally
— greatly outperform the finite-width linearisation of these architectures.
When increasing the problem difficulty of the classification task, we observe
a larger gap which is in line with common intuition that finite-width neural
networks perform feature learning which finite-width linearisations cannot.
At the same time, finite-width linearisations improve dramatically with
width, approaching the behaviour of the wider standard networks which
in turn perform slightly better than their standard width counterparts.
Therefore, it appears that feature learning for non-wide standard networks
is important but becomes less significant with increasing width. We further-
more identify cases where both standard and linearised networks match
in performance, in agreement with NTK theory, and cases where wide lin-
earisations outperform their standard width counterpart. We complement
the finite-width findings by considering the asymptotic limit given by the
infinite-width Neural Tangent Kernel and, additionally, study the Neural
Network Gaussian Process kernel.

Part of this chapter has been published in Samarin et al. (2022).
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6.1 MOTIVATION

The Neural Tangent Kernel (Jacot et al.,, 2018) is a seminal contribution
to the study of deep neural networks which extended important insights
about the connection of Gaussian processes and neural networks (Neal,
1996; Williams, 1996; de G. Matthews et al., 2018; Lee et al., 2018; Garriga-
Alonso et al.,, 2019). Ever since, subsequent investigations have refined
our view on the NTK with results suggesting both its validity as well as
insufficiency as an explanation for the performance of practical finite-width
neural networks, and the focus of investigation has moved to the network
parametrisation and architecture differences and their relationship to the
NTK (Chizat et al., 2019; Lee et al., 2019; Chen et al., 2020; Hanin and
Nica, 2020; Xiao et al., 2020; Seleznova and Kutyniok, 2022). The NTK
framework has inspired work in many directions like infinite ensembles of
trees (Kanoh and Sugiyama, 2022), federated learning (Huang et al., 2021)
and thus continues to stimulate various advances in deep learning theory.

As outlined in Section 3.4.2, Jacot et al. (2018) proved that when mod-
elling neural network training under gradient flow, i.e. full batch gradient
descent of infinitesimal step size, the training trajectory f(x, w;) at iteration
t satisfies an ordinary differential equation (ODE) involving the finite-width
Neural Tangent Kernel

@t(L) (x,x) = <wa x,wi), Vo f(x, wp)) (6.1)

= Z EAC) a f(x wi) (6.2)

l

for weights w € R? with a total of p parameters in a Multilayer Perceptron
(MLP) with L layers and inputs x, x’ € R%. The form of this kernel depends
on the network architecture and the time-dependent weights w; as well
as a particular initialisation. In this NTK parametrisation, they showed that
when scaling the learning rate per layer in an appropriate way and letting
the width tend to infinity, the kernel converges to the infinite-width NTK
O which is independent of the weights and stays constant during training,
greatly simplifying the ODE in this limit (see Theorem 3). Furthermore,
they showed for the mean squared error (MSE) loss that the predictor at
convergence is precisely what a kernel regression using the infinite-width
NTK would produce (see Equation (3.75)). Importantly, the infinite-width
NTK depends only on the architecture of the network; it is not learned and
thus data-independent. The formalism was extended from MLPs to other



6.1 MOTIVATION

architectures including convolutional networks (Arora et al., 2019; Yang,
2019b), recurrent neural networks (Alemohammad et al., 2020), residual
networks (Huang et al., 2020b), transformers (Hron et al., 2020), and more
general architectures (Yang, 2020).

This result can be understood as the convergence of wide networks to
random feature models (Chizat et al., 2019). Let f : R%* — RRC be the
function given by a network parametrised by weights w € R” with input
x € R% and let f' be the output in component i € {1,...,C}, with C being
typically the number of classes in a classification task. For w sufficiently
close to the random initial weights wg and u = u; = w; — wy, the first order
Taylor expansion in the weights

fi(xr wi) ~ fi(x/ wO) + wai(x' wo)u = fliin(x’ u) (63)

is an accurate approximation. The right-hand side fij,(x,#) is a random
feature model with weights u € R? and the feature mapping ¢ (x) € RC*?
is given by the gradients ¢’(x) = V,f!(x, wp) with respect to the weights
at initialisation wy (see Section 3.4.2). If approximation (6.3) holds, then
also the gradients V, f(x, wi) and V fiin(x, #) of the two models will be
close. When training these models with some form of gradient descent and
sufficiently small step size for a sufficiently small number of steps, then the
training trajectories will stay close, as long as the weight vectors remain
in the region around u# = 0 or w = wy, respectively. Using an MSE loss in
over-parametrised models, one can expect both models to converge to zero
loss (Du et al., 2019). If convergence occurs before leaving this region, then
the models — whether trained with early stopping or until convergence —
will predict a similar function.

For the infinite-width case, Lee et al. (2019) proved that f(x, w;) and
fiin(x, ) converge in distribution to the same Gaussian distribution (see
Theorem 4). Furthermore, the NTK result can be proved by showing that for
very wide neural networks the models f(x, w;) and fii, (x, #) reach zero loss
and thus stop evolving before leaving the region where the approximation
in Equation (6.3) is accurate (Chizat et al., 2019; Lee et al., 2019), known as
lazy training.

The linearised model f};, does not learn a representation but uses the
random representation V,, f'(x, wg) which is fixed by the initial weights wy
and remains unchanged throughout training. More in line with Gaussian
processes and random feature models (Rahimi and Recht, 2007) but at
odds with general intuition on deep learning, NTK theory predicts that,
at large widths, a network and its linearisation behave similarly and no
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significant feature learning takes place. This seems to imply that — even for
standard neural networks — learning a "good" representation might become
decreasingly relevant with increasing over-parametrisation.

Motivated by this conjecture, we study standard convolutional neural
networks (CNNs) and their respective linearisations (at initialisation) given
by Equation (6.3). We complement previous work in that direction (see
Section 6.2) and extend these results for more standard architectures in
more common classification tasks. In particular, we perform a thorough
study of two standard CNNs, LeNet (LeCun et al., 1998) and AlexNet
(Krizhevsky et al., 2012), for increasingly difficult classification tasks (see
Figure 6.1) at different widths.

Figure 6.1: We consider four classification tasks of increasing difficulty: (i) MNIST
with center-aligned digits, (ii) MNIST with random translations breaking the
positional alignment, (iii) CIFAR-10, and (iv) a subset of ImageNet containing
ten snake classes (see Section 6.3.1).

We observe test accuracy gaps between these networks, in line with the
idea that standard neural networks perform feature learning while their
linearisations do not. For the wider networks the generalisation gap closes,
in line with NTK theory, supporting the picture summarised in Figure 6.2.

However, we also observe low training accuracy for the linearised net-
works. We investigate numerical issues which can explain reduced training
performance in the linearisations and consider a simplified binary classi-
fication setting in which we can solve the linear system in Equation (6.3)
with a standard solver achieving 100% training accuracy, but observe that
this generally causes even worse test accuracy for the linearised models. We
complement our results with a consideration of the infinite-width NTK and
Neural Network Gaussian Process (NNGP) kernel, observing convergence
of linearised network performance to the infinite-width NTK prediction but
also standard finite-width networks outperforming this limit.

In this work, we make the following contributions:

* We show that for (nearly) all considered widths, there is a prominent
performance gap between the standard and linearised LeNet and
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AlexNet and this gap increases when the classification task increases
in difficulty. This is shown for MNIST, CIFAR-10, and a subset of
ImageNet. We believe this gap exhibits the importance of feature
learning for non-wide standard networks.

* We present further instances where wide linearised networks perform
as well as the standard networks and cases where linearised wide
networks outperform their standard width counterpart.

¢ As for wider networks the generalisation gap closes, in line with NTK
theory, we raise the question if this means that the non-wide and
wide standard network generalise due to a very different mechanism:
feature learning for non-wide networks and effectively employing
unlearned random features at larger widths.

* We extend the discussion in previous work of numerical aspects of
training the non-wide linearised models by considering the effective
rank of the kernel.

* We show that the linearised wide networks approach the infinite-
width NTK performance, but that standard wide networks can pro-
vide even better generalisation.

6.2 RELATED WORK IN CONTEXT OF THE NEURAL TANGENT KERNEL

The original motivation and prevailing appeal of (finite) deep neural net-
works is that they are powerful methods to extract statistics and learn
features leading to strong performance for down-stream tasks (regime I in
Figure 6.2) (Lee et al.,, 2009; Alekseev and Bobe, 2019). The behaviour of
neural networks in the highly over-parametrised regime has been exten-
sively studied, too, suggesting minor weight changes from initialisation
during training (regime II) (Du et al,, 2019; Allen-Zhu et al., 2019; Zou
et al., 2020). In the NTK literature, typically, the infinite-width limit for
finite-depth neural networks is considered (connection between regimes II
and IV). In contrast, Deep Equilibrium Models consider the infinite-depth
limit at finite width (Bai et al., 2019). Hanin and Nica (2020) study the NTK
for both infinitely wide and deep ReLU networks, showing particular data-
dependent features of the resulting NTK in these limits. Focusing on the
finite-depth case, there are several studies which compare the finite-width
NTK ©; or infinite-width NTK @ to their standard network (regimes I and
IV) and provide, to some extent, diverging results.
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Figure 6.2: Our results on neural networks exhibit different behaviour in different
regimes: For wide architectures, standard networks and their linearisation be-
come increasingly alike. While the performance of linearised networks benefits
substantially from width, standard networks only show small improvements.
At usual widths, standard networks and their linearisation behave differently
due to the relevance of feature learning.

The original work by Jacot et al. (2018) gives experimental results for
small synthetic datasets, as well as MLPs trained on MNIST with hidden-
layer-widths of 102, 10%, and 10%, showing good agreement with the infinite-
width NTK for the widest network. Lee et al. (2019) extend the original
work and show good agreement for small synthetic datasets and MLPs
trained with SGD on MNIST and CIFAR-10. Most interestingly, a wide
ResNet (Zagoruyko and Komodakis, 2016) trained on CIFAR-10 shows
similar behaviour, though the non-linearised model appears to have been
trained only to below 80% training accuracy, and in the test accuracy a
gap seems to develop towards the end of training (see Figure 7 in their
paper). In contrast to that, in Chizat et al. (2019) VGG-11 (Simonyan and
Zisserman, 2015) and ResNet-18 (He et al., 2016) — trained on CIFAR-10
and widened with a scaling factor « for tuning the models into the non-
linearised and linearised regimes — exhibit large gaps in test accuracy. They
highlight that the decreased training performance of the linearisation is
due to bad conditioning and effectively low rank of the associated kernel
matrix. In their extension to CNNSs, Arora et al. (2019) compare CNNs with
two to 20 convolutional layers combined with fully-connected or global
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average pooling output layers to the derived infinite-width convolutional
NTK (CNTK), observing large gaps in test accuracy on CIFAR-10.

Our work is most closely related to Lee et al. (2020) and Geiger et al. (2020).
In Lee et al. (2020) an extensive empirical study of neural networks, their
linearisations and the infinite-width NTK © as well as the Neural Network
Gaussian process (NNGP) kernel Knngp (Lee et al., 2018; de G. Matthews
et al., 2018) is conducted. For fully-connected and simple convolutional
architectures, they show cases where NTK can both outperform but also
underperform their corresponding networks on CIFAR-10. Importantly,
they study the relevance of regularisation of the kernels and identify bad
conditioning of the kernel as a reason for decreased performance. In line
with results by Wei et al. (2020), they show that ¢;-regularisation (like weight
decay) of the kernel is required for good performance in practice, although
this breaks the infinite-width correspondence to kernel methods. In contrast
to their work, we focus on two more standard but also more extensive CNNs
where we increase the widths of the standard and linearised networks
explicitly and study their properties with a focus on feature learning. In
that regard, our work differs from Geiger et al. (2020) who also study lazy
training and feature learning but for MLPs of depth three to five and CNNs
with four convolutional layers and in the framework of Chizat et al. (2019)
with a scaling factor & controlling the lazy training regime. Another related
line of research was conducted by Ortiz-Jiménez et al. (2021) which study
linearisations with respect to task complexity defined on the basis of the
NTK eigenfunctions as targets. In their evaluation on CIFAR-10, they show
that linearisation performance can rank learning complexity and show that
neural networks do not always outperform their kernel approximations.

Other relevant work includes Seleznova and Kutyniok (2022) which
investigates the ordered and chaotic phase phenomena of vanishing and ex-
ploding gradients in the context of NTK theory, providing guarantees when
the NTK is ill-conditioned (ordered phase) or well-conditioned (chaotic
phase and at the border between the two phases). Furthermore, Yang and
Hu (2021) note that standard and NTK parametrisations do not lead to
representations that learn features in the infinite-width limit and propose
an alternative parametrisation enabling feature learning in this limit.

6.3 METHODOLOGY

We examine two standard ReLU CNNs, LeNet and AlexNet, trained for
classification tasks of increasing difficulty. One task is digit recognition
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in MNIST and modified versions which include random translations of
the otherwise centered digits. In addition, we train on natural images of
CIFAR-10, and a subset of ImageNet which contains ten different snake
classes (see Section 6.3.1), whereby we deliberately chose similar classes to
form a challenging classification task.

In this setup, we study the performance of the standard network and
its linearisation fi;, (see Equation (6.3)) and the effect of increasing the
width of the networks, thereby investigating, in particular, the relationships
between regimes I and III as well as IIl and IV in Figure 6.2. This is done
by multiplying the number of channels in each convolutional layer and
all widths of fully-connected layers by a common factor, illustrated in
Figure 6.3. Due to GPU memory limitations, we are able to train LeNet and
LinLeNet up to width factors of 60 and for AlexNet and LinAlexNet up to
width factors of 4. As the number of parameters increase quadratically in
the width, and standard width LeNet and AlexNet have about 60k and 60m
parameters, we were hence able to train networks of up to 212m and 912m
parameters, respectively (see Appendix Section B.1 for more details).

Conv. Pool. Conv. Pool. Dense

6 ch. 400|120 | 84 h.u.
x width factor x width factor x width factor

Figure 6.3: Illustration of LeNet architecture. In order to increase the width, the
number of channels (ch.) in each convolutional layer and the number of hidden
units (h.u.) in each fully-connected (dense) layer are multiplied with a common
width factor.

Our implementation makes use of PyTorch’s (Paszke et al., 2019) stan-
dard modules for defining and training neural networks with our own
custom-made modifications for linearisation of the architectures. For LeNet,
we adapt the original LeNet-5 architecture (LeCun et al., 1998) to use max
pooling and ReLU activations. For AlexNet, we use the PyTorch imple-
mentation (Krizhevsky, 2014) with 10 outputs rather than 1000 (see below).
Despite training for classification, we use the MSE loss with one-hot en-
coded target vectors. Firstly, with standard cross-entropy loss the networks
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never converge to exactly zero loss, so the networks must at some point
leave the region where the approximation in Equation (6.3) is valid, caus-
ing some ambiguity in the heuristic. Secondly, the MSE loss allows for an
easier and more efficient implementation of the training of the linearised
models. Thirdly, recent results suggest that MSE loss might outperform
the cross-entropy loss based on extensive evaluations on a variety of tasks
in natural language processing, speech recognition and computer vision
(Hui and Belkin, 2020). We furthermore do not make use of dropout, since
it is not clear to us how to model it in the NTK framework (see however
Novak et al. (2020)). We find that after optimising hyperparameters, we
can train LeNet and AlexNet to similar train and test performance as with
cross-entropy loss without dropout (see Section 6.3.1). We predict the class
whose one-hot vector is closest to the output vector, which is equivalent to
predicting the argmax of the output layer. We train fy;,(x, #) with SGD in
the standard way by optimising # with gradient updates obtained by

C
Vu |flin(xru) - y|2 =2 Z wai(x, wO) X (fliin(xr u) - yi) . (6~4)
i=1

Computing the gradients of the linear model with C outputs requires
computing C gradients of the original network per data point, and thus
C backward passes, which is computationally intensive if C is large. We
therefore train (Lin)AlexNet on the snakes subset of ImageNet consisting of
C =10 classes, while we can use full MNIST and CIFAR-10 for (Lin)LeNet.

As our goal is to stay as close as possible to standard neural network
training practices, we use SGD with weight decay and momentum, i.e. with
explicit regularisation. In addition, we use the standard PyTorch weight
initialisation, which is a variant of Kaiming initialisation (He et al., 2015),
rather than the NTK parametrisation (see Section 3.4.2).

6.3.1 Classification Tasks

We consider three benchmark datasets as illustrated in Figure 6.1. Firstly, we
perform recognition of handwritten digits on MNIST (LeCun et al., 1998),
where a label from 0 to 9 is assigned to each individual greyscale image
(28 x 28 pixels). Secondly, we classify the natural images (32 x 32 pixels;
RGB) of CIFAR-10 (Krizhevsky and Hinton, 2009) which differentiates
between ten different classes: airplane, car, bird, cat, deer, dog, frog, house,
ship, and truck. We rescale the CIFAR-10 images to 28 x 28 pixels for
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convenience. Both datasets contain 60 000 training and 10 000 testing images.
Thirdly, for a challenging classification task, we chose a subset of ImageNet
2012 (Russakovsky et al., 2015) comprised of ten snake categories illustrated
in Figure 6.4. The extracted dataset contains 1300 training and 50 test
images per class, resulting in 13000 training and 500 testing images in
total. As a benchmark performance result, we evaluate a standard pre-
trained AlexNet on this dataset, achieving 47.6% test accuracy. Training
our implementation of AlexNet with a cross-entropy loss on the snakes
dataset provides 98.5% train and 51.4% test accuracy (single run). In our
experiments, we used a MSE loss, which in comparison led to 99.1% train
and 53.8% test accuracy (single run). These results indicate that both loss
functions lead to comparable performance and outperform a standard pre-
trained AlexNet (trained on full ImageNet) with respect to generalisation.

green snake king snake

thunder snake ringneck snake hognose snake

Figure 6.4: Ten snake categories from ImageNet.

64 EXPERIMENTAL RESULTS FOR FINITE-WIDTH NETWORKS

In the experiments, five independent reruns of the specified networks
for 100 epochs and batch size 32 were performed unless stated other-
wise. Hyperparameter search was conducted for each network architecture
and its linearisation at all widths separately, for learning rates including
{1,0.1,0.01,0.001} and weight decay values including 5 x {10_4, 10—>,107°,
1077,1078}. The momentum parameter was set to the default value of 0.9.
For each rerun, a different fixed random seed was used to ensure that both
the standard and linearised models at a particular width are initialised
exactly the same and receive the same mini-batches during training. For
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experiments involving CIFAR-10 and the snakes dataset, the learning rate
was decreased by a factor 10 every 30 epochs. Otherwise, we follow the
standard preprocessing for standardising the input images and standard
resizing (256 pixels) and center-cropping (224 pixels) for ImageNet images.
Computations were conducted on Nvidia GeForce Titan X Pascal and Tesla
V100 GPUs. For experiments involving LinAlexNetx3 and LinAlexNet x4,
we used an Nvidia Quadro RTX 8ooo with 48 GB memory due to the in-
creased memory requirement. All displayed results are obtained with single
precision. We also carried out all experiments in section 6.4.1 with double
precision, but did not observe any striking differences.

6.4.1 Classification with Increasing Feature Learning Requirement

LENET TRAINED ON MNIST AND CIFAR-10: For LeNet with about 60k
parameters, we used width factors ranging from 1 to 60. In all experiments
involving MNIST and CIFAR-10, a learning rate of 0.1 and weight decay of
5 x 1075 led to overall best test accuracies.

Train Test

10070 = o o o 4 1001
© L * e = & o o o
£ 981 98 4 -
> —
[} x <
C 961 96 1
S il

s Lin.
92

— — T T 92 L—— — T T
1 2 5 10 25 60 1 2 5 10 25 60
Hidden Layer Width Factor Hidden Layer Width Factor

Figure 6.5: Accuracy of LeNet (o) and LinLeNet (x) trained on MNIST at different
widths (values in Appendix Table B.3).

The results for MNIST are presented in Figure 6.5. For the standard
width, a substantial difference of 4.67 percentage points in (mean) test
error between LeNet and LinLeNet is observed. While LeNet does not gain
appreciably from increasing the width, LinLeNet does, and the gap shrinks
to 0.48 percentage points for width factor 60. Similarly, though not close in
a path-wise sense, the statistics of trajectories of output values become more
alike with increasing width (shown in Appendix Figure B.1), indicating a
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more similar behaviour of training dynamics of the linearised and standard
models at large width factors.

For factor 1 the linearised model outperforms a logistic regression on
normalised MNIST pixels only by a small margin, which achieves about
93% train and 92% test accuracy. The low training accuracy of the linearised
models is investigated in more detail in Section 6.4.2 and 6.4.3.

When increasing the problem difficulty by randomly translating the
digits horizontally and vertically, larger gaps in test (and train) accuracy are
observed which also decrease with width. For factors 1 and 60, we observe
27.65 and 3.91 percentage points difference in test error. The full results
are illustrated in Figure 6.6 for translations up to seven pixels (i.e. up to a
quarter of the image size). We will refer to this MNIST variant as shifted
MNIST.

Train Test
1007 o = & = o 10075 o & = =

£ 90 * 90
> _ _
© 80 x 80 1 x
3
g J0ll 4 st 70_T

l % Lin. l

1 2 510 25 60 1 2 510 25 60

Hidden Layer Width Factor Hidden Layer Width Factor

Figure 6.6: Accuracy of LeNet (o) and LinLeNet () trained on shifted MNIST at
different widths (values in Appendix Table B.3). Digits were shifted randomly
by up to seven pixels.

When training on the more challenging CIFAR-10 dataset even larger
gaps are observed, as shown in Figure 6.7. For the standard width, a
difference of 20.22 percentage points in test error between LeNet and
LinLeNet is observed. This shrinks to a smaller but still appreciable gap
of 13.17 percentage points at width factor 60. Interestingly, LinLeNetx60
outperforms standard width LeNetx1 in both training and test error (grey
dashed line).

ALEXNET TRAINED ON SNAKES DATASET: For AlexNet with about 60m
parameters, width factors 1, 2, 3, and 4 were used and the networks were
trained on the ten-class snakes subset of ImageNet (see Section 6.3.1). For
the linearised networks, a learning rate of 1 and weight decay of 5 x 10~/



64 EXPERIMENTAL RESULTS FOR FINITE-WIDTH NETWORKS
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Figure 6.7: Accuracy of LeNet (o) and LinLeNet () trained on CIFAR-10 at
different widths (values in Appendix Table B.3).

provided the best test errors. For the standard networks, however, a learning
rate of 0.1 and weight decay of 5 x 107 lead to best test performance. In
addition, we trained the linearised networks with these hyperparameters
settings, too, for comparison. Figure 6.8 summarises the findings, which fall

Train Test
100 te- - - o 100 % std.
R % Lin.LR=0.1
c 80 % * 80 F* Lin. LR=1
>
@ 60 * 0, o+ o =
§ [ ‘ . E=
< 40, : 40 e * % *
20+ T T T 20 T T T
1 2 3 4 1 2 3 4

Hidden Layer Width Factor Hidden Layer Width Factor

Figure 6.8: Accuracy of AlexNet (o), LinAlexNet with learning rate 0.1 (») and
learning rate 1 (x) trained on the snakes dataset at different widths (values in
Appendix Table B.4).

in line with the observed trend for LeNet but give even larger gaps in test
error. Trained with the same hyperparameters as their non-linearised coun-
terparts, the gaps in test error between standard AlexNet and LinAlexNet
are more than 20 percentage points at all considered widths. For the optimal
hyperparameters in the linearised setting, the generalisation gap shrinks
only slightly to 20.4 and 18.56 percentage points for widths 1 and 4. While
increasing the width has little impact on train and test error of AlexNet, for
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LinAlexNet the test error shows a slight decrease and the training error a
strong decrease with width.

These results show that, at standard width or small width expansion fac-
tors, the random feature models given by the linearised networks perform
poorly compared to their standard network counterpart or the random
feature models of wider linearised networks. With increasing problem
difficulty, the increasing gap between linearised and standard LeNet and
AlexNet suggests that at standard widths significant feature learning is
taking place in the standard (non-linearised) model. But with increased
over-parametrisation, these gaps indeed shrink as predicted by NTK theory.
The way the gap shrinks is through a dramatic improvement in performance
of the linearised networks with width, while standard networks are less
affected in their performance by width. However, as theory proves that
the wide standard trained networks behave as random feature models, we
hypothesise that the small improvements in accuracy of standard networks
with width might be hiding a significant transition is the underlying reason
for their good performance, namely from feature learning for the non-wide
networks to utilising non-learned random features that apparently provide
a good inductive bias for the tasks at hand for the wider networks (both
linearised and non-linearised).

6.4.2  Numerical Aspects

The low training accuracy of the non-wide linearised models in the previous
experiments raise the question of whether they are well-trained at all. Fitting
the linearised model with N data points x € R% is effectively solving the
linear system

y— flx,wo) = Ve f(x, wou (6-5)

for weights u € R” and target y € RC, where p is the number of parameters
of the original model and the rows of the matrix V, f(x, w) are the gra-
dients of each output of the network at data point x. With X € RN*%x, the
matrix V, f(X, wg) € REN*? has CN = 10N rows since one must fit each of
the C = 10 outputs for each data point. LeNet at width factors 1 and 2 has
roughly p; = 60k and p, = 240k parameters, respectively (see Appendix
Figure B.1). Thus, the matrix V, f(X, wp) cannot have full rank when fitting
a dataset of size N = 60k (MNIST, CIFAR-10), i.e. p1, p2 < 10N, making
it impossible to fit arbitrary targets. Moreover, even for wider networks it
appears that matrix V, f(X, wg) remains effectively of low rank.
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Figure 6.9: Effective rank of matrix V¢, f(X, wp) in LinLeNet and LinAlexNet for
600 data samples of the MNIST (standard in » and shifted in *) and snakes
datasets, respectively, with full rank 6000.

We quantify this by computing the effective rank (Roy and Vetterli, 2007)
which takes the distribution of singular values into consideration and
can be viewed as the exponential entropy of normalised singular val-
ues (see Appendix Section B.3). For computational reasons, we consider
N = 600 data samples and the corresponding 6000 x 6000 kernel matrix
Vof(X, wo)Vuf(X, wO)T for each width factor. For LinLeNet and con-
sidering MNIST samples, these effective ranks are much lower than the
number of rows, i.e. 6000, and increase with width factor as illustrated in
Figure 6.9 (left). A similar but less pronounced improvement in effective
rank with width is obtained for shifted MNIST samples with additional
random translation of up to seven pixels. Although AlexNetx1 with about
60m parameters (see Appendix Figure B.2) is well in the over-parametrised
regime for N = 13k data points and thus 130k rows in matrix V¢, f(X, wy),
we still observe large gaps in training accuracy. As for LinLeNet, we show
for 600 examples in Figure 6.9 (right) that the effective ranks at all widths
are significantly lower than the number of rows of V, f(X, wy) and increase
with width (marginally).

In Figure 6.10, the distribution of singular values ¢ of the kernel matrix
is shown. We observe that increasing the width effectively increases the
smallest (non-vanishing) singular values of matrix V, f(X, wp) and gener-
ally leads to a lower condition number (i.e. ratio 0max/0min), for this matrix,
thereby improving numerical properties.

We suspect that, in order to perfectly fit the training data, one needs to fit
u also in a subspace with very small singular values, making it difficult to
achieve close to 100% train accuracy with SGD with non-infinitesimal step
sizes.
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Figure 6.10: Singular value distribution of LinLeNet for 600 samples of MNIST
and MNIST digits randomly shifted by up to seven pixels (upper panel) as
well as LinAlexNet for 600 samples of the snakes dataset (bottom panel).

6.4.3 Binary Classification on MNIST

In order to study these numerical aspects in more detail, we take a closer
look at the solution of the linear system in Equation (6.5). In particular, we
examine if the multiclass setting might be the cause for numerical stability
issues due to having multiple outputs (the different classes) for a single
input, potentially leading to e.g. collinearity of rows in the matrix. Therefore,
we consider binary classification with one output and train to classify a
digit as 0 or not 0. Qualitatively similar results were obtained for other
target classes. In the following, we solve the one-vs-rest classification task
with the same least-squares objective in three ways: by training LeNet with
SGD, by training LinLeNet with SGD, and by using a standard solver for
linear systems. The presented results are obtained from single runs of the
respective model with a fixed random seed.
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SOLVING THE LINEAR SYSTEM WITH sGD: The training is performed
in the same manner as before, but with a learning rate of 0.01 and for
200 epochs. Tables 6.1 and 6.2 summarise the binary classification results
with target class o for standard MNIST and shifted MNIST. The qualitative
behaviour with SGD training follows the same trend as in Figures 6.5 and
6.6 for the multiclass results (for this reason an illustration is omitted).
As before, by including translations of up to seven pixels of the digits,
we observe a drop in accuracies which is particularly pronounced for the
linearised setting.

Table 6.1: Accuracy of LeNet, LinLeNet, and the solver on binary MNIST (0 vs.
not 0) at different widths.

x1 x2 x5 x10 x25 x60
- Solver 97.8 9986 99.89 — — —
E Lin. 99.61 99.75 9981 99.85 99.85 99.89
LeNet 99.89 9989 9988 99.89 99.89 99.88
c Solver 100 100 100 — — —
;E Lin. 9942 99.74 99.88 99.97 99.9983 100

LeNet 100 100 100 100 100 100

In comparison to the harder multiclass task, the gap in training accuracy
between LeNet and LinLeNet is greatly reduced but persists for the less
wide networks, especially for LinLeNetx1 in the shifted MNIST task. While
training the standard network consistently leads to perfect training accuracy
in the standard MNIST setting, it is not possible to achieve 100% training
accuracy when solving the linear system in Equation (6.5) with SGD, in
most cases. However, from a width factor of 5 on, we observe for LinLeNet
in the standard MNIST task that the linearised networks start agreeing (up
to the second decimal place) with the results of the corresponding LeNet.
In particular, LinLeNetx 60 matches the train and test results of LeNet at
all considered widths, which is in agreement with NTK theory.

SOLVING THE LINEAR SYSTEM WITH A STANDARD SOLVER: Since SGD
is not able to attain high train accuracy for linearised models for all widths,
it raises the question whether a different algorithm can, and if so, what its
generalisation properties are for the tasks at hand. An advantage of the
binary classification setting is that we can directly solve the linear system
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Table 6.2: Accuracy of LeNet, LinLeNet, and the solver on binary shifted MNIST
(0 vs. not 0) at different widths. Input digits were randomly shifted by up to
seven pixels.

x1 x2 x5 x10 x25 x 60

Solver 86.05 987 9917 - — —

é Lin. 95.48 9851 9897 9931 99.51 99.55
LeNet 99.72 99.80 99.82 99.77 99.82 99.86

c Solver 100 100 100 — — —

;:“ Lin. 9542 9829 9890 99.25 9949 99.61

LeNet 99.77 99.83 99.86 9990 99.92 99.90

in Equation (6.5) for u for width multipliers 1, 2, and 5, as the amount
of memory required to store the entire matrix V, f(x, wg) in memory is
reduced and becomes manageable. Larger widths were not feasible for us
as more than 1 TB of memory is required even for binary classification,
without taking additional memory requirements for the computation into
account. We make use of the SciPy least-squares solver which utilises the
highly optimised LAPACK library (Anderson et al., 1999). The results are
included in Tables 6.1 and 6.2.

Interestingly, the solver attains perfect training accuracy in all considered
cases, but at the cost of a diminished test accuracy for LinLeNetx1 in stan-
dard MNIST (see Table 6.1) and, particularly, in shifted MNIST (see Table
6.2), indicating overfitting of the solver solution. Apparently, the implicit
regularisation of the SGD solution significantly improves generalisation
for these widths, while precluding a perfect train accuracy. For LinLeNets
of larger widths, an improved generalisation is attained which we view
to match the SGD results to a reasonable degree (considering fluctuations
in the second decimals place as in the multiclass results, see Appendix
Table B.3). In the standard MNIST task, the attained solver solutions for
LinLeNetx2 and LinLeNetx5 match the test accuracies of their correspond-
ing standard LeNets at otherwise 100% train accuracy. It should be noted
that the solver results were obtained without regularisation. Additional
regularisation should lead to similar results as for LinLeNetx1 trained with
SGD, that is higher generalisation and lower training accuracy.

Therefore, it appears that the observed generalisation gaps and poor
performance of non-wide linearised models in Section 6.4.1 are not due
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to poor training optimisation. We suspect that moderately wide linearised
networks in the multiclass experiments operate in a similar regime as
LinLeNetx1 in the binary classification setting.

65 CONSIDERING THE INFINITE-WIDTH LIMIT

In the previous sections, the analysis focused on finite-width networks
which nearly always exhibited a test performance gap between standard
networks and their linearised counterpart.’ In the following, we extend
the discussion to the infinite-width case and study the Neural Network
Gaussian Process (NNGP) kernel Kyngp and the infinite-width NTK © (see
Section 3.4 for the theoretical background). The presented results of this
section extend work done during the Master’s thesis of Benjamin Kessler
(Kessler, 2021).

6.5.1  Methodology in Infinite-Width Study

In order to study the linearisation of LeNet and AlexNet, we developed
an implementation on the basis of PyTorch (see Section 6.3). Our custom
implementation allows utilisation of common architecture components.
Concurrently, the neural tangents* framework was introduced for the same
purpose, additionally allowing computation of the kernels in the infinite-
width limit. However, in order to compute these infinite-width kernels,
some standard architecture components as max pooling cannot be used. In
the context of the Master’s thesis of Benjamin Kessler, our previous study
on LeNet was reimplemented in the neural tangents framework with a few
modifications.

ADJUSTMENTS IN ARCHITECTURE: As before, we adapt the original
LeNet-5 architecture to use ReLU activations but replace max pooling by
average pooling. Preliminary experiments on MNIST in the PyTorch imple-
mentation did not show a significant difference in performance whether
using average pooling or max pooling. Furthermore, we use the NTK
parametrisation (see Section 3.4.2) to initialise the weights of the networks,
as opposed to standard PyTorch initialisation in the previous study. This
change is required to have exact correspondence of the recursively com-

1 The only exception was LeNetx 60 and LinLeNetx 60 in the binary (standard) MNIST setting
(see Table 6.1), where both networks match in test accuracy (at perfect training accuracy).
2 https://github.com/google/neural-tangents
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puted kernel ©® to NTK theory (see Section 3.4.2). In addition, it is possible
to obtain the NNGP kernel Knngp, corresponding to a weakly-trained in-
finitely wide neural network in which only the last layer is trained (see
Section 3.4.1). As the finite-width counterpart to the NNGP, we consider
neural networks where all weights are frozen at initialisation except the
last layer and only these last layer weights are adjusted during training. We
refer to this model as the Last-Layer-LeNet which we consider at different
widths, too. The reimplemented models are referred to as (Lin)LeNet ;.

ADJUSTMENTS IN THE FINITE-WIDTH TRAINING PROCEDURE: All
finite-width models are trained with SGD and momentum, with the mo-
mentum parameter being set to the default value of 0.9, as before, but
without explicit regulariser like weight decay. As the goal is a comparison
to the infinite-width, and — in particular — infinite-long training limit, all
models up to factor 25 were trained for 100 000 epochs. For computational
reasons, models with width factor 60 where trained for 53 000 and 40 000
epochs on MNIST and CIFAR-10, respectively, which was sufficient for
convergence. As before, we use the MSE loss with one-hot encoded target
vectors. An initial learning rate of 10 was identified as an appropriate choice
(Kessler, 2021) based on preliminary results of LeNety; x 1, i.e. standard
LeNet at standard width, but is possible that a more thorough hyperpa-
rameter search might lead to improved finite-width results. The learning
rate was reduced by a factor of ten after 30000 epochs. As before, for each
model, five independent reruns with a fixed set of random seeds were
performed and sample mean and sample standard deviation results are

reported.
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Figure 6.11: The four classification tasks considered in the infinite-width study: (i)
MNIST with center-aligned digits, (ii) shifted MNIST with random translations,
(iii) shifted-resized MNIST with padding, random translations, and resizing,
as well as (iv) CIFAR-10.
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ADJUSTMENTS IN THE DATASETS: Following the general idea illustrated
in Figure 6.1, we study three MNIST multiclass classification tasks. In addi-
tion to (i) standard MNIST, we consider one variant where (ii) every digit is
randomly shifted by up to five pixels in horizontal and vertical direction,
as well as another variant in which (iii) each input image is padded by 10
pixels at each image border, the digits are randomly shifted by up to 10
pixels horizontal / vertically and the images are resized to the original im-
age size of 28 x 28 pixels. Where shifted MNIST only removes the positional
alignment of digits, shifted-resized MNIST additional decreases the digit
resolution and increases the difficulty to localise the digits in the images.
Furthermore, CIFAR-10 in its original input image size of 32 x 32 pixels is
considered. For computational reasons?, the training set was restricted to
(the same) 50 000 samples in all experiments. These four classification tasks
of increasing difficult, i.e. from aligned digits, to shifted, to shifted and
resized digits, and finally to tiny natural images, are illustrated in Figure
6.11.

6.5.2 Revisiting Classification with Increasing Feature Learning Requirement

FINITE-WIDTH RESULTS: The outcomes are summarised in Figure 6.12
and Appendix Tables B.5, B.6, and B.7 for MNIST and in Figure 6.13 and
Appendix Table B.8 for CIFAR-10.

For the (standard) MNIST task, the (mean) test accuracies of LeNety;
exceed LinLeNetn by 0.8 to 0.07 percentage points difference at widths
factor 1 and 60, respectively. In the shifted MNIST task, these gaps increase
from 4.78 to 0.12 percentage points difference, and in shifted-resized MNIST
classification further from 8.5 to 0.6 percentage points difference at widths
factor 1 and 60, respectively. In all MNIST experiments a performance gap
prevails, even though LinLeNetx60 on MNIST comes very closely to its
standard counterpart LeNety; x 60. In all settings, the test performance of
wide LeNety; starts decreasing at factors of 10 or 25. This coincides with
these networks attaining perfect training accuracy and might hint at an
overfitting result. As expected, training only the last layer of LeNety; leads
to very poor performance, overall, which however significantly improves
with width. In particular, Last-Layer-LeNetx 60 achieves a test accuracy on
par with LeNety; x 1 of 98.71% and 98.70%, respectively, on MNIST. Last-
Layer-LeNetx 60 has 50k trainable parameters similar to the 60k parameters

3 With the full training set of 60 000 samples, the computation of the NNGP kernel and infinite-
width NTK was not feasible due to limited memory resources.
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Figure 6.12: Accuracy of LeNety; (o), LinLeNetyt (%), and Last-Layer-LeNet ()
trained on MNIST at different widths (numerical values are provided in Ap-
pendix Tables B.5, B.6, B.7). Dashed lines indicate the result for the infinite-
width case for the NTK (red) and NNGP kernel (green) on the test set. The
first column shows results for the standard MNIST dataset, the second column
for shifted MNIST, and the third column for shifted-resized MNIST. LeNetyt
test accuracies which exceed the infinite-width kernel results are indicated by
* for the NTK and by ## for the NNGP kernel (see Table 6.3). Visualisations
with different y-axis scaling can be found in Appendix Figures B.2 and B.3.

in LeNetny*. Note that there is still a difference in the layer-wise and, in
particular, non-linear architecture of LeNety: compared to the linear Last-
Layer-LeNet model.

For CIFAR-10, a (mean) test accuracy gap of 3.84 percentage points
at width factor 1 is obtained. Interestingly, the performance gap closes
with increasing width and LinLeNety; x 60 outperforms LeNety: x 60 by
4.11 percentage points. However, from LeNet,; x 10 on, the wide standard
networks achieve decreasing test accuracy at perfect training accuracy of

4 See Appendix Section B.1 for an overview of trainable parameters in the considered architec-
tures at different widths.
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Figure 6.13: Accuracy of LeNety (o), LinLeNety (x), and Last-Layer-LeNet ()
trained on CIFAR-10 at different widths (numerical values are provided in
Appendix Table B.8). Dashed lines indicate the result for the infinite-width case
for the NTK (red) and NNGP kernel (green). A visualisation with different
y-axis scaling, displaying the results for Last-Layer-LeNet at all widths, can be
found in Appendix Figure B.4.

100% which might be explained by overfitting (see Appendix Table B.§). In
addition, it is important to note that the hyperparameter choice was based
on LeNetx1 tested on MNIST and is likely not optimal for training on
CIFAR-10. Therefore, these findings might not be robust to a more suitable
hyperparameter choice or another optimisation approach.

Overall and in agreement with the outcomes of Section 6.4.1, the finite-
width results display an increasing performance gap with increasing task
difficulty. This is more the case for LinLeNet, than LeNety, but most promi-
nently pronounced for Last-Layer-LeNet, as expected. Both LinLeNety and
Last-Layer-LeNet improve significantly with width, coming very close to the
performance of LeNety. We observe again settings where a wide LinLeNety¢
performs on par or even outperforms less wider LeNety;. This is the case,
for instance, for LinLeNety; x 25 and LinLeNet,; x 60 and LeNety; x 1 in all
considered classification tasks. Furthermore, we report a wide Last-Layer-
LeNetx60 competing with a standard-width LeNet on standard MNIST.

COMPARISON TO PYTORCH RESULTS: As we consider similar settings
in our custom PyTorch implementation and the neural tangents reimple-
mentation, a comparison of the results in these frameworks suggests itself.
In direct comparison to the PyTorch implementation, the neural tangent
variant leads to higher train accuracy but matching to (slightly) lower gener-
alisations accuracy in all considered LeNety; and shared classification tasks,
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i.e. MNIST, shifted MNIST?, and CIFAR-10 (see Appendix Figures B.3, B.5,
B.6, B.8). In particular, the test performance of LeNetn; on CIFAR-10 is lower.
For all LinLeNety; and shared classification tasks, generally higher train
and test accuracies are obtained. The only exception are the test results
for CIFAR-10 of LinLeNetx25 and LinLeNetx60 which match or exceed
LinLeNety;: x 25 and LinLeNet,y; x 60.

In order to interpret these results, it should be noted that the differences
in architecture (average pooling instead of max pooling), the differing NTK
initialisation, different optimisation technique (no weight decay for explicit
regularisation) but also the training set restriction to 50k samples complicate
a fair comparison of these results. While the choice of down-sampling either
through average pooling or max pooling might have less of an influence on
a standard MNIST task, max pooling is favourable in most other settings,
in practice.

Table 6.3: Test accuracy of the infinite-width NTK and NNGP kernel (mean
prediction) for the different classification tasks.

Dataset NNGP NTK
MNIST 99.40 99.20
Shifted MNIST 98.40 98.21
Shifted-resized MNIST 9821 9747
CIFAR-10 69.53  68.77

INFINITE-WIDTH RESULTS: For these reasons, our main focus lies in
the infinite-width results which — at least qualitatively — can add some
additional insights into the finite-width study. The infinite-width kernels
are recursively computed as outlined in Section 3.4 and the predictions
are obtained by kernel ridge regression with an additional diagonal noise
of 107°. The classification accuracies for the infinite-width predictions are
obtained by considering the argmax in the output vector for the different
classes (one-hot encoding of targets).® The test results are summarised in
Table 6.3 and visualised in Figures 6.12 and 6.13 through dashed lines
(NNGP in green, NTK in red). As for the finite-width networks, we observe

The two shifted settings are slightly different with up to five (neural tangents) and seven
(PyTorch) pixel shifts, but the observation still applies.

Note that the prediction corresponds to the mean prediction and, due to the classification task
and taking the argmax of the output vector, we did not take the covariance into consideration.
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decreasing kernel performance with increasing task difficulty. Interestingly,
we observe that the NNGP prediction slightly outperforms the NTK in all
cases, with similar results being reported by Lee et al. (2020)7. The relative
performance difference increases with increasing task difficulty. This is a
surprising results due to the correspondence of the NTK to a fully-trained
network, while the NNGP can be viewed to correspond to a weakly-trained
network. In agreement with NTK theory, the LinLeNety; mean performance
approaches (from below) the infinite-width NTK mean prediction with
increasing width. In particular, LinLeNet,; x 60 with a mean test accuracy
of 99.19% is close to the NTK result of 99.20% on MNIST. However, some
standard LeNety; exceed the infinite-width NTK prediction and in one case
even the NNGP prediction, as highlighted in Figure 6.12b. Still, for larger
widths, these predictions converge (from above) to the infinite-width NTK
prediction. In particular, LeNety; x 60 with a test accuracy of 99.26% comes
close to the NTK and LeNety; x 60 results of 99.20% and 99.19% on MNIST.
On the one hand, these results highlight that linearisations indeed converge
to the NTK prediction, at least in the extent of our experiments. On the other
hand, benefits of neural networks of finite width are highlighted, which
seem to imply that modes of generalisation can be identified which exceed
the generalisation modes attained in the infinite-width limit. However, it is
proved that standard networks and their linearisation (in the consider NTK
parametrisation) converge to the same performance in the NTK limit (see
Theorem 4). Consequently, this seems to imply that there is a critical width
or over-parametrisation from which generalisation capability of standard
networks deteriorates, like factors 10 or 25 in the considered experiments.
An important open question, however, remains the role of regularisation in
these results. Although regularisation (implicit or explicit) was employed
in both the neural network training and kernel regression, the impact
of varying the regularisation strength is potentially an interesting future
research direction.

6.5.3 Numerical Considerations with Random Labels

We perform an additional MNIST experiment in which the relation between
input image and label is removed. To this end, we randomly generate a
new label between 0 and 9 for each input image. This approach is inspired
by Zhang et al. (2017, 2021) which showed that common over-parametrised
neural networks — in many cases — can achieve (almost) perfect training

7 It should be noted that both studies use the neural tangents framework.
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accuracy on even randomised labels. Importantly, this is possible to achieve
without adjustments to the learning problem, in particular no hyperparam-
eter changes are required, and training time is only increased by a small
constant factor in the random label setting compared to using the correct
labels. In other words, over-parametrised neural networks easily memorise
even noise, but of course do not generalise to the test set. In Figure 6.14 we
visualises the results for LeNety, LinLeNetn, and Last-Layer-LeNet trained
on MNIST, shifted MNIST, and shifted-resized MNIST with the same ran-
dom labels and the same hyperparamters as previously. The sample mean
accuracy as well as sample standard deviation for five independent reruns
of models are reported.

As noted earlier, considering LeNet on the MNIST classification tasks, the
network and its linearisation are over-parametrised from width factor 5 on
(see Appendix Figure B.1). In line with the expectation, over-parametrised
LeNet is capable of attaining perfect training accuracy but does not gen-
eralise in the test setting, with a generalisation error of about 90% in all
cases which corresponds to random guessing on the test set. This expected
generalisation behaviour is also shown for LinLeNety, Last-Layer-LeNet,
and the infinite-width NNGP and NTK results. However, over-parametrised
LinLeNetn does not fit training examples perfectly like its standard coun-
terpart, and shows similar behaviour of increasing accuracy with width as
previously seen. These results corroborate our findings in Sections 6.4.2 and
6.4.3 of numerical aspects precluding perfect fitting of training data with
SGD in the linearised setting, i.e. numerical properties of the linear system
in Equation (6.5) and matrix V f(X, wy) as well as the role of (implicit)
regularisation. Interestingly, LinLeNet,; generally achieves higher train
accuracies in shifted MNIST than standard MNIST which again might hint
at improved numerical properties of the matrix V, f(X, wy), e.g. reducing
collinearity of rows in the matrix. It should be noted that no modifications
to the hyperparameters were considered and that it is likely that tuning hy-
perparamters for training LinLeNety can lead to generally higher training
accuracies.

6.6 CONCLUSION

Motivated by conflicting results in NTK literature, we studied two classical
convolutional neural networks, LeNet and AlexNet, and their corresponding
linearisations at different widths and increasing difficulty of classification
tasks in two different frameworks. We investigated four regimes of different
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Figure 6.14: Accuracy of LeNety; (o), LinLeNetn; (x), and Last-Layer-LeNet ()
trained on MNIST with random labels at different widths (values in Appendix
Tables B.9g, B.10, B.11). Dashed lines indicate the result for the infinite-width case
for the NTK (red) and NNGP kernel (green). The first column shows results
for the standard MNIST dataset, the second column for shifted MNIST, and
the third column for shifted-resized MNIST. In all cases the same randomised
labels were used.

behaviour in neural networks (see Figure 6.2) which complement previous
results on lazy training (Chizat et al., 2019) and random feature models
(Lee et al., 2019, 2020) summarised in the following.

Firstly, in agreement with previous results like by Arora et al. (2019),
we observed significant train and test performance gaps between standard
width LeNet and AlexNet and their corresponding linearisation. By consid-
ering different classification tasks of increasing difficulty, we showed that
the performance gaps increase accordingly suggesting that richer features
need to be learned, which the effectively random feature models LinLeNet
and LinAlexNet cannot provide.

Secondly, in agreement with work such as Jacot et al. (2018); Lee et al.
(2019), we showed, however, that width improves the performance of lin-
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earised networks significantly. We hypothesise that the comparatively minor
improvements in performance of standard networks might hide a transition
from feature learning to utilising random features at moderate widths.
This might be related to previous results suggesting that the intermediate
representations of networks of increasing width become increasingly alike
to each other and to the representation in the large width limit (Kornblith
et al., 2019).

Thirdly, we showed that numerical aspects like the effective rank (see
Figure 6.9) and distribution of singular values (see Figure 6.10) of the feature
mapping V. f(X,wp) have a role in explaining low training accuracy of
SGD trained non-wide linearised models. Increasing width appears to
remedy these numerical issues of the associated kernel.

Lastly, in the additional infinite-width investigation, we showed that the
linearised models converge to the infinite-width NTK result but wide stan-
dard networks can achieve better generalisation results. This might imply
that there is critical width or over-parametrisation from which generalisa-
tion capability of standard networks deteriorates. But also the relevance of
regularisation in the neural network training and kernel ridge regression
appears to be a relevant direction of future research.

In summary, our first investigation is based on the finite-width NTK at ini-
tialisation and explores deviations, as described above, but also convergence
to NTK theory. In particular, we show agreement in performance of stan-
dard networks and their linearisation as well as an instance where a wide
LinLeNet(x60) outperforms its standard width LeNet(x1) on CIFAR-10.
Our second investigation adds the infinite-width perspective. We provide
further results where wide LinLeNets and LeNets match in performance,
where wide LinLeNets outperform their standard-width LeNet counterpart
but also cases where wide LeNets outperform the predicted infinite-width
limit of the NTK and, in one case, NNGP.

Our study highlights the need to study theoretical descriptions of neural
network generalisation beyond the finite-width NTK at initialisation, for
instance by considering time-dependent NTK (Huang and Yau, 2019; Jacot
et al.,, 2018) for finite-width networks (see e.g. Fort et al. (2020)) or by
further developing the various proposed mean-field theories (Chizat and
Bach, 2018; Hu et al., 2019; Javanmard et al., 2019; Mei et al., 2019; Nguyen,
2019; Rotskoff et al., 2019). Additionally, it highlights the need to study the
nature of the potential transition to effectively random features at moderate
widths in standard neural network training.
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Devising task-relevant representations is at the core of many machine learn-
ing approaches. Learning appropriate representations from data without
a necessity for feature engineering is a key reason for the success of deep
learning. Even though conceptually the general objective of representation
learning might be obvious, i.e. transforming an input space to a feature
space to address a task with small error, it is not immediately clear how to
formulate the objective to guarantee good representations and how these
are selected by a neural network. For this reason the topic of this thesis
is to identify informed ways of representation learning relevant to chal-
lenging real-world tasks and study representations more broadly. In this
final chapter, we summarise our main findings and add a discussion of the
individual contributions with respect to the overarching topic of informed
representation learning as well as a consideration of limitations and future
directions.

7.1 SUMMARY

Reflecting on the research questions formulated in section 1.2, we provide
the following answers and contributions.

Firstly, we developed an approach for efficient and scalable semantic
segmentation of degraded soil in Swiss alpine grasslands based on the
U-Net. As we have shown in Chapter 4, we are able to identify areas
affected by shallow landslides, livestock trails, sheet erosion, and (land-use)
management in agreement with results of the more established object-based
image analysis (OBIA) and, in particular, obtain matching linear trends
of increasing total degraded area in the Urseren valley between 2000 and
2016. While OBIA is well-suited for small scale applications, like individual
valleys, our U-Net approach enables mapping of erosion sites on alpine-
wide scale. Although the U-Net approach was able to retrieve previously
OBIA-mapped erosion sites to a high degree (intermediate to high recall
scores), we observe over-segmentation in the U-Net results contributing
to more segments being detected as relevant erosion sites which are not
mapped in OBIA (and accordingly intermediate to low precision scores).
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These deviations from the OBIA baseline highlight a particular challenge
in this application: Based on remotely-sensed imagery (RGB spectrum) as
in our study, a definite assignment of whether a site is belonging to one of
the erosion classes is challenging in many cases, even for domain experts.
The additional U-Net segments can identify valid erosion sites potentially
missed in the OBIA baseline. Therefore, assuming an exhaustive baseline
segmentation is difficult and, to some extent, ambiguity in the ground truth
needs to be expected in this application.

Secondly, we address the question of what makes a good representation
posed in the beginning of this chapter and consider learning latent encod-
ings which allow preserving symmetries in a supervised problem setting. In
Chapter 5, we introduce a generative model — based on the deep variational
information bottleneck (DVIB) — which allows separating property infor-
mation from other input object information. Our method can be viewed as
a supervised disentanglement approach which partitions the latent space
into a disentangled property-relevant subspace and a property-invariant
subspace. By ensuring that generated objects fulfil cycle consistency on the
(continuous) property, i.e. generated objects processed once more by the
encoder and property decoder lead to similar property values, our method
enforces the conditional invariance necessary for the subspace disentan-
glement. We demonstrate this disentanglement capability with respect to
individual and multiple properties on a benchmark dataset. Our method
outperforms state-of-the-art methods in property invariance. Thereby, we
improve targeted generation of novel objects like compounds with desir-
able physical or chemical properties. Due to the regularising effect of cycle
consistency through the semantic knowledge on the property and a more
general sparsity constraint on the encoder, our method provides mecha-
nisms for built-in model selection and improves interpretability as well as
exploration of the latent representation.

Thirdly, we investigate feature learning and random feature models in
the context of the Neural Tangent Kernel (NTK). In Chapter 6, we em-
pirically compare two standard convolutional neural networks (CNNs)
of increasing width with the random feature models given by linearisa-
tion of these networks at initialisation. We additionally study randomly
initialised CNNs of different widths where only the last layer is trained
and consider the Neural Network Gaussian Process (NNGP) kernel and
the NTK for weakly and fully-trained infinitely wide CNNSs, respectively.
We show that prominent performance gaps between finite-width standard
and linearised networks are observed which increase with the difficulty
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of the classification task and generally decrease with increasing width of
the CNNSs. In a few cases, we show matching results between wide stan-
dard and linearised networks in correspondence to NTK theory, and also
cases where wide linearised networks, i.e. random feature models, exceed
standard networks in generalisation performance. Comparing our find-
ings suggests that there might be a transition of the considered standard
CNNs from feature learning to effectively employing random features at
moderate finite widths, as random feature models substantially improve
with width and approach the performance of wide standard networks. We
further observe that CNNs of finite-width can exceed the generalisation
performance obtained in the infinite-width limit. This further suggests a
critical limit for over-parametrisation in standard CNNs, from which having
more parameters might hurt the generalisation capability. We discuss our
results in context of numerical aspects like numerical challenges in solving
the linear systems of equations with SGD and the role of regularisation.

7.2 ON INFORMED REPRESENTATION LEARNING

The numerous U-Net extensions covered in Section 3.6 attempt to improve
the learned representations in several informed ways. Be it by refining
the multi-resolution skip connectivity to more dense structures connecting
different frequency regimes, learning to attend to different parts of feature
maps connecting more relevant signals, or lending ideas of transformer
architectures to incorporate long range correlations which exceed the recep-
tive field of convolutional filters. In the context of potentially ambiguous
target objects and ground truth segmentations, probabilistic approaches to
semantic segmentation like the Bayesian U-Net (Dechesne et al., 2021) or the
(hierarchical) probabilistic U-Net (Kohl et al., 2018, 2019) are particularly
relevant. The latter approach allows the possibility of several hypotheses
for the segmentation result of an input image to be included in the model
formulation. We demonstrate the relevance for medical image segmentation
in Figure 7.1. In the illustrated example, four different experts outlined a
potential lung lesion in a computed tomography (CT) scan leading to three
different ground truth segments and one instance where the expert did not
recognise any lesion. Due to diffuse boundaries and limited precision in
the ability to outline lesions, but also due to different expert assessment,
an objectively correct segmentation is likely not achievable in all cases. In
many other cases, the outlines of the experts differ only slightly, while in
some cases experts disagree more on the outline or whether any lesion is
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Figure 7.1: Lung CT scan example (first image) with a potential lesion manual
outlined by four different experts (second to fifth image) taken from the LIDC-
IDRI dataset (Armato et al., 2011). Three experts identified a lesion of varying
shape, while the last expert did not recognise any lesion in the CT scan.

present. We argue that the erosion segmentation task can be viewed to be of
a similar kind. In Figure 7.2 we show an area in the Urseren valley affected
by livestock trails with the corresponding OBIA mappings for aerial images
of 2010, 2013, and 2016. In these examples, the majority of livestock trails
persist in the considered time span. However, the coverage of mapped
trails varies for the different years and some segments identified in one
year are missing in other years, although similarly (visually) present in the
aerial images. The underlying reason is that the OBIA segmentation needs
to be obtained for each aerial image individually, leading to potentially
systematic differences. This is not only the case for aerial images of different
years for the same valley, but in particular for different valleys, too. Similar
to the medical example, the segmentation result for a individual aerial
image may be viewed as the assessment of a separate expert, i.e. the OBIA
settings in this particular case, with different experts leading to differences
in the segmentation result. This would even be the case for human experts
assessing the presence and extent of erosion sites. The discrepancy can be
less divergent in some cases, but more prominent in others. Variability in
the ground truth segmentation can be one of the reasons for the observed
over-segmentation in the U-Net results, which attempts to learn from these
partially disagreeing training instances. A modelling approach to incor-
porate this ambiguity of ground truth segments was performed in the
Master’s thesis of Manvi Bhatia (Bhatia, 2020). Based on the probabilistic U-
Net (Kohl et al., 2018), a combined U-Net and VAE architecture was trained
where samples of the latent space enable multiple segmentation hypotheses.
Our results showed preliminary improvements in segmentation results as
compared to a standard U-Net approach like in Chapter 4. Devising the
model to explicitly reflect potential ambiguity in the target segmentation
enables more informed representation learning.
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Figure 7.2: Examples of an area in the Urseren valley affected by livestock trails.
The upper panel shows the aerial images for (a) 2010, (b) 2013, and (c) 2016
with the corresponding OBIA mappings of livestock trails in the lower panel.

A potential source for the ambiguity in the underlying baseline segmen-
tation can be different light conditions (due to e.g. sun position and cloud
cover) or seasonal factors which lead to a different visual appearance to
which the OBIA pipeline is particularly susceptible to. Our approach on
disentangling the latent representation introduced in Chapter 5 specifically
targets settings where semantic knowledge on properties or covariates can
be used to encode conditional invariance. This allows more informed repre-
sentation learning which we showed on a molecule and disentanglement
dataset, but could also be used to improve segmentation of e.g. erosion phe-
nomena by considering relevant covariates like precipitation, cloud cover
and others. Possible extensions are discussed in the context of limitations
and future directions (see Section 7.3).

In the more general consideration of representation learning in Chapter 6,
we highlighted benefits of finite-width convolutional neural networks. We
empirically showed that wide CNNs perform feature learning leading to
generalisation performance which appears to exceed the infinite-width gen-
eralisation performance of these CNNSs, as considered in the context of NTK
theory. Our results seem to imply that increasing over-parametrisation does
not necessarily improve generalisation. This is at odds with the common
setting for state-of-the-art neural network architectures and observations
that over-parametrisation leads to improved generalisation and the double
descent phenomenon (see Section 3.3). Although we highlight the em-
pirical and speculative nature of our result, this finding would mean an
extension to the double descent phenomenon: At a certain degree of over-
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parametrisation, the generalisation error might increase again, leading to a
global minimum (see Figure 3.3).

With increasing width, the generalisation performance of standard net-
works and their corresponding random feature models appear to approach
each other, in line with results on over-parametrised neural networks con-
verging to Gaussian processes. In a similar vein, previous work has shown
similar findings for particular kinds of random features, like random Fourier
features or features of randomly shifted grids with random resolutions
(Rahimi and Recht, 2007), or also general random features models (Rahimi
and Recht, 2008) similar to the Last-Layer-LeNet considered in our work,
which require more non-linearities (i.e. width in our setting) for matching
performance in accordance to what we have reported in Figures 6.12 and
6.13. Furthermore, our results are in agreement with other approaches using
random basis functions or feature mappings followed by a linear model
(corresponding to our Last-Layer-LeNet) like Extreme Learning Machines
(Huang et al., 2006) or the more classical radial basis function (RBF) net-
works (Broomhead and Lowe, 1988; Park and Sandberg, 1991). Therefore,
our work complements previous research on random feature models but is
motivated from NTK theory, and also highlights benefits of representation
learning in wide neural networks for generalisation.

7.3 LIMITATIONS AND FUTURE DIRECTIONS

In the previous section, we already alluded to certain limitations and
potential extensions of our work. In the following, we summarise persisting
challenges and provide potential future directions.

7.3.1 Assessment of Soil Degradation with Deep Learning

Soil degradation detection in alpine grasslands is a challenging task for
several reasons. Direct inspection of susceptible areas is infeasible due
to difficult access to these terrains and the mere extent of relevant areas,
allowing only selective site visitations. Thus, tackling this task needs to rely
on remotely sensed information like satellite or aerial images. However,
these typically come at the cost of either low temporal or spatial resolution.
Due to the outstanding geodata provided by swisstopo, we had access to
high-resolution aerial images for Switzerland which, however, are usually
recorded only at larger time steps of about three years. Although some of
our considered erosion processes, like shallow landslides, lead to longer
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lasting soil degradation than this period, other classes like management
effects are expected to be more transient and show more seasonal vari-
ability. Even though OBIA is a suitable and highly accurate method for
mapping such aerial images, the consistency of segmentation results can
vary, as illustrated in Figure 7.2. In particular, the stability of results might
be impacted by short-scale events like heavy rainfall or droughts and can be
influenced by particular light conditions — due to e.g. varying sun position
and differing cloud cover conditions — leading to a different visual appear-
ance. Because of the low temporal resolution, the baseline segmentation is
disproportionately affected.

As we have shown, the U-Net approach allows for a reliable, more
automated and (possibly) more objective segmentation of degraded soil,
as it attempts to retrieve the relevant statistics and expert knowledge put
into the OBIA segmentation. However, because the learning approach
relies on these baseline results, the instability is reflected in the U-Net
segmentation results, too. In particular when training with many valleys
and thus many independent OBIA settings, it is assumed that this leads
to the observed over-segmentation and some more prominent jumps in
degraded area results from one year to another (see Figures 4.15 and
4.16). Individual segmentation results and findings on temporal and spatial
trends have to be considered under this source of uncertainty. It appears
unlikely that, even with an optimal OBIA workflow, this instability can be
fully addressed. Therefore, an important current limitation of the proposed
semantic segmentation approach for erosion phenomena has to do with the
availability and stability of the ground truth segmentation.

There are two future directions worthwhile pursuing. Firstly, as a natural
characteristic of deep learning approaches, investing in more extensive and
different data sources can address the instability. The U-Net approach was
specifically chosen due to its applicability in domains with small training
sets. Making use of other remote sensing sources, like satellite or unmanned
aerial vehicles (UAVs)' imagery, can increase the temporal resolution by
providing additional images at smaller timescales. This might capture
temporal developments more appropriately and alleviate the effect of short-
scale events. Other or broader spectra than the used visible spectrum (RGB),
like near-infrared, can provide additional information e.g. on vegetation.
Secondly, on the model side various avenues are possible. Concurrently
to our project, several U-Net extensions were proposed (see Section 3.6)
of which the U-Net variants dealing with probabilistic approaches and

1 Commonly referred to as drones.
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ambiguity appear particularly expedient. In that regard, a combination of
our first two contributions can be considered, i.e. an extension to probabilis-
tic segmentation with side information. In addition to the aerial imagery
and surface properties like slope, aspect, and curvature as used in our
study, further predictors like precipitation, land cover, snow days, water
accumulation, and geology, to name a few, are available. However, these
predictors can come at highly different resolutions and usually aggregate
information on grids of lower resolution than the aerial images. In many
cases, this kind of side information can be viewed as an additional label
for an image patch. Extending a U-Net-like architecture for segmentation
and label prediction with a latent space encoding as proposed in Chapter
5 enables conditional generation of segmentation hypotheses depending
on particular labels. These labels can be, for example, a proxy for the sun
position or yearly precipitation rates, which have an influence on the light
conditions or general susceptibility for soil erosion to take place, respec-
tively. Preliminary experiments with such a model yield promising results
for working with ambiguity in semantic segmentation tasks, but are left for
future work.

As a different model extension, the maps on predictors such as precipita-
tion and others can serve as additional input layers in U-Net approaches
making use of the attention mechanism or transformer-like models to assist
in identifying different input modalities relevant for successful segmenta-
tion of erosion phenomena.

7.3.2  Structuring Latent Representations with Conditional Invariance

A common take on feature learning is to consider representations as ap-
propriate if they disentangle as many underlying factors of variation in
a dataset as possible, while discarding as little information as necessary
(Bengio et al., 2013). In our model, we use a training criterium based on
cycle consistency of property prediction which allows disentanglement
of property-relevant and property-invariant latent variables limited to a
supervised setting. Our application aims at targeted object generation by
including semantic knowledge on relevant target properties, and as such
we were only interested in quantifying property invariance (see Tables 5.1,
5.2, and 5.3). General disentanglement approaches usually consider the
unsupervised setting and quantify latent disentanglement with a variety
of different measures (Locatello et al., 2019). Future work could extend
our model with elements of unsupervised disentanglement approaches to
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improve disentanglement in the latent subspaces and study properties as
well as disentanglement metrics of our conditional invariance approach.

Another view on our contribution is manifold learning. We introduce
our approach from the perspective of learning mappings which preserve
symmetries. Our goal can be formulated as characterising manifolds which
are implicitly defined by level sets of property values in the input space. In
our study, we mostly focus on simple cases of connected and convex level
sets and assume that there exists a global parametrisation of level sets in
the considered applications. In a follow-up extension, we introduce a novel
class of flexible generalised input-convex neural networks. By design, these
models are guaranteed to learn connected level sets which are globally
parametrisable and form smooth manifolds in the input space (Nesterov
et al., 2022). Further extension might investigate representing disconnected
level sets corresponding to a partitioning of the input space.

7.3.3 Representation Learning in Over-Parametrised Neural Networks

The theory of deep learning does not keep up with the pace at which
novel neural network approaches are proposed. Advancements in this
direction, however, are essential as some findings on the performance of
neural networks seem not to be compatible with classical statistical learning
theory, as for example the double descent phenomenon. In our work, we set
out to study standard convolutional neural networks from the perspective
offered by NTK theory and shed light on contradictory results in this
context. Although placed in a more theoretical setting, our work is limited
to an empirical investigation of (in most cases) over-parametrised neural
networks and thus can only provide pointers for future directions. Another
important limitation in this line of work is the resource intensive nature
of training (and tuning) increasingly larger networks of several hundred
million to almost a billion parameters. While our linearised models, in
theory, are substantially easier to train than their standard counterparts
with non-linear compositions of several layers, we did not observe a speed-
up in training of linearised models compared to standard models. In general,
linearised networks of the same width required a similar if not slightly
larger training time. In our own custom PyTorch implementation, this is
mostly due to the fact that the random feature mapping had to be computed
every time anew, as we could not store the matrix in GPU memory, and
several backpropagation steps had to be computed with each parameter
update. Additionally, in the neural tangents implementation no speed-up
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was observed, either, with similar training times in both linearised and
standard training.

In future work, a more detailed consideration of numerical aspects might
be required in order to refine the findings of this thesis. For instance,
an extended investigation on the role of regularisation of the kernel and
network training appears relevant. With this, more conclusive statements
about generalisation performance with increasing width and the infinite-
width limit might be feasible. In the latter case, including the covariance for
quantifying the uncertainty in the classification task should be considered.

A very interesting research opportunity presents itself in studying the
conjectured transition of a feature learning regime to effectively employing
random features in standard neural networks at critical levels of over-
parametrisation. A possible direction in that regard could be to study the
similarity of feature representations at different widths or over-parametrisa-
tion levels, employing metrics like centered kernel alignment (CKA) or other
measures of similarity or randomness of feature representations (Kornblith
et al., 2019; Jones et al., 2022).

Understanding the interpolating regime of highly over-parametrised
neural networks, which appear to show intimate connections to random
feature models and Gaussian processes, might facilitate developing a theory
on representation learning and the surprising generalisation capabilities of
deep neural networks.

7-4 CLOSING REMARK

This thesis focused on improving and understanding aspects of algorithmic
modelling in deep learning to address challenging tasks. Concurrently to
this model-centric approach, data-centric machine learning shifts the focus to
the quality of datasets. While devising novel ways of incorporating induc-
tive biases into the model formulation offers new opportunities, putting
an effort into curating extensive, high-quality datasets also has a strong
impact on model performance and facilitates representation learning (Sun
et al,, 2017). In particular for the deployment in practical real-world ap-
plications, this reliable data basis is indispensable. Despite the remaining
challenges, machine learning can provide highly useful tools for monitoring
soil degradation and developing novel compounds or drugs, as shown in
this thesis. In a great variety of other applications, machine learning also
has the potential to assist professionals who are faced with an abundance
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of information to make sense of and thus improve our ability to draw
conclusions.






INFORMED LATENT SPACE ENCODING
THROUGH SIDE INFORMATION

A.1 LATENT TRAVERSAL RESULTS

In the following, we examine what different latent dimensions in our model
encode for. To this end, we consider — in both the ellipse and ellipsoid
experiment — ten equidistant values in the selected Zy dimension 1 (see
Figures 5.5a and 5.6a) and sample points in the remaining Z; dimensions 4
to 8 by varying coordinates in one of these latent dimensions while keeping
all other latent dimensions fixed. Figures A.1 and A.2 illustrate the latent
traversal results for the ellipse and ellipsoid experiments, respectively. The
different colours represent fixed values in Zy. We observe that for the
ellipse setting only latent dimension 8 and for ellipsoid setting only latent
dimensions 6 and 8 encode relevant information. Sampling solely in these
selected latent dimensions reconstructs the full ellipses and ellipsoids.
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INFORMED LATENT SPACE ENCODING
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Figure A.1: Illustration of latent traversal in our model for the ellipse experiment
and latent dimensions 4 — 8 in the original input space (dx = 2) for fixed values
in the property space dimension 1 (different colours). The selected dimension
8 represents the angular component ¢ and reconstructs the full ellipse curves.
The last plot (red borders) samples in all selected dimensions, which in this
case is only dimension 8.
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Latent dim. 4: 0=0.516 Latent dim. 5: 0=0.054 Latent dim. 6: 0=5.727
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Latent dim. 7: 0=0.025 Latent dim. 8: 0=35.678 Sample selected Z; dim.

Figure A.2: [llustration of latent traversal in our model for the ellipsoid experi-
ment and latent dimensions 4 — 8 in the original input space (dx = 3) for fixed
values in the property space dimension 1 (different colours). The selected di-
mension 6 represents the polar angle ¢, while dimension 8 can be related to the
azimuth angle ¢. The last plot (red borders) samples in all selected dimensions
(i.e. 6 and 8) which reconstructs the full ellipsoid. We intentionally did not
sample the ellipsoid surfaces completely to allow seeing surfaces underneath.






FEATURE LEARNING AND RANDOM FEATURES
IN FINITE DEEP NEURAL NETWORKS

B.1 PARAMETERS AT DIFFERENT WIDTHS

In our investigations, we build on standard PyTorch implementations of
LeNet (LeCun et al., 1998) and AlexNet (Krizhevsky, 2014). In the neural
tangents framework (see Section 6.5), we reimplement the same LeNet
architecture and additionally consider Last-Layer-LeNet in which all pa-
rameters are fixed at initialisation except for the weights of the last layer.
With increasing width, the number of trainable parameters increases, which
is summarised in Appendix Table B.1 for LeNet and Last-Layer-LeNet and
in Appendix Table B.2 for AlexNet.

Table B.1: Trainable parameters in LeNet x Factor and Last-Layer-LeNetx Factor
for greyscale input images. RGB input images, i.e. three channel instead of one
channel inputs, have a marginal effect on the number of parameters.

Factor LeNet Last-Layer-LeNet
1 60074 850

2 238026 1690

5 1479210 4210

10 5905610 8410

25 36868010 21010

60 212265610 50410

B.2 EARLY TRAINING TRAJECTORY

Following Lee et al. (2019), we study training trajectories for data samples x
of the MNIST test set during training. For illustration, we plot the iteration
te€{0,1,2,...} against the standard LeNet output fi(x, w;) and the lineari-
sation ffin(x, u;) for different widths. Note that w; and u; are the weights
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Table B.2: Trainable parameters in AlexNet x Factor for RGB input images.

Factor AlexNet

1 57044810
2 228032138
3 512961994
4 911834378

after t gradient updates for LeNet and LinLeNet trained on MNIST. As
we use one-hot encoding, output i € {1, ..., C} denotes the predicted output
for the correct class of the data point x. The same hyperparameters as for
the other MINIST experiments are used (see Section 6.4.1). A fixed random
seed ensures that both LeNet and LinLeNet at a particular width factor
are initialised exactly the same and receive the same mini-batches during
training. Exemplary results are shown in Figure B.1 for a digit 8 of the test
set, with similar results being obtained for other samples, too. At small
widths, training trajectories immediately diverge. With increasing width,
the curves behave more similar; they are however not close in a path-wise
sense, but the statistics of training trajectories become more alike.
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Figure B.1: Training trajectories of LeNet (dark) and LinLeNet (light) do not stay
close for small width factors. Shown are the output values during training for
the same MNIST input example from the validation set at different widths.
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B.3 EFFECTIVE RANK

The effective rank was introduced by Roy and Vetterli (2007) and can be
viewed as the exponential entropy of normalised singular values. We restate
the main definition in the following.

Definition 7 (Effective Rank) Let A be a complex-valued non-all-zero matrix of
size M x N with (real positive) singular values o1 > 03 > ... = 0g = 0, where
Q = min{M, N}. Let 0 = (0y, 09, ..., O’Q)T and the singular value distribution be

pr= —k  withk=1,2,..., Q. (B.1)

The effective rank of matrix A is then defined as

erank(A) := exp (H(p1, p2, - PQ)) (B.2)

where H(p1, p2, ..., pQ) is the Shannon entropy

Q
H(p1,p2, - PQ) = — ), Prlog pi- (B.3)
k=1

In comparison to the usual notion of rank, an important property of the
effective rank is that erank(A) < rank(A) (Roy and Vetterli, 2007).

B.4 ACCURACY RESULTS IN FINITE-WIDTH ANALYSIS

Tables B.3 and B.4 provide the values for train and test accuracy in the
LeNet and AlexNet experiments, respectively. The sample mean accuracy
as well as sample standard deviation for five independent reruns of models
are shown.
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Table B.3: Mean accuracy and standard deviation for five independent reruns of
the LeNet experiments.

x1

x2

x5

x10 x25

x 60

MNIST (see Figure 6.5)

Test

LeNet

Lin. 94.48 +1.04
99.15+ 0.1

99.29 + 0.05

96.42 +0.17

97.86 + 0.02
99.38 + 0.06

98.36 + 0.04
99.4 +0.03

98.72 + 0.05
99.42 + 0.04

98.91+0.1
99.39 + 0.06

Train

LeNet

Lin. 94.3 +£1.07
99.86 + 0.02

96.56 + 0.33
99.94 +0.01

98.14 + 0.07
99.95+0.01

98.82 + 0.05
99.97 +0.00

99.45 + 0.02
99.97 +0.01

99.83 + 0.03
99.97 +0.01

MNIST with translation (see Figure 6.6)

Test

LeNet

Lin. 69.95 + 5.86
97.6 +0.16

80.91+1.77
98.35+0.12

89.57 + 0.49
98.61 + 0.03

92.13+0.11
98.63 +0.13

94.25 + 0.48
98.63 +0.33

94.66 + 0.58
98.57 +0.12

Train

LeNet

Lin. 68.93 +5.44
97.55 £ 0.05

80.54 + 1.64
98.28 + 0.06

88.89 +0.29
98.59 +0.03

91.76 + 0.13
98.71 £ 0.05

94.0+0.1
98.76 + 0.05

94.42 +0.29
98.77 £ 0.03

CIFAR-10 (see Figure 6.7)

Test

LeNet

Lin. 42.98 +0.53
63.2+0.58

48.07 +1.12
69.58 + 0.48

54.42+04
75.76 +£0.22

58.23 +0.43
77.56 +£0.21

62.47 +0.26
78.83 £0.1

65.8 +0.23
78.97 £0.13

Train

LeNet

Lin. 43.99 +£0.97
92.07 £ 0.24

50.3 +1.52
98.53 + 0.07

60.45+1.14
99.76 + 0.04

68.32 +0.92
99.92 +0.01

81.24 +£0.74
99.96 + 0.00

93.84 +0.33
99.98 + 0.00

Table B.4: Mean accuracy and standard deviation for five independent reruns of
the AlexNet experiment (see Figure 6.8).

x1 x2 x3 x4
- Lin. 0.1 30.48 +1.68 33.52+0.63 33.48+1.14 33.88+1.68
[ij Lin. 1.0 33.64+126 352+1.53 36.76 +1.52 36.6 +2.05
AlexNet 54.04+1.13 54.72+127 54724+098 55.16+1.54
o Lin. 0.1 36.75+ 0.5 42.62 +0.8 46.64 + 054 49.84 +0.95
;:“ Lin. 1.0 51.05+217 64.45+3.12 72.63+3.02 79.45+3.12
AlexNet 99.15+0.05 99.19+0.03 99.16 +0.05 99.16 +0.04
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B.5 ACCURACY RESULTS IN INFINITE-WIDTH ANALYSIS

Tables B.5 (MNIST), B.6 (shifted MNIST), B.7 (shifted-resized MNIST),
and B.8 (CIFAR-10) provide the values for train and test accuracy in the
LeNety: experiments. The sample mean accuracy as well as sample standard
deviation for five independent reruns of models are shown. Additionally,
Figures B.2 and B.3 provide rescaled visualisations of Figure 6.12 (all MNIST
variants) and Figure B.4 provides a rescaled visualisation of Figure 6.13

(CIFAR-10).

Table B.5: Accuracy of LeNetnt, LinLeNety; (Lin.), and Last-Layer-LeNet (LL)
on 50k-MNIST at different widths. The infinite-width kernels achieve a test
accuracy of 99.40% (NNGP) and 99.20% (NTK). Networks exceeding the NTK
test performance are indicated by =*. See Figure 6.12 and Appendix Figures B.2

as well as B.3 for visualisations of the reported values.

x1 x2 x5 x10 x25 x 60
» LL 85.53+0.52 90.75+048 9549+0.26 97.07+0.10 9815+0.10 98.71 +0.06
E Lin. 9790+ 0.14 9855+0.07 9891+0.06 99.06+0.03 99.16+0.02  99.19 +0.07
LeNet 98.70+0.09 99.04+0.07 99.30* £0.07 99.36* £0.07 99.35* £0.02 99.26* + 0.05
- LL 84.77+0.63 90.34+048 9538+0.23 97.05+0.11 98.46 +0.03  99.17 +0.04
'[;E Lin. 98.44+0.09 99.33+0.06 99.81+0.02 99.89 +0.01 99.96 + 0.01 99.98 + 0.00
LeNet 99.94+0.01 99.98+0.01 99.99 + 0.00 100.0 £0.00  100.0 + 0.00 100.0 £ 0.00

Table B.6: Accuracy of LeNetyt, LinLeNetnt (Lin.), and Last-Layer-LeNet (LL) on
shifted 50k-MNIST at different widths. The infinite-width kernels achieve a
test accuracy of 98.40% (NNGP) and 98.21% (NTK). Networks exceeding the

test performance of the NTK are indicated by # and of the NNGP kernel by .

See Fig 6.12 and Appendix Figures B.2 as well as B.3 for visualisations of the

reported values.

x1 x2 x5 x10 %25 x 60
- LL 51.73+2.62 63.83+156 79.59+0.69 8741+046 92.67+0.12 95.61+0.18
E Lin. 9243 +045 9538+0.27 97.10+0.11 97.62+0.04 97.76+0.07 97.95+ 0.06
LeNet 97.21+0.17 98.25* +£0.07 98.15+0.44 98.36* £0.14 98.5** +£0.04 98.07 +0.10
- LL 51.10+£3.18 63.54+148 80.12+0.80 88.02+0.38 94.09+0.10 97.19+0.06
;:“ Lin. 94.75+0.66 98.24+0.13  99.69+0.06 99.89+0.02 99.96+0.01  99.99 + 0.00
LeNet 99.88+0.01 9994+0.01 9998 +0.01 99.99 +0.01 100.0 +0.00  100.0 + 0.00
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Table B.7: Accuracy of LeNetyt, LinLeNety (Lin.), and Last-Layer-LeNet (LL)
on shifted-resized 50k-MNIST at different widths. The infinite-width kernels
achieve a test accuracy of 98.21% (NNGP) and 97.47% (NTK). Networks ex-
ceeding the NTK test performance are indicated by . See Figure 6.12 and
Appendix Figures B.2 as well as B.3 for visualisations of the reported values.

x1 x2 x5 x10 x25 x60
- LL 3799+211 5028+1.72 71.33+0.77 81.70+0.57 90.09+0.23  93.39 +0.20
é Lin. 87.68+1.00 92.66+0.32 9536+020 9585+0.15 96.58+0.12 96.89 +0.18
LeNet 96.18+0.44 97.67* +£0.38 97.26+0.30 98.02* +£0.27 97.88* +£0.09 97.49* +0.03
- LL 3796 +2.00 50.06+1.63 71.56+0.87 8235+048 91.28+0.32 94.96+0.18
;:‘ Lin. 89.99+1.20 9536+043 98.25+0.12 98.89+0.10 99.46+0.12 99.77 +0.04
LeNet 99.82+0.02 99.92+0.02 9996 +0.01 99.98 +0.01 100.0 £ 0.00 100.0 £ 0.00

Table B.8: Accuracy of LeNetyt, LinLeNety (Lin.), and Last-Layer-LeNet (LL) on
CIFAR-10 at different widths. The infinite-width kernels achieve a test accuracy
of 69.53% (NNGP) and 68.77% (NTK). None of the considered networks exceed
the kernel test performance. See Figure 6.13 and Appendix Figure B.4 for
visualisations of the reported values.

x1 x2 x5 x10 %25 x 60
- LL 30.62+£0.80 3555+0.56 42.04+025 47.10+0.38 5191+0.33 56.24+0.53
é Lin. 4788 +£0.74 5345+0.70 5852+1.05 60.65+045 61.93+0.74 62.42+0.60
LeNet 51.724+1.90 5848+ 1.12 60.37+1.22 60.73+0.77 60.04 £0.65 58.31+ 0.80
- LL 30.80 £0.78 36.09+0.69 43.75+0.29 49.49+0.18 58.19+041 68.41+0.20
;3 Lin. 6391+1.11 8264+0.70 96.66+1.03 99.40+0.15 99.90+0.05 99.98 + 0.00
LeNet 95174048 99.30 +£0.08 99.90+0.02 100.0+0.00 100.0+0.00 100.0+0.00
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Figure B.2: Accuracy of LeNety; (o), LinLeNety: (x), and Last-Layer-LeNet ()
trained on MNIST at different widths (values in Appendix Tables B.5, B.6, B.7).
Dashed lines indicate the result for the infinite-width case for the NTK (red)
and NNGP kernel (green). The first column shows results for the standard
MNIST dataset, the second column for shifted MNIST, and the third column
for shifted-resized MNIST. This visualisation includes all results for Last-Layer-
LeNet at all widths. Visualisations with different y-axis scaling can be found
in Figure 6.12 and Appendix Figure B.3.
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Accuracy in %

Accuracy in %

Accuracy in %

Figure B.3: Accuracy of LeNety; (o), LinLeNetyt (), and Last-Layer-LeNet (s)
trained on MNIST at different widths (values in Appendix Tables B.5, B.6, B.7).
Dashed lines indicate the result for the infinite-width case for the NTK (red)
and NNGP kernel (green). This visualisation focuses on the results for LeNet
and LinLeNet on the different datasets. Visualisations with different y-axis
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scaling can be found in Figure 6.12 and Appendix Figure B.2.
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Figure B.4: Accuracy of LeNety; (o), LinLeNetyt (x), and Last-Layer-LeNet ()
trained on CIFAR-10 at different widths (values in Appendix Table B.8). Dashed
lines indicate the result for the infinite-width case for the NTK (red) and NNGP
kernel (green). This visualisation includes all results for Last-Layer-LeNet at
all widths. The visualisation in the main text focuses on the results for LeNet
and LinLeNet (see Figure 6.13).

B.6 RESULTS FOR MNIST WITH RANDOM LABELS

In Section 6.5.3 we perform an additional MNIST experiment in which the
relation between input image and label is removed. To this end, we ran-
domly generated a new label between 0 and 9 for each input image. Figure
6.14 visualises these results. The numerical values for the sample mean
accuracy as well as sample standard deviation for five independent reruns
of LeNety, LinLeNety, and Last-Layer-LeNet are provided in Appendix
Tables B.g (MNIST with random labels), B.10 (shifted MNIST with random
labels), B.11 (shifted-resized MNIST with random labels). Note that in all

settings the same random labels were used.
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Table B.g: Accuracy of LeNetyt, LinLeNety (Lin.), and Last-Layer-LeNet (LL)

on MNIST with random labels at different widths. The infinite-width kernels
achieve a test accuracy of 9.75% (NNGP) and 10.05% (NTK). None of the
considered networks exceed the kernel test performance. See Appendix Figure
6.14 for visualisations of the reported values.

x1 x2 x5 x10 x25 x60

Test

LL 10.01+0.17 992+0.23 10.13+0.12 10.13+0.25 10.08+0.52 9.89+0.48
Lin. 10.03+0.50 10.21+0.37 10.05+0.29 10.15+0.18 9.90+0.11 9.67 +0.27
LeNet 998+025 999+047 1006+025 10.11+0.34 10.09+050 9.75+0.38

Train

LL 11.94+0.11 12.81+0.20 14.74+0.14 17.04+0.16 2221+0.04 30.55+0.21
Lin. 2871 +180 4415+171 6749+195 7857+175 88.74+1.85 95.28+0.48
LeNet 57.52+1.11 9599+1.11 100.00+0.00 100.0+0.00 100.0+0.00 100.0+ 0.00

Table B.10: Accuracy of LeNetyt, LinLeNety: (Lin.), and Last-Layer-LeNet (LL)

on shifted MNIST with random labels at different widths. The infinite-width
kernels achieve a test accuracy of 9.68% (NNGP) and 9.45% (NTK). None of
the considered networks exceed the kernel test performance. See Appendix
Figure 6.14 for visualisations of the reported values.

x1 x2 x5 x10 %25 %60

Test

LL 10.05+0.42 10.09+0.24 9.99+0.12 9.87+033 10.09+0.14 9.73+0.35
Lin. 10.22+0.36 10.01 +0.08 9.96 +0.21 10.00+0.41 9.85+0.48 10.08+0.21
LeNet 10.16+03 995+042 10.07+036 9.92+039 10.02+0.21 9.99+0.27

Train

LL 12.06 +0.04 12.82+0.10 1497+0.16 17.28+030 2291+0.14 3255+0.24
Lin. 3196 £1.75 5156+174 79.87+265 90.63+1.74 96.71+091 99.21 +£0.11
LeNet 60.02+1.29 97.38+0.66 100.00+0.00 100.0+0.00 100.0+0.00 100.0+0.00

Table B.11: Accuracy of LeNety;, LinLeNety; (Lin.), and Last-Layer-LeNet (LL)

on shifted-resized MNIST with random labels at different widths. The infinite-
width kernels achieve a test accuracy of 9.95% (NNGP) and 10.01% (NTK).
None of the considered networks exceed the kernel test performance. See
Appendix Figure 6.14 for visualisations of the reported values.

x1 X2 x5 x10 x25 x 60

Test

LL 9.89+040 10.15+054 10.06+042 1005+0.12 999+037 9.75+0.21
Lin. 10.02+043 996+0.33 991+041 9.80+028 10.07+0.15 9.94+0.52
LeNet 9.86+041 9.72+0.34 10.08+0.22 997+030 10.14+0.17 10.07+0.31

Train

LL 11.95+0.17 12.80+0.03 14.80+021 17.08+0.18 21.85+0.33 28.33+0.30
Lin. 271+1.64 3848+212 56.83+242 66.75+282 7890+292 88.77+1.01
LeNet 56.56+1.26 9458+0.75 100.00+0.00 100.0+0.00 100.0+0.00 100.0+0.00
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