229 research outputs found

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review

    Get PDF
    Disease diagnosis is one of the major tasks for increasing food production in agriculture. Although precision agriculture (PA) takes less time and provides a more precise application of agricultural activities, the detection of disease using an Unmanned Aerial System (UAS) is a challenging task. Several Unmanned Aerial Vehicles (UAVs) and sensors have been used for this purpose. The UAVs’ platforms and their peripherals have their own limitations in accurately diagnosing plant diseases. Several types of image processing software are available for vignetting and orthorectification. The training and validation of datasets are important characteristics of data analysis. Currently, different algorithms and architectures of machine learning models are used to classify and detect plant diseases. These models help in image segmentation and feature extractions to interpret results. Researchers also use the values of vegetative indices, such as Normalized Difference Vegetative Index (NDVI), Crop Water Stress Index (CWSI), etc., acquired from different multispectral and hyperspectral sensors to fit into the statistical models to deliver results. There are still various drifts in the automatic detection of plant diseases as imaging sensors are limited by their own spectral bandwidth, resolution, background noise of the image, etc. The future of crop health monitoring using UAVs should include a gimble consisting of multiple sensors, large datasets for training and validation, the development of site-specific irradiance systems, and so on. This review briefly highlights the advantages of automatic detection of plant diseases to the growers

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Intra-field Canopy Nitrogen Retrieval from Unmanned Aerial Vehicle Imagery for Wheat and Corn Crops in Ontario, Canada

    Get PDF
    The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by farmers. Understanding the detailed spatial information about a crop status is known as a farming management technique called precision agriculture, which allows farmers to maximize their yield and profit while reducing the inputs of fertilizers, pesticides, water, and insecticides. The goal of this study is to document and test the applicability and feasibility of using Unmanned Aerial Vehicle (UAV) to predict nitrogen weight of wheat and corn fields in south-west Ontario. This is investigated using various statistical modelling techniques to achieve the best accuracy. Machine learning techniques such as Random Forests and Support Vector Regression are used, which provide more robust models than traditional linear regression models. The results demonstrate that most spectral indices have a non-linear relationship with canopy nitrogen weight and show high degree of multicollinearity among the variables. In this thesis, the final nitrogen prediction maps of wheat and corn fields using UAV images and the derived models are provided

    Features extraction of capsicum frutescens (C.F) NDVI values using image processing

    Get PDF
    There is yet an application for monitoring plant condition using the Normalized Difference Vegetation Index (NDVI) method for Capsicum Frutescens (C.F) or chili. This study was carried out in three phases, where the first and second phases are to create NDVI images and recognize and extract features from NDVI images. The last stage is to assess the efficiency of Neural Network (N.N.), Naïve Bayes (N.B.), and Logistic Regression (L.R.) models on the classification of chili plant health. The images of the chili plant will be captured using two types of cameras, which can be differentiated by whether or not they have an infrared filter. The images were collected to create datasets, and the NDVI images' features were extracted. The 120 NDVI images of the chili plant were divided into training and test datasets, with 70.0% training and 30.0% test. The extracted data was used to test the classification accuracy of classifiers on datasets. Finally, the N.N. model was found to have the highest classification accuracy, with 96.4 % on the training dataset and 88.9 % on the test dataset. The state of the chili plant can be predicted based on feature extraction from NDVI images by the end of the study

    Investigating the Potential of UAV-Based Low-Cost Camera Imagery for Measuring Biophysical Variables in Maize

    Get PDF
    The potential for improved crop productivity is readily investigated in agronomic field experiments. Frequent measurements of biophysical crop variables are necessary to allow for confident statements on crop performance. Commonly, in-field measurements are tedious, labour-intensive, costly and spatially selective and therefore pose a challenge in field experiments. With the versatile, flexible employment of the platform and the high spatial and temporal resolution of the sensor data, Unmanned Aerial Vehicle (UAV)-based remote sensing offers the possibility to derive variables quickly, contactless and at low cost. This thesis examined if UAV-borne modified low-cost camera imagery allowed for remote estimation of the crop variables green leaf area index (gLAI) and radiation use efficiency (RUE) in a maize field trial under different management influences. For this, a field experiment was established at the university's research station Campus Klein-Altendorf southwest of Bonn in the years 2015 and 2016. In four treatments (two levels of nitrogen fertilisation and two levels of plant density) with five repetitions each, leaf growth of maize plants was supposed to occur differently. gLAI and biomass was measured destructively, UAV-based data was acquired in 14-day intervals over the entire experiment. Three studies were conducted and submitted for peer-review in international journals. In study I, three selected spectral vegetation indices (NDVI, GNDVI, 3BSI) were related to the gLAI measurements. Differing but definite relationships per treatment factor were found. gLAI estimation using the two-band indices (NDVI, GNDVI) yielded good results up to gLAI values of 3. The 3-bands approach (3BSI) did not provide improved accuracies. Comparing gLAI results to the spectral vegetation indices, it was determined that sole reliance on these was insufficient to draw the right conclusions on the impact of management factors on leaf area development in maize canopies. Study II evaluated parametric and non-parametric regression methods on their capability to estimate gLAI in maize, relying on UAV-based low-cost camera imagery with non-plants pixels (i.e. shaded and illuminated soil background) a) included in and b) excluded from the analysis. With regard to the parametric regression methods, all possible band combinations for a selected number of two- and three-band formulations as well as different fitting functions were tested. With regard to non-parametric methods, six regression algorithms (Random Forests Regression, Support Vector Regression, Relevance Vector Machines, Gaussian Process Regression, Kernel Regularized Least Squares, Extreme Learning Machine) were tested. It was found that all non-parametric methods performed better than the parametric methods, and that kernel-based algorithms outperformed the other tested algorithms. Excluding non-plant pixels from the analysis deteriorated models' performances. When using parametric regression methods, signal saturation occurred at gLAI values of about 3, and at values around 4 when employing non-parametric methods. Study III investigated if a) UAV-based low-cost camera imagery allowed estimating RUEs in different experimental plots where maize was cultivated in the growing season of 2016, b) those values were different from the ones previously reported in literature and c) there was a difference between RUEtotal and RUEgreen. Fractional cover and canopy reflectance was determined based on the RS imagery. Our study showed that RUEtotal ranges between 4.05 and 4.59, and RUEgreen between 4.11 and 4.65. These values were higher than those published in other research articles, but not outside the range of plausibility. The difference between RUEtotal and RUEgreen was minimal, possibly due to prolonged canopy greenness induced by the stay-green trait of the cultivar grown. In conclusion, UAV-based low-cost camera imagery allows for estimation of plant variables within a range of limitations

    Yield prediction in ryegrass with UAV-based RGB and multispectral imaging

    Get PDF
    Forage grass breeding is time-consuming and costly, with the need for special knowledge and experience to make the right decisions for future forage grass production. All measurements for decision-making require manual labor and hands-on inspections. For the yield trait, the traditional method of measurement is cutting and weighing the grass. New methods for yield prediction and measurement with Unmanned Aerial Vehicle (UAV) have been tested on different crops with good results. For perennial ryegrass (Lolium perenne L.) yield prediction has earlier been performed on plots with a flight altitude for image capturing at 20 meters and which has yielded promising results for our study. This study has been exploring different flight altitudes for ryegrass yield prediction using UAV imagery. The sensors that have been used in this study are multispectral and RGB cameras integrated in the UAVs. Our study consists of two trials with pre-selected varieties of perennial ryegrass, one with diploid varieties and one with tetraploid varieties and mixtures between diploid and tetraploid varieties, were investigated. Both trials were seeded at two different locations in Norway. Varieties were planted as rows for the first location (Vollebekk, Ås, Norway) while for the second location (Arneberg, Ilseng, Norway) the two trials were planted as both rows and plots. The dry matter yield (DMY) data were collected with traditional harvest four times for the rows, and three times for the plots. The UAV-images were collected at different flight altitudes with both multispectral and RGB cameras. The full data processing routine was conducted on the first and second cut for both locations. Multivariate regression model was applied for DMY prediction based on UAV imagery. The results correlated well with the predictions at Ås for both multispectral images as well as RGB methods of image acquisition. Our results indicated a high correlation between the actual DMY and the predicted DMY from both RGB images as well as multispectral images with a correlation coefficient on 0.92 for both, but at different assessment dates. The maximum correlation was acquired for the first cut from location Ås. For location Arneberg, the acquired images could not yield results of sufficient quality, and thus, no predictions could be made

    Uumanned Aerial Vehicle Data Analysis For High-throughput Plant Phenotyping

    Get PDF
    The continuing population is placing unprecedented demands on worldwide crop yield production and quality. Improving genomic selection for breeding process is one essential aspect for solving this dilemma. Benefitted from the advances in high-throughput genotyping, researchers already gained better understanding of genetic traits. However, given the comparatively lower efficiency in current phenotyping technique, the significance of phenotypic traits has still not fully exploited in genomic selection. Therefore, improving HTPP efficiency has become an urgent task for researchers. As one of the platforms utilized for collecting HTPP data, unmanned aerial vehicle (UAV) allows high quality data to be collected within short time and by less labor. There are currently many options for customized UAV system on market; however, data analysis efficiency is still one limitation for the fully implementation of HTPP. To this end, the focus of this program was data analysis of UAV acquired data. The specific objectives were two-fold, one was to investigate statistical correlations between UAV derived phenotypic traits and manually measured sorghum biomass, nitrogen and chlorophyll content. Another was to conduct variable selection on the phenotypic parameters calculated from UAV derived vegetation index (VI) and plant height maps, aiming to find out the principal parameters that contribute most in explaining winter wheat grain yield. Corresponding, two studies were carried out. Good correlations between UAV-derived VI/plant height and sorghum biomass/nitrogen/chlorophyll in the first study suggested that UAV-based HTPP has great potential in facilitating genetic improvement. For the second study, variable selection results from the single-year data showed that plant height related parameters, especially from later season, contributed more in explaining grain yield. Advisor: Yeyin Sh
    corecore