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Abstract

To ensure that pasture-based farming meets production and environmental

targets for a growing population under increasing resource constraints, pro-

ducers need to know pastureland traits. Current proximal pastureland trait

prediction methods largely rely on vegetation indices to determine biomass

and moisture content. The development of new techniques relies on the chal-

lenging task of collecting labelled pastureland data, leading to small datasets.

Classical computer vision has already been applied to weed identification

and recognition of fruit blemishes using morphological features, but machine

learning algorithms can parameterise models without the provision of expli-

cit features, and deep learning can extract even more abstract knowledge

although typically this is assumed to be based around very large datasets.

This work hypothesises that through the advantages of state-of-the-art

deep learning systems, pastureland crop traits can be accurately assessed in

a just-in-time fashion, based on data retrieved from an inexpensive sensor

platform, under the constraint of limited amounts of labelled data. However

the challenges to achieve this overall goal are great, and for applications such

as just-in-time yield and moisture estimation for farm-machinery, this work

must bring together systems development, knowledge of good pastureland

practice, and also techniques for handling low-volume datasets in a machine

learning context.



Given these challenges, this thesis makes a number of contributions. The

first of these is a comprehensive literature review, relating pastureland traits to

ruminant nutrient requirements and exploring trait estimation methods, from

contact to remote sensing methods, including details of vegetation indices and

the sensors and techniques required to use them.

The second major contribution is a high-level specification of a platform

for collecting and labelling pastureland data. This includes the collection of

four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data,

height and temperature differential, using inexpensive proximal sensors and

provides a basis for holistic data analysis. Physical data platforms built around

this specification were created to collect and label pastureland data, involving

computer scientists, agricultural, mechanical and electronic engineers, and

biologists from academia and industry, working with farmers.

Using the developed platform and a set of protocols for data collection, a

further contribution of this work was the collection of a multi-sensor multi-

modal dataset for pastureland properties. This was made up of four-channel

image data, height data, thermal data, Global Positioning System (GPS) and

hyperspectral data, and is available and labelled with biomass (Kg/Ha) and

percentage dry matter, ready for use in deep learning.

However, the most notable contribution of this work was a systematic

investigation of various machine learning methods applied to the collected

data in order to maximise model performance under the constraints indicated

above. The initial set of models focused on collected hyperspectral datasets.
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However, due to their relative complexity in real-time deployment, the focus

was instead on models that could best leverage image data.

The main body of these models centred on image processing methods and,

in particular, the use of the so-called Inception Resnet and MobileNet models

to predict fresh biomass and percentage dry matter, enhancing performance

using data fusion, transfer learning and multi-task learning.

Images were subdivided to augment the dataset, using two different patch

sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and

around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation

was used in all analysis. Prediction accuracy was compared to older mech-

anisms, albeit using hyperspectral data collected, with no provision made for

lighting, humidity or temperature.

Hyperspectral labelled data did not produce accurate results when used

to calculate Normalized Difference Vegetation Index (NDVI), or to train a

neural network (NN), a 1D Convolutional Neural Network (CNN) or Long

Short Term Memory (LSTM) models. Potential reasons for this are discussed,

including issues around the use of highly sensitive devices in uncontrolled

environments.

The most accurate prediction came from a multi-modal hybrid model that

concatenated output from an Inception ResNet based model, run on RGB

data with ImageNet pre-trained RGB weights, output from a residual network

trained on NIR data, and LiDAR height data, before fully connected layers,

using the small patch dataset with a minimum validation MAPE of 28.23%
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for fresh biomass and 11.43% for dryness. However, a very similar prediction

accuracy resulted from a model that omitted NIR data, thus requiring fewer

sensors and training resources, making it more sustainable. Although NIR

and temperature differential data were collected and used for analysis, neither

improved prediction accuracy, with the Inception ResNet model’s minimum

validation MAPE rising to 39.42% when NIR data was added. When both

NIR data and temperature differential were added to a multi-task learning

Inception ResNet model, it yielded a minimum validation MAPE of 33.32%.

As more labelled data are collected, the models can be further trained,

enabling sensors on mowers to collect data and give timely trait information

to farmers. This technology is also transferable to other crops. Overall, this

work should provide a valuable contribution to the smart agriculture research

space.

Keywords: Deep learning, data collection protocol, proximal sensing, trans-

fer learning, data fusion, multi-task learning, Inception ResNet, MobileNet,

sustainability, biomass, moisture, dry matter, silage.
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Chapter 1

Introduction

In the 21st century, food is not just a requirement, it is also a source of

enjoyment. However, the world population is likely to grow to 9 billion people

by 2050 and continue to rise to 11 billion by 2100 (Rosenbaum, 2014; Gerland

et al., 2014; UN, 2015). with the implication being that food production needs

to rise by 70% to feed the global population by 2050 (Clercq et al., 2018).

Unfortunately, as the human population grows, land for agriculture and water

resources are increasingly stressed, becoming more scarce and diminished

in quality, due to degradation and competition from other uses (Clercq et al.,

2019).

Whilst there are many innovative ideas to provide food into the future, such

as alternate sources of protein (Karmaus and Jones, 2020; Sá et al., 2020),

livestock continues to supply over one-third of protein in the human diet

(FAO, 2020). In November 2021, the number of cattle globally was reported

as just over 1 billion (Cook, 2021) with hundreds of millions of small-scale

producers depending on livestock for their livelihoods (FAO, 2020). In 2019,
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the European Union had 77 million bovine animals and 74 million sheep and

goats (Eurostat, 2020) and the World Bank provided investment support to

increase small and marginal farmers’ competitiveness in dairy and livestock

production in geographic locations such as India (Roy and Karaban, 2018)

and Nepal (Sedai, 2018).

While governments suggest that dairy and livestock production needs to

increase for economic and public health reasons (EC, 2018), sustainability

requires avoiding excessive use of precious natural resources such as fossil

fuels and nitrogen fertilizer in their production (Britt et al., 2018) and produ-

cing higher quality diets for animals, to reduce the emission of greenhouse

gases (Harper et al., 1999). These drives are now represented at national and

international policy levels; for example one of the United Nations’ Sustain-

able Development Goals includes the promotion of sustainable agriculture, to

double the agricultural productivity and incomes of small-scale food produ-

cers, including pastoralists, by 2030 (Rosa, 2017).

Turning from the generic case to the specifics of ruminants, the drivers

above leave a conundrum of how to manage dairy and livestock production,

whilst avoiding excessive use of precious natural resources such as fossil fuels

and nitrogen fertilizer to ensure sustainability at a manageable cost (Godde

et al., 2018). Such competing concerns are very typical of the motivations

behind precision farming and the general trend towards the incorporation of

high-end technology into the farming process (Chlingaryan et al., 2018).

To enable an adequate supply of milk and meat, ruminants require a steady
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supply of food. Food sources for cattle can be diverse, but grass and grass

silage remain key. Within a grass rich environment such as Ireland, grass

silage can provide 20 to 25 per cent of a cow’s annual feed on a dairy farm

and 30 per cent on a beef farm, and a managed grazing and silage feed system

can be significantly cheaper than concentrate feeds (Teagasc, 2016). As silage

plays an important part in the food chain, it is an ideal area in which to seek

improvements. Maximizing silage volume and, importantly, quality is vital

to the farmer. Over many decades it has been found that the potential quality

and quantity of silage is dependent on a number of traits of the grass prior

to cutting. When harvesting for silage, knowledge of such grass traits can

not only assist in estimating the quality of the raw input material, but also in

determining requirements for additive concentrates (Hosseini et al., 2018).

In the past, methods for making estimates of the key traits of grass were

either extremely ad-hoc, or relied on off-site wet laboratory methods (Su,

2017). Over the past few decades, technology-driven sensor based methods,

ranging from very remote techniques such as satellite imaging, through to

highly proximal hand-held spectral analysis equipment, have opened up many

possibilities for gathering just-in-time information on grassland content (Xue

and Su, 2017). While these two techniques represent the most extreme cases

of spatial resolution, and are typically only available at very low sampling

frequencies, the assessment of grassland can now also be assisted by sensing

devices that focus on just a few square meters of material, but which can be

assessed in a complete and on-demand way. These sensing approaches have
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the potential to transform the way in which grassland assessment is performed,

as they can be incorporated into the day-to-day operation of a farm, and in

principle, provide a just-in-time assessment of pastureland traits.

While sensors themselves have improved greatly, there are still many open

challenges in terms of how to best leverage the raw data that they produce.

Many of the current and previous approaches to measuring vegetation traits

are based on the calculation of vegetation indices (VIs), with some success

(Su, 2017). VIs rely on the interaction of different reflectance values across a

range of wavebands on the electromagnetic spectrum. However, VIs, by their

nature, hone in on very specific data, with the result that their findings need

to be calibrated, often for a specific crop in a specific field at a specific time

of the year (Flynn, 2006). While this is a drawback, the valuable research

that has been done on these VIs can be used to determine data that could be

useful to collect. Other studies have introduced crop canopy height as a useful

indicator of Biomass (Fricke et al., 2011; Schaefer and Lamb, 2016) and the

differential between crop canopy and ambient temperature has also been used

to indicate moisture status (Idso et al., 1981).

Advances in machine learning, computer vision and deep learning also

offer exciting potential, with deep spectral modelling for regression and clas-

sification gaining popularity in the chemometrics domain, where chemomet-

rics is the analysis of data for chemical systems. Computer vision has been

applied to identify species using plant morphology (Saxena and Armstrong,

2014), and texture and colour features from digital images have, for example,

4



been used in an effort to determine the nutrient quality of Pangola hay (Hsieh

et al., 2017). The key benefit here is that machine learning algorithms can be

trained to classify and estimate values by abstracting patterns from labelled

data (Goodfellow et al., 2016) and deep learning algorithms can take this a

step further, by creating a learning structure from a hierarchy of simple con-

cepts, that build to complex concepts, enabling them to learn representations

of data with multiple levels of abstraction (LeCun et al., 2015). As there is

not huge variation in images of crops that have been grown for forage, these

multiple levels of abstraction can learn more precisely than shallower models,

especially if fed the most relevant data.

Finally, and perhaps most importantly, while Machine Learning methods

have historically needed large amounts of data, recent advances in methods

such as transfer learning introduce the possibility of bootstrapping models

even in the case of expensive labelling.

1.1 Research Questions and Approach

Given the challenges just outlined, this research investigates the hypothesis

that through the advantages of state-of-the-art machine learning systems,

pastureland crop traits can be assessed in a just-in-time fashion, based

on data retrieved from an inexpensive sensor platform even under the

constraints of expensive data labelling.

To investigate this broad hypothesis, firstly it is broken down into a num-
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ber of individual research questions. Those questions and their meaning are

presented here, before an approach to tackling them is identified:

1: How can historical methods be leveraged in trait estimation to inform

a strategy for heterogeneous sensor integration and can this be used for crop

trait estimation?

As mentioned earlier in this chapter, there is extensive previous research

into the development of vegetation indices and use of height and temperature

differentials to estimate pastureland traits, but the accuracy of some methods

can depend on location, date, plant species and phenology. Despite this, prior

research that informed the development of these techniques can potentially

provide a basis for further investigation, especially in terms of understanding

biophysical processes, physical properties worth measuring, and the types of

sensors that have and have not worked previously. Therefore an important

consideration for this dissertation will be to investigate the many years of

previous work in this domain and leverage that to best utilise more advanced

Artificial Intelligence (AI) driven methods in a series of new estimation mod-

els.

2: What hardware options are appropriate for just-in-time proximal as-

sessment and how can they be configured?

As outlined, a key driver of this research is to develop an estimation method

that can be applied ideally on inexpensive hardware – there is little point in

developing a highly accurate method that can only be applied with prohibit-

ively expensive or unreliable hardware. Therefore the second specific research

6



question considered in depth in this dissertation is the topic of sensor system

types for pastureland estimation. It is important to both understand what is

possible, and provide a useful platform on which data can be collected for

both analysis and testing. This work will show how an iterative approach to

system design was taken, to build a hardware platform from the ground up. In

the context of this work, proximal sensors denote sensors that are near to the

area being sensed, but not in contact with it. Equally just-in-time analysis in

this context refers to analysis of data that can be performed on demand on a

platform such as farm machinery.

3: What is the minimum sensor set that would be required to estimate

above-ground biomass and moisture content of pastureland?

Research into sensor types and the measurements they take can yield a

variety of measurements that could be helpful in building a model. Whilst

the sensors available may be part of an expensive package, a solution using

inexpensive sensors could be affordable to a much broader spectrum of pas-

toralists. Also, the success of estimation models using different combinations

of measurements could indicate the importance of some measurements (and

their associated sensors) over others. Therefore, this work will present data

collected from inexpensive sensors and compare it with data simultaneously

collected using the more expensive alternatives. It will also present results

of different combinations of measurements being presented to models. The

target variables of interest were determined to be moisture and biomass - al-

though in principle the methodology being investigated could be extended to
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other variables.

4: Data collection for a task like pastureland trait estimation is expensive

and would be expected to produce low yields. Given this limitation, can

state-of-the-art deep learning methods be used to give acceptable results?

As outlined above, collection of labelled pastureland trait data is challen-

ging, labour-intensive and slow. Whilst it would always be preferable to have

a very large dataset, particularly for use in machine learning, timely model

development requires that even when only a small dataset has been collected,

indicative models should be built. Model accuracy can be improved using

augmentation, multi-task learning and data fusion. This work presents experi-

ments using sample sub-setting and multi-task learning, and using data fusion

on a variety of deep learning models.

5: Can Transfer Learning be used to bootstrap a solution that provides

better predictions in the case of limited data?

Transfer learning involves the performance of more than one task, where

variations in the original task are relevant to variations that need to be learned

in subsequent tasks. What has been learned in one setting can be used in

another setting to improve generalization (Goodfellow et al., 2016). In im-

plementation, transfer learning is a machine-learning technique, whereby a

successful model generates weights by training on a large dataset. On sub-

sequent runs, using smaller but similar datasets, the model’s initial weights

are set to the pre-trained weights. The success of this technique depends

on the accuracy of the pre-trained weights and the similarity of the datasets.
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Many deep learning models are pre-trained using ImageNet images, a dataset

with three-channel RGB images. This work presents experiments on three-

channel RGB images and on four-channel VISNIR images, using data fusion

and transfer learning where appropriate.

To investigate these five questions, a methodology must be asserted and an

experimental approach developed. The next section describes the methodo-

logy and approach that was adopted in this research.

1.2 Methodology and Experimental Approach

The methodology adopted in this work had an initial research component,

culminating in a literature review to determine factors that are required in

silage and how traits in the raw foraged material that is ensiled affect the final

product. From that, deductions were made relating to which traits should be

measured, ways in which they are currently measured and data gathered to

measure them. Measuring devices and techniques were reviewed, and case

studies that use proximal measurement were investigated. An investigation

into the use and usefulness of machine and deep learning models indicated

possible potential to improve the estimation of pastureland traits and further

data that those models may need.

Having completed the review, an iterative cycle commenced to collect and

label data. Each iteration of the cycle had build, collect, label and evaluate

steps. The collection of labelled data requires a bespoke mobile platform,
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equipped with an appropriate sensing network, so the ‘build’ step produced a

collection trolley, housing a stand-alone network, programmed to gather and

store sensor information on pastureland.

These data are a lot more useful if they come from a variety of sites, rather

than from a single site and the cooperation of an agricultural machinery pro-

vider was a marvellous asset for arranging access to different sites. Because

of this, the ‘collect’ step required a joint academic-industrial team to go to a

pasture with the trolley and collect sensor data and physical foraged material

in accordance with a protocol. Using the foraged material, the ‘label’ step

analysed the foraged material in a wet lab, again following protocol, whilst

the ‘evaluate’ step explored collected data, performance of network hardware

and software, and the efficacy of collection and labelling protocols, feeding

back amendment information for the next iteration.

This cycle had initial iterations on a set of pilot collections using a pared-

back network. During the primary collection, the iterative cycle took place on

a fully equipped trolley, for a larger number of collections. Later traversals

through the final cycle in the primary collection phase led to fewer amend-

ments.

The development of collection and labelling protocols was implemented

to promote consistent data quality. Nevertheless, the collection of consistent,

labelled data for this topic is challenging, due to the nature of the material

being labelled and the variability in collection conditions, with weather and

seasonality often interrupting or preventing collection. For this reason, a data-
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set collected over a single season may not be as large as would normally be

offered to some of the deeper learning algorithms. However, models using

pre-trained weights, such as those trained on ImageNet (Deng et al., 2009)

can benefit from transfer learning (Szegedy et al., 2015). Similarly, by train-

ing for multiple targets simultaneously, each learning process can boost the

others through back-propagation (Ruder, 2017). The next part of the method-

ology involves developing and testing different combinations of algorithms,

sensor data and augmentation techniques to try to evaluate the most effective

solution.

The data collected proceeded to a new iterative cycle; the analytics cycle.

In this cycle, predictive models were investigated to determine those that hold

the most promise. Initially, hyperspectral data was investigated, followed by

image data, supplemented by other modes of data. The collected data was

reshaped in a variety of ways for feeding into learning models and experiments

took place, sometimes using data fusion, transfer learning and multi-task

learning, to determine which combinations provide the most accurate results.

This iterative cycle was done initially on a limited dataset collected during

the pilot phase and continued on a broader dataset, with more samples and

more data per sample, collected during the primary collection phase.

These results should inform future collections, by refining the collection

platform to collect the most useful data in the least expensive way.
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1.3 Research Context

As indicated above, the research outlined in this work was undertaken in

collaboration with industrial partners. Such a collaboration not only aids in

the gathering of data, but also critically helps to enable a know-how generated

collaborative relationship between academia and industry. It was through

this relationship that some of the basic scope of this work was confirmed. In

particular the decision to target biomass and moisture content as targets of

interest came about through discussions with the company on their real world

needs in the context of mower production. Similarly, the goal of a system

being capable of just-in-time prediction resulted from the collaborative goals

established with this partner.

This relationship began in 2017 when, facilitated by Kieran O’Connell

of DIT Hothouse (since renamed to TU Dublin Hothouse) and Enterprise

Ireland, Patrick Jackman, Robert Ross, Damon Berry and the author (Patri-

cia O’Byrne) met with Tanco CEO Adrian Lacey to embark on a feasibility

study (IPP/2017/0650) to determine the possibilities of equipping a harvesting

mower with sensors and software to estimate pastureland crop traits. Follow-

ing the author’s review and presentation of the hypothesis, this study led to

an Innovation Partnership IP 2018 0728 project, funded by Enterprise Ireland

and Tanco Autowrap Ltd.

The project has benefited from the collaboration of a diverse and dynamic

team. On the academic side, the author proposed a set of traits that would be
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useful to measure, outlining data acquisition methods that could be used to

collect and label data to determine those traits, harnessing deep learning. The

School of Computer Science led the project under principal investigators Drs.

Patrick Jackman and Robert Ross. The School of Electrical and Electronic

Engineering, led by Dr. Damon Berry, helped design the pilot trolley and

network platform along with Dr. Hector Hugo Franco Peña, from the School

of Computer Science. Mark Deegan, of the Faculty of Engineering, built

the pilot trolley. Pilot collections were arranged with farmers by Michael

French, an engineer from our industry collaborator, Tanco Autowrap, under

the enthusiastic guidance of Adrian and Enda Lacey. The author and other

members of the team took field trips to collect pilot data. Drs. Wael Rashwan,

Mohammed Messabah and Fei Wang assisted on field collections. The author

and Dr. Jackman carried out data labelling in collaboration with TU Dublin’s

Environmental Sustainability and Health Institute (ESHI), led by Prof. Jesus

Maria Frías Celayeta, where Claudio Terasuolo facilitated us, by setting up

ovens and work stations.

The primary phase used a more elaborate trolley and platform, collecting

labelled data to a protocol designed by the author, from a wider variety of

sensors and adding further labels. The trolley was collaboratively designed by

the academic and industry teams and built by Tanco Autowrap. The network

and platform were implemented by the academic team, mostly Dr. Ross,

Jayadeep Kumar Sasikumar and an electronic engineer, Thomas Lee, who

worked under the guidance of Dr. Berry. Field trips for the primary phase
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were undertaken by varying members of the academic team, assisted by Tanco

engineers Michael French or Chris Bovenizer. The author also developed all

post-collection software, including the exploration, and preparation of data

for use in machine learning. The author developed all deep learning models

presented, and all experiments on combinations of algorithms and data, under

the supervision of Dr. Ross. Demarcation between the work presented here

and that undertaken during the GreenEyes project is outlined in Section 9.4.2.

The data collection project continues in Tanco Autowrap, with the occasional

assistance of Dr. Ross and Jayadeep Kumar Sasikumar maintaining software.

1.4 Contributions

The science of estimating pastureland traits for food production can promote

sustainable agriculture and improve food security for the future (Lowenberg-

DeBoer, 2015). This thesis hypothesises that a more available, affordable and

accurate process of measuring pastureland traits could be developed, using

inexpensive sensors and harnessing the power of deep learning. In the process

of investigating it, the following contributions have been made:

• A systematic review of methods for pastureland trait estimation, includ-

ing ruminant requirements, silage requirements, pastureland traits, elec-

tromagnetic interaction with vegetation traits, alternate indicators of pas-

tureland traits and how they can be measured. It discusses the wide

variety of vegetation indices that have been developed and the use and
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usefulness of both Broadband and narrowband indices, reflecting on

the need for so many candidates. It reviews sensors, both in concept

and specific models and describes case studies where these sensors and

techniques were used. It speculates on whether the application of deep

models could improve and generalize the estimation of measurements,

rather than developing an index that is dependent on place and season.

• A high-level specification for a data collection platform, that takes ad-

vantage of multi-spectral and heterogeneous sensor types, trialling inex-

pensive devices alongside established, but more expensive devices for

comparison purposes and proposing a tested protocol for pastoral data

collection and labelling. Through the data collection iterative cycle, both

platform and protocol have been rigorously tested, by an interdisciplinary

team, involving computer scientists, mechanical, agricultural and elec-

tronic engineers, and biologists, from industry and academia, working in

conjunction with farmers. As these contributions were developed using

an interdisciplinary team, the results are usable across these disciplines.

• A dataset containing 268 samples, where each sample can potentially

contain a collection date and GPS location, high and low specification

VISNIR images, hyperspectral spot data, height of canopy measured

manually and by LiDAR, grass canopy temperature, ambient temper-

ature and low resolution filtered images to emulate narrowband data.

Electronically sensed data are available for each sample from before and

15



after the grass was harvested. Each sample is labelled with biomass and

moisture content. Many samples also have nitrometer and brixometer

readings. Whilst the dataset may not currently be publicly available, two

summary files give the presence and quality of each of these data types

for each sample.

• An approach to applying transfer learning to take advantage of visual

images in pastureland trait estimation, by reusing suitable pre-trained

weights from very large, but similarly shaped datasets, adjusting the

model to encompass the most appropriate weights for RGB data and for

NIR data.

This work provides a contribution towards the UN’s Sustainable Devel-

opment Goals (Rosa, 2017), in that it researches less expensive sensors that

would be more suitable for use in farming areas that are marginally competit-

ive. It also investigates a more broadly applicable approach to trait estimation,

to enable reuse of systems over a wider geographical area. Remaining in

the area of food agriculture, skills required to monitor biomass, moisture and

nutrients in forage for silage are transferable to other crops (Bendig et al.,

2014; Jin et al., 2020).

This work also provides rich research material for data scientists who are

researching multi-spectral data for a variety of scientific applications in areas

such as agriculture, medicine, food or remote sensing systems.

Holistically, positive contributions from this work can be summarised as:

16



• Data for 268 pastureland samples, labelled with biomass and moisture

content, taken before and after harvesting, with RGB and NIR images,

canopy height, difference between ambient and canopy temperature,

GPS location and spot hyperspectral data.

• a network and sensor specification for collecting further similar data.

• a protocol for labelling and preparing the data for machine and deep

learning.

• a deep learning model IncResNet I L that takes in RGB image data and

LiDAR height data and estimates biomass, with a minimum validation

MAPE of 28.56%.

• a deep learning model IncResNet I that takes in RGB image data and

estimates moisture content with a minimum validation MAPE of 11.4%.

1.5 Publications Arising from this Thesis

A set of research artefacts were produced while these questions were being

addressed.

• O’Byrne, P., Jackman, P., Berry, D., Franco-Peña, H.-H., French, M., &

Ross, R. J. (2021, July). Transfer Learning Performance for Remote Pas-

tureland Trait Estimation in Real-time Farm Monitoring. IGARSS IEEE

International Geoscience and Remote Sensing Symposium. International

Geoscience and Remote Sensing Symposium, Brussels, Belgium.
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• O’Byrne, P., Jackman, P., Berry, D., Lee, T., French, M., & Ross, R.

J. (2021c, July). The effect of image patch size on CNN-based just-

in-time biomass yield estimators. [Conference Presentation Abstract].

EurAgEng 2021 Conference, Portugal (Virtual).

• O’Byrne, P., Jackman, P., Berry, D., Lee, T., French, M., & Ross, R. J.

(2021b, June). Just-in-time Biomass Yield Estimation with Multi-Modal

Data and Variable Patch Training Size. IFIP Proceedings of the 17th

Artificial Intelligence Applications and Innovations Conference - AIAI

2021. AIAI 2021 17th International Conference on Artificial Intelligence

Applications and Innovations, Aldemar Knossos Royal, Crete, Greece.

• O’Byrne, P., Jackman, P., Berry, D., Lee, T., French, M., & Ross, R. J.

(2021, May). Enhanced Image Processing Methods for Grassland Traits

Analysis in Precision Farming [Conference Presentation Abstract]. The

13th International Conference on Digital Image Processing, Singapore

(Virtual). / Best presentation award granted.

• O’Byrne, P., Jackman, P., Berry, D., Franco-Penya, H.-H., French, M.,

& Ross, R. J. (2019). Multi-spectral visual crop assessment under lim-

ited data constraints. IMVIP 2019. Irish Machine Vision and Image

Processing, TU Dublin.

• O’Byrne, P. and Ross, R. J. (2019). Forage Traits and their Estimation

in Silage Quality Optimization - A Review 1, pages 40.

1This work has not yet been published. Steps are being taken to archive it and prepare if for submission to
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• Jackman, Patrick, Thomas Lee, Michael French, Jayadeep Sasikumar,

Patricia O’Byrne, Damon Berry, Adrian Lacey, and Robert Ross. 2021.

"Predicting Key Grassland Characteristics from Hyperspectral Data"

AgriEngineering 3, no. 2: 313-322.

1.6 Summary and Structure

In the remainder of this work, Chapter 2 looks at the problem area in detail,

with a literature review examining the reasons for determining grassland traits

and how this knowledge can enable more sustainable pastoral farming by

enabling the optimization of inputs to silage. Factors that affect the ensiling

process are determined, to see which traits are influential. Traditional contact

methods for measuring biomass, moisture content and nutrients are reviewed.

The effect of vegetation status on electromagnetic reflectance is explained, as

a basis for vegetation indices. Chapter 3 reviews remote sensing methods that

have been developed for measuring pastureland traits, leading with vegetation

indices; their calculation, their use and usefulness and the sensors they require

to collect data. A selection of proximal sensing case studies illustrate their

practical appliance. Chapter 4 reviews machine learning methods and their

optimisation and goes on to investigate the potential use of computer vision,

machine learning and deep learning, noting possible improvements that could

be made in the estimation process by using them.

The planning and implementation of data collection events is described

a different journal. See Appendix D
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in Chapter 5, showing how the data collection specification developed and

describing each of the sensors, networks, platforms and trolleys and how they

evolved. Data collection and labelling protocols are described and justified.

The outcome of the pilot and primary collection is presented and discussed.

Chapter 6 focuses on hyperspectral spot data. This data requires expensive

sensors and takes a single reading for each sample, eliminating the possib-

ility of augmentation by splitting the area. Here, Normalized Difference

Vegetation Index values are calculated for each collected sample and linear

regression models are built, to predict biomass using different combinations

of the data. Complete hyperspectral readings from each sample are fed into

three machine learning models, a fully connected neural network, a 1D CNN

and a long short term memory model. Before summarising the results, a

visual inspection of the spectra and corresponding RGB images is presented.

Chapter 7 furthers the application of deep learning algorithms to the prob-

lem, starting with a basic convolutional neural network showing its archi-

tecture and giving results, using image data and training for a single target,

comparing how the model behaves, depending on the size of the input image,

the number of channels used and the target. There are a fixed number of

samples, so if a sample is augmented by cutting it into smaller squares, this

leads to more samples, but each is of a smaller area. More complex and deeper

learning algorithms such as Inception ResNet and MobileNet are described

and adapted to be applied to the data. Overall there is a marked improvement,

especially when transfer learning using pre-trained weights from ImageNet
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are used. Here, the use of four-channel data is also explored, as is the size of

the input image.

Chapter 8 investigates the effect of data fusion; adding scalar data to the

learning process, just as height and temperature data has previously been used.

Target estimation may benefit from scalar measurements and this benefit may

be weighed against the overheads in collecting that data. The impact on the

size of patch used when augmenting image data is analyzed before more

analysis is done to predict dryness as a single target.

The work finishes in Chapter 9, returning to the hypothesis, discussing

and proposing solutions to each of the research questions. It concludes with a

discussion of what has been achieved, the overall contribution and its potential

for improving sustainable farming.
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Chapter 2

Silage Research

The physiology of ruminants requires a diet of plant material, which can be

provided through grazing, silage and concentrates (Teagasc, 2016; Hofmann,

2019). To optimize quantity and quality of food production from ruminants, it

is important to establish ruminant nutrient requirements and the choices that

can be made when growing crops for ruminant nutrition. Prior to harvesting,

certain traits of the crop can be measured.

In advance of discussing methods recently used to measure traits in Chapter

3, this chapter will review the ruminant food chain (Section 2.1), from grass to

milk or meat, thereby establishing optimal qualities required from grassland.

It goes on to describe recommendations for production of pasture to enable

a high quality ruminant diet (Section 2.2), both in terms of grazing material

and material harvested for making silage. It briefly describes the ensiling

process (Section 2.3) and traits within the pasture that are useful to measure.

It continues by reviewing traditional contact methods for measuring biomass,

moisture content and nutrients (Section 2.4) and introduces the biophysical
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factors affecting canopy reflectance (Section 2.5), before summarising the

chapter (Section 2.6).

2.1 Ruminant Requirements

A ruminant diet is quite different to that of a human. Plant walls have large

cellulose molecules making them indigestible to humans who are capable

of digesting less than 50% of the energy in cereal crops. Ruminants such

as cattle, sheep and goats have a digestive system that is adapted for plant

material (Hofmann, 2019).

Figure 2.1
Ruminant digestive system, after Scott Foresman (2015)

The ruminant digestive system has four compartments; the rumen, retic-

ulum, omasum and abomasum as depicted in Figure 2.1 (Linn et al., 2017).

The rumen acts as a fermentation vat where microbes ferment the plant ma-

terial, breaking it down into balls of cud. When this cud has been processed

it is passed on through the other compartments, into the abomasum, or true

stomach. This process gives ruminants the ability to convert plant material
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into high quality protein, in the form of milk or meat. They can meet all of

their energy, fibre and protein needs from a diet of forage.

There are many different metrics and definitions used in assessing energy

consumption levels. Energy comes from lipids and carbohydrates, which in

turn come from starch, sugars and fibres. The Net Energy (NE) content of

forage is described in terms of Unité Fourragère (UF), where 1 UF is the Net

Energy content of 1 kg rolled barley. Unité Fourragère Lait (UFL) describes

energy requirements for milk production and Unité Fourragère Viande (UFV)

describes energy required for meat production (Jarrige, 1989). NE require-

ment is usually termed Net Energy required by cattle for maintenance (NEm),

Net Energy required by cattle for gain (NEg) and Net Energy required by

cows for lactation (NEl). The daily requirement for beef cattle would be

NEm + NEg. Intake capacity - a ruminant’s total intake capacity (IC) and

Voluntary Dry Matter Intake - amount a ruminant will voluntarily eat (VDMI)

are both measured in Cattle Feed Units (CFU). The Required Energy Density

(RED) meanwhile, is calculated as follows:

RED = Animal’s energy requirement (UFV or UFL)
Feed intake capacity (IC)

(2.1)

Finally, Metabolisable energy (ME) is scientifically determined by measuring

the energy ingested in consumed forage and energy in materials expelled by

the ruminant (Courtney and Victoria, 2002) and is measured in MJ/Kg of Dry

matter - weight of matter that is available after drying in kilos per hectare
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(DM).

Associated with the amount of energy present, is the amount of fibre. The

fibres in grass are Neutral Detergent Fibre (NDF) and Acid Detergent Fibre

(ADF). NDF is made up of the cell walls of the grass. As the grass matures,

NDF increases, but digestibility decreases (Hoffmann et al., 2001). NDF

varies from around 45% to 65% of dry matter in silage. ADF meanwhile is a

measure of the indigestible material in the silage and can vary from 25% to

50% of dry matter.

Another important constituent to consider within the grass is its protein.

Protein Digestible in the Intestine (PDI) is limited by PDI given available nitro-

gen (PDIN), and PDI given available energy (PDIE). Microbial PDI (PDIM) is

further sub-classified as PDIM given available nitrogen (PDIMN) and PDIM

given available energy (PDIME) (Colin-Schoellen et al., 2000). Optimally,

the ratio between PDIE and PDIN should be correct, as PDI absorption is

limited by the lower value of PDIE and PDIN. If this ratio is incorrect, excess

protein is not digested and is excreted in the urine (Thomas-Murphy, 2016).

The total protein digested by an animal is PDIA + PDIM, where PDIA is

ruminally undegraded feed protein, also called bypass protein that is only

digested in the small intestine.

The protein, fibre and other solids constitute the Dry Matter (DM) which

is essentially what is left when water is removed and this varies from 15% to

45%. Not all dry matter is equally digestible. Dry matter digestibility (DMD)

indicates how digestible the silage is. Percentage of DMD is used as an index
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of silage quality (O’Connor, 2017) as higher DMD silage results in higher

meat and milk production.

Good quality palatable silage should have a dry matter content of 35% to

40%, less than 17% Crude Protein (CP), 22% to 25% crude fibre and less than

10% crude ash. Its net energy for lactation (NEl) should be 6.0 to 6.4 MJ /

kg DM. It should have a pH value of between 4 and 5 and preferably be free

from butyric acid. Acetic acid should be present at 1.5% to 3% but ammonium

should be less than 8%. Yeasts should be present at less than 1 million Colony

forming units (cfu) per gram and molds at less than 5,000 cfu/g (TheBeefSite,

2011). Blake (2012) gives a detailed list of the constituents for which silage

may be analyzed.

It should be noted that silage DMD requirement varies for different classes

of stock; Autumn-calving dairy cows have the highest requirement of over

75% DMD in their silage, whilst dry suckler cows only require around 66%

DMD (Monahan, 2017).

From the above, we see that the constituents of grass that is used to feed

ruminants, either through grazing or silage, makes a difference to the quality

and quantity of meat and milk produced. The next section looks at the factors

in pastureland that meet optimal feed requirements.
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2.2 Grass Constituents

Prior to making silage, it is essential to consider the composition of the grass

being ensiled. Beyond the basic dry matter, sugars and proteins give good

indications of resultant silage quality. During the anaerobic fermentation

process, grass sugars are converted to acid, which preserves the feed value

of the crop. Grasses with a sugar content of at least 3% will ferment well

(Teagasc, 2016). Sugar content is at its highest during weather with bright

sunny days and cool nights (Owens et al., 2002). Crude Protein is also a key

trait in determining the quality of resultant silage. Plant maturity affects the

percentage of CP in forage. As an example, orchard grass is 18.4% CP in

its vegetative state, declining to 8.4% when mature. CP concentration is also

higher in cool environments and is at its optimal in younger plants (Schneider

and Flatt, 1975).

Other factors such as soil condition impact on silage quality. Soil condition

influences the quality of grass at harvest time and soil analysis can reveal pH

level and the plant-available concentration of nutrients such as phosphorous

(P), potassium (K), magnesium (Mg), nitrogen (N) and sulphur (S). If soil

nutrient concentrations or pH levels are not optimal, the grass yield is not

as high (Cong et al., 2019). Meanwhile, of the elements, nitrogen is of par-

ticular importance, since nitrogen is a component of chlorophyll, which is

instrumental in photosynthesis; the plant’s mechanism for using sunlight to

turn carbon dioxide and water into sugars.
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Choice of species is significant in silage production. Higher proportions

of ryegrass are known to be more responsive to nitrogen compared to old

permanent pasture. Ryegrass is considered to be easy to manage because dates

when the seed-heads form, or heading dates, are predictable once the variety is

known (Humphreys and O’Kiely, 2007). It also contains a high sugar content

and preserves easily. Ryegrass based swards have higher sward quality and re-

growth ability and facilitate higher stocking rates. Within ryegrasses, diploids

typically have a dry matter content of around 2% more than tetraploids, but

tetraploids are more palatable and more resistant to drought (Tozer et al., 2017;

Lee et al., 2019), having a bigger cell size and a higher cell to cell wall ratio.

Diploids have a prostrate growth habit, with a small leaf size and higher tiller

density, where tiller density refers to the number of rhizomes a plant produces,

resulting in new plants. Tetraploids have an upright growth habit, larger leaf

size and lower tiller density (McEvoy et al., 2014). White clover (Trifolium

repens) is known to fix atmospheric nitrogen N2 in the soil, increasing soil

carbon content and stimulating growth (Jensen et al., 2011; Andrews et al.,

2011; Lüscher et al., 2014).

Around the world, different species and varieties will suit different envir-

onments. Consideration factors include the sugar level in the crop and hence

its palatability, its response to nitrogen, its persistence, ground cover and yield

(O’Donovan et al., 2011). In some conditions the crop’s ability to tolerate

traffic or close grazing is pertinent as is its moisture requirement, tolerance to

salt or shade and ease of establishment (Moberg-Williams, 2013). In Ireland
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(a) Ryegrass

(b) Clover

Figure 2.2
A perennial ryegrass and clover mix is recommended for pastures in Ireland, for optimal
quality, yield and persistence. Sward sticks measure height, Rising Plate Meter (RPM)

measures grass mass and Robel Pole uses occlusion to estimate height.

and the United Kingdom, ryegrass with a mixture of clover is the most com-

mon combination of crop species used for silage; in other parts of the world

alfalfa and maize are widely used. Specific varieties of maize are becoming

more popular in Ireland (Cunningham et al., 2017). The Irish Department

of Agriculture, Food and the Marine (DAFM) produces a recommended list

of varieties each year (DAFM, 2021), mainly concentrating on early, middle

and late maturing ryegrasses and also clovers, as shown in Figure 2.2. The

recommendations are based on the Pasture Profit Index (PPI) which measures
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traits of importance such as seasonal DM yield, quality, silage DM yield and

persistence (McEvoy et al., 2014).

Similar lists of varieties are produced in Australia (Latimore and Mc-

Cormick, 2012), and New Zealand uses a Forage Value Index to recommend

species and varieties (Ludemann et al., 2017). Across the US, there are many

lists of recommended species that are local to the area and climate-specific,

including Georgia and Texas (Hancock, 2013; Smith et al., 2017).

Grass moisture content has a highly significant impact on silage quantity

and quality. The percentage of dry matter gives an indication of the quantity

of material that will be available for digestion after ensiling. Freshly cut

grass may have a dry matter content as low as 12% following continuous

rainfall over a few days, rising to 23% in drought conditions (O’Donovan and

McEvoy, 2016). Before ensiling, dry matter should make up 30 to 45% of the

harvest, giving the plant adequate sugar, pH and fibre levels. If this percentage

is too low, there is a risk of loss due to effluents and of contamination due to

Clostridia. Clostridia feeds on the carbohydrates, proteins and lactic acid in

the dry matter and produce butyric acid, which is associated with rotten silage

(Kung Jr, 2010). At harvest time, some drying is required prior to ensiling.

To achieve this, the crop may be wilted naturally by leaving it on the ground

in the sun. However, a crop can lose up to 6% of its sugars if left to wilt for 24

to 36-hours, and if left in wet conditions, nitrogen leaches out (Harrison et al.,

1994) and the crop is open to contamination by soil. As plant leaf stomata stay

open for up to two hours after mowing, the use of a tedder, which spreads the
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grass for drying, can expedite the process substantially (Kaiser et al., 2006;

Uslu et al., 2017). Mechanical dryers can also be used to speed up, or better

control the drying process (Collins and Moore, 2017).

To ensure optimal grass height and condition, fields to be used for silage

should be grazed and then rested. This ensures that dead material is removed

and the crop has an even height of around 4cm. Grazing promotes tillering,

maximizing regrowth and raising potential DMD by up to 8 points. The exact

timing of grazing and closing depends on the variety of seed used and local

weather conditions. For example, in Northern Europe, grazing should take

place in February and March. When the field is closed after grazing any

required fertilizer can be applied. Applications of fertilizer should depend on

the current levels of phosphorus, potassium, sulphur and nitrogen in the soil

and on its pH, but it also depends on what variety of crop is being grown. If

soil phosphorus and potassium concentrations or pH levels are not optimal,

the grass yield is not as high.

Having closed the field for grazing, timing of and conditions during cutting

have an impact on silage quality. The leaf to stem ratio should be high as the

DMD value of silage decreases by 2 to 3 units per week after the optimal

harvest date. Sugar content should be at its maximum at cutting time and is at

its highest during weather with bright sunny days and cool nights (O’Donovan

and McEvoy, 2016; Teagasc, 2016). In Northern Europe, first-cut silage dates

are from mid-May to June (Park and Stronge, 2005; McClearn et al., 2021).

If a second cut is done, it is in late July. Harvesting dates can be positively

31



influenced by knowing the heading dates of varieties that are being harvested

(Humphreys and O’Kiely, 2007). A delay in harvesting will give a higher

yield, but the grass becomes stemmy and seed-heads form, resulting in poorer

quality silage. Very leafy grass is also low in sugar. Ideally, grass should be

cut just as the seed heads are beginning to form (Teagasc, 2016). Similarly

a lower cut may increase yield but will result in more stems being harvested

(Jones, 2017) and may even lead to soil being harvested.

In conclusion, the quantity and quality of silage produced depends on a

variety of factors: soil condition, species, treatment of the field in the months

prior to harvesting, and essentially, the dry matter, moisture and nitrogen

content of the foraged material. Prior to reviewing the ways in which these

traits can be measured, the next section briefly describes the ensiling process.

2.3 The Ensiling Process

Silage results from a process of ensiling, which preserves forage using anaer-

obic lactic acid fermentation. The crop is prepared prior to harvesting and

then wilted and packaged in an airtight environment. Plants respire, absorbing

oxygen to create water, carbon dioxide and energy and this process continues

after harvesting, until the oxygen is eliminated, so an airtight environment is

required. If the fibre content is too high, compaction proves difficult.

Kung Jr (2010) states that the three most important things that must happen

quickly to create good silage are the removal of air, the production of lactic
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acid and prevention of air from accessing the silage after it is made, to preserve

it. When the forage has been harvested, Lactic Acid Bacteria (LAB) that is

epiphytically present on the plants ferments Water Soluble Carbohydrates

(WSC) in the plant spontaneously, producing lactic acid and some acetic acid,

decreasing the pH and inhibiting the proliferation of microorganisms that

could cause spoilage. After the wilted material has been gathered, compacted

and covered, Buxton et al. (2003) outlines four phases, which are i) aerobic,

ii) fermentation, iii) stable and iv) feed-out or spoilage. During the aerobic

phase, the oxygen levels are further reduced due to residual respiration and the

action of yeasts and enterobacteria. The plants’ own enzymes remain active,

assuming that the pH level is between 6.0 and 6.4, which is the normal range

for fresh forage juice. During the fermentation phase the silage becomes

anaerobic and lactic acids become predominant, reducing the pH to between

3.8 and 5.0. The stable phase is when fermentation slows. The final phase

is when the silage starts to be used, so is uncovered, allowing oxygen in.

Uncovered silage spoils because preserving organic acids are degraded by

yeasts, causing a rise in pH. This in turn increases activity of bacilli, moulds,

enterobacteria and other microorganisms.

Above we have seen that it is important to understand the content of the

material being ensiled, because the material is completely enclosed during

ensiling. The next section discusses traditional contact methods of measuring

biomass, moisture content, sugars and nitrogen, all of which we have seen are

key to optimizing silage production.
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2.4 Classical Trait Estimation Methods

The importance of biomass, moisture content, and nitrogen levels in grass

prior to the ensiling process has been understood for a long time, and methods

of assessment ranging from low-tech devices through to wet lab measure-

ments have been considered over the years. This section reviews a number of

classical methods that are used to give estimations of pastureland traits.

2.4.1 Direct Harvesting

Direct harvesting continues to be the most accurate way of measuring biomass,

water content and nutrients (Coulloudon et al., 1999; USDA, 2003; Berni et al.,

2009a; Murphy et al., 2021b), providing an opportunity to conduct intensive

tests on the raw material. The tools required for direct harvesting are a quadrat,

a clippers, a weighing scales and sealable temperature controlled containers

to preserve the harvested material for transport to a lab. A quadrat is a frame,

usually square, between 0.25m2 to 1m2. Some quadrats are subdivided. The

quadrat should be big enough to sample the plants required, but small enough

to allow for a reasonably accurate count of plants, in a reasonable time. Prior

to starting the harvest a protocol should be devised identifying the pattern of

sampling that is to be carried out. This protocol should be advised by the

homogeneity of the area to be sampled, with more samples required if the

area is heterogeneous, but must be well documented and observed. Murphy

et al. (2020) observed an average variation of 36% over a grazing season
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Figure 2.3
Illustration of (a) ‘X’ transect; (b) ‘lazy W’; (c) simple random; and (d) random stratified

sampling pasture measurement protocols on 1 ha grazed pasture, with orange circles
indicating measurement locations (n = 20) and blue dashed line outlining the measurement

route for (a) and (b). Source: Murphy et al. (2021a)

across pastures in Ireland, principally growing perennial ryegrass. A review

of options regarding paths taken through a pasture when sampling shows

patterns (Figure 2.3) where a transect path may often be chosen, going from

one end of the pasture to the other. The ‘W’ path is preferred by users of

the Rising Plate Meter. Whilst random sampling may avoid operator bias,

random stratified sampling is more likely to produce a true estimate (Murphy

et al., 2021a).

Direct harvesting is done by placing the quadrat according to the agreed

protocol, estimating canopy coverage as a percentage of the quadrat size,

noting the frequency and distribution of plants in the quadrat, clipping all
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plants whose roots are inside the quadrat to an agreed height. For each quadrat,

the entire clipped material is gathered, weighed and recorded. This gives the

field-weight (W ), also known as fresh-weight or green-weight. Green-weight

includes water, from both inside and outside the leaves and stems, making

the measurement very dependent on weather, atmospheric conditions and the

water status of the plant. Depending on the intended use of the material, it

may be sorted into species prior to recording and weighing. Representative

sub-samples are weighed and air-dried. Air-drying is considered sufficient

for this process, so the material can be dried in an oven at a temperature of

typically 60°C for 24 hours (Bai et al., 2016; USDA, 2003; Murphy et al.,

2021b) though practices vary, with one group drying at 40°C for 48 hours

(Schaefer and Lamb, 2016) and others using a higher heat for a shorter time. A

higher heat is in line with applications that require the material to be dried to a

constant weight, removing all traces of moisture, but for this purpose a higher

heat can introduce errors as it can destroy biomass (Minson and Lancaster,

1963). For moisture estimation, a dry-weight (DW) must be calculated and

compared to an initial weight (W). In addition to calculating DW, this process

also reveals the sample’s Fuel Moisture Content (FMC) (Zhang et al., 2010).

FMC = W − DW

W
(2.2)

The dry weight is fed into a calculation to estimate dry matter in the pasture

being sampled and conversion charts can be developed to determine what
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the dry matter weight will be of green-weight for a particular species in a

particular area, but weather, atmospheric conditions and plant water status

must be taken into account (USDA, 2003; Coulloudon et al., 1999).

Nutrients can also be measured through chemical analysis of dry matter,

including near infrared spectroscopy (Shenk and Westerhaus, 1991; Murphy

et al., 2021b; Font et al., 2021).

The estimation of moisture content from a classical perspective has often

been achieved through direct harvesting methods. Unfortunately, due to their

destructive, labour intensive and time consuming nature, they are not suitable

for use in real-time on-line applications. Nevertheless they do provide a useful

ground truth for calibration of more advanced methods that will be introduced

later.

2.4.2 Indirect Contact Methods

At the most basic level, many estimates of biomass are dependent on the height

of grass, and can be measured with a sward stick with markings (Mannetje

and Jones, 2000), the concept of which is depicted in Figure 2.4a. The Robel

Pole method (Figure 2.4c) meanwhile uses two poles, connected at the top by

a rope or string, and makes use of the visual obstruction method (Robel et al.,

1970). A somewhat more sophisticated variant on these methods is the Rising

Plate Meter (RPM, Figure 2.4b), which is a disk (plate) with a perpendicular

shaft along which the plate can rise and fall during operation. The bottom

of the shaft touches the ground and the plate sits on top of the grass, thereby
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(a) Sward Stick (b) RPM

(c) Robel Pole

Figure 2.4
Sketches of indirect non-contact tools for estimating biomass, depicting (a) sward stick, (b)

Rising Plate Meter and (c) Robel Pole.

measuring compressed sward height (Earle and McGowan, 1979). Rising

plate meters are specifically designed to measure grass or clover swards and

are most accurate between 1,200 and 3,200 kg/ha of dry matter, and are subject

to accurate calibration. Non-representative readings will be given in areas that

have been trampled, over fertilized, shaded or wet, or when the plate is not

clean or free-moving (Mills et al., 2016). Also, if the meter is not positioned

correctly in relation to the area being measured or incorrectly calibrated, it can

give false results (Klootwijk et al., 2019). A trial undertaken over the period
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of March 2017 to October 2018 in Ireland in rotationally grazed paddocks and

controlled trial plots noted that dry matter varied by 36% across the growing

season, but that when measurements are taken according to protocol, pasture

compressed height can be accurate to within 5% (Murphy et al., 2021c).

A number of studies have attempted to evaluate the efficacy of such in-

direct estimation methods. Rising plate meters were found to be adequate

in measuring DM variation of intensively grazed swards of 5cm and 10cm

height (Correll et al., 2003), but essentially need a different set of calibration

equations per season (Nakagami and Itano, 2014). For swards of 20 to 25 cms

in height they proved relatively reliable, provided each RPM was separately

calibrated (Holshof et al., 2015). Models that combine readings from a rising

plate meter with other data that is routinely collected and recorded by farm-

ers provide superior prediction of dry matter or herbage mass. In particular,

Murphy et al. (2021c) found that combining compressed sward height with

monthly coefficients of nitrogen fertilization and grazing rotation, improved

accuracy. Other measurements that improved prediction were meteorological

factors, soil temperature and evaporation.

A further indirect method of measuring biomass is with a capacitance

meter (Currie et al., 1987) which is a hand-held wand-like probe. The capa-

citance probe measures changes in external capacitance using a circuit inside

the probe and is based on the fact that herbage has a higher dielectric constant

than air. The probe consists of a thin rod inside a metal tube. The meter

automatically takes a reading once it has sensed that the wand has probed the
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base of the pasture. Using a calibration equation, the amount of dry matter

per hectare can be calculated for each probe. Some of these probes take an air

reference reading and the more modern versions mitigate against the effects

of internal and external forage moisture, forage morphology, ambient temper-

ature, relative humidity and soil moisture (Fletcher and Robinson, 1956; Neal

and Neal, 1965, 1973; Currie et al., 1987).

On reviewing their usefulness, one early study found that capacitance

meters have provided a rapid, accurate and non-destructive means of estimat-

ing yields of a single plant, which could theoretically be extrapolated to give

total above-ground biomass, but that they are not consistent across different

dates or species. However, a single probe capacitance meter is useful for es-

timating individual species’ dry yield and fresh yield in a homogeneous stand

(Currie et al., 1987).

There are a number of contact sensors that can be used to measure soil

moisture. Moisture levels change electrical capacitance and resistivity. Res-

istance probes work on the basis that as water levels increase, resistivity

decreases. Probes based on resistivity have two electrodes that must main-

tain consistent contact with the soil (Roux et al., 2016). Because of this

requirement to maintain a fixed position in the soil, these probes are not uni-

versally suitable (Campbell et al., 2021). Dielectric sensors, or capacitance

probes have electrodes that are coated, so they are perfectly isolated elec-

trically (Roux et al., 2016). Capacitance sensors use the soil as a capacitor

element and use the soil charge storing capacity to calibrate to water content.

40



Time Domain Reflexometry (TDR) measures the travel time of a reflected

wave of electrical energy along a transmission line, relating the time to the

soil’s charge storing capacity to calculate the volumetric water content. Fre-

quency Domain Reflexometry (FDR) uses soil charge capacity and maximum

resonant frequency to calculate water content.

Capacitance sensors require soil-specific calibration, but are inexpensive,

require little power, but they become inaccurate as salinity levels rise (Camp-

bell et al., 2021).

2.4.3 Measuring Nutrients

While estimation of biomass is relatively straightforward, the estimation of

other traits such as nitrogen or moisture content is somewhat more complex.

Measuring nitrate levels or indeed any other chemical constituent in an in-

direct way can be inherently problematic. For nitrogen content the most

traditional method is through visual inspection since crops high in nitrogen

are generally a darker colour green than those low in nitrogen. Other more

accurate indirect estimation methods measure sap nitrates. Sap nitrate is more

sensitive to changes in nitrogen and the leaf petiole sap accumulate nitrates

more than other parts of plants. Given this property, quick indicators for ni-

trogen levels use nitrate test strips or hand-held reflectometers (Jemison Jr

and Fox, 1988). A nitrogen meter measures nitrate-nitrogen (NO3-N) in the

plant’s petiole or leaf stem sap, and the test strip measures soil nitrate in the

root zone (Bevacqua and Cardenas, 2002). This can be done in the pasture
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with a nitrometer such as a Cardy (McIntyre, 1995), although the LAQUAtwin

nitrometer is now more popular (Megahed et al., 2016). A Soil Plant Analysis

Development chlorophyll meter (SPAD) on the other hand produces values

that are proportional to the amount of chlorophyll present in a leaf. Calib-

ration curves are available for different crop types (Ling et al., 2011). One

comparison of leaf nitrogen and nitrate content estimation by SPAD meter,

Cardy-ion meter and lab-based results found that the meters gave accurate

quantification of the nitrogen status of a potato crop (Majić et al., 2008).

On-site measurement of sugars is more problematic. Beyond subjective

taste based assessments of sugar content, the most reliable classic methods for

sugars estimation make use of hand-held refractometers. This device gives

the Brix (°Bx) measurement of a liquid; in this case, that of crushed or minced

grass. The refractometer uses a known refractive index of the glass prim to

measure the refractive index of sap. The measurement represents the Water

Soluble Compounds (WSC) in the liquid. This could include sugars, oils,

minerals and other constituents, so it is not representative of the exact amount

of sugar. Brix levels can change due to dilution, temperature and barometric

pressure (Lemus, 2014). It is notable though that due to photosynthesis, Brix

values increase over the course of the day, peaking just before photosynthesis

stops for the day. It is also worth noting that the sugar content in a plant is

not evenly distributed, with leaves containing more sugar than stems (Gilker,

2017).

Crude protein measurements can be measured using NIRS in a wet lab
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context, but more recently, experiments have taken place to calibrate the

readings from portable NIRS probes, such as the FOSS 6500 spectrometer,

with crude protein and dry matter in pastureland. Despite some concerns

regarding moisture, accuracy of R2 = 0.86 was reached for dry matter and

R2 = 0.84 for crude protein using Modified Partial Least Squares (Murphy

et al., 2021b).

Classical trait estimation methods are still widely used, but one of the

biggest challenges associated with them is that they are often time consuming

and cannot be calculated in real-time for multiple samples in a straightforward

way. It is for these reasons that non-contact based sensing solutions for trait

estimation are highly desirable. This review now turns to the underpinnings

of such estimation methods.

2.5 EM Reflectance and Vegetation

Nature provides a mechanism for assisting in the non-contact estimation of

vegetation traits, in the form of electromagnetic reflectance. This section

provides a brief overview of how reflectance values from a plant change in

accordance with its species and state of health and discusses how measuring

reflectance can be used to estimate pastureland traits.

The signatures of reflected electromagnetic radiation (including visible

light) from vegetation differs across species and in accordance with internal

and external conditions (Gitelson et al., 1996). In the visible range, the colour
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(a) Ageing leaves. This image shows leaf colour changing, as the
leaves age.

(b) Reflectance chart depicts the effect of leaf colour on reflectance of
the EM spectrum (adapted from (Jensen, 2007))

Figure 2.5
Changes in reflectance as leaves age. As the leaf colour changes, less red energy is absorbed.

This causes the red edge to move and become more shallow.
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of a leaf is determined by the pigments that are present in it (Van Witten-

berghe et al., 2015). The structure of the leaf affects reflectance in the Near

Infrared (NIR) range. As leaves photosynthesize they absorb most ultraviolet

and visible light (Gobba, 2018) and around half of the available NIR light

(Gitelson and Merzlyak, 1994). The remainder is reflected. So during active

photosynthesis, reflectance in the red region is relatively low, with a marked

increase in reflectance in the Near Infrared. This area of the electromagnetic

spectrum is 780 nm to 2500 nm (NIR) region. This increase is so dramatic

it is known as the red edge, as illustrated in Figure 2.5. As the plant begins

to senesce, or deteriorate with age, reflectance begins to increase in the red

bands as absorption drops, and decrease in the NIR bands as absorption rises,

so the reflectance peak moves, causing the red edge to move towards shorter

wavelengths. In senescent vegetation, it may disappear altogether (Pinter

et al., 2003). As chlorophyll is a driver of photosynthesis, the precise position

of this red edge depends on the amount of chlorophyll present in the leaf.

Vegetation monitoring takes advantage of the variations in how the electro-

magnetic spectrum is absorbed by plants. Bands that are chiefly used for this

purpose are ultraviolet (UV) from 350 to 400nm, Photosynthetically Active

Radiation (PAR) from 400nm to 700nm (Blue - 400nm to 500nm; Green -

500nm to 600nm and Red - 600nm to 700nm) and near-infra-red radiation

(NIR) from 700 to 2,000nm (Hikosaka et al., 2015).

A much broader range of electromagnetic wavelengths are influenced by

the presence of water than those that are influenced by vegetation. The wa-
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ter molecule, H2O has absorption bands around 970nm, 1200nm, 1450nm,

1950nm and 2250nm and this information can be used to predict Relative

Water Content (RWC) (Sims and Gamon, 2002). Its changing presence in

vegetation can also have secondary consequences for reflectance in the NIR

region. During leaf water deficit, the cell loses pressure or turgor resulting in

a change in reflectance in NIR (Mistele and Schmidhalter, 2010). Thermal

infrared reflectance (6µm to 15µm) provides information on the thermal dy-

namics of vegetation cover, and may be used to estimate evapotranspiration,

a plant’s mechanism for cooling. Stressed plants close stomata, resulting in

less water evaporating from the leaves, causing the leaf canopy temperature to

rise. If a crop is transpiring, the leaves cool to below ambient air temperature,

changing the temperature difference between the canopy and the air (Idso

et al., 1981; Jackson et al., 1981).

However, plant phenology has also been found to have a strong influence

on reflectance. A broad-ranging experiment to measure spectral reflectance

of leaves of different species and phenological stage showed that structural

difference, such as leaf thickness, pubescence (hair on the leaf) or wax on the

leaf surface, changed reflectance patterns, with hair increasing visible light

reflectance and having varying effects on NIR reflectance; wax and moisture

increased reflectance in the visible and NIR regions of the EM spectrum

(Sims and Gamon, 2002). Nonetheless, electromagnetic reflectance is used to

estimate pastureland traits, in the form of vegetation indices, as described in

Chapter 3.
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2.6 Summary

In this chapter, ruminant digestive requirements were reviewed, along with

the traits in grass that can optimize its use for making good quality silage.

Traditional contact-based assessment methods of biomass, moisture, sugar

and leaf nitrogen content were shown to be effective in local application,

but these methods prove to be slow. The biophysical underpinning of more

sophisticated estimation methods were established in reviewing interaction

between vegetation and the electro-magnetic spectrum. The next chapter

will discuss how these underpinnings have been used in tandem with remote

sensing to estimate vegetation traits and will discuss further possibilities that

could provide more accurate and widely usable trait estimates.
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Chapter 3

Vegetation Trait Measurement

The previous chapter has established vegetation traits that are important to

the estimation of silage quantity and quality. This chapter will review remote

sensing estimation of vegetation traits and promising technologies that could

be used to improve the usability and accuracy of such trait estimation.

To do this, Section 3.1 first introduces the concept of the Vegetation In-

dex (VI) a calculation that estimates vegetation traits. Many VIs have been

developed over the years to estimate different traits. A wide range of VIs is

reviewed, including the original broadband VIs, the more focused narrowband

VIs that are designed to increase accuracy and to estimate plant nutrient levels,

and finally those that are designed to measure moisture content.

In order to use VIs, spectral reflectance must be measured. Hence Sec-

tion 3.2 reviews methods of scanning and acquiring images for use in trait

estimation. A selection of case studies in pastureland trait estimation using

proximal sensing is presented in Section 3.3. A discussion finishes the chapter,

in Section 3.4.

48



3.1 Vegetation Indices

VIs are a means of analysing vegetation properties that go back more than half

a century, when the colour of growing turf was measured using the Simple

Ratio vegetation index (Birth and McVey, 1968). In 1972, NASA launched

a Landsat satellite that orbited the Earth, with an operational seven channel

multispectral scanner (MSS), starting an era of experimentation with remotely

sensed VIs (Parkinson et al., 2006). A vegetation index (VI) is a mathem-

atical combination, or function, of spectral bands that highlights photosyn-

thesising plants and reveals some of their characteristics. Many different VIs

exist and these vary in the information they provide. Their intent is to provide

this information as independently of atmospheric and topographic conditions

as is possible. Each VI has a correlation with a vegetation property such as

biomass, chlorophyll content, leaf area index or plant nutrients. The correla-

tion may be linear, logarithmic or polynomial and requires the development

of a correlation equation. This equation is often developed through regression

analysis, but may sometimes require more complex calculations (Ali et al.,

2015).

3.1.1 Broadband VIs

Early VIs were based on broadband multispectral reflectance information in

their calculations (Rouse et al., 1974; Richardson and Wiegand, 1977). These

indices do not have a standard universal value, the result being confounded by
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soil brightness, soil colour and atmospheric effects. When mapping reflect-

ance of vegetation, soil and water at a range of wave bands, each substance

has a distinct spectral curve. As explained in Section 2.5, actively photosyn-

thesising vegetation shows a distinct difference in reflectance value in the NIR

and Red bands. There are certain principles that underline the rationale of the

various VIs and that have lead to them being grouped into categories. The

remainder of this section looks at the categories, giving examples of VIs that

are in each category. The categories covered are Slope-Based VIs, Distance-

Based VIs, combinations of the two and orthogonal VIs, using broad wave

bands.

3.1.1.1 Slope-Based VIs

Jackson and Huete (1991) coined the phrase ‘slope-based VIs’ to categorize

VIs that use the contrast between spectral response patterns in the Red and

NIR range of the EM spectrum. Essentially this means that regardless of

brightness and some forms of atmospheric interference, the ratio of Red to

NIR reflectance is stable, and the slope of the plotted Red:NIR reflectance

values indicates the vegetation index. The premise of these VIs is that pho-

tosynthesising plants reflect NIR light and absorb Red light, so they indicate

chlorophyll concentration in foliage. They also indicate canopy leaf area,

foliage clumping and canopy architecture. Examples of slope-based VIs are

SR (Birth and McVey, 1968), RVI (Richardson and Wiegand, 1977), NRVI

(Baret and Guyot, 1991), NDVI (Rouse et al., 1974), TVI (Deering et al.,
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1975), CTVI (Perry and Lautenschlager, 1984) and TTVI (Thiam, 1998).

The most basic VI is known as Simple Ratio (SR) (Birth and McVey,

1968) and is calculated by dividing the reflectance values of the NIR band by

those of the Red band. Its inverse is known as Ratio Vegetation Index (RVI)

(Richardson and Wiegand, 1977).

SR = NIR

Red
(3.1) RV I = Red

NIR
(3.2)

To reduce topographic, illumination and atmospheric effects and create a

statistically desirable normal distribution, Normalized Ratio Vegetation Index

(NRVI) was developed (Baret and Guyot, 1991), where

NRV I = RV I − 1
RV I + 1 (3.3)

However, there is still a possibility of zero divides and the output is not linear.

The Normalized Difference Vegetation Index - the difference between

reflectance values from the NIR region of the EM spectrum and from the red

region, normalized by their sum (NDVI) (Rouse et al., 1974) is one of the

most popular VIs (Flynn, 2006; Garroutte et al., 2016). It uses the difference

between reflectance from the near infrared and red bands, normalized by their

sum, returning a value between -1 and 1. Figures 3.1 and 3.2 show seasonal

changes in NDVI over Ireland and Britain in 2003.

NDV I = NIR − Red

NIR + Red
(3.4)
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Figure 3.1
Average Normalized Difference Vegetation Index (NDVI) over the islands of Ireland and
Great Britain in June 2003, taken from the Advanced Very High Resolution Radiometer
instruments (AVHRR) on board the National Oceanic and Atmospheric Administration

(NOAA) platform. Source: Cappelluti (2009a)

Figure 3.2
Average Normalized Difference Vegetation Index (NDVI) over the islands of Ireland and

Great Britain in October 2003, taken from and the Advanced Very High Resolution
Radiometer instruments (AVHRR) on board the National Oceanic and Atmospheric

Administration (NOAA) platform. Source: Cappelluti (2009b)

As vegetation biomass increases, NDVI approaches 1. Values over 0.4 rep-

resent growing vegetation, a value of 0.1 to 0.4 is often recorded over cities

and a low positive value, zero to 0.1 represents rock, soil or senescent plant

material. Values of less than zero indicate that clouds, snow or a very wet area

has been detected. NDVI is used to map variations in biomass and quality of
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Figure 3.3
Leaf Area Index (LAI) plotted against Normalized Difference Vegetation Index (NDVI),

showing that NDVI saturates as LAI increases. Adapted from Tanaka et al. (2015)

forage, especially in early season.

Asner et al. (2003) describes Leaf Area Index - the total one-sided area

of leaf tissue, per unit ground surface area, varying in value from zero on

bare ground, to ten in densely forested areas (LAI). At low LAI there is

a linear correlation between biomass and NDVI, but as LAI increases and

biomass becomes dense, this correlation declines, as shown in Figure 3.3

(Mutanga and Skidmore, 2004; Tanaka et al., 2015). NDVI saturates during

peak productivity, because the amount of light that can be absorbed at the

red region of the spectrum reaches a plateau. NIR reflectance continues to

increase, because as the number of leaves grows, so does the scattering effect

caused by them (Ramoelo et al., 2015). It should be noted that LAI at which

saturation occurs depends on the species, plant morphology and chlorophyll

concentration in the leaves (Schaefer and Lamb, 2016).

During a study to determine a method by which NDVI could be used to

estimate biomass, assess spatial variability of yield and calculate available for-

age, a conclusion was reached that NDVI could be used to estimate biomass
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when calibrated by a rising plate meter, and that it was adequate for gather-

ing information about the spatial variability structure of DM within a grazed

sward, provided LAI was less than 3 (Flynn, 2006). Additionally, it showed

areas where cattle preferred to graze and those that were avoided, indicating

inaccessibility or faecal contamination. Gitelson (2005) agreed that NDVI

approaches saturation asymptotically under conditions of moderate-to-high

above-ground biomass and proposed a new index, Wide Dynamic Range Ve-

getation Index (WDRVI), that modifies NDVI with a weighting coefficient

a of around 0.1 or 0.2 on the NIR reflectance value, on the basis that red

reflectance stays reasonably constant at LAI over 2, but NIR reflectance con-

tinues to change between LAI of 2 and 6. Some researchers found that using

non-linear models improved the efficacy of NDVI (Santin-Janin et al., 2009;

Garroutte et al., 2016). It should also be noted that NDVI is influenced by soil

exposure, topography, senescent vegetation and atmospheric contaminants

(Flynn, 2006; Garroutte et al., 2016).

The Transformed Vegetation Index (TVI) (Deering et al., 1975) is an ad-

justment to NDVI that avoids operating with negative values and introduces a

normal distribution,

TV I =
√√√√NIR − Red

NIR + Red
+ 0.5 (3.5)

but technically TVI gives the same information as NDVI. Further en-

hancements to this were Corrected Transformed Vegetation Index (CTVI)
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(Perry and Lautenschlager, 1984) and Thiam’s Transformed Vegetation Index

(TTVI)(Thiam, 1998).

A summary of slope-based VIs is shown in Table 3.1. In addition to

saturation problems when ground cover is complete, these indices offer un-

predictable results in areas of varying soil colour, roughness and moisture

content (Rondeaux et al., 1996). Further VIs were subsequently developed.

3.1.1.2 Distance-Based VIs

VIs are categorized as distance-based if they depend on the establishment

of a soil line (Jackson and Huete, 1991). When Red and NIR reflectance

values are plotted against each other, the soil line is a line representing the

pixels showing bare soil. As soil moisture increases, values for Red and

NIR reflectance decrease, but the ratio stays the same. Distance-based VIs

measure the difference between a pixel’s reflectance and the reflectance of

a pixel that represents bare soil. As vegetation spreads, the vegetated pixels

increase in perpendicular distance from this soil line. Operationally, the slope

and intercept of the soil line is first determined and then the vegetation index

is calculated from these values.

The Perpendicular Vegetation Index (PVI) (Richardson and Wiegand, 1977)

is the most basic of these (Equation 3.6), where (x1, y1) is the point being

measured and (x2, y2) is the point on the soil line perpendicular to it.

PV I =
√

(x2 − x1)2 + (y2 − y1)2 (3.6)
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VI Formula Citation

SR
NIR

Red
(Birth and McVey, 1968)

RVI
Red

NIR
(Richardson and Wiegand, 1977)

NRVI
RV I − 1
RV I + 1 (Baret and Guyot, 1991)

NDVI
NIR − Red

NIR + Red
(Rouse et al., 1974)

TVI
√

NDV I + 0.5 (Deering et al., 1975)

CTVI
NDV I + 0.5

| NDV I + 0.5 |
·

√
| NDV I + 0.5 | (Perry and Lautenschlager, 1984)

TTVI
√

|NDV I| + 0.5 (Thiam, 1998)

WDRVI
a.NIR − Red

a.NIR + Red
(Gitelson, 2005)

Table 3.1
Slope-based VIs

Figure 3.4 shows a soil line and five points representing measurements over

soils and vegetated surfaces. Points A and B both represent areas of bare

soil, but at point A, the soil is very dry and reflective, while the soil at point

B is wet. Points C and D both represent areas with the same amount of

vegetation (approximately 25% coverage), but point D is wetter than point

C. Point E represents an area of fully developed vegetation. Because PVI

measures perpendicular distance from the soil line, A and B have the same

PVI, as do C and D (Jackson et al., 1980). A PVI value of less than 7 is

deemed to be non-vegetative (Richardson and Wiegand, 1977). This index

is sensitive to atmospheric variations and must be atmospherically corrected.

It also assumes that soil is consistent across the area being measured, which

may not be accurate. PVI is the basis of all distance based VIs and is useful
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Figure 3.4
Red Band Reflectance plotted against Infrared Band Reflectance, showing reflectance points

and a soil line. Source: Jackson et al. (1980)

in arid environments.

As this original formula does not distinguish between pixels that fall to the

left of the soil line (non-vegetative material) and those that fall to the right,

PVI1 (Equation 3.7) was developed to negate those that fall to the left (Perry

and Lautenschlager, 1984), using the formula:

PV I1 = ((a.NIR − Red) + b)√
a2 + 1

(3.7)

where a is the soil line slope and b is its intercept. NIR reflectance is taken

as the independent variable and Red reflectance as the dependent variable for

the purposes of regression analysis.

Richardson and Wiegand (1977) also propose the very simple Difference
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Vegetation Index (DVI), developed using Landsat data. They weighted the

NIR reflectance value (MSS7 NIR 2 channel; 800 to 1100nm) with the slope

of the soil line and subtracted the MSS5 Red channel reflectance value (600 to

700nm) to align with ground truth values from Landsat. This was simplified

by Tucker (1979) in later experiments

DV I = NIR − Red (3.8)

and further adapted to use standard NIR and Red channels, with slope weight-

ing moved to the Red channel, giving Weighted Difference Vegetation Index

(WDVI)

WDV I = NIR − a.Red (3.9)

where a, once again, represents the slope (Clevers, 1988). Weighting the Red

band with the slope in this way maximizes the vegetation signal in the NIR

region and minimizes soil brightness (Silleos et al., 2006).

Distance-based VIs are useful in arid regions, but require soil to be visible

to establish a soil line. Although they are less sensitive to soil effects than

slope-based indices, they are not immune to the effects of soil (Rondeaux

et al., 1996). A summary of distance-based VIs is shown in Table 3.2.
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Distance-based VIs (a = slope, b = intercept)

VI Formula Citation Notes

PVI
√

(x2 − x1)2 + (y2 − y1)2
(Richardson
and Wiegand,
1977)

(x1, y1) being measured

(x2, y2) ⊥ on soil line

PVI1
a · (NIR − Red) + b√

a2 + 1

(Perry and
Lautenschlager,
1984)

DVI a · NIR − Red
(Richardson
and Wiegand,
1977)

Original (Landsat)

DVI NIR − Red (Tucker, 1979) Original (Landsat)

WDVI NIR − a · Red (Clevers, 1988) Standardized

Table 3.2
Distance-based VIs, using soil line

3.1.1.3 Combination VIs

Whilst both slope-based and distance-based VIs give an indication of veget-

ation traits, in each case there are limitations, from atmospheric interference

to soil background effects. Further VIs have been developed that combine the

qualities of slope-based and distance-based VIs. A selection of modified VIs

are covered here.

Soil-adjusted Vegetation Index (SAVI), (Huete, 1988) offers a significant

improvement in mitigating effects of soil background by adding a soil adjust-

ment factor L into the denominator of the NDVI equation (Equation 3.10). L

has values of 1 in low vegetation density, 0.5 in intermediate density or 0.25
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in high density.

SAV I = NIR − Red

NIR + Red + L
.(1 + L) (3.10)

If L had a value of zero, SAVI would equal NDVI and when L = 1, SAVI

approximates PVI. Baret et al. (1989) postulated that SAVI only gave accurate

results when the soil line slope was 1 and the intercept was zero and proposed

the transformed soil adjusted vegetation index TSAVI (Equation 3.11).

TSAV I = a(NIR − a.Red − b)
Red + a(̇NIR − b) + 0.08(1 + a2)

(3.11)

This equation includes the slope a and intercept b of the soil line and uses a

constant coefficient value of 0.08 to minimize soil effects.

The Modified Soil Adjusted Vegetation Index (Qi et al., 1994) is a more

recent adjustment that replaces the L parameter in SAVI (Equation 3.12).

MSAV I = NIR − Red

NIR + Red + L
(1 + L)

where L = 1 − 2a ∗ NDV I ∗ WDV I

(3.12)

These indices reduce the soil influence, but a soil line cannot always be

established, especially in areas of high coverage (Rondeaux et al., 1996). Qi

et al. (1994) also offered a further modification, MSAVI2 (Equation 3.13),

which eliminates the need to find the soil line and further removes soil noise.
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It is most effective in areas where vegetation density is not at a maximum.

MSAV I2 = (2.NIR + 1 −
√

(2.NIR + 1)2 − 8.(NIR − Red)
2 (3.13)

The Atmospherically Resistant Vegetation Index (ARVI) was developed

by Kaufman and Tanre (1992) and includes the Blue channel in its calcula-

tion (Equation 3.14), on the basis that the blue channel contains atmospheric

information (Rondeaux et al., 1996). This adjustment makes ARVI four times

less sensitive to atmospheric effects than NDVI, with a similar dynamic range:

ARV I = NIR − (RB)
NIR + (RB)

where RB = Red − γ(̇Blue − Red)
(3.14)

where γ depends on the aerosol type, using a default value of 1.

While most VIs have taken advantage of the Near Infrared bands, some

indices only use reflectance in the visible range, so that standard RGB cameras

can be used. One example of such an index is the Visible Atmospherically

Resistant Index (VARI). VARI estimates vegetation fraction with minimal

sensitivity to atmospheric effects (Gitelson et al., 2002).

V ARI = Green − Red

Green + Red − Blue
(3.15)

The Enhanced Vegetation Index (EVI) was developed to make use of

MODIS data (Equation 3.16), to quantify vegetation greenness, and takes
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atmospheric aerosol scattering effects into account (Huete et al., 1999). EVI

also uses the Blue band and a soil adjustment factor L. Although originally

developed to use MODIS sensors, it has been adapted for use on later satellite

platforms such as Landsat (Jarchow et al., 2018):

EV I = G.
NIR − Red

NIR + C1.Red − C2.Blue + L
.(1 + L) (3.16)

where parameters C1 and C2 are coefficients of the aerosol resistance term.

L, C1 and C2 are empirically derived for specific sensors; MODIS uses C1 =

6, C2 = 7.5 and L = 1. G is a scaling or gain factor (Jensen, 2007).

EVI is sensitive to canopy structural variations, including leaf area index

(LAI), canopy type, plant physiognomy, and canopy architecture. This VI

has improved sensitivity to high biomass regions and reduced atmospheric

influence (Huete et al., 1999).

A summary of combination VIs is shown in Table 3.3.
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3.1.1.4 Orthogonal Transformations

Another class of VIs worth considering are the Orthogonal VIs. These VIs

take information from more than two bands and are derived differently to pre-

viously documented VIs. Kauth and Thomas (1976) studied data from four

of the LANDSAT channels representing Green, Red, NIR 1 (700 to 800nm)

and NIR 2 (800 to 1100nm). In multi-dimensional space the pattern formed

looked like a tasselled cap; essentially two triangles converging at one point,

with different parts of the cap associated with features which they labelled

’green stuff’, ’yellow stuff’, trees and soil. Three significant indices emerged

from this work; the brightness index, the greenness index and the yellowness

index. The formulae for these indices are sensor specific and must be calcu-

lated for each sensor. The GVI (greenness index) formula for Landsat MSS

and TM are shown in Table 3.3. Kauth and Thomas (1976) acknowledge that

external effects such as haze can cause problems with these indices. In prac-

tice, the algorithm applied is very similar to Principal Component Analysis

(PCA), which combines highly correlated data from a dataset to reduce dimen-

sionality. It takes in n-dimensional data and represents them in m dimensions

or components, where m < n. The m dimensions that are produced are not

correlated to each other. This is done by standardizing the scale of the data,

calculating the covariance, deducing eigen vectors and values, reorienting the

dataset and plotting it. The components are ordered in terms of their ability to

represent the data in the original n dimensions, with the principal component

64



being the most representative. Generally when this technique is performed on

remotely sensed images the principal component is albedo or brightness and

the second represents variation in vegetative cover (Thiam, 1998).

3.1.1.5 Summarizing Broadband VIs

Thiam and Eastman (2012) and Silleos et al. (2006) note that slope-based

indices are easy to use and interpret, but are unable to minimize the effects

of soil background. Distance-based VIs, meanwhile, can minimize soil back-

ground brightness, provided they can establish a soil-line, rendering them

usable only in situations where there are bare soil pixels in the image. The

orthogonal approach produces a greenness index that also mitigates for soil

brightness, as soil characteristics are represented in an orthogonal index, but

that index must be established for the sensing environment and atmosphere.

In essence, the use and usefulness of any vegetation index therefore de-

pends on what is being investigated, the geographical characteristics of the

area and atmospheric and sensor interference that may be present. If the in-

vestigation area is proximal, but not contact sensing of pastureland, it may not

be possible to establish a soil line in many of the images. It is also possible

that the lighting and atmosphere between the sensor and the target area can

be limited by careful configuration of sensor housing.
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VI Formula Citation Use

NDRE
R790 − R720

R790 + R720
(Gitelson and Merzlyak, 1994) Measuring chlorophyll-a

NDVI
R790 − R670

R790 + R670
(Rouse et al., 1974) Measuring biomass

CCCI
NDRE

NDV I − Red
(Barnes et al., 2000) Measuring chlorophyll-a

and N

REIP 700 + 40
R670+R780

2−R700

R740 − R700
(Clevers, 1988) Finding Red Edge

Inflection Point

CI
R800

R590
− 1 (Gitelson, 2005) Chlorophyll index

CIRE
R800

R730
− 1 (Gitelson, 2005) Chlorophyll index

vegetation index

MTCI
R800 − R730

R730 − R670
(Dash and Curran, 2004) MERIS terrestrial

chlorophyll index

DATT
R800 − R730

R730 − R670
(Datt, 1999) chlorophyll content

higher leaves
Table 3.4

Narrowband VIs

3.1.2 Narrowband Vegetation Indices

Many of the VIs that were originally developed using broadband technology

have been adapted for use with more precise sensors, to increase their accur-

acy. Mutanga and Skidmore (2004) tested three narrowband VIs for estimat-

ing biomass at high canopy density. These were Modified NDVI (MNDVI),

SR and TVI. They found that the standard NDVI performed poorly in es-

timating biomass (R2 = 0.26). Rather than depending on a single reading

from a broad range of wave bands, the MNDVI used a combination of narrow

bands from the shorter (700 - 750nm) and longer wavelengths (750-780nm)

from the red edge. Because the position of the red edge changes as a plant

senesces and narrowband sensors are more sensitive to this change, these
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MNDVIs and MTVIs had a much higher correlation with biomass giving an

average R2 of 0.77. The modified SR gave the highest correlation coefficient

with biomass at R2 = 0.80. There are other examples of reuse of VIs using

narrow bands; Erdle et al. (2011) tried the Simple Ratio using the NIR:Red

combinations 730:670nm, 760:670nm, 760:730nm and 780:650nm. Bronson

et al. (2015) measured NDVI and Normalized Difference Red Edge (NDRE)

using a combination of bands at 530nm, 590nm, 670nm, 780nm and 800nm.

There are also some VIs that have been developed since narrowband sensors

became available. The Red-Edge Position (Dawson and Curran, 1998; Clev-

ers, 1988) REP is a narrow-band index to determine the exact position of the

red edge, and is also known as the the Red Edge Inflection Point (REIP). It

gives information on chlorophyll absorption and cell wall reflection (Erdle

et al., 2011).

VIs play a key role in processes such as the measuring of nutrients within

organic matter. Broadband VIs are good for measuring biomass but typic-

ally lack diagnostic capability for identifying a particular type of stress, or

for determining why biomass is at a certain level. Narrower band indices

are more specifically related to physiological plant responses (Pinter et al.,

2003). To discover more granular evidence of the presence of chlorophyll

and other nutrients, indices such as NDRE or Canopy Chlorophyll Content

Index (CCCI) (Bronson et al., 2015) were developed. Formulae for these

and other narrowband indices are given in Table 3.4. However, this is not an

exhaustive list and many algorithms use different wave band reflectances to
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Figure 3.5
Spectral reflectance curve of vegetation, showing areas that respond to chlorophyll, spongy

mesophyll and water. Source: gps.humboldt.edu (2020)

find correlation to a variety of pastureland traits.

3.1.3 Measuring Water Content in VIs

The percentage of water in fresh biomass is indicative of its potential quality

as silage. Remote or proximal observation could assist in estimating this

percentage, based on the electromagnetic spectrum. Several researchers over

the years have attempted to remotely assess the moisture content in vegetation,

more in an effort to assess water stress than to assess actual moisture content

or mass. As a result, a number of indices have been developed to assist in the

evaluation of moisture content in vegetation. Formulae for estimating water

content are shown in Table 3.5.

The first category of relevant indices includes the Normalized Difference
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Infrared Index (NDII) (Hardisky et al., 1983), Moisture Stress Index (MSI)

(Hunt and Rock, 1989), Normalized Difference Water Index (NDWI) (Gao,

1996), Water Index (WI) (Peñuelas and Inoue, 1999) and Normalized Mult-

iband Drought Index (NMDI) (Wang and Qu, 2007). Water strongly absorbs

in the wavelengths between 1550nm and 1750nm, as shown in Figure 3.5, so

reflectance increases with decreasing leaf water content (Tucker, 1979).NDII

uses a wavelength from Short Wave Infrared (SWIR) (1650nm) and one from

NIR (820nm) and was devised by Hardisky et al. (1983). This ensures that the

value ranges from -1 to 1 with green vegetation falling between 0.02 and 0.6.

The Moisture Stress Index (MSI) (Hunt and Rock, 1989) is a simple ratio

index, based on the same information, using the wavelengths 820nm from

the NIR band and 1600nm from SWIR. Its value ranges from 0 to 3, with

the expected range for green vegetation between 0.4 and 2 (Harris Geospatial,

2022).

Hunt and Rock (1989) tested this index to see how it related to relative

water content (RWC) and equivalent water thickness (EWT) and concluded

that MSI is correlated to the depth of liquid water in a leaf and possibly in a

canopy. As EWT is correlated to LAI, MSI should also be. However, MSI

as measured from a satellite was not sensitive enough to determine changes

in EWT at constant LAI, because large changes in EWT must occur before

water stress can reliably be detected.

The Normalized Difference Water Index uses wavelengths 860 and 1240

to measure slightly different water absorption properties. The light scattering

69



effect raises liquid absorption around 1240nm. All values are between -1 and

1 with an expected value of between -0.1 to .4 for green vegetation (Gao,

1996). The Normalized Multi-band Drought index measures soil moisture

as well as vegetation moisture, with the intention of predicting drought, using

bands at 860, 1640 and 2130nm, where two of these bands are SWIR. The

difference between reflectance at 1640nm and 2130nm is used to measure

water sensitivity in vegetation and soil. As soil moisture increases, its value

goes down. At below 0.5, soil is very moist. Normal values for dry soil are

0.7 to 1, so intermediate moisture should read at around 0.6 to 0.7 (Wang and

Qu, 2007). The Water Index (WI) uses a simple ratio between reflectance at

narrowbands 970nm and 900nm. Peñuelas and Inoue (1999) found that when

plants were either artificially dried, or dried out in their natural environment,

the wavelength of the trough corresponding to water absorption (around 970

to 980nm in hydrated plants) lowered to around 930nm to 950nm as the plant

water content decreased. When this index was divided by NDVI, even better

results were achieved. NDVI was calculated using the bands 800nm and

680nm.

The second category concerns Thermal Infrared. The most established

index in this category for detecting water stress in a crop is the Crop Water

Stress Index (CWSI). This index was devised by Idso et al. (1981) and Jackson

et al. (1981) and is a widely used indicator that provides an estimate of crop

water status related to minimum and maximum levels of stress that can occur

due to water scarcity. It is based on the temperature difference dT between
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Figure 3.6
Temperature differential between Canopy and Ambient Temperature plotted against Vapour
Pressure Deficit, showing upper and lower bounds of water stress, and the measurement of

Empirical Crop Water Stress Index. Adapted from Taghvaeian et al. (2012)

canopy and air, Tc − Ta. The lower limit of this is known as dTLL and the

upper as dTUL. The measured temperature difference at the target is dTm. The

Crop Water Stress Index gives the position of the target’s current value within

the range (Taghvaeian et al., 2012), as shown in Figure 3.6. Determination

of upper and lower limits can be derived through empirical (Idso et al., 1981)

or theoretical (Jackson et al., 1981) means. This index is seen as a useful

measurement of water stress, but not specifically of water content. As such,

it has proven very useful for irrigation scheduling, predicting crop yields and

detecting certain plant diseases (Moran et al., 1994). However, the CWSI

can be severely affected by soil temperatures (Jackson et al., 1981; Moran

et al., 1994; Taghvaeian et al., 2012), because dry soil temperature can be

warmer than air temperature, with the implication that it is not useful in an
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Name Index Formula Wave bands Citation

Crop Water
Stress Index

CWSI
(dTm − dTLL)
(dTUL − dTLL) LWIR 8-14

µm
(Idso et al.,
1981)
(Jackson et al.,
1981)

Normalized
Difference
InfraRed
Index

NDII
R820 − R1650

R820 + R1650
SWIR
NIR

1650nm
820nm

Hardisky et al.
(1983)

Moisture
Stress Index

MSI
R1600

R820
SWIR
NIR

1600nm
820nm

(Hunt and Rock,
1989)

Normalized
Difference
Water Index

NDWI
R860 − R1240

R860 + R1240
SWIR
NIR

1240nm
860nm

(Gao, 1996)

Water Index WI
R970

R900
NIR
NIR

900nm
970nm

(Peñuelas and
Inoue, 1999)

Normalized
Multiband
Drought
Index

NMDI
R860 − (R1640 − R2130)
R860 + (R1640 − R2130)

SWIR
SWIR
NIR

2120nm
1640nm
860nm

(Wang and Qu,
2007)

Table 3.5
Indices for estimating water content

area where soil reflectance is likely to confound the result. The Water

Deficit Index (WDI), proposed by Moran et al. (1994), attempts to overcome

the soil problem described above, by incorporating a vegetation index such

as NDVI into the equation. In order to calculate either of these indices, both

the canopy temperature and air temperature must be measured. Both indices

depend on measuring evapotranspiration. However, some plants regulate

transpiration when moderately water stressed, but maintain the same water

content (Larcher, 2003). Additional complications arise in measuring upper
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and lower limits (Berni et al., 2009a). Water content can be investigated using

yet another remote sensor, as there are correlations between synthetic aperture

radar readings and moisture. As part of the BOREAS project in spring and

summer of 1994, the NASA/JPL airborne synthetic aperture radar (AIRSAR)

collected data over forest land in Canada and estimated the dielectric constant

of branch layers of young Jack Pines. Moisture increased during the thaw,

stayed stable during the growing season and dried out towards the end of the

growing season (Moghaddam and Saatchi, 1999). More recently, Markert

et al. (2018) merged optical and SAR data to map surface water.

Indices that have been developed to help estimate biomass and moisture

content are enabled by the way in which vegetation and water reflect differ-

ent wavelengths of light, but sensing this information can be confounded by

reflectance from soil or atmospheric particles and depends on the species,

its life-cycle stage and health. When reflectance has been gathered and fed

into one or more VIs, it can then be calibrated against biomass and moisture

content. Usually, these calibrations are site and date specific.

It is evident that there are a huge number of VIs and their application is

quite specific. There are a lot of online resources that give formulae and

applications for different VIs and IDB is a very useful database including

many of these, at https://www.indexdatabase.de/ (Henrich et al.,

2012). Some commercial companies also offer educational resources that are

informative in this regard, such as http://www.harrisgeospatial.

com/docs/VegetationIndices.html (L3HARRIS, 2018).
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3.2 Scanning and Image Acquisition

While VIs provide a mechanism for assessing vegetation on the basis of elec-

tromagnetic reflectance, they themselves say nothing about how that raw

reflectance data are gathered. Fortunately, electromagnetic sensing techno-

logy for crop management has evolved considerably over the last number of

decades. While sensors of this class all rely on electromagnetic reflectance,

the resolution and mode of interaction of sensors can vary considerably. In

the context of this work, proximal sensing refers to sensing from a distance

of around 2 metres, although some reviewed examples sense from UAVs at a

distance of less than 300m. Remote sensing, in this context, refers to sensing

from aerial or satellite-based platforms.

In selecting sensors for an application, one of the most important issues

to consider is the spatial dimensionality of the sensors. At its most basic,

a scanner senses reflected energy from a target point and represents it as

a digital value. A radiometer takes advantage of this point measurement

mechanism to measure the intensity of electromagnetic radiation emitted from

a target point within a fixed wave band - usually outside the visible spectrum

(Ball, 2006). A spectrometer meanwhile measures the spectral content of

incident electromagnetic radiation, and splits it into its constituent wave bands.

A spectroradiometer is an amalgam of a spectrometer and a radiometer, so

returns a vector of values representing reflectance of different wave bands

emitted from a target point. Spot sensors return a single value for each wave
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band sensed, i.e., a vector of wave band intensities representing reflectance

from its field of view.

An imaging spectroradiometer goes further than spot based detectors by

providing a 2D array of pixels representing reflectance from the target area,

for each wave band being sensed (Verrelst et al., 2019). A commonplace

example is the digital camera, which takes an image in the visible range and

produces three 2D colour representation of the target (corresponding to red,

green and blue bands). Modern spectrometers produce a similar collections

of 2D arrays of pixels, where each pixel contains a digital number that rep-

resents the intensity of light recorded for a particular wave band at the target

location represented by the pixel. The number of 2D digital images recorded

by a spectroradiometer corresponds to the number of wave bands that the

spectrometer reads (Ball, 2006).

Arguably the most important resolution type to consider in remote sensing

is the spectral resolution. This refers to the central wavelength of the wave

band being sensed, the width of the wave band and the multiplicity of wave

bands being sensed. Scanners can be either hyperspectral or multispectral.

Multispectral scanners generally scan on five or fewer bands, whilst hyper-

spectral scanners provide continuous spectral coverage across a range, for

example, 400 to 2500nm (Liu and Pattey, 2010; Jensen, 2013). It is important

to note however that multispectral sensors may be narrowband or broadband.

Each band has a central wavelength that is the target of the sensor and its

bandwidth denotes the band of wavelengths surrounding the target to which
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the sensor is sensitive. By their nature, hyperspectral sensors are narrow-

band, but some narrowband sensors only scan on a small number of wave

bands. Bearing in mind the fact that sensors return a single value per wave

band for each point scanned, subtle differences in reflectance from adjacent

wavelengths are not as easily determined using broadband sensors than when

multiple narrower bands are sampled separately over the same range.

A variety of other resolution and resolution type metrics are often also

considered. The radiometric resolution of a scanner refers to the number

of bits allocated to the digitized number holding the value for a wavelength.

Meanwhile, the range of the digital number depends on the number of bits

allocated to it, so an 8-bit DN will range from 0 to 28 − 0 or 255 (Liew, 2001).

A higher radiometric resolution allows for finer differences in intensity to be

sensed. Spatial resolution meanwhile is a function of the spatial density of

the image and the optical resolution of the lens. Another notable parameter

to consider is temporal resolution, as temporal sensing is often used to show

differences that have occurred over time (Flynn, 2006; Ali et al., 2016; Bai

et al., 2016; Su, 2017).

Another key distinction in sensor types is whether they rely only on ambi-

ent lighting (passive sensors) or not (active sensors). Active sensors use their

own energy source to emit energy that includes the wave band(s) they wish

and may be active across the visible and NIR spectrum (Bronson et al., 2015;

Roberts et al., 2015). Passive sensors rely only on natural lighting, but as a

result have access to the full electromagnetic spectrum, whilst active sensors
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are dependent on their light source being compatible with the wavelengths

being sensed (Chen et al., 2008). Ground-based systems can be equipped

with active light sources allowing them to obtain measurements regardless

of time, day or season. Another significant advantage to active sensing is

that active canopy spectroscopy is not affected by weather conditions or the

solar elevation angle (Erdle et al., 2011; Zecha et al., 2013). Sensors can be

handheld or mounted within a few meters from the target, either on a fixed

or moving platform. For the interested reader, Zecha et al. (2013) provides a

comprehensive review of mobile sensor platforms.

The nature of the surface of a target will partially determine its reflectance

to the sensor. A Lambertian, or completely matt surface reflects light equally

in all directions, whilst its opposite, a highly reflective surface follows the

reflection law; the angle of incidence = the angle of reflection. However, most

surfaces are at neither extreme; they are a mixture of reflective spots and

matt spots. Spectralon is a material that returns highly diffuse reflectance that

can be used as a reference panel for sensor calibration (SphereOptics, 2017).

Researchers sometimes used a Spectralon panel as a reference to check sensor

reflectance (Mutanga and Skidmore, 2004; Näsi et al., 2018).

The calibration and placement of sensors, especially on a moving platform,

is not trivial and considerable engineering effort can be put into comprehens-

ive solutions. For example, in an early piece of work, an intelligent controller

was developed for use on a UAV, automatically adjusting multispectral cam-

era parameters such as gain and exposure time, incorporating a multispectral
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Broadband Cameras
Name No Bands Lighting Description Centre width

MS4100 (CIR) 3 Passive Red 650nm 100nm
NIR 800nm 100nm
Green 500nm 100nm

JAI-AD 4 Passive Red 610nm 100nm
Green 540nm 100nm
Blue 470nm 100nm
NIR 770nm 100nm

Table 3.6
Examples of Broadband proximal cameras.

camera, an IMU, a DGPS and an on-board computer that can transmit and

receive from a ground controller. It performs radiometric correction and geor-

eferencing and can automatically mosaic images (Xiang and Tian, 2007).

Both within and beyond the agricultural domain, a very broad number of

sensor types and platforms have been developed to measure reflectance from

vegetation. Tables 3.6 and 3.7 provide a summary of a number of ground-

based broad and narrowband sensors respectively, that have been used in trait

estimation studies. It should be noted that there are, of course, many satellite

based multi-spectral and hyperspectral solutions, but these are not considered

here due to their low resolution and also due to the fact that they can not be

applied on demand over short time periods. The interested reader is however

directed to Intermap (2013) for a useful overview of satellite based imaging

platforms.

In addition to spectral and image scanners, temperature difference between

canopy and air has been mentioned as a factor worth measuring in grassland
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Name No Bands Active Lighting Description

ACS-210 2 LEDs (595nm) Amber (590nm)
LEDs (880nm) NIR (880nm)

ACS-430 3 PSR 1 Red (670nm)
Red Edge (730nm)
NIR (780nm)

ACS-470 variable Active White range 430 - 850nm
430 - 850nm

GreenSeeker 2 Bursts of Red Red (660nm & 660nm)
and NIR light NIR (770nm & 770nm)

tec5 variable Passive range (400 - 1700nm)
N-Sensor 4 Flashing Xenon, 650 - 1100nm

160 - 2000nm
RU-AOS 4 Flashing Xenon, Red Edge (730 & 760nm)

160 - 2000nm NIR (900 & 970nm)
SRS-NDVI 2 Passive Red (630nm)

NIR (800nm)

ASD 2500 Passive range (350 - 2500nm)
Flame 2048 Passive range (190 - 1100nm)

Table 3.7
Narrowband proximal sensors.

monitoring for silage production, as has canopy height. Temperatures at

canopy and in the air can be taken using infrared thermometers (Berni et al.,

2009b; Taghvaeian et al., 2012). Height, meanwhile, has been measured

using ultrasonic proximity sensors (Bai et al., 2016), and LiDAR (Schaefer

and Lamb, 2016).

While considering sensor types, it is notable that the use of Unmanned Aer-

ial Vehicles (UAVs) as a platform has become very popular in recent years,

with researchers making use of multiple images taken from a UAV to make

3D ortho-photos. One such study used RGB imaging from a UAV to estimate

biomass (Bendig et al., 2015), concluding that plant height measurements

calculated were a very good indicator of biomass. In a separate study, re-
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searchers mounted VNIR cameras on a UAV to monitor spatial variability in

Italian ryegrass fields over their growth period, using a regression model to

generate spatial maps of herbage biomass and LAI, finding that the inclusion

of the NIR channel greatly improved accuracy (Fan et al., 2018).

While there are a vast quantity of different sensor types that can be con-

sidered for use in vegetation analysis in general and pastureland trait assess-

ment in particular, there are unfortunately few studies that have systematically

compared different sensor specifics. This is likely due to the inherent chal-

lenges and costs associated with setting up different sensor platforms for

meaningful comparison. One notable exception to this was a New Zealand

precision agriculture research project which compared proximal narrowband

multi-spectral sensors from CropCircle and CropScan with a hyperspectral

ASD sensor (Pullanagari et al., 2011; Yule et al., 2011). The nutrients meas-

ured were crude protein (CP), acid detergent fibre (ADF), neutral detergent

fibre (NDF), ash, lignin, lipid, dietary anion-cation difference (DCAD), or-

ganic matter digestibility (OMD) and metabolisable energy (ME). Because

the hyperspectral sensor provided a full spectral reflectance signature, all of

this data was used to develop a model. This model met or outperformed the

models built from the multi-band sensor data in almost every case and in

some cases gave a significantly more accurate estimate, leading to the con-

clusion that as the spectral resolution of the sensor increases, the precision of

estimation of foliar biochemicals also improves.
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3.3 Proximal Sensing Studies

The previous sections have explained key principles in measuring vegetation

traits, indices for assessing vegetation qualities, and sensors that can be used

in calculating such measures. Over the past four decades a very significant

amount of research has put these principles to work in order to establish the

properties of vegetation under different circumstances. Here, a snapshot of

such investigations with a particular, though not exclusive, focus on proximal

sensing techniques, is provided. For readers interested in such investigations,

Pullanagari et al. (2013) provide a good review of developments in nutrient

estimation in pasture using a range of VIs. For structuring purposes, these

studies are decomposed, based on whether the primary target of investigation

was biomass, moisture or nutrient analysis, but it should be made clear that

studies often considered multiple target traits.

3.3.1 Biomass Investigations

To estimate green herbage mass, an Australian study used a calibrated ACS-

210 active NIR and Red reflectance sensor integrated with a GPS on a four-

wheeled motorbike to collect data (Trotter et al., 2010). They evaluated differ-

ent methods for measuring biomass spectrally and found that SAVI, the Soil

Adjusted Vegetation Index offered the best correlation with dry matter. The

approach taken here was very typical of a number of early studies.

Rather than focusing exclusively on spectral information, Fricke et al.
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(2011) estimated biomass of a forage comprising legumes and grass using

an ultrasonic sensor on a moving push-platform with an accuracy of between

R2 = 0.75 and 0.81, though this was also dependent on species. They con-

tend that estimation of biomass would improve greatly by combining this

approach with spectral reflectance. The group followed up this work, testing

the usefulness of a combination of satellite spectral sensor data and ultrasonic

measurements in heterogeneous swards (Moeckel et al., 2017).

As noted in Section 3.2, sensors can be either active or passive. To measure

canopy height, (Schaefer and Lamb, 2016) used a LiDAR unit in conjunction

with a two-band CropCircle ACS-225 active sensor, measuring on 830nm and

660nm. Both sensors were attached to a bracket that was mounted on a four-

wheel drive vehicle. Their intention was to derive canopy height and NDVI.

To ensure that the LiDAR was giving accurate results, ten physical height

measurements were taken for each plot. Notably, but perhaps unsurprisingly,

the authors found that by integrating canopy height measurements they were

able to assess biomass more accurately than with NDVI alone.

Considering a wider range of target traits, Erdle et al. (2011) conducted a

comparative study between tec5’s BDR passive hyperspectral sensor and four

active sensors (N-Sensor, CropCircle ACS-210 and -470 and GreenSeeker),

comparing the results to directly harvested ground truth, including fresh

weight, dry matter content and nitrogen content. In this study six differ-

ent VIs were calculated (NDVI, SR, REIP, VARI, WI and NIR/NIR (a ratio

index measuring the reflectance at 780nm/740nm)) and the conclusion was
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that phenology had a significant effect on the efficacy of the results, with

more accurate results at low LAI. In early season, most of the indices had

a correlation with Fresh Weight. They concluded that indices that used red

bands are very likely to become saturated at high LAI, whereas those that

used the Red Edge were more consistent at higher LAI. Also, nitrogen-related

parameters showed a strong correlation with the R780
R740

index.

To investigate the efficiency of different sensors for guiding nitrogen fertil-

ization in crops, Amaral et al. (2015) compared the performance of GreenSeeker

and two CropCircle models (ACS-430 and ACS-210) in detecting sugarcane

biomass and nitrogen variability and to identify which crop parameters inter-

fere with canopy sensor measurements. The indices used were NDVI, NDRE

and Chlorophyll Index (CI). Their findings were that the ACS-210, which

measures amber and NIR, was more successful in measuring the number of

stalks and chlorophyll content. The ACS-430 was more successful in identi-

fying leaf nitrogen concentration, but both were good at measuring biomass.

The GreenSeeker NDVI was less able to identify variability within the field,

but was not susceptible to sulphur interference. Ground truth in this instance

was established using a SPAD meter.

The sensor measurements did not correlate well with either chlorophyll or

with leaf nitrogen, however, these canopy sensors were found to be a suitable

tool to guide nitrogen application, taking biomass as an indirect indicator.

More recently, an Ultrasonic Proximity Sensor (UPS) was the height meas-

urement sensor chosen by Su (2017), who used it on a bespoke wooden
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platform, along with a DGPS and a CropCircle ACS-430. The platform was

situated so that sensors were 1m above the sample area (0.5m x 0.5m) for one

minute. This experiment also differed in that the fields were not homogen-

eous, with alfalfa (Medicago sativa) thriving where the drainage was good

and grass where drainage was poor. Measured NDVI varied between 0.7 and

0.9 whilst canopy height was 5 to 70cm. NDVI correlated well with biomass

where biomass was relatively low, but saturated as biomass rose, rendering it

a poor tool for estimating biomass in a dense canopy. Canopy height could

not relate well to biomass because density was not taken into account. Res-

ults interpolated from the mower were not as uniform as those taken directly,

partially due to tractor vibration and unevenness on the ground. However, a

multi-layer regression using plant height and NDVI came up with the best

result (R2 = 0.78).

A cart design was also used in a study by Bai et al. (2016), where five

sensor modules were mounted; here, a thermal infrared radiometer (8 to

14µm) measured canopy temperature, an ultrasonic sensor measured canopy

height; a SRS NDVI sensor (measuring reflectance at 650nm and 810nm)

was used to measure NDVI directly, a portable spectrometer (350 to 1100nm)

gathered canopy reflectance data and RGB web cameras took images. In ad-

dition to these, the system was equipped with a GPS, a solar radiation sensor

and an air temperature / relative humidity sensor to collect environmental data.

One of the SRS NDVI sensors pointed upwards, to measure solar radiation

and others pointed down. For NDVI, this study used a ratio of the reflectance
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from the downward pointing sensor to the value from the upward pointing

sensor, thereby concentrating purely on reflectance from the canopy. NDVI

and red-edge NDVI was calculated using the spectrometer output and canopy

green pixel fraction was extracted from the RGB image as a proxy for bio-

mass. The sensor system performed satisfactorily and robustly in field tests

and actual biomass had a good correlation to predicted biomass, especially

when using Green pixel fraction - a formula for estimating fraction of green

area per ground area (GPF).

3.3.2 Applications Measuring Moisture Content

The use of water indices to measure moisture content has led to varying de-

grees of success and different combinations have been tried for a variety of

situations. To estimate the water status of turf grass, Jiang et al. (2009) studied

the effects of drying on canopy reflectance, and correlations between canopy

temperature and relative water content (RWC) of perennial ryegrass. Soil

moisture (SM) correlated positively with RWC and negatively with ambient

temperature differentials (dT) between canopy and air, where these measure-

ments were taken using a hand-held infrared thermometer. Under a wide

range of stress conditions (July and August), NDVI correlated highly with

RWC. The authors concluded that changes in dT and NDVI can be combined

to map variability in grass water status for irrigation management.

Using fuel moisture content (FMC) and equivalent water thickness (EWT)

as definitions of vegetative water content, Zhang et al. (2010) found that FMC
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significantly correlated with CWSI, NDII, NDWI1640 (replacing R1240 with

R1640) and WI/NDVI. On testing different versions of NDWI with R1240, R1640

and R2130 Gao et al. (2015) found that NDWI1640 and NDVI were the preferred

indices for measuring vegetative water content. It is worth noting that these

studies involved satellite data, so wavelengths such as R1640 and R2130 were

available.

In an effort to assess EWT optimal wavelengths, Mobasheri and Fatemi

(2013) recorded hyperspectral data (2 to 4nm width) over the 400 - 2500nm

spectral range and subjected it to different processing. They used four ap-

proaches; linear regression between reflectance in individual wavelength and

EWT, difference of reflectance in two wavelengths and EWT, ratio of reflect-

ance in two wavelengths and EWT and Normalized Difference of reflectance

in two wavelengths and EWT. They concluded that some parts of the NIR

and SWIR spectrum provided higher accuracies in EWT assessment and that

simple ratio gave highest accuracy. The equation used was

EWT = a(Rλi

Rλj

) + b (3.17)

where Rλi
and Rλj

are reflectance values at wavelengths λi and λj and a and

b are regression coefficients. For reflectance ratios, R2 values larger than .8

require the numerator to be between 750nm and 1960nm and the denominator

to be between 720nm to 1840nm. The best R2 value (.95) used a numerator

of 1152nm and denominator of 1128nm.
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3.3.3 Nutrient Investigations

Focusing on plant nutrients, Starks et al. (2004) developed canopy reflectance

algorithms to determine acid detergent fibre (ADF), neutral detergent fibre

(NDF) and nitrogen content in Bermuda Grass, by collecting field samples

that had been sensed using a Spectron Engineering SE590 narrowband ra-

diometer before collection. The field samples were ground to fine particles

and subjected to hyper-spectral bench-top near-infrared reflectance spectro-

scopy (NIRS), measuring over the same wave bands as were used by the

radiometer. Using this method, they were able to develop calibration equa-

tions for the radiometer to predict nitrogen, NDF and ADF that gave results

equivalent to those from NIRS. Starks et al. (2006) went on to develop re-

mote sensing canopy reflectance algorithms for biomass and nutritive values

in Bermuda grass.

Another study of interest investigated ADF, NDF and nitrogen, and in-

cluded phosphorus and potassium, this time in (Onobrychis sativa), or sain-

foin grass (Albayrak, 2008). Using a narrowband hyperspectral ASD Spec-

troradiometer mounted 1.5 meters from the ground, a simple ratio correlation

(r2 between .61 and .8) was found between reflectance at 780 (NIR) / 650

(RED) and nitrogen, phosphorus, potassium, ADF and NDF, but also with the

first derivatives of 760nm/630nm with a higher accuracy of (r2 between .7

and .9).

When comparing different scanners to measure pasture quality in terms
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of nutrients, a New Zealand precision agriculture research project used both

multispectral and hyperspectral scanners (Pullanagari et al., 2011; Yule et al.,

2011). The nutrients measured were crude protein (CP), ADF, NDF, Ash,

lignin, lipid, dietary anion-cation difference (DCAD), dry matter digestibility

(DMD) and ME. The hyperspectral sensors met or outperformed the multis-

pectral in almost every case and in some cases gave a significantly more

accurate estimate. However, the hyperspectral data underwent multivariate

analysis, while the multispectral data used simpler calculations (Pullanagari

et al., 2011). One likely reason for the relative lower performance in the

multispectral case is that the broadness of the bands obscures the fine spectral

features that are relevant for quantifying quality parameters (Pullanagari et al.,

2013).

In earlier work, Pullanagari et al. (2011) note that statistical approaches

are ordinarily used to estimate LAI, biomass and chlorophyll against spectral

measurements. Here, multivariate tools can also be employed to determine

biophysical and biochemical characteristics. These authors experimented

with step-wise multiple linear regression, principal component regression and

partial least square regression and tried multiple methods to fit their model in-

cluding linear interpolation, polynomial fitting, Lagrangian interpolation and

high order curve fitting. To estimate biophysical characteristics, they used

Radiative Transfer Models (RTM) and subjected them to numerical optimiza-

tion, support vector machines, neural networks and look up tables to find the

optimum combination.
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Wang et al. (2012) investigated spectral bands and VIs that are useful for

measuring Leaf Nitrogen Accumulation (LNA). Significantly, the authors de-

signed a method of taking into account characteristics of canopy components

and plant phenology, using the VIs SAVI and RVI, varying the spectral bands

employed. They concluded that although the ranges of indicative bands were

770 - 913nm and 729 - 742nm, the most accurate result for early growth (from

jointing to booting) was SAVI(R822,R738), while for the mid- to late period it

was RVI(R822,R738).

Roberts et al. (2015) used a research version of the Yara N-Sensor called

RU-AOS to monitor nitrogen requirements across a paddock. They measured

Simple Ratio of reflectance at 760nm and 730nm

narrowband SR = R760

R730
(3.18)

over sites that were planted with pure ryegrass and sites that were planted

with a ryegrass - clover mixture. They found that the angle of incidence had

a strong influence on their results, as had the species, and that results were

more consistent over grass-only swards than over mixed swards. A summary

of existing proximal sensing applications is shown in Table 3.8.

The studies presented here have been instrumental in identifying a number

of correlations between specific spectral bands (and other sensing modalities)

and key pastureland variables such as biomass and moisture content, but are

limited with respect to what might be considered state-of-the-art methods.
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Citation Purpose Sensors Techniques used

(Trotter
et al., 2010)

Pasture biomass ACS-210 SAVI

(Fricke et al.,
2011)

Pasture biomass USP2 Height

(Schaefer
and Lamb,
2016)

Pasture biomass
LiDAR
ACS-225

NDVI = R830−R660
R830+R660

(Su, 2017) Crop biomass GPS, UPS Location, Height
ACS-430 at NDVI
670, 730, 780nm NDRE
IR Thermometer

(Erdle et al.,
2011)

Sensor comparison, N,
wheat biomass,
moisture content

ACS-470, -210

GreenSeeker
BDR

RU-AOS

SR (R730
R670

, R760
R670

, R760
R730

), NDVI
NDVI, SR
NDVI, REIP, VARI, WI,
SR (R730

R670
, R760

R670
, R780

R650
, R760

R730
)

WI, SR (R760
R730

)

(Amaral
et al., 2015)

Sensor comparison, N,
biomass

GreenSeeker
ACS-210
ACS-430

NDVI
NDVI, CI
NDRE

(Bronson
et al., 2015)

VI comparison, N,
moisture content

GPS, ACS-470 at
800, 590, 670,
780, 530, 730nm
Thermocouple

NDVI (A, G, R)
NDRE (A, G, R)
CI, CCCI, MTCI, DATT

(Roberts
et al., 2015)

Pasture Biomass, N,
moisture content

RU-AOS WI, SR = R760
R730

(Bai et al.,
2016)

Phenotyping, biomass

Ultrasonic SRS
(up and down)
TIR
CCS175
RGB

Height
D810−D650
D810+D650

; Dn = Rn↑
Rn↓

Temperature
Spectra
Image

Table 3.8
Proximal sensing applications

Indeed, Pullanagari et al. (2011) note that statistical approaches are ordinarily

used to estimate LAI, biomass and chlorophyll against spectral measurements,

but that multivariate tools at the very least could be employed to determine

biophysical and biochemical characteristics. Moreover, it is evident that there
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is a complex interaction between variables that are impacted on by external

factors and hence not easily modelled by simple VIs and their combination.

3.4 Discussion

The EM based estimation of grassland traits is far from trivial. The EM signa-

ture of a plant changes depending on its species, its life stage, its environment

and its history, where its history is affected by temperature, light access, and

nutrient availability throughout its life. A plant’s EM signature also depends

on the suite of sensors that are used to detect it, and even the angle from which

it is sensed and how and from where it is lit. In fact, as has been demonstrated

by previous researchers (Roberts et al., 2015; Bai et al., 2016; Su, 2017), even

then, reliable collection of useful data is not trivial.

All of the challenges to accurate measurement have made it difficult to

formulate hand-crafted or simple regression based models that accurately

estimate traits across a range of contexts, and have, as a result, meant that

more complex modelling approaches are needed. Inevitably, a review such

as this must be limited in scope. One area that is not directly addressed, but

is of interest, is true remote sensing - i.e. satellite based or high-altitude

based monitoring. Such sensor platforms can be relied upon to consistently

cover a geographic area at a specified resolution and temporal frequency, but

do not provide the flexibility, resolution, or availability of distal measuring

methods. Similarly, the review necessarily focused on biomass, moisture, and
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nitrates sensing with only limited opportunities to discuss other nutrients or

sugars content, for example. On the issue of sugars, hand-held Brix based

measurement remains the standard in-field assessment method, and there

remain great opportunities for research focused on developing non-destructive

distal sensing based methods for sugars.

3.5 Summary

This chapter showed that biomass, moisture content and nitrates content are

three of the most important aspects of grass forage that need to be estimated

during an initial cutting and conditioning process, and that there is a long

history of methods that have been applied to estimate these traits. While

historical methods have involved physical investigation, variations in the elec-

tromagnetic reflectance of vegetation has been the dominant physical indicator

to underpin estimation methods. There has been a vast wealth of studies and

specific models proposed to estimate biomass, moisture and nitrogen over

the past 30 years based on reflectance properties, but the sheer quantity of

such studies and competing models indicates that estimation is not easily ac-

counted for by simplistic models. Ultimately, accurate and timely proximal

observations has been limited by challenges due to variations in plant phen-

ology, pasture topology, and atmospheric conditions. Machine learning has

been very effective in estimating biomass, especially when there is a variety

of data available, such as in GrassQ (Murphy et al., 2019). Indeed there are
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a number of Machine Learning methods that have been applied to the estim-

ation of biomass (Morais et al., 2021). The next chapter reviews machine

learning models and how they have been applied to the task of estimating

biomass, before considering computer vision and deep learning.
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Chapter 4

Machine Learning and Biomass

As seen in Chapter 3, vegetation indices are part of the battery of ammunition

used to improve estimation of pastureland traits and in particular, biomass.

Some of them are equations resulting from machine learning and many of

them derive input to further machine learning, making it useful to briefly

review the methods involved.

Although the thesis also investigates moisture content, biomass methods

have been more extensively studied than moisture estimation methods. Hence

our focus in this chapter will be on biomass. It is noted however that, by

virtue of the nature of the methods presented in this chapter, many of them

may also be useful for estimating moisture content.

Section 4.1 establishes the context of Machine Learning, before looking

specifically at models that have been used to estimate biomass. Section 4.2

moves the focus of the chapter to computer vision and its role in agriculture,

before Section 4.3 introduces deeper learning. Using the correct model is part

of the solution, but these models must be tuned. Section 4.4 discusses the
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different models and where they have been used in estimating biomass and the

role of hyperparameters and optimizers that can be used in conjunction with

machine learning models, describing areas in which each has an advantage.

The chapter concludes in Section 4.5.

4.1 Machine Learning

The definition of a machine learning task can be taken from the following

quotation: "A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E." (Mitchell, 1997).

In this case, the task, T, is one of regression, where the program is asked

to predict a numerical value, given some input. The performance measure

P is specific to the task being carried out. This can be difficult to choose

for a regression task, on the basis that the system could be penalised more

for making some huge mistakes, or for consistently making medium-sized

mistakes. The experience E is the dataset offered to the task. In this case, the

task is a supervised learning algorithm, in that each observation has values

for both independent / explanatory variables and for dependent / response

variables, in the form of biomass and dryness, the targets to be estimated

(Goodfellow et al., 2016).

Supervised machine learning methods use a labelled set of independent

data points, or observations, to discover correlations to one or more target,
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dependent variables. These methods use weight adjustment with the inten-

tion of fitting the model to the data. An overlapping branch of statistics

and mathematical modelling, chemometrics, has evolved through the field of

Chemistry, and while this traditionally centres on linear analysis, many of the

methods used here are also used in machine learning (Lavine and Workman,

2008). During the learning process, the model makes use of training data,

from which the model learns, and validation data, which enables the model to

determine how accurate it is. Training and validation datasets should be such

that examples in each dataset are independent from each other and that the

training and validation sets are identically distributed. This has a particular

importance as will emerge later when it comes to making sure that the models

can generalize to the data.

In applying machine learning to any model, it is essential to have a clear

understanding of bias and related concepts. Bias represents the error in the

training set with reference to the Bayes error, where the Bayes error is defined

as "the error incurred by an oracle, making predictions from the true distri-

bution p(x,y)", where p(x, y) is the probable values of dependent targets y,

given the values of the independent variables in x (Goodfellow et al., 2016).

Essentially, bias is the difference between the average predicted target of the

model and the actual target value the model is trying to predict. A model

with high bias has a high training error and underfits the test data. However,

even a model that has a very low training error may not be generalizable, in

that it may not give accurate results when applied to independent data. The
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role of validation is to run the model on data on which the model has not

been trained, to calculate its validation error. A model that has a low training

error and a high validation error overfits the training data and cannot accur-

ately predict target values on the validation data, meaning that it has high

variance. This may result from an algorithm overfitting the training data by

modelling random noise. A high-performing machine learning algorithm will

avoid under-fitting, making the training error small, and will avoid over-fitting,

making the gap between the training and test error small. In practice this is-

sue is related to dataset size with it being generally easier to overfit on small

amounts of data.

4.1.1 Machine Learning models for estimating biomass

Many traditional machine learning methods have been applied, to derive ve-

getation indices, using vegetation indices or as a completely independent

endeavour, to estimate biomass yield, also denoted as Above Ground Bio-

mass (AGB). In a review of machine learning methods that have been applied

to the estimation of grassland biomass, Morais et al. (2021) considered six-

teen techniques, based on non-contact data collection, using either proximal

sensing (with LiDAR or spectrometers) or remote sensing, either from UAVs

or from satellites. The following summarises some of those methods, but

the interested reader is directed to Morais et al. (2021) for a comprehensive

review.
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Figure 4.1
Linear Regression shows the independent variable on the x-axis and the dependent variable

on the y-axis. The regression line visualises the derived formula. Source:Berland (2007)

4.1.2 Linear and non-linear techniques

At its simplest, Linear Regression (LR) involves finding a linear equation that

correlates a single independent input variable to a dependent output variable

(Allen, 1939), as shown in Figure 4.1. One of the estimation methods for

determining this equation is Ordinary Least Squares Regression (OLSR) as

depicted in Figure 4.2, but there are others, such as gradient descent. Least

squares methods minimize the sum of the squares of the vertical distances of

the observed dependent variable from the line or the curve produced by the

model (Freund et al., 2006). From the earliest days, linear regression mapped

VIs against biomass to derive a linear formula for the prediction of biomass

(Richardson and Wiegand, 1977; Baret and Guyot, 1991; Bendig et al., 2014).

Multiple Linear Regression (MLR) develops linear equations to represent

relationships between groups of independent variables and the target depend-
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Figure 4.2
Ordinary Least Squares OLS estimation can be viewed as a projection onto the linear space

spanned by the regressors. (Here each of X1X1 and X2X2 refers to a column of the data
matrix.) source: Stpasha (2009)

Figure 4.3
Multiple linear regression where there are two or more independent variables (X1, X2) that

are used for predicting the dependent variable y. Source: Kumar (2022)

ent variable - an example of this is shown in Figure 4.3. MLR has been one

of the tools employed by many researchers, on data collected from satellites

(Ali et al., 2017; Wang et al., 2019) and UAVs (Viljanen et al., 2018; Askari

et al., 2019; Borra-Serrano et al., 2019).

Reduced Major Axis Regression (RMAR) is another technique that can
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be used. Originating in the analysis of paleontological data, this technique

corrects for missing independent variable values and reduces the sample size

accordingly (MacTavish et al., 1968). Grüner et al. (2019) used this technique

to compare biomass estimates from height data collected from a drone to

manually collected height data.

Linear regression can be an appropriate method, provided the following

assumptions hold true: 1) observations must be independent, 2) every variable

must have a value for every observation, 3) there should be no collinearity

among the independent variables, and 4) there needs to be a linear relationship

between the independent and dependent variables. Once the line is developed,

5) the residuals (or errors) should be normally distributed, 6) the error should

show constant (or homoscedastic) deviation between actual and predicted tar-

get values. Finally, 7) there should be no correlation between the independent

variables and the error term (Poole and O’Farrell, 1971).

Non-linear models such as Power Regression or Exponential Regression

are more frequently used. For example, Xue et al. (2004) compared the use

of Linear Regression, Power Regression (Champoux and Peters, 1987) and

Exponential Regression (Hartley, 1961) on NDVI calculated by MODIS, for

the estimation of above-ground biomass. Power Regression is a non-linear re-

gression model, where the target variable is proportional to the input variable

raised to a power, whereas Exponential Regression develops an equation for

the exponential curve that uses both the input and target variables.
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4.1.3 Dimension Reduction Techniques

As the number of independent variables grows, the risk of collinearity grows

and the possibility of a subset of these variables being sufficient for modelling

increases. Stepwise regression tackles this challenge either by starting with

no variables and adding the most predictive, or alternately, starting with all

of the variables and eliminating the least predictive. Li et al. (2017) used this

method on 35 LiDAR-derived metrics to estimate biomass from an airborne

system 1,500m above a shrub canopy. Wu et al. (2016) used it on satellite data

with 43 variables. This technique of reducing dimensionality does not receive

universal approval, on the basis that it may eliminate important variables

based on statistical significance (Smith, 2018).

However, data dimensions continue to pose a challenge as instrumentation

becomes more sophisticated. Spectrometers pick up individual measurements

from very narrow waveband reflectance, often returning values for thousands

of independent variables for a single observation. This can result in a high

level of collinearity among the independent variables. Luckily there are other

ways of reducing the dimensionality of data to be processed.

Principle Component Analysis (PCA) looks at the variance between the

independent variables and reduces the dimensions to a representative set by

eigenvalue decomposition of the covariance of the vectors of independent

variables involved (Maitra and Yan, 2008). This technique is at the heart of

chemometrics and is effective in situations where many of the components
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are highly correlated. It was used by Kauth and Thomas (1976) in their

orthogonal transformations. However, it only uses the independent variables.

Partial Least Squares Regression (PLSR) takes this idea further, by in-

volving not just the independent variables, but also the target variables. Un-

like Ordinary Least Squares Regression, Partial Least Squares Regression

can handle collinearity, and can train for multiple targets. As part of the

chemometric toolset, it is commonly used in chemical and pharmaceutical

applications (Lavine and Workman, 2008).

As with OLSR, PLSR depends on a linear relationship between the input

variables and the target (Wold et al., 2001). However, it does allow independ-

ent variables to be measured with error, so it can handle uncertainty. Again,

this technique is useful when there is collinearity in the independent variables

and there are more independent variables than observations. This makes PLSR

a good technique to use when modelling the relationship between spectral

measurements and chemical composition or other physio-chemical properties.

It has been widely used to estimate biomass using multispectral and hyper-

spectral data (Hansen and Schjoerring, 2003; Marabel and Alvarez-Taboada,

2013; Sibanda et al., 2017; Askari et al., 2019; Zhou et al., 2019).

Modified Partial Least Square Regression (MPLSR) is a modification of

PLSR (Shenk and Westerhaus, 1991), used with near infrared spectroscopy.

This technique has additional steps to incorporate residuals, for example, a

repeatability file containing spectra from different instruments and samples at

different temperatures. This technique was used to calibrate a NIRS spectro-
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Figure 4.4
Example of k-NN classification. The test sample (green dot) should be classified either to
blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles
because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line

circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).
Source: Ajanki (2007)

meter to measure dry matter, with an accuracy of R2 = 0.86 (Murphy et al.,

2021b).

4.1.4 Non-parametric Techniques

K-nearest neighbours (k-nn) regression compares an incoming observation

to k observations in the dataset that are the most similar and gives the new

observation a target value that is an average of those k other observations

(Fix, 1985), as depicted in Figure 4.4. As the value for k rises, overfitting is

less of a risk, but the complexity of calculation rises. Also, the usefulness

of this technique diminishes as the number of independent variables grows.

However, it was one of the techniques that Wu et al. (2016) used in comparing

techniques for biomass estimation, using 43 independent variables. This is

one of the machine learning techniques that does not return a formula for

calculating the target and does not depend on a specific distribution of the
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data, such as a normal distribution.

4.1.5 Ensemble techniques

Ensemble methods combine multiple weak learners to create a strong learner.

A weak learner is a model that does not represent a strong mapping from

independent variables to the target. By combining weak learners, the accuracy

of prediction is higher.

Random Forest Regression (RF) is based on an ensemble of decision trees.

A decision tree is made up of a hierarchy of nodes, starting with a root node,

where data is input. Each node evaluates input data and makes a decision

which determines what the next node will be. The last, or leaf node contains

the prediction of the target value. Although individual decision trees are prone

to overfitting, random forests use ensemble learning, combining predictions

from multiple decision trees to improve the accuracy of prediction. Several

training sets are created by bagging samples, where samples are bagged by

iteratively selecting random samples from the dataset, but not removing them

(i.e. a sample can be chosen more than once).

Random Forest Regression constructs multiple decision trees at training

time and outputs the mean of predictions from each tree (Ho, 1995; Breiman,

2001) and this algorithm has proven popular for estimating pastureland traits

(Ramoelo et al., 2015; Wu et al., 2016; Li et al., 2017; Wang et al., 2019).

Stochastic Gradient Boosting (SGB) is a further ensemble method. Whilst

random forest regression uses bagging, where multiple decision trees are run
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Figure 4.5
Support Vector Machines derive an optimal separation hyperplane in high-dimension feature
space that is of high dimension, due to the entries that are mapped using non-linear functions,

to distinguish between two or more types of objects. Source:Toledo-Pérez et al. (2019)

independently, with their predictions averaged, SGB uses boosting. Gradient

boosting also combines decision trees, but here the models are run serially,

and subsequent trees are built in the knowledge of errors produced by previous

trees. At each new model, a random dataset is chosen by selection from the

dataset, but this time, without replacement (Friedman, 2002).

4.1.6 Support Vector Machine

A Support Vector Machine (SVM) is a classifier, that classifies data points

in N-dimensional space, where N is the number of independent variables.

A simplified visualisation, using just two variables, is depicted in Figure

4.5. A Support Vector Machine finds a hyperplane that optimally divides

the data into different classes. Support Vector Regression uses the Support

Vector Machine algorithm to fit the best hyperplane, or support vector, within
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a threshold error value. The error boundary is the space separated by two

parallel lines, between which predicted target values lie. SVM algorithms use

a kernel to transform data. This kernel can be linear, nonlinear, polynomial,

sigmoid or radial basis function, with radial basis function being the most

popular choice. When using SVMs for regression, an optimal kernel model

needs to be chosen (Vapnik, 1999). This technique has been widely used in

the estimation of biomass, using hyperspectral data (Clevers and Kooistra,

2006; Marabel and Alvarez-Taboada, 2013; Wu et al., 2016; Zhang et al.,

2016; Wang et al., 2019; Sheykhmousa et al., 2020).

4.1.7 Visual Input to Classical Machine Learning Methods

The use of images as input to such techniques as k-NN, RF and SVM is not

uncommon. Jiang et al. (2020) input Lansat 8 images into both k-NN and

RF to assist in estimating LAI in arid regions and Guo et al. (2018b) used

hyperspectral imaging with k-NN and a guided filter to classify land cover.

SVMs are also used with image data, to estimate chlorophyll (Elarab et al.,

2015) and above-ground biomass (Marabel and Alvarez-Taboada, 2013; Zhou

et al., 2019). This style of analysis does, of course, require various approaches

to feature extraction first to be applied to the image data – and it is the results

of these extractions that are actually supplied as inputs to the algorithms. As

will be shown later, this stands in contrast to image oriented deep neural

networks which operate on the image data directly. Generally, the issue of

image based analysis will be covered in more depth in Section 4.2.
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4.1.8 Artificial Neural Networks

Straightforward artificial neural networks, as distinct from full deep learning

approaches, have been used on occasion to estimate biomass directly from

features. The concept of an Artificial Neural Network (ANN) is loosely based

on the neurons in a human brain (McCulloch and Pitts, 1943). The perceptron,

or artificial neuron, takes weighted inputs, applies an activation function and

generates a single output (Rosenblatt, 1958). An Artificial Neural Network

is a network of perceptrons, organized in layers. The input layer receives

independent variables as its input. In a fully connected neural network, the

output of every perceptron in the input layer is fed as input to every perceptron

in the second layer, each with its own weight. The second layer is also made

up of perceptrons. A feedforward neural network has at least three layers,

the third layer being the output layer, giving the predicted target. A back

propagation algorithm uses the error to propagate a change in weights back

through the network (Rumelhart et al., 1986).

When comparing models to estimate above-ground biomass, Yang et al.

(2017) compared a back-propagation artificial neural network to a traditional

multiple regression model and found that the ANN gave the best performance.

4.1.9 Adaptive Network-based Fuzzy Inference System

Adaptive Network-based Fuzzy Inference System (ANFIS) is based on both

artificial neural networks and on fuzzy logic (Jang, 1993). Fuzzy logic is
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based on fuzzy sets, as introduced by Zadeh (1965). Whereas in set theory,

a value is either a member of a set (Boolean value 1), or not a member of a

set (Boolean value 0), in fuzzy logic, the value can be somewhere between

zero and one. In ANFIS, fuzzy logic is used to derive the initial weights. Ali

et al. (2017) conducted a comparative study, to model the estimation of above

ground biomass over time in managed grassland. Remote data from MODIS

Red (620 - 670nm) and NIR (841 - 876nm) reflectance bands were used,

along with five calculated vegetation indices. This study looked at the output

of three models against directly harvested ground-truth data collected from

two sites, one over six years and another over twelve years. The models were

multiple linear regression (MLR), a four-layer neural network and a five-layer

adaptive neuro-fuzzy inference system (ANFIS). They found that the neural

network out-performed the MLR, but that ANFIS gave better results overall

(Ali et al., 2017).

Morais et al. (2021), having reviewed sixteen different machine learning

methods, conclude that the performance of algorithms for biomass in grass-

land depends on number of field samples, data source and pasture composition,

rather than the machine learning method used.

This observation reflects general trends in machine learning in the first 15

years of the twenty-first century, where many different model types competed,

often finding only marginal differences, but until recently there has been

no true ’winning method’. More recently this has changed, with a general

perception that ensembling methods gives good performance, even for small
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volume datasets, while deep learning based methods have been identified as

the most powerful learners – albeit with many caveats with respect to working

on smaller data sizes.

Depending on their complexity, Artificial Neural Networks and Adaptive

Network-based Fuzzy Inference Systems can be classified as the subset of

machine learning that is deep learning. Prior to discussing deep learning

in more detail, the next section reviews the development of the analysis of

images, using Computer Vision and how it has been used in agriculture.

4.2 Computer Vision Based Vegetation Analysis

Moving on from general machine learning, this section examines methods and

studies where imaging data have been fed into increasingly complex software

architectures, providing a rich source of information for on-demand analysis,

typical of what is needed for precision farming.

Many of the methods considered below rely on what might be considered

image analysis, in that shapes and visual characteristics of crops, beyond rel-

ative absorption properties, are used in estimations. Such approaches are not

without justification. Many researchers, including Martin et al. (2005) and Su

(2017) noted that visual estimation of crop biomass is still a commonly used

method, where experts can convert temperature, humidity, pest infestation,

disease, plant density and canopy height into an estimate of biomass (Ónodi

et al., 2017; Su, 2017). This intuition is difficult to replicate, and has been
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developed over the years through learning by example.

Due to the state-of-the-art nature of much of this work, it is still often

applied to areas beyond grass and silage monitoring; thus a wider range of

agricultural applications are considered in this section. Similarly, some of

these studies have been based on analysis of satellite and UAV based imagery,

rather than on-ground images. Although this diversity is noted in goals and

information sources, arguably the methods have direct applicability across

a range of vegetation monitoring tasks, including those for pastureland trait

estimation.

4.2.1 Automated Species Identification

The use of image processing software typically attempts to imitate a human-

like estimation process with RGB images, using plant morphology, shape

and texture image features. Two of the factors that enable quality silage

are the choice of plant species and stage of maturity. Fortunately, there is a

substantial body of research that addresses species identification using image

processing. Saxena and Armstrong (2014) for example, provide a good review

of techniques in image processing for agriculture, including image filtering,

enhancement and feature extraction, whilst Thakur et al. (2020) discuss image

processing in the context of autonomous farming.

Image processing methods for vegetation have at times explicitly con-

sidered issues of texture. In image processing terms, texture is considered

to be an image obeying statistical properties where similar structures repeat,
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often with some degree of randomness (Xie et al., 2008). Texture features

can include spatial structure, directionality, granularity or roughness. Four-

teen textural features, including ‘fine’, ‘coarse’, ‘smooth’, ‘rippled’, ‘molled’,

‘irregular’ or ‘lineated’, can be used to identify objects in an image (Haralick

et al., 1973). Building on this form of analysis, Zhang and Chaisattapagon

(1995) used texture as well as colour analysis in their identification of weeds

in Kansas wheat fields. For texture, they analysed Fourier spectra of selected

windows within leaf areas of wheat and weed species and defined an index

to represent fineness of the leaves. They derived curves of normalized radial

spectral energy and these assisted in distinguishing species with directional

leaves. More recently, both texture and colour features from digital images

have been used in an effort to determine the nutrient quality of Pangola hay

(Hsieh et al., 2017).

Shape-based identification of species is largely based on plant morphology

with features such as leaf margins and curvature being contenders. Early

laboratory based plant identification was undertaken by Guyer et al. (1984),

who grew plants in containers and used spatial parameters to classify them.

Also in an early study, Franz et al. (1991) used leaf shape to identify species,

developing models of the leaf shapes of velvetleaf, ivyleaf morning glory,

giant foxtail and soybean. Curvature was used to align observed leaves with

the models, hence identifying them. Where the leaf was partially occluded, a

Fourier-Mellin correlation was used to calculate scale factors for resampling

the curvature functions. This method was partially successful in identifying
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leaves oriented at angles greater than 30◦.

Over the years, a wide range of studies have been executed where research-

ers have made use of shape features in an effort to identify or discriminate

between species. In a notable early study, Dave and Runtz (1995) used spa-

tial characteristics and texture to determine species, photographing the plants

from a height of 1m. To pre-process the images they converted them into

segmented, filtered, black and white, textured image files using a Colour

Chromaticity Chart. What is also of note in this study is that the authors

used a spatial mask filter to remove soil and stones. Woebbecke et al. (1995)

meanwhile used shape features (roundness, aspect, perimeter, thickness and

length) from colour images to identify corn, soy beans and weeds and could

distinguish between monocots and dicots from two to three weeks old. Zhang

and Chaisattapagon (1995) used the shape features eccentricity (length of ma-

jor aspect to minor aspect ratio), compactness and three invariant moments

as their determinants to distinguish between broadleaved species and wheat

in Kansas wheat fields using discriminant analysis. Terawaki et al. (2002)

developed an algorithm using a linear discriminant function to distinguish

between sugar beet and weeds (green amaranth, wild buckwheat and field

horsetail) based on the shape characteristics of the leaf and the angle of the

leaf tip. They had some success, correctly identifying 87.2% of sugar beet,

with an error rate of less than 8%. More recently, Lin et al. (2017) used a com-

bination of VIs, shape, and texture to discriminate between corn and weed

species.
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Image segmentation using VIs has been used to determine spatial distribu-

tion of species (Suzuki et al., 2012) and identify weeds (Torres-Sánchez et al.,

2015). Using a similar technique to estimate biomass, the extraction of the

green pixel fraction of the canopy can be used (Bai et al., 2016) by threshold-

ing the intensity of green reflectance to distinguish thriving vegetation from

its background, but this can be confounded by changes in lighting due to time

of day, cloud coverage or shadows. The threshold also moves depending on

the plant phenology. One proposed multi-feature machine-learning method

quantified vegetation growth outdoors, using green pixel fraction and ND-

VIs based on reflectance at wavelengths varying from R550 through to R952

(Sadeghi-Tehran et al., 2017). The parameters measured were fresh weight

biomass, dry matter, nitrogen concentration and nitrogen uptake. Correla-

tions with all factors were good in low LAI, regardless of environment, but

deteriorated as LAI increased.

Moving towards a less hand-crafted architecture, Aitkenhead et al. (2003)

compared two visuals method of discriminating between crop seedlings and

weeds. They distinguished carrot seedlings (Daucus carota L.) from ryegrass

(Lolium Perenne) and Fat Hen (Chenopodium Album) using digital imaging.

L. Perenne has long, narrow pointed leaves around 5 x 100mm; C. Album

has diamond-shaped leaves (30 x 60mm). In the first instance, they used

morphological characteristic measurement of leaf shape and found it to be

52% to 74% effective in discriminating between the two types of plant, with

variation depending on size. Their second attempt used a self-organizing
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neural network. While the results were not as good, this attempt showed

that a methodology exists which allows the system to learn and discriminate

between species to an accuracy exceeding 75% without predefined plant de-

scription being necessary. Computer Vision research such as this has been

ongoing for quite some time and advances have been made in applying these

techniques to agriculture, from the detection of blemishes on fruit (Pydipati

et al., 2006; Bronson et al., 2015) to the identification of weeds in a field

(Aitkenhead et al., 2003; Ahmed et al., 2014; Herrera et al., 2014). Similarly,

digital images have been used to assess ryegrass cultivars for durability and

persistence using colour separation and this method has proven more effective

than visual scoring (Lynch et al., 2015).

4.3 Moving Towards Deeper Learning

Like VI analysis, early computer vision based analysis made use of a number

of hand-crafted features. This is typical of the state-of-the-art in computer

vision during the 1990s and 2000s. However, in the last decade there were

significant advances in the state-of-the-art in computer vision technology that

built initially on machine learning methods, but more recently took advances

in the great leap forward in neural network processing that is usually referred

to as deep learning. Whilst the term machine learning applies to algorithms

that can modify themselves without being explicitly programmed to produce

a desired output, by abstracting patterns from raw data (Goodfellow et al.,
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2016), deep learning creates a learning structure from a hierarchy of simple

concepts, that build to complex concepts. Deep learning allows computational

models that are composed of multiple processing layers to learn representa-

tions of data with multiple levels of abstraction (LeCun et al., 2015), and are

typically trained with ground-truth, labelled data.

Over the past decade, the number of projects that use deep learning in

agriculture has grown significantly (Kamilaris and Prenafeta-Boldú, 2018a).

These include estimating corn yields using remotely sensed hyperspectral

data and a deep neural network (Kuwata and Shibasaki, 2016) and mapping

winter vegetation quality coverage using Sentinel-1 SAR data and a Recurring

Neural Network (RNN) (Minh et al., 2018). Density Weighted Connectivity

of Grass Pixels (DWCGP) is a method proposed to automatically estimate

roadside grass biomass (Zhang et al., 2018). Mounted on a UAV, a V-NIR

camera, filtered to return Red, Green and NIR channels, captured images every

2 seconds from 100m. Using PhotoScan, the authors generated 3D ortho-

photos. Grass pixels were identified using a feedforward neural network and

texture orientation. To estimate biomass, the authors calculated the length of

continuously connected grass pixels along a vertical orientation in each image

column, and then weighted the length by the grass density in a surrounding

region of the column. This method was equally successful in situations where

the grass stems were not vertical and its performance was found to be close

to human observation.

In the area of deep learning, it can be useful to apply unsupervised learning
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methods to first build up a suitable representation before supervised training

can be performed. Taking this approach, Kuwata and Shibasaki (2015) used

historical yield trends, EVI from MODIS bands and climate data to develop

yield estimation algorithms for crops over a wide area. Multiple Restricted

Boltzmann machines (RBMs) were used to integrate features into the multiple

neural network layers. Similarly, to classify land cover and crop type over

multiple times from multiple remote sensing sources, Kussul et al. (2017)

used a combined architecture, pre-processing LANDSAT image data with

unsupervised self-organizing maps (Kohonen, 1997) to segment images and

restore data that was missing from temporal time lines, possibly due to cloud

cover. The output was fed into two different CNNs, one with 1-D convolu-

tions in the spectral domain and the other with 2-D convolutions in the spatial

domain. The results were post-processed and geospatially mapped. These

results were compared with previous studies using Random Forests and En-

semble Neural Networks. Whilst the overall classification accuracy for the

Random Forest study was 88.7%, the 1-D and 2-D CNNs outperform them,

with overall classification accuracy of 93.5% and 94.6% respectively.

Working with the satellite modality, deep learning has also been used to

estimate NDVI from Sentinel satellites, even on a cloudy day. Scarpa et al.

(2018) used data fusion and deep learning to estimate NDVI from Sentinel

data, where reflectance cannot be read due to cloud obscuring the field of view.

To train their model, they fused Sentinel-1 SAR data (SV V and SV H), optical

data and cloud masks from Sentinel-2 and Digital Elevation Maps. Using
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Figure 4.6
Leader board from ImageNet 2015 competition, showing ResNet, from Microsoft Research
Asia (MSRA) taking the top two spots and ReCeption, a variation on the Inception model,

from Google, coming third. Source Gnv (2020)

these data, the authors developed a Convolutional Neural Network (CNN) to

predict NDVI. In all cases, the CNN approach performed better than either

regression or interpolation over time.

A further specialisation of deep learning involves the use of very com-

plex, specialised convolutional architectures such as AlexNet, VGGNet and

ResNet (Kamilaris and Prenafeta-Boldú, 2018b). Significant advances have

been made in developing even deeper and more accurate networks, often in re-

sponse to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

(Russakovsky et al., 2015), which challenged developers to improve object

recognition models, providing a dataset of millions of images, in hundreds of

categories. Measuring the error rate as the percentage of images that were in-
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correctly classified, AlexNet, a deep learning architecture that contains eight

learned layers (Krizhevsky et al., 2012), and achieves a much higher accuracy

rate than standard CNNs, won the challenge in 2012, with an error rate of

16%. This was followed by VGGNet (Simonyan and Zisserman, 2014), con-

sisting of 16 convolutional layers, which won the challenge in 2013 with an

error rate of 12%. In 2014, with an error rate of just 7%, Inception V1, known

as GoogLeNet won the challenge. Inception V1 has 27 layers, but is only as

computationally complex as VGGNet (Szegedy et al., 2015). ResNet, which

introduced skip connections to overcome vanishing gradients (He et al., 2016),

won in 2015, with an error rate of just 3.6%, as shown in Figure 4.6. Inception

ResNet V2 combines the advantages of the first Inception (GoogLeNet) with

skip connections (Szegedy et al., 2017). The increasing availability of GPUs

enables the use of these architectures, and their depth allows them to learn

more than standard CNNs.

One use of AlexNet in agriculture has been to identify obstacles and an-

omalies in a field, with a higher degree of accuracy than standard CNNs that

use background subtraction. Data augmentation increased the volume of data

and thereby minimized overfitting (Christiansen et al., 2016). In a similar

fashion, Unnikrishnan et al. (2018) use AlexNet and VGGNet to classify

satellite images of vegetation from SAT-4, an aerial four-channel imagery

dataset provided by the USDA (Basu et al., 2015), using just the Red and

NIR channels of the images. They adjusted the number of filters for optimal

accuracy and performance. A more accurate classification of hyperspectral
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images has been developed using ResNet and transfer learning (Jiang et al.,

2019).

These models have been applied by researchers such as Mohanty et al.

(2016) to detect plant diseases from a repository of plant health images

(Hughes and Salathe, 2015) with excellent results. Even here, however, the

author notes that if the images were not taken under the same controlled cir-

cumstances, the accuracy would not be as high. Nevertheless, as noted by

Kamilaris and Prenafeta-Boldú (2018a), the benefits of deep learning suggest

that it holds great potential.

Inception Resnet V2 has been used to good effect to estimate biomass. Spe-

cifically in a pasture setting, when comparing variations of VGG, DenseNet,

ResNet, Inception and EfficientNet to estimate the ratio of clover, grass and

weeds in RGB images, Kartal (2021) found Inception Resnet v2 acheived

the highest accuracy, of 76.7%. When using LiDAR point clouds to estimate

biomass and tree count in forests, deeper CNNs that used inception layers

and residual layers, were more effective in this prediction (Ayrey and Hayes,

2018). Another deep CNN architecture using residual and inception layers

along with channel attention blocks has improved overall accuracy in classi-

fying land cover from Lansat data by 2 to 9% (Chen and Tsou, 2021).

4.3.1 Discussion

One of the notable challenges for applying deep learning based methods to

tasks such as pastureland trait estimation, is the need for vast amounts of
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data. Deep learning is typical of a data hungry approach, which aims to learn

models from the training data, by being exposed to enough data samples that

generalisation is possible without succumbing to overfitting, or memorisation

of a few cases. Within a classical tri-band image processing domain, which

has only red, green, and blue channels, the challenge of limited data sets is

being addressed through ideas such as transfer learning, where models built

on large datasets for one domain are specialised over into a new domain, with

only a small amount of fine tuning. While such an approach is promising for

a multi-spectral area such as pastureland trait estimation, existing pre-trained

models are not optimised for the many different spectral channels required

in the multispectral estimation approach. Thus significant research is still

required into how transfer learning can be applied effectively in this domain.

Training and generalization errors vary with the size of the training set.

For non-parametric models, these errors cannot increase with extra data, and

will continue to improve as data is added, until the model has reached its

best performance (Goodfellow et al., 2016). However, different algorithms

perform better on one type of data distribution than another.

4.4 Discussion

In addition to choosing an appropriate technique, the success of a machine

learning venture also depends on the improvements applied to it. Successful

learning relies on choosing an appropriate algorithm and providing sufficient
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data for it to run. Each of these algorithms also depends on hyperparameters

that are set before learning begins. Appendix E reviews methods for tuning

hyperparameters and optimising learning.

There are many machine and deep learning models that have been used

to automate tasks in the agricultural sector, only some of which are reviewed

here. Table 4.1 lists models that have been reviewed in this chapter, relating

to estimating biomass, citing either the paper describing the application of the

method in agriculture. Those listed at the bottom of the table belong in the

sub-category of deep learning.

Where there is a simple, but very strong correlation between a small num-

ber of independent variables and the dependent variable, this correlation can

be resolved with a reasonably small amount of observations. More complex

correlations, with many contributing independent variables, require more com-

plex methods. As the methods become more complex, they have a greater

ability to learn. However, deeper learning requires exposure to more observa-

tions to mine the complexity of the correlation relationship. Whilst research

into deep learning with small datasets is ongoing (Yuan et al., 2021; Brigato

and Iocchi, 2021; Mishra and Passos, 2021), there are some existing access-

ible techniques that can be employed in this work, such as transfer learning,

data fusion and multi-task learning. Similarly, some of the simpler models can

have their hyperparameters fine-tuned, although many of the deeper models

come with recommended hyperparameters and optimisers, that are justified

by the originating author, for example, Inception ResNet V2 (Szegedy et al.,
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Category Method Citation

Linear Linear Regression (Harmoney et al., 1997)
Logistic Regression (Starks et al., 2006)

Non-linear Power Regression (Xue et al., 2004)
Exponential Regression (Anaya et al., 2009)

Dimension
Reduction Reduced Major Axis Regression (Grüner et al., 2019)

Principal Component Analysis (Kauth and Thomas, 1976)
Partial Least Squares (Lavine and Workman, 2008)
Modified Partial Least Squares (Murphy et al., 2021b)

Non-parametric
techniques k-nearest neighbours (Wu et al., 2016)

Ensemble
techniques Random Forest Regression (Mutanga et al., 2012)

Stochastic Gradient Boosting (Dos Reis et al., 2020)

Support Vector
Machine Support Vector Regression (Clevers and Kooistra, 2006)

ANFIS Adaptive Network-based
Fuzzy Inference System (Ali et al., 2017)

Neural Network Fully Connected Neural Network (Yang et al., 2017)

Convolutional
Neural Network CNN (Kussul et al., 2017)

AlexNet (Castro et al., 2020)
VGGNet (Castro et al., 2020)
GoogLeNet (Kartal, 2021)
ResNet (Narayanan et al., 2021)
Inception ResNet V2 (Sindic and Riday, 2020)

Recurrent
Neural Network RNN (Masjedi et al., 2019)

LSTM (Rangwala et al., 2021)

Table 4.1
Machine and Deep Learning Methods

2017).
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4.5 Summary

This chapter has shown that there are several ways in which biomass can be

estimated, as part of a coordinated effort using a variety of data collected in

different ways. It is evident that state-of-the-art technological solutions do

offer significant improvement over hand-crafted methods. Machine learning

has been very effective in estimating biomass, especially when there is a vari-

ety of data available, such as GrassQ (Murphy et al., 2019). Having reviewed

sixteen different machine learning methods, Morais et al. (2021) conclude

that the performance of algorithms for biomass in grassland depends on num-

ber of field samples, data source and pasture composition, rather than the

machine learning method used. However, this work is attempting to estimate

biomass and dryness on demand, using just data collected from a moving

mower. Driven by more sophisticated sensing equipment and the rapid ad-

vances in deep learning based machine learning methods in the last 10 years,

solutions can now be proposed to estimate biomass, moisture, nitrates, and

other nutrient properties of the grassland in a just-in-time context. Given the

advantages of deep learning over shallow machine learning techniques, it is

possible that, given enough training data, a viable model can be developed.

For initial deep learning, a relatively shallow CNN can be explored, but ulti-

mately, more versatile methods that can build on pre-trained models are likely

to be of most benefit in limited data situations. It should also be kept in mind

that models using a vector of hyperspectral data can be investigated to provide
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a guideline of potential reference values against which deep learning methods

can be compared.

Nevertheless, the most challenging aspect to applying deep learning mod-

els is the need to gather sufficient amounts of accurately labelled data that

cover the many different variations in conditions encountered across geo-

graphic, climate, and temporal conditions. The next chapter turns to this

challenge, in the context of this thesis.
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Chapter 5

Data Collection

Having presented a review of silage and measurement of vegetation traits

using remote sensing in the previous chapters, this chapter describes prepara-

tion and site visits that were carried out to define, collect and prepare data to

evaluate the hypothesis set out at the start of this thesis, namely that through

the advantages of state-of-the-art machine learning systems, pastureland crop

traits can be assessed in a just-in-time fashion, based on data retrieved from

an inexpensive sensor platform.

As indicated in Chapter 1, following negotiation with the industrial partner

1, given the time scale and budget for our collaborative research, it was de-

termined that initially estimation of biomass and moisture content would be

addressed, as it was feasible to collect and measure these traits. The reasoning

behind this was that farmers need to know how much forage has been harves-
1As outlined in the introduction, the work presented in this thesis came about from a joint industry academic

project with TANCO Autowrap Ltd. A number of engineers and scientists from both TU Dublin and TANCO
were involved in the project. The production of the sensor platform and collection of data as outlined in this
chapter was a team effort with input from many. While the author took a lead in many of the design of these
activities, a sincere thanks and acknowledgement goes to everyone who contributed to the data collection
platform or data collection activities. A concrete demarcation between activities is presented in the conclusions
chapter.
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ted and what percent of it is dry matter, so that potential silage output from

this harvest can be estimated. Additional caveats included that the equipment

used should be as inexpensive as possible and it should be possible to mount

the platform on a moving mower, so no part of the platform should touch

or probe the soil. At the start of the primary collection phase, the idea of

measuring nitrogen and sugar content was introduced. This led to nitrogen

and Brix measurements being taken for many of the samples in the primary

collection, but correct protocols in regard to these were slower to establish,

meaning that not enough data was collected to build models for estimating

nitrogen or sugars.

As the mower is likely to be used throughout the country on a contract

basis, full knowledge of the site, its planting and treatment, may not be avail-

able to the model. A further constraint arose in that collections could only

take place on farms that were ready to harvest, during weather suitable for

harvesting. This limited the collection window to the summer season. Given

the review in the previous chapters, conventional wisdom recommends that

multi-spectral data, hyperspectral data and height data should be used to train

for estimating biomass. To estimate moisture content a conventional soil mois-

ture probe cannot be used. However, as discussed in Section 3.1.3 the Crop

Water Stress Index (CWSI), uses temperature data to estimate whether a crop

is too dry. Some of the components of this calculation, the upper and lower

limits of the temperature difference between canopy and air, would not be

available to the model, but the temperature difference, in addition to other data
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gathered, may be useful. As deep learning using images has also been some-

what successful in estimating biomass, 2D image and VISNIR data could also

be useful. Section 5.1 explains the sensors that were tested, describing the

thought processes that led to their selection.

A strategy for data collection experiments was also developed, splitting

data collection into phases, starting with a pilot phase and continuing with a

primary experimental phase. For each of these phases, a manually-operated

trolley was designed and commissioned, housing a laptop computer and a

sensor platform. Given these needs, Section 5.2 describes the design and

development of those trolleys and platforms. A pilot collection took place

in Autumn 2018, allowing for training models to be explored and for the

collection process, equipment and protocols to be improved, prior to the

primary collection. As data from the pilot collection were collected under a

different protocol to the primary data collection, these data were useful for

testing models, but could not be combined with the primary data, which were

collected from May to October 2019. Section 5.3 reviews collection event

management, and also describes protocols implemented during collection,

labelling and data compilation, that were developed by the author. Following

this, challenges related to data collection in this research are addressed in

Section 5.4. We begin, however, by going into more detail on the sensors

investigated and adopted.
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5.1 Data and Sensors

As the primary target variables for investigation are fresh biomass (Kg/Ha)

and Dryness (%), the review presented in previous chapters indicates that

potentially useful data for collection include VISNIR data, narrowband data,

canopy height in centimetres, temperature at the top of canopy and ambient

temperature. Finally, so that a map can be produced, the location being

sensed needs to be recorded. As one of the goals of this work is to minimize

cost, inexpensive sensors were tested, alongside more established, higher cost

sensors. The sensors considered to collect each type of data are described

below.

5.1.1 VISNIR Data and Sensors

VISNIR data include the visible RGB channels and a near-infrared channel.

RGB (red-green-blue) images provide visual and spectral information regard-

ing the area imaged. Texture and shape give clues as to properties of the target

being imaged. In relation to the goals of this work, images may be able to

discern species mix and crop condition. Some images also show droplets of

water on the leaves, or evidence of drought. Spectrally, these images also

provide broadband red, green and blue reflectance data. The NIR channel,

meanwhile, enhances the information gleaned from the RGB image as NIR

reflectance responds to changes in internal plant structure. Many vegetation in-

dices, including the popular NDVI, depends on NIR reflectance. Four-channel
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Figure 5.1
JAI AD-130 GE VISNIR camera, during testing.

VISNIR images include three RGB channels and one NIR channel. Because

of the relevance of VISNIR data in estimating biomass and moisture content,

it was collected in two ways; using both a high-spec proven sensor and a

low-spec trial sensor.

High-spec option: The JAI AD-130 GE as shown in Figure 5.1 is a 2 CCD,

four-channel camera which takes VISNIR images. The central wavelengths

are 470nm, 540nm, 610nm and 770nm respectively, each sensitive to a band

of no less than 100nm (Stemmer, 2013). This camera has been used for agri-

cultural research to identify weeds (Haug et al., 2014; Haug and Ostermann,

2015; Lottes et al., 2017). It produces an RGB image and a NIR image taken

from the same position in sequence, so there is no displacement between the

RGB and NIR areas imaged.
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Figure 5.2
Pi NoIR camera, attached to Raspberry Pi, during testing.

Figure 5.3
E-con Auto focus USB Camera module. These cameras were used during the primary

collection. Source: photonics (2021)

Low-spec options: To get VISNIR images, two cameras were used; one

for RGB and one for NIR. Standard RGB cameras have a filter to block out

IR light to prevent corruption of the visible image. An RGB camera was used

for RGB images. Cameras without this filter are knows as noIR cameras (see

Figure 5.2). A noIR camera with a broadband filter that blocks reflectance
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below 700nm will return just the NIR part of the image.

Both the Raspberry Pi Foundation (Raspberry Pi, 2022) and E-con Systems

(e-consystems, 2022) provide RGB and noIR cameras. To convert the noIR

camera to NIR, options that were investigated included (a) using an unexposed

strip of camera film, or (b) using a broad-band optical dielectric-coated filter,

blocking all reflectance below 700nm in conjunction with a lens tube and

bespoke housing to hold the camera, filter and lens tube in place. Option (b)

proved to be a lot more successful in returning a true NIR image and was used

in the primary collection. For both RGB and noIR, the E-con camera is more

(a) Pi RGB image (b) E-con RGB image

Figure 5.4
Comparison of images taken simultaneously from a Pi RGB camera and an e-con

Auto-focus USB camera.

expensive than the Pi version. However, the trial experienced higher quality

RGB images from the E-con camera, one example of which is shown in Figure

5.4. For this reason, the E-con camera was used for the RGB image towards

the end of the primary collection, when one became readily available. It is

worth noting that the camera position for NIR and RGB images was slightly
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different, as two cameras were used, so there was some displacement between

the RGB and NIR images. Later collections experimented with recording

upward facing RGB and NIR in an effort to calibrate target reflectance to

ambient light.

5.1.2 Narrowband Data and Sensors

The next category of data required was narrowband EM reflectance data.

Increasingly, vegetation indices use narrowband reflectance instead of the

broad bands provided by VISNIR cameras (Mutanga and Skidmore, 2004;

Pullanagari et al., 2011; Bai et al., 2016). These narrow bands have been used

to provide a range of vegetation indices designed to predict properties such as

biomass, nitrogen and water content (Gitelson, 2005; Bronson et al., 2015; Su,

2017). Narrowband data were collected because of its relevance to estimating

nutrients. Once again, both a high-spec proven option and a low-spec trial

option were chosen.

High-spec option: For the high-spec option, an Ocean Optics Flame spec-

trometer (OceanInsight, 2020) was used, shown in Figure 5.5. This is a spot

sensor that returns an average reflectance value for the area sensed. This spec-

trometer returns 2048 readings across the spectrum from 390nm to 1050nm.

This is an expensive and delicate device, making it unsuitable for long-term

field deployment.

Low-spec options: To emulate this using less expensive devices, narrow-

band dielectric filters (Thorlabs, 2015) were placed in front of a noIR camera,
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Figure 5.5
Ocean Optics Flame Spectrometer. This module was used as a spot sensor for hyperspectral

data during the primary collection. Source:OceanInsight (2020)

(a) NIR bandpass filter.
Source: Thorlabs (2015)

(b) 730nm narrowband filter.
Source: Thorlabs (2015)

(c) Fast change lens tube filter
holder. Source: Thorlabs

(2014)

Figure 5.6
Supplier’s images of a (a) broadband filter, (b) narrowband filter, and (c) lens tube to hold
filters in place, used with noIR Raspberry Pi or E-con cameras and Thor filters during the

primary collection

to filter out all reflectance except that in the range required. This requires that

the camera be capable of sensing EM energy in the selected range. A range of

narrowband EM reflectances including reflectance at 590nm (Amber), 660nm

(Red), 730nm (Red Edge) and 780nm (NIR) were used. To indicate change

in moisture status, reflectance at 900nm and 970nm was also recorded. Ad-
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ditionally, later collections recorded narrowband reflectance at 510nm and

700nm in an effort to improve the estimate of leaf nitrogen uptake. The cam-

eras that were used with filters were mostly Pi noIR cameras. For the higher

wavebands (especially 970nm), a noIR E-con camera was deployed.

Each camera was fitted with a dielectric filter specific to the required wave-

band, held in place by a lens tube (see Figure 5.6c) in a bespoke 3D-printed

setting, to minimize light penetration from unwanted wavebands. Filters

used were one FELH0700 - Ø25.0 mm Premium Longpass Filter, Cut-On

Wavelength: 700 nm, designed to filter out light below 700nm. The supplier’s

image of this filter is shown in Figure 5.6a. One of the narrowband filters

(730nm) is shown in Figure 5.6b.

5.1.3 Other Data, Sensors and Equipment

Canopy height has been found to improve the accuracy of biomass estima-

tion, as demonstrated by many researchers, including Fricke et al. (2011) and

Schaefer and Lamb (2016). Rather than having high- and low-specification

options, canopy height was measured both electronically and manually.

Electronic option: A single point LiDAR-Lite v3HP (Garmin, 2018) was

used, as shown in Figure 5.7, which has a range of 5cm to 40m. Following

trial and error, it was found that the LiDAR readings were more consistent if

a very light levelling plate was placed on the grass, prior to the sensor reading.

This prevented the LiDAR from focusing on a gap in the canopy. The levelling

plate used was 3mm aluminium, measuring 50cm x 50cm.
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Figure 5.7
Supplier’s image of a Garmin LiDAR-Lite v3HP. This module was used as a LiDAR sensor

in all collections. Source: Garmin (2018)

Manual option: To evaluate the accuracy of these measurements, manual

measurements of canopy height were also taken with a meter rule.

A further set of sensors measure temperature at canopy and ambient tem-

perature on the basis that plants that are dehydrated do not transpire. Transpir-

ation causes a difference in temperature between the top of the canopy and

the ambient air. To gather this information, temperature measurements at two

levels are required.

Initial Option: Canopy temperature was taken by a FLIR (Forward Look-

ing Infrared Radar) Lepton provided by Sparkfun (Sparkfun, 2018) This is a

Long Wave InfraRed (LWIR) thermal imaging camera using a focal plane ar-

ray of 80x60 pixels2 that captures non-contact temperature data in each pixel.

2https://www.flir.com/products/lepton/
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Figure 5.8
The Atlas Scientific PT-1000 probe is a Class-A high purity platinum RTD temperature
probe with a thick silicone rubber cable. Two of these sensors were used in the primary
collection, to collect canopy and ambient temperature. Source:AtlasScientific (2022)

The ambient temperature was taken using a Wireless Vantage Pro weather

station from Davis Instruments (Davis, 2022).

Refined Option: Thermocouples were also used to record temperature

readings. The design needed to be waterproof as the grass may not be com-

pletely dry and there is a possibility of the thermocouple touching the grass.

In light of this, the option that was chosen was the Atlas Scientific PT-1000

temperature kit. This kit has a water proof temperature probe that is protected

by a temperature thermowell. It can record temperatures from -200 °C to 850

°C (AtlasScientific, 2022). As the differences in temperature are not large in

this case, importantly it has an accuracy of ±0.3°C. See Figure 5.8

In order to ensure that the predicted values can be mapped geographically,
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location information was also collected. Again, both high-spec and low-spec

options were used, but in this case, the high-spec option was adopted for the

final design.

High-spec option: a u-blox (Sparkfun, 2022) GPS receiver. This device

is waterproof and can receive signals from multiple bands and connects to a

laptop or Raspberry Pi device, via a 2-metre cable with a USB 2.0 connector.

Low-spec option: a mobile phone was used to gather approximate location

data during the pilot collection.

To ensure the area being measured is accurate, a quadrat was required.

This is a rectangular wire frame that is used to mark the area being measured.

In all cases, the quadrat used was 50cm2.

Initial option: For the pilot collection, the quadrat used was subdivided

into 25 squares of 5cm2 each.

Refined option: In the primary collection, the quadrat was not sub-divided.

A colour swatch was used to provide the opportunity of calibrating light

sources.

Initial option: x rite Classic 24-patch colour reference target as shown in

Figure 5.9 (xrite, 2019b)

Revised option: x rite ColorChecker SG 140-patch colour reference target

as shown in Figure 5.10 (xrite, 2019a).

Although neither swatch is still in production, there is a colour checker

guide available (xrite, 2019b).
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Figure 5.9
24-patch x rite colour-checker swatch, as used in pilot collection. source: xrite (2019b)

Figure 5.10
140-patch x rite colour-checker swatch, as used in primary collection. source: xrite (2019a)
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5.1.4 Sensor Summary

A selection of hardware that could be appropriate for real time proximal

assessment was chosen for imaging and image filtering, measuring height,

temperature differential and GPS location. These are summarised in Table

5.1.

Sensor Functional Requirement Data Collection
Returned Pl Pm

JAI Camera RGB image 964 x 1296 x 3 ✓ ✓
JAI Camera NIR image 966 x 1296 ✓ ✓
Pi RGB camera RGB image 480 x 640 x 3 ✓
E-cam51A_USB RGB image 480 x 640 x 3 ✓
Pi noIR camera NIR image 480 x 640 x 3 ✓ ✓

Flame spectrometer Narrowband reflectance 2048 x 5 ✓
LIDAR-Lite v3HP Canopy Height Scalar(cm) ✓ ✓
FLIR Lepton Thermal Image 80 x 60 ✓ ✓
Weather Station Temperature Scalar (°C) ✓
Kit-301 PT-1000 Temperature Kit Scalar (°C) ✓
Phone App GPS String ✓
GPS Q1042 Positioning String ✓

Camera film, provided by
John Gunn camera shop

Filter for NIR image ✓

Dielectric filterR700(W ) Filter for NIR image ✓
Dielectric filterR510 Green reflectance ✓
Dielectric filterR590 Amber reflectance ✓
Dielectric filterR660 Red reflectance ✓
Dielectric filterR700 Red reflectance ✓
Dielectric filterR730 Red Edge reflectance ✓
Dielectric filterR780 R780 NIR reflectance ✓
Dielectric filterR880 R880 NIR reflectance ✓
Dielectric filterR900 NIR filter (Moisture) ✓
Dielectric filterR970 NIR filter (Moisture) ✓

Table 5.1
Sensors and filters used in the pilot (Pl) and main (Pm) data collections

Having decided on sensors, a collection mechanism was required to net-

work the sensors to collect data. The next section describes the trolleys that

were developed, and their networks.
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5.2 Trolley and Platform

To navigate and use the sensors, a manually-operated trolley was designed

and commissioned, that was capable of being moved around in a field of long

grass. For the pilot collection, a bespoke trolley with a four-wheeled frame

was designed, equipped with two shelves to hold equipment and a diagonal

boom with a platform on a sensor tray on top, as shown in Figure 5.11a. This

trolley was built by TU Dublin School of Mechanical Engineering (Figure

5.11).

It housed a battery-powered network that operated the sensors, using a

laptop as a client. The sensors were either connected to Raspberry Pis or

directly to the laptop. A schematic of this network is shown in Figure 5.12.

As the imaging and LiDAR sensors were specified to be around 1.5m from

the ground, a raised platform reached out from the trolley, operated from the

laptop that was sitting on a trolley shelf. A lower shelf provided room for

batteries, grass boxes and other equipment (Figure 5.11b). Sensors used were

as shown in the pilot (Pl) collection column in Table 5.1.

Following a successful pilot collection, refinements were made to the plat-

form, sensors, trolley and protocols. Two new target variables were also

introduced; leaf sugar content and leaf nitrogen content.
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(a) Sketch of pilot trolley

(b) Trolley loaded with network, deployed on a farm in Dungarvan, Co. Waterford.

Figure 5.11
Pilot collection trolley design and implementation

141



Figure 5.12
Components of the Pilot Network
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(a) Trolley

(b) Platform detail: (1) Sensor mounting (2)
Raspberry Pi bank (3) Filtered low-spec cameras

(4) Spectrometer (5) VISNIR JAI camera (6)
LiDAR.

Figure 5.14
Primary collection trolley and network design

The updated platform comprised further equipment to sense narrowband

data and temperature, as shown in the primary collection (Pm) column in

Table 5.1. To operate these devices a new trolley was designed, built and

deployed, housing a mobile network and sensor platform. Once again, the

trolley needed to be able to move across fields of long grass and take readings,

to be easier to manipulate, and to house the new network configuration. The

network was operated by a laptop connected to a router. A second bespoke

trolley was built by Tanco Autowrap Ltd. to accommodate the expanded

network. The platform network (Figure 5.13) trolley design (Figure 5.14a)

and platform (Figure 5.14b) are shown in Figure 5.14. Figure 5.15 shows a

photograph of the primary collection trolley taken in the Tanco workshop by

the author. Additional images of the trolley and network in development are

provided in Appendix B.
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Figure 5.15
Primary Collection Trolley loaded with network. Further images available in Appendix B.

5.3 Protocols and Event Management

The collection of data for this work was non-trivial. Collections required

organizing transport, lab access, equipment preparation and scheduling of

an engineer from the industrial partner, researchers from TU Dublin, and

a farmer who had a field ready to harvest, but had not yet been harvested.

Bad weather could cause an event to be cancelled prior to the trip, or even

on the day, during collection. All equipment had to be checked and packed

into a Jeep with consumables refilled, batteries charged and empty containers

labelled and made available for use in the lab. Having travelled to the venue,

the trolley and equipment had to be assembled and started up. Collections

took place according to a strict protocol.

5.3.1 Collection and Labelling Protocol
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In addition to collecting sensor data from each sample, samples needed to

be labelled with ground truth, to enable supervised learning to take place.

Ground truth refers to measurements of target values taken for each sample,

with the sensor data. In this case, both biomass and dryness labels were

collected.

The collection and labelling protocols evolved throughout the project, by

introducing techniques to maximize accuracy and minimize the threat of ren-

dering samples unusable. A summary of the protocol development is dis-

cussed in this section. Tests were undertaken to ensure that target ground

truth was accurate, including determining the optimal quadrat size, harvesting

area size, cutting technique, weighing scales accuracy, oven tray size, number

of sub-samples to be dried, oven equivalence, temperature and duration of

drying and sequence of steps, before the event, during collection and labelling,

and after the event. Packing lists and instructions were made to increase ef-

ficiency of safe and fast equipment transfer and adherence to protocols. Full

details of considerations and tests undertaken are available in Appendix A,

and the protocol is summarised briefly here.

Before collection: The industrial partner organized access to farms for

taking samples. The farm had to be within a radius of Dublin, to allow for

transport from TU Dublin and from Carlow and the grass needed to be ready

for harvesting. All batteries were charged, trolley and platform glitches were

fixed and consumables such as plastic bags, distilled water and containers

were sourced and labelled. Lab access was booked for the two days after the
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event, to allow for a complete drying cycle. Transport was organized for the

equipment and at least three personnel from TU Dublin and one person from

Tanco attended a collection event. All drivers were informed of the location

and meeting time at the venue.

At the venue: The host farmer guided the team to the target field(s),

advising on grass type and treatment. The trolley was unloaded and initialized

and the temporary lab was set up in one of the transport vehicles.

Field collection, per sample: The trolley was wheeled to a sample venue

and positioned where it did not cast a shadow. A computer-generated sample

number was written on a bag for collecting harvested material. The first set of

readings were taken from the sample area, namely, pre-cut narrow and broad-

band spectral data, GPS location and pre-cut temperatures. An example of

this is shown in Figure 5.16a. A very light levelling plate (50cm2) and colour

swatch were placed on the area and a second set of readings was taken to

determine pre-cut height and colour intensities, as shown in Figure 5.16b.

Manual height measurements were also taken as shown in Figure 5.17a. The

levelling plate was replaced by the quadrat. The grass inside the quadrat was

harvested and bagged. After cutting, a third set of readings was taken, giving

post-cut narrow- and broad-band spectral data and temperatures, as shown in

Figure 5.16c. The levelling plate was returned to the cut area and a fourth set

of readings was taken, to establish post-cut height, as shown in Figure 5.16d.

Each labelled sample bag was returned to the temporary lab. The bag was

weighed and biomass of 50cm2 was recorded. A smaller bag was labelled
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with the sample number, and 200g of biomass from the sample was put into

it, for drying. Bags were then packed in a coolbox for transport. From the

remaining biomass, four refractometer readings were taken using a HI96800

Digital Refractometer to estimate sugar levels (Hanna Instruments, 2022). Six

nitrometer readings were taken, using a Compact Nitrate Ion Meter (HORIBA

LAQUAtwin Model B-743), to estimate leaf nitrogen levels (Instrumart, 2022)

(see Figure 5.17b).

(a) First stage - undisturbed pre-cut image and
sensor readings. (Thermocouple not in view)

(b) Second stage - measuring pre-cut LiDAR
height, with colour checker.

(c) Third stage - post-cut image and sensor
readings, including temperature differential

(d) Fourth stage - post-cut measuring LiDAR
height.

Figure 5.16
JAI RGB images from sample taken on 6th June 2019. Source: GreenEyes dataset

Leaving venue: The trolley was dismantled and packed into boxes in
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accordance with a prescribed packing list, for quick retrieval. The presence

of a bag for each sample was checked and the lab was tidied away. All

consumables and waste were collected and removed from site. The samples

in the cooler box were brought to the lab in TU Dublin within a day.

(a) The levelling plate is placed
to allow the LiDAR to measure

height. Manual height is
measured with a meter stick.

(b) The sample is weighed
and Brixometer and

Nitrometer readings are taken
on site.

(c) Sub-samples of harvested
grass are put into foil trays and

dried for 24 hours at 60 °C in the
ESHI lab.

Figure 5.17
Data Collection and labelling process, 28th May 2019.

Lab work: All ovens were set to 60◦ Celsius, 0% humidity. For each

sample, 3 tinfoil trays were weighed and labelled, after which 20 to 25g from

the sample bag was added to each tray, trying for full stalks (i.e. as near

to root up to top of blade). Pre-filled and post-filled weights of each tray

were recorded. All samples were put in the ovens, with timestamps taken on

entry (see Figure 5.17c). After 24 hours, the trays were removed from the

oven and weighed. Before discarding the contents of the tray, an accuracy

check was made to ensure that the oven performed correctly - i.e. that the dry

149



matter content should be in the range of 15 to 25% of the original weight, not

including the tray. The fresh weight value was converted to Kg/Ha to give

biomass and the difference between pre-dried and dried harvested material

gave dryness as a percentage of the original biomass.

5.4 Data Summary

In line with the original research questions, multiple sensors were used to

collect data at each sample. Before proceeding to the analysis phase of the

investigation, the data that was collected was evaluated. This section presents

the results of that evaluation in terms of expectations and challenges that data

collection presented and discusses both the usability of the data collected and

the prognosis for using the sensors in future collections.

5.4.1 Data collection plan

Following the pilot collection, a new protocol was developed. Over out-of-

season practice sessions, the collection process was tested and timed, even-

tually reducing the collection of a single sample to around fifteen minutes,

once the trolley was in position. Given travel to, assembly and disassembly

time at a venue, if everything went smoothly, around twenty samples could be

collected at each collection event. Although a ‘W’ shaped path was planned

before collection began, there were additional overheads in moving the trolley

through tall grass, from one sample to the next. Ideally for deep learning,
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the number of samples should be over 10,000. During analysis of the pilot

data, samples were augmented by sub-dividing the images into 48 patches and

using the patches as individual observations. If this augmentation could be

repeated with the primary collection data, it would be good to plan to collect

600 samples over the summer of 2019. Although this would still fall far short

of what war required (in the tens of thousands), it would be enough to indicate

whether this approach was worth pursuing.

5.4.2 Challenges

As mentioned, data collection events required planning in terms of transport,

suitable farm site availability, personnel availability and lab availability, and

was highly susceptible to weather conditions. Each event also required train-

ing and preparation in terms of containers, protocol and equipment. A typical

event required four days; the first to prepare instruments, label bags and load

equipment, the second to travel to the location and collect data, the third to

load samples into the oven for drying and record them and the fourth and last

to retrieve the dried samples, weigh and record them. After that, data from

the collection and their labels needed to be collated and error-checked and

equipment needed to be checked and tweaked. Collection required moving a

manually operated prototype vehicle over thick grass, with sensitive sensors

on board.

Instrumentation did not always work as planned and over the course of

the collection period, different choices were made regarding specific sensors.
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This had a knock-on effect on the homogeneity of the data collected, requiring

datasets to be tailored to insure data integrity. Instrumentation errors occurred

throughout the collection cycle, leading to the development of a robust set

of protocols, designed to recoup further samples that could have been lost.

Examples of instrumentation errors were cameras that were over- or under-

exposed or blocked, LiDAR equipment suffering interference, poor placement

of the quadrat or trolley, failure of electronic scales and failure of an oven to

remove moisture due to a full water drain. On collection day, each sample

took around 15 minutes for a team to position the trolley, take four sets of

readings, harvest, record and return the yield to a makeshift laboratory on-site,

where the yield was weighed, checked for nitrogen and sugar content and a

sub-sample labelled and packed for use in the lab. The trolley platform could

not be exposed to rainy conditions, shortening and sometimes cancelling

collection events. To the immense credit of the collection team, a total of 268

samples were collected in 25 collection events.

5.4.3 Data Use and Usability

Primary data were collected from 15th May until 22nd October 2019, with

20 collections from a selection of farms, mostly in the Leinster area of Ire-

land. A series of data integration, exploration and visualisation programs

were developed by the author and used throughout the collection, to provide

an accuracy check for the collection team, highlighting valid and potentially

flawed data and providing summary statistics. A full sample contains 4 x
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21 files; each sample area is sampled four times, with 21 files produced at

each sensing event. The LiDAR produced a real value encoded as a short

string, while GPS provided GPS coordinates according to the MNEA stand-

ard encoded as a string. The two thermocouples also produce scalar values.

The spectrometer produces 5 x 2048 floating-point numbers, the JAI cam-

era produces a 964 x 1296 x 3 RGB image and a 966 x 1296 NIR image.

The remaining files contain 480 x 640 x 3 image data. Temperature, LiDAR

and GPS data are relevant to both the high-spec and low-spec datasets. The

JAI and spectrometer data are relevant to only the high-spec dataset and the

remaining items are relevant to the low-spec dataset only.

For each event, four sets of images were taken; the first is of undisturbed,

uncut data. This can be patched as pre-cut sub-samples, as was done for the

pilot data. In the third image, only the cut square of the image is relevant, so

to use this, it would need to be isolated and used as post-cut data. Software to

isolate squares for a single sample at a time was developed, one run of which

is shown in Figure 5.18, with pre-cut (5.18a) and post-cut (5.18b) squares.

153



(a) Pre-cut squares from a single sample

(b) Post-cut squares from a single sample

Figure 5.18
Images of low-resolution squares at different wavelengths, with narrowband filters at 510nm,
590nm, 660nm, 700nm, 730nm, 780nm, 880nm, 900nm and 970nm, followed by pi RGB, pi

NIR (with broadband filter) and E-con RGB images.
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Two of the sensors (and hence files) were discontinued during this collec-

tion phase, due to the fact that they were not returning valid or useful informa-

tion; the upward pointing RGB and broadband NIR images were mostly over

exposed. The original purpose of these sensors was to emulate the work of

Bai et al. (2016), who used an upward pointing SRS NDVI sensor to meas-

ure solar radiation, but in practice, the images were almost all completely

over-exposed. For the downward pointing images, there is a colour checker

in two of the four images. These are not evident in Figure 5.18 as the colour

checker does not overlap the square that was harvested, but they can be seen

as taken from the JAI camera in Figure 5.16b and from the Econ RGB camera

in Figure 5.19b. The JAI camera could only have a single exposure setting for

RGB and NIR. To ensure that both images returned valuable data, the author

checked the distribution of pixel intensity across each image. This resulted

in an exposure setting that made the RGB images look a little dark, but still

returned full data, whilst at a higher exposure, the IR image was over-exposed.

Also, given the number of images and their similarity, the RGB images

can be normalized to ambient light, by taking the mean intensities across

all images. However, for future studies a different mechanism for detecting

ambient light is recommended.

Direct sunlight also caused problems with the LiDAR sensor. On this

prototype trolley, there is only 1 LiDAR sensor. During the pilot collection, a

single reading was taken. This caused problems where the grass was not of a

consistent height. In the primary collection, a levelling plate was used. Having
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(a) First stage (b) Second stage

(c) Third stage (d) Fourth stage

Figure 5.19
Econ RGB images from sample 13001 taken on 13th Aug 2019, again showing four stages.
Note the colour-checker in (b) and canopy thermocouple in (c). The thermocouple used at

stage 1 (a) is not visible, as is not inside the cut square.

experimented with cardboard, and wallboard, to ensure that the levelling

plate did not depress the canopy and did not deform, a 3mm thick sheet of

aluminium was used. Initially this was used in its raw state, but very bright

sunlight seemed to interfere with the readings, as shown in Figure 5.20. Over

a period of several collections, the author checked manually measured height

against that measured by the metre stick, as shown in Figure 5.21. To mitigate

against this problem, the levelling plate was spray-painted black, as can be

seen in Figure 5.19d. Manual height was measured in many of the collections.

156



Figure 5.20
Glare from the sun on aluminium levelling plate, prior to being painted black. Source:

GreenEyes dataset.

Figure 5.21
Plot of height data collected manually vs LiDAR sensed height, May 2019.

Hyperspectral readings were plotted alongside pre- and post-cut images, an

example of which is shown in Figure 5.22. Although measures were taken to

mitigate the effects of sunlight on the LiDAR sensor, the hyper-spectral sensor

may have been susceptible to this level of interference. This underscores
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Figure 5.22
E-con RGB pre- and post-cut image, with hyperspectral signature.

the challenges around the calibration of this device with respect to ambient

lighting conditions.

Experimentation in relation to data collection had two objectives. The

first was to provide data to build models for machine learning driven analysis,

whilst the second was to investigate the use and usefulness of the data col-

lected using the sensors that were tested. As an industry-sponsored project,

the evaluation of sensors was significant, so in tandem with collecting data,

experimentation was taking place on optimizing the sensor set. As such, some

of the data proved to be worth collecting, but either not enough samples were

collected for the analysis methods used, deep learning, or else the sampling

method / sensor changed during collection, rendering the data inconsistent

across all samples. For example, the e-con RGB and broadband NIR images

produced were good quality, but these cameras were not used for all samples.

Similarly, there were several changes of camera, position and filter in the

collection of narrow-band images, rendering them unusable for deep learning,

but remaining under investigation in relation to estimating nitrogen content in
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the future.

However, a large amount of usable data was collected. Hyperspectral data

sensed by the spectrometer are available for around 250 samples, labelled with

biomass and dryness values. The high resolution broadband data consists of

JAI images. This camera remained consistent throughout the collection period,

providing around 250 samples that are intact and labelled with biomass and

dryness values. For those images, height data that were recorded using LiDAR

and verified by manual measurement is also available, as is temperature dif-

ferential data, calculated by finding the difference between the temperature

at the crop canopy and that in the air, measured by thermocouples. Biomass

data are available for all of the primary samples while dryness data exists

for the majority of samples. In addition to proving a key analysis tool which

was used to check the images being taken with the multi-spectral camera, the

hyperspectral data were also analysed.

Moving forward to the data analytics phase of the project, the high resol-

ution JAI VISNIR images will be subjected to augmentation and used along

with height data and temperature differential. Targets of fresh biomass and

dryness are consistent throughout the collection and are considered valid as

targets for training.
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5.5 Summary of Data Collected

Overall 268 samples were collected. Table 5.2 lists the farms visited and the

number of samples collected in each. Whilst the data itself is not yet in the

public domain, two summary files exist, available on request from the author.

The first file shows presence or absence of values for each sample, at

each stage, with columns: Sample number, collection date, stage (1 to 4),

then Boolean values denoting presence / absence of: JAI RGB image, JAI

IR image, Hyperspectral data, Ambient temperature data, Canopy temperat-

ure data, GPS value, LiDAR value, upward pointing RGB sensor, narrow-

band 510nm, 590nm, 660nm, 700nm (narrowband), 730nm, 880nm, 900nm,

970nm, RGB (econ), 700nm broadband filter (emulating IR channel), gross

weight of sample (including bag), net weight of sample (minus bag weight),

manually measured height, 4 x Brix readings, 6 x Nitrometer readings.

A second file, giving summary data for each sample, giving the following

information: Sample number, date of collection, manually measured height,

LiDAR measured pre-cut height, 4 Brix values, 6 Nitrometer readings, av-

erage intensity over all pixels in all channels of the pre-cut JAI RGB image,

average intensity over all pixels of the pre-cut IR JAI image, GPS position,

pre-cut ambient temperature and canopy temperature. Where no value is

available, the entry for this column is left as null.
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5.6 Data Preparation

Although 268 samples were collected, some samples were missing data that

may have been required for analyses. To ensure that data being used for

hyperspectral analysis (see next chapter) was valid, the following tasks were

carried out:

• A spreadsheet of samples with sample number, collection date and pres-

ence of data for each sensor type was compiled. Each sample was given

a fold number between 1 and 5.

• From this sheet, a dataset of samples that had biomass values and hy-

perspectral data was compiled for use when developing a five-fold cross-

validated model to estimate biomass using hyperspectral data. This yiel-

ded 250 observations in total.

• A dataset of samples that had dryness values and hyperspectral data was

compiled for use when developing a five-fold cross-validated model to

estimate dryness using hyperspectral data. This yielded 250 observations

in total.

For image-based analysis (see Chapters 7 and 8), the JAI RGB and / or NIR

images were used, along with a label of biomass or dryness.

• All JAI RGB and IR images were manually checked. This showed that

in some cases, the camera had malfunctioned, as shown in Figure 5.23.

In this case, the sample was removed image based datasets.
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(a) Corrupt RGB image (b) Corrupt IR image

Figure 5.23
Corrupt RGB and IR images from JAI camera. Source: GreenEyes dataset

• Some IR images were over exposed. Only 201 IR images had an an

average pixel intensity of < 240. However, given that IR images in

general have a high white content, a threshold of 240 was acceptable. IR

and RGB images on the extremes were manually examined and excluded

where necessary.

5.7 Summary

This chapter outlined the process involved in specifying what data needed to

be collected, the equipment and manufacture required to provide the collection

platforms, the mechanisms and protocols around collecting and labelling data

and the challenges posed by this venture. It then discussed data artefacts

collected and their further use and usability. Although not all of the data that

were collected could be used in deep learning, the hyperspectral data, the high

definition RGB and NIR data, the temperature differential and the LiDAR

height data are all available for investigation.
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Building on the data collected, Chapter 6 begins the investigation and

computational modelling, by showing how the hyperspectral data were pre-

pared and builds a series of machine learning models to predict biomass and

dryness.
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Chapter 6

Evaluating Hyperspectral Data

Hyperspectral data naturally provides the most complete view of biological

processes in terms of EM reflectances. While spectrometers have been dif-

ficult to use in infield settings for many years, improvements in technology

mean that it is now feasible to collect hyperspectral data even for mobile

platforms. However, despite these improvements, the technology is of course

quite fragile, relative to cheap image sensors. Therefore, while it might not

be feasible to use the hyperspectral camera in an on-demand or just-in-time

setting, hyperspectral information may be feasible to use as a reference data

model against which a cheaper image based model can later be validated.

Given this potential, this chapter presents an approach to biomass and

moisture data estimation directly from the hyperspectral data. In keeping with

trends in machine learning, this approach will overall take a deep learning

driven approach as classical investigations of hyperspectral data in the context

of chemometrics have been numerous. This begins in Section 6.1 which de-

scribes the data that were available for this analysis and how it was prepared.
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Section 6.2 then describes how NDVI was calculated from the hyperspectral

data and reports results of a linear regression model that was developed to pre-

dict biomass from NDVI derived features. Section 6.3 moves on to apply the

data to three distinct 5-fold cross-validated models, namely a fully connected

artificial neural network, a 1D CNN, and a LSTM, to see if more accurate

results will ensue, and again, reports the results. To put the results observed

in context, Section 6.4 presents a review of groups of spectra from samples

that had similar biomass, to see if there was a visible similarity, while Section

6.5 summarises the chapter.

6.1 Data Preparation and Protocols

Before presenting experimental results, the protocols used to calculate and

evaluate the model results need to be established. We will see that elements

of the same protocol are used in subsequent modelling work, therefore it is

useful to establish the methodology clearly at this point.

In keeping with good machine learning practice, a cross-validation ap-

proach will be used to evaluate the performance of models in this work. In im-

plementing cross validation however, there are many different choices which

we can make. For example, there is always a question of what percentage of

data should be held back for validation (or indeed for testing). The choices

made and described below reflect the (relatively) small amount of data that

is available in this work as opposed to a more traditional computer vision
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problem. Five fold cross-validation was used in all analyses in this work. To

ensure that dataset contents were the same across all experiments, the full

set of samples was split into five subsets. These subsets were recombined

in five ways, combining four of the five for use in training and holding out

the remaining one as a validation set. Wherever possible the same splits are

used throughout this work. This presents both negatives and positives. The

negative is simply that a set of splits on a small dataset might exacerbate any

variations due to non-uniformity of the dataset. However the positive is that

it does allow consistency and transparency. For this reason the aim is to con-

sistently report results for each data split in this work – not simply to average

over the results.

With respect to the calculation of performance of individual models, both

a mean square error and a mean absolute percentage error was calculated on

each model. As the target scales of interest are very different (i.e. biomass

and dryness), Mean Absolute Percentage Error (MAPE) was used to report

accuracy, as it is easy to explain and does not depend on scale. Indeed, MAPE

is one of the most widely used measures of prediction accuracy, due to its

advantages of scale-independence and interpretability (Bruce L. Bowerman

et al., 2004; Jimenez-Marquez et al., 2005; de Myttenaere et al., 2016; Aarthy

et al., 2012; Baughman et al., 2018). The range of this metric is the set of

positive real values, i.e. it is possible to have a MAPE of 200%. It is a

popular metric for regression problems since it has both an intuitive meaning

and it allows us to compare performance of models across different target
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variables by normalising for the scale of the target. Although it may produce

infinite or undefined values for actual values of zero (Kim and Kim, 2016),

these values will not occur in the context of dryness or biomass. In this

example, the dryness percentage is expected to vary between around 14% and

30%, whereas the biomass values can be in the tens of thousands of Kg per Ha.

Within the historic literature R2 (the coefficient of determination) is often used

to report on the accuracy of regression models. It should be noted however

that R2 is in fact only meaningful when applied to training data and for this

reason within the machine learning community it has generally been replaced

by MAPE as ‘goodness of fit’ metrics. It should be noted however that as an

estimate of predictive variances, Mean Square Error is also calculated and is

used to drive the optimization process.

In order to check the baseline accuracy of our model, a baseline precision

error PEt was calculated for each target t, which was the average fractional

difference between each validation target value Vt and the average training

value (Tt). Specifically, for each target (t), PEt was calculated as follows:

PEt = 1
n

n∑
i=1

| Tt − Vt |
Tt

(6.1)

where n is the number of samples. This metric is, in practice, giving an es-

timate of the error that would be seen if a model were created that simply

predicted the average value for each target trait. The resulting baseline pre-

cision errors for each fold and overall, for the biomass target, PEB, and the
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Biomass Dryness
Fold PEB PED

1 56.6% 31.8%
2 58.4% 26.4%
3 60.2% 32.2%
4 58.8% 30.4%
5 49.4% 33.9%

Average 56.6% 31.0%
Table 6.1

Baseline Precision Error PEt for Biomass and Dryness

Figure 6.1
Full width reflectance spectrum of sample 7006, from hyperspectral sensor. Source:

GreenEyes dataset

dryness target, PED, are shown in Table 6.1. It should be noted that PE is

notably higher for biomass than dryness; this is aligned with expectations

based on field observations.

Moving on to the specifics of the hyperspectral analysis, as noted previ-

ously, during data collection, narrowband spot data were taken using a spec-

trometer, on the basis that this device is often used to measure NDVI from a

proximal platform, albeit calibrated to the species, environment and sensor.

When the Ocean Optics Flame spectrometer was activated before the col-

lection of each sample in the primary collection, it took five readings of a
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Figure 6.2
Biomass plotted against NDVI, calculated using hyperspectral sensor band values centred at

729.9nm as Red reflectance and 780.1nm as NIR reflectance.

single spot, returning 2048 values ranging from wavelength 390.21nm to

1052.02nm. A vector of length 2048 holds the average as the spectral signa-

ture of that sample. Along with this vector, each sample is labelled with a

biomass value (Kg/Ha) and dryness percentage. Figure 6.1 shows a plot of

the averaged vector data from one sample.

6.2 NDVI Analysis

As discussed in Chapter 3, a healthy plant will absorb visible light and reflect

back a lot of NIR light. The healthy rise in reflectance above 700nm in Figure

6.1 follows this trend. To calculate NDVI, for each sample, the average pre-

cut value at 780.1nm was taken as the NIR reflectance value for each sample
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Fold prediction MAPE

Fold 1 121.84%
Fold 2 183.14%
Fold 3 188.63%
Fold 4 101.18%
Fold 5 198.20%

Average 158.74%
St Dev 44.03%

Table 6.2
Minimum MAPE, hyperspectral data, NDVI vs Biomass, linear regression

and the average pre-cut value at 729.9nm was taken as the Red reflectance

value. NDVI was calculated, as always, as NIR−Red
NIR+Red . The resultant NDVI

values are plotted against Biomass in Figure 6.2. To check the accuracy of

the model, five-fold cross validation was carried out, and the Mean Absolute

Percentage Error was calculated for each linear model produced, one for each

fold. NDVI calculations and linear regression were carried out using the Scikit

Learn environment (Pedregosa et al., 2011). The mean MAPE, as shown in

Table 6.2, is well outside an acceptable range.

6.3 Non-NDVI Analysis

Rather than depending purely on those wavebands that NDVI uses, the full

spectrum from each sample was submitted to three machine learning models:

a fully connected neural network (NN), a convolutional neural network (CNN)

and a long short term memory recurrent neural network (LSTM). All models

were implemented using the Keras wrapper to Tensorflow. Training runs were

carried out on a Dell Dimension T5810 Tower with two 4-core Intel Xeon
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Processor @ 2.8 GHz, 4 GB RAM, a single RTX 2080 GPU, and each model

was trained for 300 epochs. For the training of neural networks and in par-

ticular Deep Neural Networks, gradient descent based optimizers are almost

exclusively used due to their compatibility with the backward propagation

algorithm for weight updates (Goodfellow et al., 2016). Within the class of

gradient descent based optimizers, there are several extensions of note beyond

the classical gradient descent optimizer. These include the use of adaptive

gradients (Duchi et al., 2011), momentum (Qian, 1999) and also the use of

small stochastic batches rather than using the complete training set per epoch

(Robbins and Monro, 1951). While each of these are considered to have

improved overall performance – and in some cases also training time to con-

vergence, these solutions need not be used in isolation. The Adam optimizer

takes advantage of each of these improvements over basic gradient descent

and captures them within a single optimization process. The Adam optimizer

is widely recognised as being an effective optimizer that is commonly applied

in neural networks and deep learning training and has demonstrated strong

performance across a range of different data types including time series and

image datasets (Kingma and Ba, 2017). A full review of optimizers can be

found in Appendix E.

All models were trained with a mean square error loss function and the

Adam optimiser with default training rates was applied. As mentioned, the

metric used for reporting accuracy is the Mean Absolute Percentage Error

(MAPE).
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Figure 6.3
Fully Connected Neural Network Model, using hyperspectral data as input.

In the following, the three model variants are briefly described. It should be

noted that the model variants as presented are the final model variants, and in

practice some network variations will have been considered in development of

these models. These networks will often have different neural arrangements,

activation functions, and so forth. Such variations can be considered a form

of high-level hyper-parameters selection.
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6.3.1 Fully Connected Network

A fully connected network is one in which all of the nodes in one layer are

connected to the nodes in the next layer. Based on the work of Rumelhart

et al. (1986), a fully connected network has an input layer, hidden layers and

an output layer, with a forward propagation algorithm applying a non-linear

activation between the weighted nodes on the nth and n+1th layers. At the

output layer, the results are compared to the label and an error is calculated.

Back propagation calculates error gradients with respect to node weights and

biases. In keeping with the philosophy that data collected could provide a

better prediction if a different learning mechanism was used, a fully connected

Neural Network was built, as depicted in Figure 6.3.

The input shape is 2048 x 1. The first fully connected layer learns 50

weights, using a rectified linear unit (relu) activation function. There are four

further layers, shaped as shown in Figure F.1, in Appendix F. The optimizer

used was Adam, the loss function was mean squared error and the metrics

recorded were Mean Absolute Error and Mean Absolute Percentage Error.

The batch size was 16. Early stopping was not used, as for small datasets,

there can be many small jumps in the training curves. Also, three hundred

epochs is a set parameter that is consistent across all models.

This model yielded results from running five folds to target biomass and

five to target dryness, as shown in Table 6.3. In comparison to the precision

error calculated, this network’s prediction accuracy for biomass, at 60.87%,
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

58.58% 69.60%
62.15% 58.36%
61.34% 60.94%
60.62% 60.94%
62.18% 54.52%
60.97% 60.87%
1.49% 5.54%

Dryness

Training Validation

26.21% 24.17%
25.04% 28.85%
28.99% 28.57%
25.50% 26.28%
32.23% 24.10%
27.59% 26.39%
3.01% 2.29%

Table 6.3
Minimum MAPE, training for dryness on hyperspectral data, fully connected Neural

Network

is poorer than the baseline precision error, PEB, and for dryness, at 26.39%,

it is only slightly better than the baseline precision error PED.

6.3.2 1D Convolutional Neural Network Analysis

The second model built was a 1D CNN. The moniker CNN generally refers

to a 2D CNN, designed to operate on a 2D plane, successfully implemented

by LeCun et al. (1989). 1D CNNs are an adaption first used by Kiranyaz et al.

(2015). CNNs include convolution and pooling layers, where the convolution

layer convolves a filter, or kernel over the input signal, in this case, a spectral

signature (Kiranyaz et al., 2021). The convolutional layer creates feature

maps, whilst sub-sampling is carried out by pooling layers. In a 1D CNN,

1D arrays are used for both kernels and feature maps, rather than the 2D

matrices typical in a 2D CNN. In this way, 1D CNNs can extract features

from short segments of the overall signal, using the full range of readings for

each sample.

The 1D convolutional layer had a kernel size of 2, with 54 filters and used
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Figure 6.4
1 Dimensional Convolutional Neural Network as used on hyperspectral data, to train for a

single target.

rectified linear unit as the activation function. The layers of the 1D CNN are

shown in Figure F.2 in Appendix F. Again, the optimizer used was Adam, the

loss function was mean squared error and the metrics recorded were Mean

Absolute Error and Mean Absolute Percentage Error. The batch size was 16.

Early stopping was not used and the model ran for 300 epochs.

The model was run five times, one for each fold. This model is depicted

in Figure 6.4 and results are shown in Table 6.4. For Biomass, the 1D CNN

has improved performance over the first model, with a minimum validation

176



Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

51.66% 57.73%
58.69% 35.98%
59.59% 46.76%
51.79% 55.88%
58.66% 48.62%
56.08% 48.99%
3.99% 8.63%

Dryness

Training Validation

99.23% 99.26%
99.42% 99.39%
19.51% 13.95%
41.90% 17.28%
99.34% 99.34%
71.88% 65.84%
38.41% 45.87%

Table 6.4
Minimum validation MAPE for Dryness, hyperspectral data, 1D CNN

MAPE of 49.99% ± 8.65%. This result is also a little better than the baseline

precision error, PEB. However, for dryness, it is very noticeable that this

model has not performed well, with a minimum MAPE of over 99% on three

of the folds.

6.3.3 Long Short-Term Memory Analysis

Recurrent Neural Networks (RNNs) do not consider each input in isolation,

but rather pass information from the processing of one input to the next,

thereby giving them sequence information (Hammer, 2002). When imple-

mented, RNNs can suffer from vanishing gradients, however long term short

term memory (LSTM) networks can also store memory state. LSTMs use a

memory cell to store activation values of previous elements in the sequence

(Hochreiter and Schmidhuber, 1997). Although regularly used to analyse

time-series data, LSTMs can be used on any vector data, and, these models

have also been used to analyse spectral data (Chen et al., 2020; Huang et al.,

2022). For this work, a network incorporating a LSTM was built as shown in
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Figure 6.5
Long term short term memory model as used with hyperspectral data to train for a single

target.

Figure 6.5, with results reported in Table 6.5.

The network itself is a hybrid model, using a 1D CNN as a first layer, with

the results then processed by the LSTM layer. This layered method is com-

monly applied to complex sequential data. The CNN in this case amounts to

a local feature detector that abstracts a number of very local baseline features

from the data. Intuitively they can be thoughts of as things like gradients,

particularly large numbers, but it is of course true to say that these features
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may simply be averages of local readings, for example. The transformed 1D

representation is then fed through the LSTM network which processes the

readings in sequence to allow for detecting long-term dependencies. Such

long term dependencies can, for example, be peaks in observation at particu-

lar wavelengths. For the CNN layer, the kernel size is 2, with 64 filters, and

uses rectified linear unit as an activation function. For the LSTM layer, 64

units were used, with return sequences set to true. The layers of the model are

shown in Figure F.3 in Appendix F. As with the previous models, the input

size was 2048x1, the optimizer was adam, the loss function was mean squared

error and the reporting metrics were MAE and MAPE. For all folds, for both

targets, the model ran for 300 epochs.

In this case, the model performed well for dryness, with a MAPE of around

half of the precision error, but very poorly for biomass, seemingly not learning

at all.

It should be noted that a number of other model variants were investigated

ruing creations of these models; however none of these performed signific-

antly better than those model variants presented.

6.4 Examining the Data

Given the relatively poor performance on the models tested to this point on

the data, it is worth performing a deeper dive to try to understand the possible

causes of such challenges in the data. Spectra for samples with different bio-
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

99.71% 99.64%
99.66% 99.73%
99.76% 99.79%
99.72% 99.70%
99.78% 99.77%
99.73% 99.73%
0.05% 0.06%

Dryness

Training Validation

16.02% 14.73%
15.59% 17.13%
16.45% 14.15%
15.60% 16.74%
16.13% 15.33%
15.96% 15.61%
0.37% 1.28%

Table 6.5
Minimum MAPE for dryness, hyperspectral data, LSTM

mass values - specifically the lowest, the mean and the highest - are shown in

Figure 6.6. These spectra bear out the theory that a photosynthesising plant

absorbs visible light and reflects back NIR light, with the topmost spectrum

looking quite flat (i.e. no red edge) and the average and high spectra showing

corresponding rises in intensity above 700nm, with the bottom one, in partic-

ular, showing a very steep red edge. However, a closer examination reveals a

more complex reality.

Firstly, the spectral signature recorded from six samples with the lowest

biomass is shown in Figure 6.7 and six samples with highest biomass is

shown in Figure 6.8. Beside the spectral signature of each one, both the low-

spec and high-spec RGB images are also shown. Interestingly, the image

with the lowest biomass clearly shows stony soil beneath the grass and the

corresponding hyperspectral signature is almost flat. However, the second

signature from the top shows evidence of photosynthesis, with a sharp dip

in reflectance at around 760nm, followed by a steep rise. Looking at the

image, although the grass is not tall, it completely covers the ground. In the
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Figure 6.6
Hyperspectral Spectra for sample with lowest, average and highest biomass respectively

remaining images, coverage is mottled, giving a mixed set of hyperspectral

signatures.

Looking at the high biomass samples, the images show lush coverage and

for the most part, there is a corresponding dip in the hyperspectral signature.

However, the images for the second highest biomass do not show a corres-

ponding dip.
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Figure 6.7
Hyperspectral signature, low resolution RGB image and high resolution RGB image for

samples with low biomass, varying from 2,000 to 3,640Kg/Ha
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Figure 6.8
Hyperspectral signature, low resolution RGB image and high resolution RGB image for

samples with high biomass, varying from 65,680Kg/Ha to 84,840Kg/Ha biomass
respectively.
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Comparing the signatures of a high biomass sample, 7006 (84,840Kg/Ha)

with a low biomass sample 10002 (2,920Kg/Ha) as shown in Figure 6.9, it

can be seen that a raw hyperspectral signature is not always an accurate meas-

urement of biomass. In a review of the use of spectroscopy in proximal

sensing, Angelopoulou et al. (2020) conclude that even in a laboratory situ-

ation, pre-processing methods and calibration techniques must be recorded

and reported for proper comparison, whilst in the field, additional factors such

as temperature, wind and precipitation can also affect readings.

Given these challenges, and also the need for robust just-in-time prediction,

hyperspectral readings do not at this point seem suited to providing high-

quality reliable data for this analysis.

6.5 Summary

The hyperspectral data collected gives a spot reading, with a value at 2048

wavelengths across the range of 390.21nm to 1052.02nm. Two different

approaches were taken to analysing these data. The first calculated NDVI

as specified by Rouse et al. (1974), but without calibrating the sensor. On

plotting the resulting NDVI against the biomass labels, there is evidence

of a correlation, but not specific enough to give an accurate prediction of

biomass from NDVI. A linear regression model attempted to predict biomass

from the calculated NDVI, with very poor results. The second approach was

to use three deep learning models, a fully connected neural network, a 1D
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Figure 6.9
Comparing hyperspectral signatures, low resolution RGB image and high resolution RGB

image of a high and a low biomass sample

convolutional neural network and a long term short term memory network. A

summary of results is depicted in Figure 6.10.

The best result for biomass was obtained by feeding the hyperspectral

data into a 1D CNN, giving a validation MAPE of 48.99%. Although this

is slightly better than the baseline precision error PEB at 56.6%, it is hardly

likely to be usable on a working farm. Similarly, the LSTM model gave a

good result for Dryness, at 15.61%, cutting the baseline precision error PEB,

at 31.0% almost in half.

In conclusion, the hyperspectral data suffered from a few problems. One

of these was that the dataset was not very big.However, these data were also

spot data, so did not hold any clues that might assist learning, other than the

pure electromagnetic reflectance from the area scanned.
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Figure 6.10
Minimum validation MAPE resulting from all models that analysed hyperspectral data

As has been shown in other research, hyperspectral data can be very useful

when used in combination with other data (Murphy et al., 2019), but when

used in isolation, it requires model calibration. Successful calibrations have

been calculated, using data from a single site, but over different times (Murphy

et al., 2021b). This work explores a different avenue - image data.

The next chapter will introduce one set of methods that attempt to improve

on these results, by dropping the spectral range and detail of a spectrometer,

in favour of structural and spatial variability that can be seen in image data.
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Chapter 7

Visual Analysis

Unlike hyperspectral point sources, image data maintain spatial features in

addition to providing some information on spectral absorption. This chapter,

therefore, builds on the work presented in the previous chapter, by focusing

first on the pure image data and by applying state-of-the-art methods to de-

termine the prediction potential that is possible to obtain from these image

based sources. In this context, images include both visual and NIR data. As

image based data arguably provide the cheapest and easiest sensor configur-

ation for deployment, it is useful to find out what is or is not possible with

such a framework.

For the analysis of the data, the two datasets, arranged into the five folds dis-

cussed in Section 6.1 were used. Each sample contained RGB, NIR, LiDAR

and temperature differential data, along with biomass and dryness labels. Two

datasets were generated, one dataset was made up of small patches of 156

x 156 pixels, whilst the other used large patches of 240 x 240 pixels, as

described in Section 7.1.
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State of the art image processing models invariably means deep learning.

However, in practice, there are many different ways in which deep learning

can be applied. For this reason Section 7.2 describes the model variants

considered here. These include shallow convolutional neural networks and

move on to deeper, more complex models, such as Inception ResNet V2

and MobileNet V2. This section also discusses methods that can be used

to leverage learning potential, such as transfer learning. Section 7.3 then

presents and discusses the results of variants of the experiments performed

on the shallow CNN, before Section 7.4 describes the Inception Resnet V2

experiment variants and their output and discusses those results. Section

7.5 then describes variants on experiments with MobileNet V2, outlining

the experiment variants and results, with discussion. Finally, Section 7.6

summarises the outcome of those experiments.

7.1 Data Preparation

As described in Chapter 5, data were collected and organized around two

distinct phases for this work. For clarity, the preparation of data from the

pilot and primary collection phases are addressed separately, with the pilot

phase data preparation described in Section 7.1.1 and the primary phase data

preparation described in Section 7.1.2.
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7.1.1 Pilot Data Preparation

During the pilot phase, forty-six samples were collected and fully labelled

over three farm sites in Autumn 2018. Biomass ranged from 5,144Kg/Ha to

60,391Kg/Ha, with an average of 21,129.22Kg/Ha and a standard deviation

of 15,532.58Kg/Ha. Dryness ranged from 14.3% to 43.6% with an average

of 26.7% and a standard deviation of 9.6%. The sensor data deemed suitable

for use in subsequent analysis were the JAI VISNIR data and the LiDAR data.

Four samples were rejected due to full over-exposure of the NIR channel,

resulting in a total of forty-two acceptable samples. From the remainder,

RGB and NIR images, LiDAR height, biomass and dryness estimates were

available (see Figures 7.2a and 7.2b for depictions of RGB and NIR data

respectively).

As described in Section 6.1 and depicted in Figure 7.1, the dataset was split

into five sets, so that five-fold cross-validation could be carried out. As sub-

sampling was used to extend the dataset, this process was performed prior to

running experiments on the folds, to ensure that all patches from each sample

were assigned to the same set. The sets were then combined into training

(four sets) and validation (one set) datasets by assigning a different set as the

validation set in each fold. As only forty-two valid samples were collected

in the pilot phase, this would not have provided enough samples for the deep

learning analysis being considered, without augmentation. However, images

of grass taken from 1.5m above are reasonably homogeneous in nature. This
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Figure 7.1
Visualising five sets of images used for cross-validation

(a) RGB, showing patch (b) NIR

(c) Blue, Green, Red and NIR channels from the patch

Figure 7.2
JAI camera RGB (a) and NIR (b) Sample images, with patch denoted on RGB image. (c)

Blue, Green, Red and NIR patch images.

feature enabled the images to be sub-divided into patches, with the intention

of using each patch as a row in the dataset. Each sample’s image was checked

to ensure all components were present and then split into 48 patches of 156

x 156 pixels. The patches were checked for validity. No image that included
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unnatural features (such as trolley wheels or cables, quadrats, arms or legs)

was considered to be valid. For a patch to be valid, both the RGB and NIR

images had to be uncorrupted and not fully saturated. Each patch inherited

the LiDAR measurement and biomass and dryness labels from the full sample.

Valid patches were combined (channels 1 to 3 are RGB, channel 4 is NIR) and

flattened. These were saved along with the LiDAR reading, target biomass

and dryness values for the sample to which they belong, to create a sub-sample.

Once the sub-samples had been created, each was further checked by loading

it and its labels, reverting to the original format and displaying them, as shown

in Figure 7.2c. The patch illustrated is indicated by a box in Figure 7.2a. This

pilot image and LiDAR data were used to develop deep learning architectures

to predict fresh biomass and percentage dry matter (dryness).

7.1.2 Primary Data Preparation

From the primary collection two datasets were prepared. The first dataset was

prepared in the same way as for the pilot experimentation, with the addition

of temperature differential data. Again, the samples were split into five folds.

Each sample was sub-divided into patches of 156x156 pixels, resulting in

10,944 patches or sub-samples. However, dryness ground truth labels were

missing from some of these, so a smaller dataset was prepared for learning

to estimate dryness, with a total of 9,168 patches. All samples had a LiDAR

height estimate and a temperature differential. These patches will henceforth

be called ‘156x156’, or small patches. The second dataset was prepared

191



following further data cleaning; some corrupt or over-exposed samples were

omitted and patch size was changed to 240x240 pixels. This resulted in

far fewer patches, but each patch contained more information. There were

5,208 sub-samples suitable for biomass training and 4,848 suitable for dryness

training. These patches will be called ‘240x240’ or large patches.

7.2 Deep Learning Models

The moniker ‘deep learning’ applies to wide range of machine learning mod-

els, grouped because they are composed of multiple processing layers to

learn representations of data with multiple levels of abstraction (LeCun et al.,

2015). Convolution Neural Networks are particularly suited to image recog-

nition, classification, and detection tasks, but even they vary in depth, net-

work architecture, non-linear activation functions, regularization mechanisms

and resource requirements (Rawat and Wang, 2017). Describing in detail

the fundamentals of deep learning or many model parameter variations is

beyond the scope of this thesis. Similarly a grid-search through all model

hyper-parameters and variations is also beyond the scope of this work. How-

ever, overall architecture is well known to have a very significant impact on

modelling results. For this reason in our investigation a number of different

architectural variations are considered. In the following we briefly introduce

the model variants used in the analysis presented here.
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Figure 7.3
Graphic depiction of baseline Shallow CNN design used for image data.

7.2.1 Baseline Shallow CNN

Prior to evaluating deeper models, a baseline CNN was developed. As the

first and most shallow of the CNNs used, it has been named Shallow. This

model acted as a baseline against which enhancements could be evaluated.

The Shallow CNN developed feeds the four-channel image patch data into

two 2D consecutive convolution layers using a 3x3 kernel, generating 32

feature maps, each with a rectified linear unit (relu) activation. The output

is pooled using max-pooling and a window of 2x2 to reduce the size. This

pattern is repeated, this time using 64 feature maps for both convolutional

layers, before a final pooling layer. The output is flattened and fed into fully

connected layers, to predict the target. This CNN is depicted in Figure 7.3.

Results from experiment variants of this model are presented in Section 7.3.

Whilst this shallow CNN is unlikely to be sufficiently powerful to learn to

predict either of our targets from the limited amount of data offered to it, it

provides a baseline to which performance of deeper models can be compared.
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7.2.2 Inception Models

A shallow CNN has a series of convolution and pooling layers. To learn

more information, adaptations are required. To begin with, further layers,

with different sized kernel sizes, need to be introduced. While this has the

advantage of being able to extract more information from the input data, some

obstacles need to be overcome to allow it to work. If layers are stacked too

deeply, the output from each layer, which is the input to the next, becomes

very sparse. Also, the number of computations that the algorithm needs to

compute quickly grows. Luckily, recent research has devised algorithms to

overcome these issues, which can be leveraged by this work.

The inception algorithms, devised by Szegedy et al. (2015, 2016, 2017) of-

fer solutions to some of the problem faced by the shallow CNN. Inception was

devised to handle situations where objects in an image vary in size (Szegedy

et al., 2015). Smaller kernel size is suitable for picking up smaller objects and

larger kernels pick up larger objects, so picking a kernel size for this situation

is complex. Also, as layers are added, the network becomes computationally

expensive and prone to overfitting. Rather than stacking layers, Inception has

multiple convolutions on the same layer - i.e. the input layer feeds directly

into three convolutions, all with different kernel sizes, and a max-pooling

layer. The output of all of these layers is concatenated. An illustration of

the naïve inception module is shown in Figure 7.4. Whilst this module is

designed to pick up different size features, in its naïve state, the number of
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Figure 7.4
Naïve Inception Module, adapted from Szegedy et al. (2015)

parameters makes it computationally expensive. To mitigate this problem,

Szegedy et al. (2015) devised a model that reduced the dimensions. As an

input may have multiple channels, a 1x1 convolution is applied to the input

before the 3x3 and 5x5 convolutions and after max pooling. This alters the

module to look as shown in Figure 7.5. (Raj, 2018). These modules are then

stacked in a model. GoogLeNet is an implementation of InceptionV1, having

nine of these modules stacked linearly. However, as it is a very deep network,

there can be a problem of vanishing gradients. To mitigate this risk, it has two

auxiliary classifiers; one after the third module and one after the sixth. The

resultant architecture is 22 layers deep (27, including the pooling layers), and

uses global average pooling at the end of the last inception module (Szegedy

et al., 2015). The total loss function is a weighted sum of the two auxiliary

loss functions (0.3 each) and the final loss function (0.4).

Inception v2 and v3 are refinements of the initial inception model de-

veloped to address representational bottlenecks, or loss of information, that
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Figure 7.5
Inception module altered, to reduce parameters, adapted from Szegedy et al. (2015)

occur when dimensions are reduced too much. Inception v2 uses smart factor-

ization methods, to make convolutions simpler and more efficient. So initially,

5x5 convolutions were replaced by two stacked 3x3 convolutions. Next, two

of the 3x3 convolutions were replaced by stacked 3x1 and 1x3 convolutions.

In a further refinement, the 3x1 and 1x3 convolutions operated in parallel,

broadening the model as depicted in Figure 7.6. However, as more convo-

lutional layers are added to a network, the output becomes sparser and the

ability to back-propagate error signal becomes more difficult, resulting in di-

minishing performance. To overcome this issue, residual networks (resnet)

reinforce learning by using residual layers, or skip connections (He et al.,

2016). A skip connection is where the output from an earlier layer is added
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Figure 7.6
InceptionV2 module, with smart factorisation, adapted from Szegedy et al. (2016)

to the output of a later layer, reinforcing the input to further layers. Inception-

ResNet V2 introduced residual layers into the Inception model (Szegedy et al.,

2017). A widely-used implementation of this model was chosen for incor-

poration into these experiments (Tensorflow, 2022b). Inception Resnet V2

was initially developed and tested for use on Tensorflow, an open, end-to-end

platform for machine learning (Abadi et al., 2016; Szegedy et al., 2017). The

developers experimented with multiple hyperparameters, changing learning

rates for different types of blocks. They also experimented with the optim-

izers Momentum and RMSprop. However, as Adam emerged after Inception

ResNet V2, and combines the best properties of both optimizers, in this work,

Adam will be used as the optimizer.
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Figure 7.7
Model incorporating Inception ResNet layers, used for estimating a single target, using

image data.

Figure 7.7 shows how Inception ResNet V2 was used to replace convolu-

tion and pooling layers in the shallow CNN used in this work. The results of

experiments using this model are presented in Section 7.4.

7.2.3 MobileNet

Inception-ResNet V2 is a very powerful model, but is resource-heavy due to

the number of computations it requires. For this reason, it is practical to con-

sider a less resource-hungry CNN, particularly given our fundamental goal

of deploying networks to low-cost devices running on farm machinery. Mo-

bileNet, as its name would suggest, was designed for use on mobile devices,

specifically for embedded computer vision applications (Howard et al., 2017).

It uses a combination of multiple depth-wise and point-wise convolution lay-

ers to replace fewer, more resource-hungry convolutional layers, as depicted

in Figure 7.8. Standard 2D convolutions pass each of the kernels in the filter

over the corresponding channel fed into it (Figure 7.8a), and then sum the res-

ult, to get a single channel (Figure 7.8b). Separable convolutions do not sum
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(a) Convolution (b) Summing Layers (c) Separable Convolutions

Figure 7.8
Separable vs standard convolutions, adapted from Bendersky (2018)

Figure 7.9
Model incorporating MobileNet layers, used for estimating a single target, using image data.

the result (Figure 7.8c), so whilst a 2D convolution produces a single-channel

feature map, separable convolutions produce a channel for every kernel in

the filter (Chollet, 2017). MobileNet V2 introduced residual connections to

reinforce feature maps, and bottleneck layers to compress the data (Sandler

et al., 2018). The Keras Tensorflow implementation of MobileNet V2 was

used for experimenting on the data (Tensorflow, 2022a). Figure 7.9 shows

how MobileNet V2 was used to replace convolution and pooling layers in the

shallow CNN. Results from experiments using this model are presented and

discussed in Section 7.5.
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7.2.4 Transfer Learning

When applying models, there are techniques that can sometimes be used

to enhance their performance, particularly when there are low volumes of

training data available in the target domain. This section describes one such

very important technique, transfer learning.

Gigantic datasets such as ImageNet have been used to test the performance

of deep learning algorithms, but also provide a basis for enhancing model

performance. Image datasets can be thought of as having common features,

hence, if a model has been trained on a very big dataset, in practice it has

learned a lot of the basics that can be transferred to other domains. In other

words, if a model is learning to interpret images, the features learnt by a deep

model that was trained on other images can be transferred to other domains.

From this, it can be said that transfer learning attempts to use knowledge

gained while solving one problem to help solve a related problem. Practically

speaking, transfer learning commonly involves features from images being

extracted as weights, using a pre-trained deep CNN architecture from an

initial domain, and are fed into the new model to make target predictions in

the new domain (Khan et al., 2019).

Within the space of agricultural analysis, there have already been a number

of excellent applications of transfer learning. A more accurate classification

of hyperspectral aerial images has been developed using ResNet and transfer

learning (Jiang et al., 2019), while in earlier work, Mohanty et al. (2016)
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experimented with AlexNet and GoogLeNet using pre-trained weights gen-

erated on ImageNet to detect plant diseases from a repository of plant health

images (Hughes and Salathe, 2015) with excellent results.

Transfer learning is frequently applied successfully in situations where

there is a lack of training samples (Ferreira et al., 2018). One caveat on the

use of transfer learning however, is that the data need to be somewhat sim-

ilar to the data on which the model has been trained. Whilst there is a lack

of pre-trained weights for multi-spectral data, there are weights pre-trained

on RGB ImageNet data for some models from Keras and Tensorflow (Keras

Team, 2022). One group of researchers compared deep learning algorithms

to classify Canadian wetlands using five-band multi-spectral remotely sensed

images from RapidEye (blue, green, red (630–685 nm), red edge and near-

infrared). In order to use transfer learning from pre-trained ImageNet weights,

they reduced the data to three bands (green, red and near-infrared) and com-

pared the result to full-training, where no pre-trained weights were employed

(Mahdianpari et al., 2018). However, since ImageNet data consist of RGB

images only, the use of weights that were developed on different wavebands

may have inhibited the usefulness of transfer learning. Other approaches to

tackling the challenge of applying RGB data to non-RGB domains include ex-

tending the ImageNet weights by assigning the mean of the pre-trained RGB

weights as the weight for additional channels (Perez et al., 2019), and redu-

cing the dimensions of input data to three channels using principle component

analysis (PCA), rather than picking specific channels (Giannopoulos et al.,
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2020). A third approach was to separate the RGB channels from the other

channels, using AlexNet (Krizhevsky et al., 2012) with ImageNet weights as

a base model and learning from the remaining channels using an alternate

hand-crafted, unweighted deep model (Huang et al., 2018). To test the value

of applying transfer learning, a number of baseline Inception ResNet and Mo-

bileNet experiments that used RGB only, training for a single target, were run

both from scratch and also using pre-trained ImageNet weights. As we will

see later, in each case, the experiment using pre-trained weights performed

better than the experiment that trained from scratch. As a result, all further

experiments that used RGB data incorporated pre-trained ImageNet weights.

Comparisons can be seen in Tables 7.7, 7.8 and 7.9, with a summary in Figure

7.13.

7.3 Shallow Analysis

The basic CNN is the shallowest of the CNNs used and is described in Section

7.2 and depicted in Figure 7.3. To differentiate between the models, these

models will be referred to as Shallow CNNs. They differ in the data they take

in and the size of patches used, small patch or large patch. All models use

RGB data. For ease of presentation, any model that also uses NIR data is

suffixed with the letters ‘NIR’.
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

6.01% 55.34%
6.80% 38.24%
5.85% 49.84%
6.31% 65.87%
6.01% 49.88%
6.20% 51.84%
0.38% 10.02%

Dryness

Training Validation

10.43% 13.33%
16.09% 19.68%
15.50% 15.71%
13.07% 15.07%
11.49% 13.41%
13.77% 15.95%
2.46% 2.59%

Table 7.1
Minimum MAPE, basic CNN using (156,156,4) data (Shallow NIR)

7.3.1 Initial Results

The shallow experiments were run five times respectively, to estimate biomass

and dryness. The first analysis was run using the small patch data, inputting

four-channel VISNIR data, with results shown in Table 7.1. Both experiments

were run again, this time using the larger patches. The four-channel version

result is shown in Table 7.3, whilst the three-channel version yielded results

shown in Table 7.4. These results would suggest that this basic CNN did

not find any significant advantage in the extra data in the larger patches, and

suffered from the fact that in practice there were less data samples to learn

from. The second run omitted NIR data, but still used small patch RGB data,

with results shown in Table 7.2.

A summary chart in Figure 7.10B shows dryness results from the four runs,

where all single target experiments performed reasonably well on estimating

the dryness target, with the best performance from RGB large patch data

(Table 7.4) improving on baseline precision error PED by 16.78%, eclipsing

even the best result from the hyperspectral data (Table 6.5). However, Figure
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

6.50% 88.59%
6.32% 44.63%
5.89% 50.40%
6.31% 59.18%
6.69% 50.92%
6.26% 60.70%
0.30% 17.48%

Dryness

Training Validation

2.90% 12.91%
16.12% 19.68%
17.31% 15.55%
12.16% 13.05%
2.96% 12.44%

12.12% 15.30%
6.98% 3.03%

Table 7.2
Minimum MAPE, basic CNN using (156,156,3) data (Shallow)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

3.72% 71.39%
4.63% 39.78%
3.80% 57.84%
4.10% 59.33%
3.41% 56.76%
3.93% 57.02%
0.46% 11.29%

Dryness

Training Validation

12.27% 14.24%
8.86% 16.31%
8.38% 13.97%

13.97% 15.71%
9.95% 16.07%

10.69% 15.26%
6.98% 3.03%

Table 7.3
Minimum MAPE, basic CNN using (240,240,4) data (Shallow NIR)

7.10A focuses on biomass. None of the results from this model are particularly

promising, but it can be noted that the most successful combination used more,

smaller patches, with four-channel data. This model seems to have taken

advantage of a higher number of patches, and was assisted by the NIR channel,

improving validation minimum MAPE by over 7%, with little difference in

training minimum MAPE. Although the larger patches (240x240) had more

information in them, there were fewer of them. Training minimum MAPE

came in a lot lower than for the smaller patches, but validation minimum

MAPE was a lot higher. Only the four-channel small patch run, Shallow NIR

(Table 7.1), showed an improvement over the calculated baseline precision

204



Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

4.28% 90.71%
4.37% 45.91%
4.24% 52.06%
4.63% 64.19%
4.98% 61.33%
4.50% 62.84%
0.31% 17.20%

Dryness

Training Validation

10.46% 14.24%
6.67% 16.58%
2.51% 12.89%
3.83% 13.18%
9.14% 14.22%
4.34% 14.22%
2.96% 1.45%

Table 7.4
Minimum MAPE, basic CNN using (240,240,3) data (Shallow)

error PEB.

Overall, biomass results from this basic CNN show that it is not suitable for

use as a predictor model, so deeper models need to be explored.

7.4 Inception ResNet Experiments

The next set of analyses was carried out using models that incorporated In-

ception ResNet V2, as described in Section 7.2.2 and depicted in Figure 7.7.

To differentiate between the models, these models are known as IncResNet

CNNs. They differ in the data they take in (three-channel or four channel) and

the size of patches used, small patch or large patch. Once again, architectures

using four channels are denoted by a suffix of NIR, whereas three-channel

models have no corresponding suffix. During some of the runs, transfer learn-

ing was incorporated, using weights pre-trained on ImageNet. This is denoted

by an ‘I’ in the suffix in the presentation of results.

Before running any image data through these models, the patches were res-

ized, so although the original patch image size was 156 x 156 pixels for small

205



Figure 7.10
Performance of Shallow models training for a single target, using small and large patch

datasets.

patches and 240 x 240 for larger patches, they were resized to 299 x 299 pixels

for input to IncResNet. Image size reported in the tables relates to the size

of the original small or large image patch. The experiments conducted using

Inception Resnet V2, reported in this chapter, are grouped into a) training for

a single target from scratch, and b) training for a single target with pre-trained

weights. The single target chosen was biomass, as analysis done up to this

point on biomass has not yielded optimistic results.
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156,156,3)
Training Validation

8.69% 40.51%
8.15% 30.50%
5.99% 34.89%
8.37% 43.48%
6.39% 44.91%
8.61% 39.42%
1.07% 8.69%

(156,156,4)
Training Validation

8.99% 41.56%
10.64% 29.52%
10.48% 34.80%
8.19% 47.85%
8.72% 53.49%
9.41% 41.44%
1.09% 9.65%

Table 7.5
IncResNet minimum MAPE, from scratch, small patch, target: biomass

(IncResNet, IncResNet NIR)

7.4.1 Training from Scratch

The first tranche of experiments involved small patch data. One set of cross-

validated experiments trained using IncResNet from scratch on three-channel

RGB data, whilst the second set used IncResNet inputting four-channel VIS-

NIR data. The results are shown side by side in Table 7.5.

Immediately, using the three-channel small-patch data, the deeper model

performs much better on biomass, with an improved minimum validation

MAPE of more than 20% over the same data run through the shallow CNN.

The four-channel model does not perform as well on small patches, giving a

minimum MAPE of 41.44% ± 9.65%.

The next exercise used the larger patch data, performing cross-validated In-

cResNet experiments from scratch, using three-channel RGB data and then

four-channel VISNIR data. As previously, the images were resized to 299

x 299 pixels for input into the model. The results of these experiments are
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(240, 240, 3)
Training Validation

4.68% 45.20%
6.29% 33.18%
4.96% 37.35%
7.81% 38.40%
7.50% 47.30%
6.25% 40.29%
1.42% 5.83%

(240, 240, 4)
Training Validation

8.69% 40.51%
8.23% 29.70%

10.39% 33.91%
8.13% 40.33%
7.60% 52.66%
8.61% 39.42%
1.07% 8.69%

Table 7.6
IncResNet minimum MAPE, from scratch, target: biomass

Large Patch (IncResNet, IncResNet NIR)

shown in Table 7.6.

It is interesting to note that the advantage that NIR data provided in the

shallow experiments are not in evidence using this deeper model. Whilst the

use of deeper models has improved the prediction somewhat, it does not yet

represent an acceptable estimator of the target variables.

7.4.2 Using Transfer Learning

The following experiments show the effect of using pre-trained weights -

i.e. transfer learning. As the weights are trained on ImageNet data, they

are suitable for RGB data only. Pre-trained ImageNet weights were used on

RGB data from small patches (156, 156, 3) and then on RGB data from large

patches (240, 240, 3) with results for both shown in Table 7.7.

On observing these results it is evident that the pre-trained weights have

boosted performance considerably, particularly on the large patch data, with a

minimum MAPE of just 35.84% ± 5.59%. Already, the estimate of biomass

has improved substantially, both by adopting a very deep model and by apply-
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156, 156, 3)
Training Validation

7.26% 47.40%
9.70% 24.99%
8.69% 31.07%
8.91% 42.75%

10.91% 41.55%
9.10% 37.55%
1.34% 9.22%

(240, 240, 3)
Training Validation

15.37% 41.62%
6.15% 29.13%

10.24% 30.75%
6.67% 37.65%
7.01% 40.02%
9.09% 35.84%
3.86% 5.59%

Table 7.7
Pre-trained IncResNet minimum MAPE, RGB data, target: biomass (IncResNet I)

Figure 7.11
Minimum Validation MAPE resulting from training to estimate biomass, using IncResNet
on RGB data, training from scratch, on data with pre-trained weights and on VISNIR data,

using large and small patch datasets.

ing transfer learning using pre-trained ImageNet weights.

The performance on the large patch data has eclipsed that on the small

patch data in this experiment. Considering that the small patch dataset has

almost 10,000 patches, compared to around 5,000 in the large patch dataset,
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

From scratch

Training Validation

8.10% 49.84%
15.84% 33.19%
8.35% 32.23%
8.21% 43.95%
8.35% 47.07%
9.77% 41.26%
3.40% 8.08%

With ImageNet weights

Training Validation

5.08% 37.31%
5.32% 26.62%
5.07% 32.84%
4.49% 43.17%
4.96% 43.60%
4.98% 36.71%
0.31% 7.18%

Table 7.8
Minimum MAPE, MobileNet using (156,156,3) data, target: biomass, (MobileNet,

MobileNet I)

this is a welcome outcome, since training time is shorter for the dataset with

fewer patches. Figure 7.11 shows biomass prediction accuracy results for the

IncResNet models.

7.5 MobileNet Experiments

A third set of analyses was carried out using models that incorporated Mo-

bileNet V2, as described in Section 7.2.3 and depicted in Figure 7.9. To

differentiate between the models, these models will be referred to as Mobile-

Net CNNs. They differ in the size of patches used, small patch or large patch.

During some of the runs, transfer learning was incorporated, using weights

pre-trained on ImageNet.

MobileNetV2 is designed for use on mobile devices, so as such, it cannot be as

resource intensive as Inception ResNet V2. It is designed to use three-channel

image data only and can be run from scratch, or can incorporate pre-trained

ImageNet weights. Two analyses were run, on small patch data. The first ex-
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

From scratch

Training Validation

7.33% 52.69%
7.53% 35.54%
6.01% 37.02%
6.73% 48.66%

11.38% 49.30%
7.79% 44.64%
2.09% 7.80%

With ImageNet weights

Training Validation

3.73% 37.04%
4.22% 22.94%
3.92% 29.06%
3.82% 36.83%
3.99% 40.70%
3.94% 33.31%
0.19% 7.19%

Table 7.9
Minimum MAPE, MobileNet using (240,240,3) data, target: biomass

Figure 7.12
Minimum Validation MAPE resulting from training to estimate biomass, using MobileNet

on RGB data, from scratch and using pre-trained weights, using large and small patch
datasets.

periment trained from scratch, whilst the second included pre-trained weights.

Both sets of results are presented in Table 7.8. These analyses were repeated

for large patch data, as shown in Table 7.9.

Comparing MobileNet results (Figure 7.12) it is interesting to note that the
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models that used pre-trained weights performed better than the deeper model

IncResNetV2 and that once again, the use of pre-trained weights enhanced

prediction significantly.

At this point it is useful to reflect on the theory of machine learning, as

set out in Section 4.1. Generally, overfitting did not pose a big problem

in Chapter 6, as the models had difficulty getting any signal from the data,

and in fact, under fit. However, in this chapter, there is clear evidence of

overfitting, but it should be noted that at all times emphasis is placed on

the validation results rather than training results. And it is comparisons of

validation results that lead to conclusions on the models. In regard to the

basic challenge of overfitting, it is true that a strong neural network is likely

to over fit when presented with a small amount of data, and this is evidenced

by the difference between training and validation. However we also note that

from the literature it is known that the two values will generally converge

as additional data is added. While formal early stopping was not used in

the training of these models – for the reasons described in an earlier chapter –

minimum MAPE is presented as our primary metric per fold. This, in practice,

is equivalent to early stopping, as this presentation reports the model that

minimized validation accuracy.
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Figure 7.13
Overall Model Performance using image data only when training for biomass.

7.6 Summary

The full set of biomass results for analyses discussed so far is shown in Figure

7.13. For the shallow baseline models, the most successful used VISNIR

images on small patch data. Moving on to the deepest model, Inception Res-

net V2, the most successful model used large-patch, RGB data with transfer

learning. It is interesting to note that the addition of NIR data as a fourth

channel does not significantly improve performance.

One of the optimistic outcomes is that MobileNet, using ImageNet pre-trained

weights, has performed better on the large patches, even than Inception Res-

Net. This is of particular interest in regard to sustainability. The use of large

patches cuts run time, because although the same information is fed into the

training model, there are fewer occurrences, so the run time is shorter. Also, as

MobileNet is less resource hungry, its run time is shorter than that of Inception
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ResNet, so any saving in this regard makes the process more sustainable.

There are still questions that remain to be answered. Firstly, rather than

using a single model, with a single set of input data, multi-modal data can be

input, albeit at different points in the model architecture. Secondly, different

architectures could be used on different parts of the image, as both MobileNet

and IncResNet have proven to work better with three-channel RGB data and

are both significantly boosted by the use of pre-trained ImageNet weights,

whilst the single channel NIR data boosted the basic CNN, so should not yet

be discounted from processing. Chapter 8 will continue to optimize training

for biomass, by using data fusion and by introducing a hybrid model. It will

then investigate the use of multi-task learning to train for both biomass and

dryness simultaneously, and will compare results from different patch sizes

before completing analysis for the dryness target.

214



Chapter 8

Multi-Modal and Hybrid Modelling

Having run several analysis experiments on small patch (156 x 156 pixel) and

large patch (240 x 240 pixel) datasets containing four-channel image data, as

outlined in Chapter 7, the lowest minimum MAPE (33.31%) resulted when

using MobileNet on three-channel image data from the large patch dataset,

pre-trained using ImageNet weights. Although optimization techniques ap-

plied in Chapter 7 have shown a gradual improvement in prediction, there

remains room for improvement.

This chapter continues analyses by investigating data fusion, a new model

and multi-task learning. As described in Chapter 5, crop height and tem-

perature differential were measured for every sample, as height can be used

to estimate biomass, while temperature differential can be used to measure

drought conditions, so may assist in estimating dryness. Thus, the use of

multi-modal data may boost performance. Similarly, as there are two tar-

gets, biomass and dryness, training for both simultaneously should also be

investigated.
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This chapter begins in Section 8.1 by introducing data fusion, where addi-

tional data collected using different sensors are fed into the models to attempt

to improve training, and then introduces a new, hybrid model, which uses dif-

ferent models on RGB and NIR data. Multi-task learning is also introduced

here, which may be leveraged to train for both biomass and dryness targets

simultaneously. Building on these methods, Section 8.2 reports on results

of analyses using a single target of biomass, followed by results of analyses

with multi-task targets of biomass and dryness. Before continuing to report

on single target dryness results, an analysis of the impact of patch-size on pre-

diction is presented in Section 8.3. Results continue, for single target dryness

prediction in Section 8.4. The chapter finishes with a comparison of model

performance and discussion in Section 8.5.

8.1 Boosting Deep Learning Algorithms

The performance of the shallow CNN introduced in Chapter 7 as depicted,

was boosted by incorporating deep models and by using transfer learning.

Given the properties of the dataset, it is possible that using data fusion or

multi-task learning would boost this performance further. In the following,

these topics are briefly introduced, before models are presented for further

analysis of the data.
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Figure 8.1
Fusing LiDAR data with an Inception ResNet model using RGB data, training for a single

target.

8.1.1 Data Fusion for Multi-Modal Data

Models investigated in Chapter 7 used three and four-channel image data

only. With the advent of the Internet of Things, the use of data fusion has

become more popular (Alam et al., 2017), as diverse sources of data are

now easier to collect and can be used as sources to inform learning. When

models incorporate two or more forms or sources of data at the same time,

this allows for better feature extraction, as each source of data can provide

complementary information to the others. Hotelling (1992) gives the example

of marksmen firing shots at a single target, where their success is determined

not only by their individual skill, but also by wind conditions. The use of

multiple modes of data gives a more unified picture and global view of the

system (Lahat et al., 2015).

Although the incorporation of multiple modes of data into a learning model
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has not always been readily achievable, the advent of machine and deep

learning models has made this easier. Deep convolutional neural networks

allow different sources of data to be submitted to a dedicated learning model

whose output is concatenated with models for other sources, before being

subjected to fully connected layers. Raw data may also be concatenated

at this point. These fully connected layers back propagate the loss to the

individual dedicated models, focusing learning towards the target. Gao et al.

(2020) provides more information on deep learning with multi-modal data.

Biomass predictions are enhanced by knowledge of crop height, so in both

pilot and primary collections, LiDAR was used to measure crop height prior to

harvesting. These LiDAR data are leveraged in the next set of analyses, where

the LiDAR data are fed into the model, alongside image data. Specifically,

as shown in Figure 8.1, having fed RGB data into a model such as Inception

ResNet, the output is flattened and concatenated with LiDAR data, prior to

the fully connected layers and prediction.

As well as recording LiDAR data during collection, a differential between

the ambient temperature and the temperature of the grass canopy was recorded,

on the basis that temperature differential may improve prediction of dryness.

This will be used for training for the dryness target, starting at Section 8.2.5.

8.1.2 Hybrid Model

Results in Chapter 7 showed a marked improvement in performance when

transfer learning was used, but this path was not available for four channel
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data. During the collection phase, NIR data were collected and the popular

Normalized Difference Vegetation Index, which uses Near InfraRed data, was

calculated, so there may be an improvement in prediction if these data are in-

corporated. However, a ready source of weights pre-trained on multi-spectral

data is not available. Therefore, continuing to use multiple modes to optimize

prediction, the four-channel image data were separated into a three-channel

RGB input and a single channel NIR input. These inputs were fed into two

different deep models, with the RGB model using weights pre-trained on

ImageNet. The RGB channel used Inception ResNet as before but the NIR

channel used ResNet50, with no pre-training. This model is based on the

seminal work of He et al. (2016) that introduced the concept of residual map-

ping, or skip connections to overcome the problem of vanishing gradients as

models became deeper. ResNet50 has 48 Convolutional layers, 1 max pool

layer and 1 average pool layer. In the case of ResNet50, skip connections skip

three layers and this model is widely used for image classification (Sharma

et al., 2018) and object detection (Azimi et al., 2019). The output of the Incep-

tion ResNet model and the ResNet50 modes are flattened and concatenated to

LiDAR data before the fully connected layers. The hybrid model is depicted

in Figure 8.2.

8.1.3 Multi-task Learning

For many purposes, users need to estimate more than one target from a given

dataset. In the current context, farmers require knowledge on both the biomass
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Figure 8.2
Hybrid NIR I L model. RGB and NIR image data are fed through CNN variants with outputs
concatenated along with the scalar LiDAR information. The concatenated output is then fed

through fully connected layers.

content and percentage dry matter of their forage. The techniques covered

thus far treat each as a single task. However, if a model is designed to train

for more than one task, representations can be shared between related tasks,

enabling the model to generalize better. This technique, commonly referred to

as multi-task learning or MTL, allows joint learning for more than one target,

as learning for a single task can introduce data-dependent noise and different

tasks have different noise patterns. Just as data fusion can boost learning, the

features learned in one MTL task are shared with other tasks.

MTL introduces an inductive bias, which reduces the risk of overfitting

(Ruder, 2017), but does not always improve performance over single task

learning (Wu et al., 2019). If the output dimension of the shared module is

too large, there can be no transfer of knowledge between tasks as each of them

can be memorised in the shared module. If the dimension is too small, there
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Figure 8.3
Inception Resnet for multi-task learning with LiDAR fused for Biomass prediction

can be destructive interference. Secondly, MTL works better when the tasks

are related, therefore features learnt for one task are relevant to the other(s)

(Mitchell, 1997). In this work, as the targets are real-valued outputs, MTL

can be further refined as multi-target regression (Xu et al., 2020).

Figure 8.3 shows a multi-task learning model that trains for two targets,

biomass and dryness, with Inception ResNet. LiDAR data are fused with the

flattened output from Inception ResNet prior to the fully connected layers

dedicated to predicting biomass.

8.2 Results

Results from analyses using data fusion, the hybrid model and multi-task

learning are presented in this section. Model naming conventions continue,

with models that include Inception ResNet being named IncResNet and mod-

els that include MobileNet being named MobileNet. These names are suffixed

221



Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156, 156, 3) and height
Training Validation

3.16% 27.01%
3.16% 22.42%
4.73% 26.29%
4.46% 39.62%
4.00% 32.62%
3.90% 29.60%
0.73% 6.69%

(240, 240, 3) and height
Training Validation

2.88% 28.87%
3.30% 23.36%
2.64% 25.33%
3.25% 32.94%
3.16% 32.30%
3.05% 28.56%
0.28% 4.21%

Table 8.1
Pre-trained IncResNet, image and height, target: biomass

(IncResNet I L)

with NIR if four-channel images are used, L if LiDAR data are used and I

if pre-trained ImageNet weights are used for transfer learning. The hybrid

model contains both Inception ResNet and ResNet50, so its core name is

Hybrid, but the same suffixes apply. If multi-task learning is used, the letters

MT immediately succeed the model name.

8.2.1 Data Fusion Results

To explore the power of data fusion, the first set of analyses in this chapter uses

a pre-trained Inception ResNet model with RGB data, fusing scalar LiDAR

data before the fully connected layers, as depicted in Figure 8.1. Results for

cross-validated analysis on both small patch (156 x 156) and large patch (240

x 240) datasets are shown in Table 8.1. Immediately it is obvious that the

addition of height data has improved the estimate in all cases, particularly for

large patch data, with an improvement of over 7% on the results for the same

model without LiDAR data (see Table 7.7).

Continuing with Inception ResNet, the next analyses use both NIR as a
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156, 156, 3) and height
Training Validation

5.41% 31.70%
5.42% 29.11%
5.22% 30.80%
5.15% 41.10%
5.08% 42.25%
5.26% 34.99%
0.15% 6.18%

(240, 240, 3) and height
Training Validation

5.40% 31.15%
6.99% 26.87%
5.10% 31.41%
6.04% 39.21%
5.33% 42.60%
5.77% 34.25%
0.76% 6.45%

Table 8.2
IncResNet, 4-channel image and height, target: biomass

(IncResNet NIR L)

fourth image channel and also LiDAR. As the image is now four-channel,

ImageNet weights cannot be used for pre-training. The results are shown in

Table 8.2. Although extra data has been fed into the model, for both patch

sizes the results were substantially poorer. Notably, the addition of NIR

data has not boosted performance as much as the use of pre-trained weights.

This is an interesting outcome, in that NIR data were collected due to its

use in calculating NDVI, which depends on the ratio between NIR and Red

reflectance. However, NDVI does not take account of features that could be

present in an RGB image. It is possible that the extra knowledge gleaned from

the NIR data is superseded by features in the image data. Because this work

did not have access to pre-trained weights for NIR image data, this hypothesis

cannot be tested here.

The next analysis repeats this pattern, replacing Inception ResNet with

MobileNet and fusing LiDAR data before the fully connected layers. Once

again, pre-trained weights from ImageNet are used. The results for cross-

validated analysis on both small patch (156 x 156) and large patch (240 x 240)
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156, 156, 3) and height
Training Validation

4.62% 30.02%
4.86% 23.13%
4.76% 26.62%
4.98% 39.32%
4.35% 35.55%
4.71% 30.93%
0.24% 6.56%

(240, 240, 3) and height
Training Validation

3.47% 30.31%
3.79% 23.34%
3.33% 25.10%
3.55% 38.29%
3.78% 34.15%
3.59% 30.24%
0.20% 6.21%

Table 8.3
Pre-trained MobileNet, image and height, target: biomass

(MobileNet I L)

datasets are shown in Table 8.3.

Comparing these results with a similar analysis performed without LiDAR

data (see Table 7.9) there is an improvement of 3% on the large patch data.

While this is a great improvement, it falls just short of the performance of the

Inception ResNet model.

To assess the impact of adding LiDAR data, Figure 8.4 compares results

from models before and after the addition of LiDAR as an extra data source.

In every case, the addition of LiDAR data has improved prediction, making

LiDAR height data seem like a desirable addition to the input data. Results

from datasets including NIR data are not so straightforward. The models that

include NIR data are IncResNet NIR and IncResNet NIR L and neither has

produced an optimal prediction. While one of these uses LiDAR, neither uses

pre-trained weights. The next model experiments with incorporating NIR data

without losing the advantage of pre-trained weights.
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Figure 8.4
Comparison of minimum validation MAPE resulting from models training to estimate

Biomass, with and without LiDAR data.

8.2.2 Hybrid Model

The final single-target biomass experiment uses the hybrid model, with RGB,

NIR and LiDAR data as shown in Figure 8.2. ImageNet weights are used

to boost performance of the Inception ResNet part of the model. Results for

small patch and large patch data are shown in Table 8.4. Running the Hybrid

model on small patch data has produced the best result so far, by a small

margin, as shown in Figure 8.5, which shows biomass prediction performance

across all deep models training for the single target biomass. However, it is
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

(156, 156, 4)

Training Validation

3.51% 26.34%
3.87% 23.07%
4.39% 24.36%
4.10% 31.10%
2.84% 36.28%
3.97% 28.23%
0.38% 5.44%

(240, 240, 4)

Training Validation

3.46% 29.35%
4.81% 24.23%
3.11% 25.74%
2.56% 35.20%
2.64% 37.30%
3.32% 30.36%
0.91% 5.73%

Table 8.4
Minimum MAPE, Hybrid model, Biomass (Hybrid NIR I L)

Figure 8.5
Minimum validation MAPE resulting from all single target models training for biomass.

important to note that this cross-validated model trained for an average of

23 hours and required the collection of NIR data, whereas the IncResNet I L

model trained for an average of 8 hours and did not require NIR data. Even

when run on small patch data, IncResNet I L achieved a minimum validation

MAPE of 29.6%.

226



Figure 8.6
Learning curves showing training and validation MAPE after each epoch, for IncResNet I L

model, training for Biomass.

Figure 8.7
Learning curves showing training and validation MAPE after each epoch, for Hybrid NIR I

L model, training for Biomass.

8.2.3 Overfitting

Although some models have produced a better minimum validation MAPE

than others, it is obvious that there is a big discrepancy between the training

and validation MAPE values, clearly observable in Figures 8.6 and 8.7. This

was also seen in Chapter 7, but not in Chapter 6. There is no doubt that the size

of a dataset can have an impact on how well the model that learns from the data

performs (Halevy et al., 2009; Goodfellow et al., 2016; Barbedo, 2018). In

an experiment to test the accuracy of a multi-layer perceptron, using different

dataset sizes, Brownlee (2019) demonstrated that the model under performed
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until a dataset of adequate size was provided. As the dataset size increased

above that size, there was no further improvement. Results are similar when

using deep convolutional Neural Networks (van Wyk et al., 2017). Previous

research has shown that with additional data, the validation error decreases,

but the training error may increase, as the model moves further away from

memorising, towards generalising to adapt to the new data it is experiencing

(Goodfellow et al., 2016). As shown in Figures 8.6 and 8.7, the divergence

of training and validation errors happens as expected over training epochs

and that applying early stopping would result in a higher training score, with

only a slight change in validation score. Finally, it should be noted that taking

a minimum validation score over the course of training is considered good

practice (Guo et al., 2018a; Kamalov et al., 2020) as it is likely to result in the

models which is most generalizable to unseen data.

As demonstrated by the training loss values observed in these models, there

were no challenges with respect to the overall convergence of the model. This

can be further be seen in the training loss plots in the sense that the training

and validation losses are relatively stable in latter training epochs. As would

be expected the convergence stability is low in early training epochs – which

is often the case with low volume data sets.

In this case, the dataset is small, but the industrial partner is continuing to

collect data. It is expected that in the analyses presented here, the discrepancy

will reduce through the addition of more data. Bearing that in mind, although
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both minimum training and validation MAPE are reported for each analysis,

the emphasis is on the minimum validation MAPE.

For smaller datasets, graphs for training and validation error are often

slightly more noisy than for larger datasets. Therefore, relying on a mech-

anism such as Early Stopping to detect the optimal network configuration is

not always reliable. Even with a generous value for patience, such an ap-

proach can still hide the long term trend of the network. Given this, a fixed

training epoch approach was chosen, where the network was allowed to train

for a fixed number of epochs, so that results could be compared meaningfully

across networks. From these resultsthe minimum validation score values were

chosen as being representative of overall performance.

8.2.4 Multi-task Learning Results

Although the shallow CNN has proved disappointing, this analysis did not

have the benefit of a deep model or of transfer learning. The first foray into

multi-task learning uses the shallow model again, but this time incorporating

both data fusion and multi-task learning as depicted in Figure 8.8. As these

analyses train for two targets, there are two sets of results, one for biomass

and the other for dryness. The first experiment uses just RGB data (Shallow

MT) and results from that are presented in Table 8.5. On comparing these

results with the shallow model results when run for a single target (Table 7.2),

performance is very similar for biomass, but has disimproved for dryness.

The second analysis uses four-channel data (Shallow MT NIR) and results are
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Figure 8.8
Shallow CNN design for multi-task learning, to estimate biomass and dryness, using

VISNIR data and LiDAR.

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

5.95% 87.46%
5.99% 47.15%
5.82% 48.96%
5.35% 60.03%
6.53% 56.63%
5.93% 60.05%
0.42% 16.22%

Dryness

Training Validation

17.75% 24.75%
15.52% 24.12%
13.08% 24.05%
16.84% 22.18%
16.03% 25.62%
15.84% 24.14%
1.76% 1.26%

Table 8.5
Minimum MAPE, shallow CNN using (156, 156, 3) data with multi-tasking

(Shallow MT)

presented in Table 8.6. Again, comparing these results with those achieved

when training for each target individually (Table 7.1), biomass prediction ac-

curacy is very similar but dryness prediction accuracy is a lot worse. These

results show that the shallow model favours the inclusion of NIR data for

estimating biomass and is indifferent to the presence of NIR data when train-

ing for dryness. The final analysis using the shallow CNN takes in VISNIR

data and LiDAR and again, trains simultaneously for biomass and dryness
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

5.88% 59.61%
6.64% 45.15%
6.15% 51.07%
6.15% 55.09%
6.62% 48.80%
6.29% 51.94%
0.33% 5.60%

Dryness

Training Validation

20.58% 25.43%
17.56% 24.63%
18.59% 25.71%
21.10% 22.76%
18.81% 23.75%
19.53% 24.36%
1.45% 1.40%

Table 8.6
Minimum MAPE, shallow CNN using (156, 156, 4) data with multi-tasking

(Shallow MT NIR)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

6.05% 46.82%
6.37% 43.48%
5.45% 49.94%
5.97% 63.14%
5.96% 46.30%
5.96% 49.94%
0.33% 7.73%

Dryness

Training Validation

14.89% 25.72%
16.74% 25.87%
14.97% 24.90%
17.85% 21.91%
19.25% 26.17%
16.74% 24.91%
1.88% 1.74%

Table 8.7
Minimum MAPE, shallow CNN using (156,156,4) data, with multi-tasking

(Shallow MT NIR L, small patch)

(Shallow MT NIR L). Again, the addition of LiDAR has improved biomass

prediction, though not enough to compete with results from the deeper mod-

els. The availability of LiDAR data have not had a significant effect on the

prediction of dryness.

Previously, the shallow model was run on small patch 4-channel images

separately for biomass and dryness (see Tables 7.1 and 7.2). Figure 8.9 com-

pares results across all shallow models. In the case of biomass, multi-task

learning improved prediction in all cases, and the addition of LiDAR also

improved performance, with best performance returning a result of 49.94%
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Figure 8.9
Comparison of minimum validation MAPE values from single target and multi-task training,

for variants of the shallow model

±7.73% over the worst, at 60.70% ±17.48%. However, the results for dryness

have deteriorated. The best results for dryness using the shallow model came

from using RGB data only, with single target training, at 15.3% ± 3.03%.

Deeper models could potentially have a better performance, whilst still

including multi-task learning. The next analysis incorporates the Inception

ResNet V2 module, using 3-channel image data and LiDAR, as depicted in

Figure 8.3. This was run on both small patch and large patch datasets. Results

for large patch datasets are shown in Table 8.8 and for small patch datasets in

Table 8.9.

Biomass prediction accuracy results for both large and small patch data are

very similar, with around .05% difference between them. Comparing biomass
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

1.59% 30.86%
3.78% 23.98%
1.74% 25.02%
1.88% 36.88%
1.54% 38.33%
2.11% 31.02%
0.95% 6.58%

Dryness

Training Validation

11.30% 12.50%
7.87% 14.27%
8.71% 10.01%

11.14% 12.14%
11.78% 13.27%
10.16% 12.44%
1.75% 1.58%

Table 8.8
Minimum MAPE, IncResNet using (240, 240, 3) data, with multi-tasking and pre-trained

weights (IncResNet MT I L)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

5.36% 34.69%
4.34% 23.27%
3.23% 25.87%
4.03% 38.22%
3.12% 36.00%
4.01% 31.61%
0.91% 6.61%

Dryness

Training Validation

6.93% 12.73%
7.43% 13.04%
7.93% 9.00%
9.03% 11.69%
9.25% 11.23%
8.11% 11.54%
1.01% 1.60%

Table 8.9
Minimum MAPE, IncResNet using (156,156,3) data, with multi-tasking and pre-trained

weights (IncResNet MT I L)

results with results when training for a single target (Table 8.1), there is a

very minor deterioration in prediction. Dryness results are much improved on

those produced by the Shallow model and are the best results so far, especially

on small patch data.

As previously, similar analyses were carried out using MobileNet as a

replacement for Inception ResNet. Results for the large patch dataset are

shown in Table 8.10, whilst those for the small patch dataset are in Table 8.11.

MobileNet multi-task learning has produced more accurate predictions

than those achieved by the shallow models, but not quite as good as those

233



Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

3.59% 34.40%
4.26% 24.15%
3.70% 25.91%
3.78% 38.63%
3.43% 37.55%
3.75% 32.13%
0.31% 6.69%

Dryness

Training Validation

12.57% 13.44%
14.14% 19.12%
15.51% 14.66%
13.21% 16.74%
11.94% 12.92%
13.24% 15.38%
1.40% 2.56%

Table 8.10
Minimum MAPE, MobileNet using (240, 240, 3) data, with multi-tasking and pre-trained

weights (MobileNet MT I L)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

4.48% 32.78%
4.94% 24.09%
4.30% 28.27%
4.32% 41.69%
4.38% 37.30%
4.48% 32.82%
0.26% 6.99%

Dryness

Training Validation

8.66% 13.04%
9.55% 15.74%

10.15% 12.56%
10.62% 15.24%
9.39% 12.82%
9.67% 13.88%
0.75% 1.49%

Table 8.11
Minimum MAPE, MobileNet using (156, 156, 3) data, with multi-tasking and pre-trained

weights (MobileNet MT I L)

achieved by IncResNet models. In particular, the dryness prediction for the

large patch model is a lot poorer.

8.2.5 Including Temperature

Essentially, the inclusion of LiDAR data had been an undisputed advantage.

To this point however, there has been no attempt to make use of the temper-

ature differential data available. Further experimentation will include temper-

ature differential data as they can be an indicator when estimating drought

conditions in a crop, so may boost learning in relation to the dryness target.
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Figure 8.10
Multi-task model with pre-trained Inception ResNet, using 3-channel image, LiDAR and

temperature differential.

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

2.96% 29.62%
2.88% 23.14%
3.11% 27.76%
4.61% 35.43%
3.28% 34.64%
3.37% 30.12%
0.71% 5.08%

Dryness

Training Validation

3.54% 12.85%
4.51% 16.87%
4.94% 13.93%
4.40% 13.34%
5.07% 14.21%
4.49% 14.24%
0.60% 1.56%

Table 8.12
Minimum MAPE, Multitasking pre-trained IncResNet using (240,240,3) data, with LiDAR

and Temperature differential (IncResNet MT I L T)

The next set of analyses feeds these additional data to a multi-task learning

model incorporating pre-trained Inception ResNet and LiDAR data, IncRes-

Net MT I L T, depicted in Figure 8.10. Analyses were run using this model

both on small patch and large patch datasets. Models using temperature data

have an additional suffix ‘T’. Results for the large patch dataset are shown in

Table 8.12 and those for the small patch dataset in Table 8.13. As this model

is equivalent to the IncResNet MT I L model except for the inclusion of tem-

perature differential data, results can be compared. Comparing the results
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Biomass

Training Validation

2.97% 33.54%
2.67% 21.46%
6.06% 36.16%
2.70% 34.34%
2.37% 37.56%
3.35% 32.61%
1.53% 6.43%

Dryness

Training Validation

1.73% 11.89%
1.53% 14.37%
2.03% 13.00%
2.58% 14.41%
3.29% 13.38%
2.23% 13.41%
0.71% 1.05%

Table 8.13
Minimum MAPE, Multitasking pre-trained IncResNet using (156,156,3) data, with LiDAR

and Temperature differential (IncResNet MT I L T)

Training Validation

Fold Biomass Dryness Biomass Dryness

1 3.26% 11.11% 33.62% 12.57%
2 3.38% 6.69% 22.78% 17.91%
3 3.30% 8.82% 27.87% 14.27%
4 3.03% 8.39% 42.13% 15.69%
5 2.96% 7.40% 40.17% 15.29%

Average 3.18% 8.48% 33.32% 15.15%
Table 8.14

Pre-trained MobileNet minimum MAPE, (240x240x3) with height and temperature
differential (MobileNet MT I L T)

with those from Tables 8.8 and 8.9 respectively, it seems that the extra data

have not boosted prediction for dryness for either patch size, but surprisingly,

has produced a slightly better result for biomass.

The final analysis again uses temperature differential with 3-channel image

data and LiDAR, but uses the lighter weight MobileNet, with pre-trained

ImageNet weights. Table 8.14 shows the result of when using the large patch

dataset and Table 8.15 presents results for the small patch dataset.

Again, comparing the results to Table 8.10 and Table 8.11, which used

the same model, without the temperature differential, the extra data have not
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Training Validation

Fold Biomass Dryness Biomass Dryness

1 3.56% 5.14% 33.90% 12.04%
2 3.84% 4.43% 24.18% 18.08%
3 3.26% 2.86% 29.37% 14.47%
4 3.32% 4.40% 42.39% 16.54%
5 2.97% 4.62% 34.77% 15.38%

Average 3.39% 4.29% 32.92% 15.30%
St Dev. 0.33% 0.85% 6.76% 2.27%

Table 8.15
Pre-trained minimum MAPE, (156 x 156 x3) with height and temperature differential

(MobileNet MT I L T)

Figure 8.11
Minimum Validation MAPE for Biomass and Dryness, resulting from multi-task training

deep models on small and large patch datasets.

boosted prediction in any of the results in this case.

Figure 8.11 shows the minimum validation MAPE results of deeper mod-

els using multi-task training. The best result for biomass from this group came

from the IncResNet MT I L T model training on the large patch dataset, in-

cluding RGB data, LiDAR data and temperature differential, using ImageNet

Weights. The best result for dryness came from the IncResNet MT I L model,
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running on small patch data, with a minimum validation MAPE of 11.54% ±

1.60%.

In keeping with the observation that using the large patch dataset leads

to shorter training time than using the small patch dataset, prior to running

dryness analyses, a statistical analysis of the outcome of runs using small

patch and large patch datasets was carried out.

8.3 Patch Size Comparison

Before continuing to train models to predict the dryness target, it is useful

to determine whether there is a difference in results when using small and

large patch data. Given the nature of the analysis, results will not be exactly

equal, but may be statistically equivalent. Firstly, the population used for this

experiment contained the minimum validation MAPE for the run of every

fold, training for biomass, for each of the models, e.g. IncResNet I L fold 1

(Small patch: 27.01%, large patch: 28.87%) to IncResNet I L 5 (Small patch:

32.62%, large patch: 32.30% as shown in Table 8.1), etc. Models included are

those shown in Table 8.16. The mean and standard deviation of the population

of small patch results is 37.29% ± 10,99%, and for large patch results 37.38

± 12.04%.

In order to evaluate the equivalence of results from the large and small

patch datasets, an analysis of variance (ANOVA) experiment was carried out,

using patch size as the response variable, and the model-fold as the treatment.
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Figure 8.12
Boxplot showing distribution of minimum validation MAPE results used on the Small and

Large datasets

Of 80 runs, the large patch biomass minimum MAPE was tested against the

small patch biomass minimum MAPE. The one-way Anova test gave a p-

value of the of 2x10−16, suggesting that the populations are not the same.

Side-by-side box plots of the two result sets show that there are differences,

as shown in Figure 8.12.

Nonetheless, the remaining analyses for dryness will take place on large

patch datasets only.
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Model
Shallow
Shallow NIR
IncResNet
IncResNet NIR
IncResNet I
IncResNet I L
IncResNet NIR L
MobileNet
MobileNet I
MobileNet I L
Hybrid NIR I L
IncResNet MT I L
MobileNet MT I L
IncResNet MT I L T
IncResNet MT NIR L T
MobileNet MT I L T
Number of samples is 80

Table 8.16
Models contributing minimum MAPE for each fold when trained for biomass using large

and small patch datasets

8.4 Dryness Results

Dryness predictions to date have had a much lower MAPE than biomass, with

IncResNet MT I L giving a best performance of 11.54% using the small patch

dataset and 12.44% on the large dataset so far. For this reason, the focus so

far has been on modelling on the challenge presented by biomass estimation.

However, here, further training for the dryness target takes place using the

large patch dataset. In addition to dryness results already accumulated, models

shown in Figure 8.13 were run.

A new model, IncResNet I T, was introduced. This model uses pre-trained

IncResNet on 3-channel image data. Temperature differential data are fed

into the model, before the fully connected layers. It is similar to IncResNet I
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Figure 8.13
Minimum validation MAPE resulting from all single target deep learning models training for

dryness.

L, but replaces LiDAR height data with temperature differential data.

Interested readers should see Appendix C for full details of training and

validation MAPE for each fold, with average and standard deviation. However,

resulting minimum validation MAPE, averaged across five-folds used in cross

validation is shown in Figure 8.13.

Observing these results, again, the most successful model is Inception

ResNet, with pre-trained weights, training for a single target. The addition of

LiDAR, temperature differential, or a near-infrared channel do not seem to

have improved the prediction. Although MobileNet is not quite as effective,

the difference may not be enough to overcome the fact that the model is

much lighter weight than Inception ResNet. As expected, the Shallow model
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produces a poorer result.

8.5 Summary

This chapter has continued the analysis of RGB data using deep learning, but

has attempted to leverage combinations of data input and also target variables.

Multi-modal data, in the form of LiDAR and temperature differential, had

mixed results, with LiDAR proving very useful when predicting biomass

in particular. The heavy weight Hybrid model, when run on the small patch

dataset, produced a slightly better result than Inception ResNet with ImageNet

weights using RGB data and LiDAR, but it requires a lot more resources, both

in terms of collecting NIR data and in training time. Multi-task learning did

not produce better results than training for a single target. In both this chapter

and Chapter 7, two datasets were used for training. The result of this was

analysed to see if there was a significant difference in outcome. As there was

not a significant difference, dryness analysis using single target architecture

was only carried out on the large patch dataset. Figure 8.14 shows predictions

for Biomass using large patch data. Considering only the large patch dataset

results, IncResNet I L produces the most accurate biomass prediction.
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Figure 8.14
Minimum validation MAPE resulting from all deep learning models training for biomass.
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Chapter 9

Discussion and Conclusions

This chapter reviews and discusses the work undertaken, before making re-

commendations and coming to a conclusion.

9.1 Discussion

Having completed the experimental aspect of the work, it is now time to reflect

on what has been done and the results achieved. The investigation started with

a thorough review of the background, in terms of the reasons why crop trait

measurement is important from the point of view of farmers who make silage

to feed livestock, and who are trying to both measure and optimize produc-

tion, whilst minimising resource use. This research is significant in terms of

feeding a global, growing population, with diminishing resources. Although

research is required in many areas relating to this, the research presented in

this work has, of course, focused on measuring crop traits. Previous efforts

at measuring biomass and dryness were reviewed, along with specific case
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studies. From this review, it emerged that data that are currently collected to

measure biomass include VISNIR data and crop height, mainly using vegeta-

tion indices. The accuracy of estimation of dryness could possibly be boosted

by using the difference between ambient temperature and temperature in the

crop canopy, though this has previously been used to estimate dryness in

drought situations, rather than canopies that are properly hydrated, or even

wet. We also saw that there are a number of vegetation indices that strive

to measure nitrogen, using narrowband reflectance data. Machine and deep

learning methods have been applied to the estimation of these traits.

Following a different research thread, the dissertation also examined com-

puter vision experiments that aim to identify species or find fruit blemishes -

both using plant morphology and using machine and deep learning.

The examination noted that for deep learning to be viable, a body of data

needed to be collected for training models. To this end, a data collection

mechanism was designed and built. Sensors used in the experiments included

VISNIR cameras, LiDAR for measuring height and thermocouples for meas-

uring temperature. Narrowband data was collected with a hyperspectral spot

sensor. To emulate the camera and spot sensors using less expensive devices,

cheaper cameras were used and filtered with dielectric filters, tailored to the

waveband range required. Additionally, GPS location was recorded for every

sample.

A collection and labelling protocol was designed and tweaked during suc-

cessive collections. In the pilot phase, 42 usable samples were collected,
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labelled with biomass and dryness. In the main collection 268 samples were

accumulated. Biomass and dryness labelling for these data was consistent

throughout. Whilst a clear protocol for labelling with leaf nitrogen and leaf

sugar was developed, both collection and labelling for these traits evolved,

making them inconsistent throughout the dataset, so analysis of collected data

was devoted to training for biomass and dryness.

The pilot samples were used to develop an approach to deep learning, and

learning development continued on the main collection of data. As collection

protocol and sensors were somewhat different between pilot and main collec-

tions, these datasets were not merged and all analysis reported in this thesis

relates to analyses on the main collection of samples.

The samples were subdivided into five sets, to recombine for five-fold

cross-validation. Initially, analysis of the hyperspectral data took place, to

establish whether the data collected could give good estimates for biomass

or dryness. Four different sets of analysis took place; NDVI was calculated

as previous researchers have found that it correlates to biomass. Three deep

learning models (a fully connected Neural Network, a 1D CNN and a LSTM

model) were developed to attempt to estimate biomass and dryness from the

hyperspectral data. These analyses confirmed that the spectrometer on its

own, without calibration or pre-processing, does not produce good estimates.

Attention then moved on to the image data. From the image data, two

datasets were developed, the first with small-patch data, where each image

was sub-divided into 156x156 pixel patches and the second with large-patch
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data, where each image was sub-divided into 240x240 pixel patches.

Analysis using just image data was described and reported in Chapter

7 initially using a bespoke, shallow CNN, then replacing the convolution

and pooling layers using Inception ResNet V2, then replacing them with

MobileNet. Although Mean Square Error was also used as a loss function

during training, Minimum Mean Absolute Percentage Error was used to report

results, both for training and validation. There was a gradual improvement

in performance, especially when transfer learning with ImageNet weights

was applied, culminating in a best minimum validation MAPE of 33.31% for

biomass, using MobileNet on RGB data, pre-trained with ImageNet weights.

In Chapter 8, further modifications were deployed, both to improve per-

formance and to reduce resource requirements. Data fusion was used to

include scalar values - first LiDAR height data, then temperature differential.

A hybrid multi-modal model was introduced to take into account the fact that

Inception ResNet models trained on four channel VISNIR image data did not

perform as well as those trained on three channel RGB data.

Rather than training for each target individually, multi-task learning was

employed to train for biomass and dryness simultaneously. The best minimum

MAPE for biomass resulted from the hybrid model, run on the small patch

dataset, giving a minimum MAPE of 28.23%. However, this model was

extremely resource intensive, both in terms of data collection and training,

requiring the collection of NIR data and taking over 23 hours to train. The next

best model IncResNet I L took 8 hours to train and only required RGB and
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LiDAR data. It also performed very similarly on large-patch and small-patch

data, whereas the hybrid model had poorer performance on every run of the

large-patch data as opposed to the small-patch data. Overall, the performance

of the hybrid model on large-patch data was worse than both its performance

on the small-patch data and on performances of IncResNet I L and MobileNet

I L and IncResNet MT I L. Given that the impetus for the investigation was to

assist farmers in increasing sustainability, this fact should be strongly taken

into consideration.

Before completing model training for dryness, an analysis was performed

on the difference in results depending on whether large or small patch datasets

were used. Overall, in terms of performance, the larger patch size subdivi-

sion proved adequate, in that it augments the dataset sufficiently to increase

learning potential. For the most part, further sub-division did not provide

a statistically better outcome. As there did not seem to be a significant dif-

ference, and use of the large patch dataset was more efficient, single target

training for dryness was done just on the larger patch datasets. IncResNet

models with suffixes I, I L, I T and NIR were carried out, with IncResNet

I T being the same model as IncResNet I L, but replacing LiDAR with tem-

perature differential. MobileNet I and I L were also carried out. In this

instance, IncResNet I performed the best, and again, using a fourth channel

for NIR data seemed to inhibit performance, but there was little significant

difference between IncResNet I, IncResNet I L and IncResNet I T. The heavy-

duty Hybrid model followed these, but MobileNet I also performed very well.

248



Figure 9.1
Large patch biomass minimum validation MAPE for all deep models

Figure 9.1 shows minimum validation MAPE for all deep models training for

biomass, using the large patch dataset. Figure 9.2 shows the corresponding

information for dryness. On observing these figures, the model IncResNet I

L gave the lowest minimum validation MAPE for biomass, and IncResNet I

performed best for dryness. Multi-task learning inhibited the results.

In deep neural networks, and in particular those used for analysing image

data, the focus of analysis tends to be on architectural choice and data orches-

tration with an appropriate use of loss functions, activation functions, types

of regularisation methods, such as dropout, and even network architecture

in terms of configurations of layers. Each of these are in fact hyperparamet-

ers which compliment the actual parameter optimization performed by the
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Figure 9.2
Large patch dryness minimum validation MAPE for all deep models

gradient descent and back propagation algorithms themselves. During the

work presented in this thesis much work went into exploring different such

architectural and hyperparameter choices. The results of these sub-optimal

configurations were not directly presented in this work, but instead the net-

works provided can be considered the optimal configurations based on this

exploration. Naturally in addition to these hyperparameter choices there

are other finer grained hyperparameters that can be considered in network

design. These include for example learning rates. Again here the optimiza-

tion strategies recommended by the originator of the models were used, which

selected and adjusted learning rates dynamically. In recent times there has

also been great interest in further selection of hyperparameters such as net-
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work architecture from evolution algorithms for example. This work is very

promising, and there is little doubt that application of these and further hy-

perparameter tuning methods can well lead to increased model performance.

However, the exploration of such methods, along with grid-based parameter

searches, are deferred to future work.

9.2 Interpreting Results

As noted in Chapter 1, the work was undertaken to investigate the hypothesis

that through the advantages of state-of-the-art machine learning systems,

pastureland crop traits can be assessed in just-in-time, based on data

retrieved from an inexpensive sensor platform, even under the constraints

of expensive data labelling.

This hypothesis was addressed within the confines of the estimation of

biomass and dryness.

This question was broken down into a number of individual research ques-

tions. At this point, some evaluation of these research questions can now be

addressed, one at a time:

1: Can historical methods be leveraged in trait estimation to inform a

strategy for heterogeneous sensor integration and can this be used for crop

trait estimation?

For biomass, NDVI coupled with height data seemed to be the most prom-

ising combination, based on the existing literature. The calculation of NDVI
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requires reflectance values for Red and NIR data, and narrowband reflectance

is more accurate than broadband data. However, this in turn requires more

expensive equipment. Also, NDVI saturates as LAI increases, making it unre-

liable for dense crops. The data gathered during this investigation were from

multiple sites in Ireland, over 25 dates, so data are not calibrated or feature-

engineered. In terms of training, the most relevant data gathered seems to have

been RGB image data and LiDAR height data. NIR data do not seem to have

further enabled the estimation of either biomass or dryness. Whilst a MAPE

of over 28% for biomass is not ideal, it is a firm indication that collection

of further labelled data could improve prediction. The three models of most

interest for prediction of biomass were the Hybrid NIR I L model, IncResNet

I L and indeed MobileNet I L. Whilst MobileNet I L did not perform quite as

well as IncResNet I L in analyses including LiDAR data, it performed better

than IncResNet in the analysis of visual only data and is much less resource

intensive. As such, it should remain as a contender, especially considering

the physical environment in which this work is required.

In terms of dryness, single-task learning IncResNet I gave a promising

mean validation MAPE of 11.32%, using RGB data alone. Whilst Mobile-

Net I came in fifth, essentially there was a difference of .42% in the mean

minimum validation MAPE.

These results suggest that deep learning models are a strong contender for

estimating biomass and dryness crop traits using data sensed from a platform

comprising integrated heterogeneous sensors. In regard to historical methods,
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certainly the use of RGB and LiDAR data have produced the best results.

Use of the NIR channel from the JAI camera does not seem to have boosted

estimation. While NDVI and related indices have provided useful tools in

early and highly calibrated conditions, it seems that their direct deployment to

less controlled or calibrated environments is not useful. In this context, RGB

images and the methods that can robustly process them have advantages.

The second question was as follows:

2: What hardware options are appropriate for real time proximal assess-

ment and how can they be configured?

During data collection, two bespoke trolleys were built, both of which

collected VISNIR data and LiDAR data. Subsequent to the collection of

these data, in cooperation with TU Dublin engineers and computer scientists,

Tanco developed a miniaturised platform with six cameras, one for RGB

data, one for broadband NIR data and four NoIR cameras filtered for specific

wavelengths. The platform also measured height and used thermocouples for

measuring temperature differential between air and crop canopy. Tanco are

already deploying a housing on their experimental mower that incorporates

these sensors. In terms of biomass and dryness, RGB image data and LiDAR

data proved to be the most pertinent. The e-con RGB images, to the human

eye, look to be as good as the JAI camera RGB images. Although these

images have fewer pixels, that should not be a problem as the large patches

used have fewer pixels than the images collected by the e-con cameras.

3: What is the minimum sensor set that would be required to estimate
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above-ground biomass, moisture content and nitrogen status of pastureland?

Given the analysis done so far, it seems that neither NIR data nor tem-

perature differential provide a sufficient boost to estimation of biomass or

dryness to justify their collection. However, whenever LiDAR data were used,

performance improved. As discussed in Chapter 5, the RGB e-con camera

provided very useful images, comparable with those produced by the expens-

ive JAI camera. The e-con RGB images are 480x640 pixels whilst the JAI

Camera RGB images are 964x1296 pixels. While this was significant when

sub-dividing images into patches, in a real-world situation, many more images

would be collected, so this is not a factor. Similarly, analyses that included

temperature data did not result in improved performance over those omitting

temperature data. Given these findings, it would seem that an e-con RGB

camera and a LiDAR could be sufficient to reproduce these results. These

components cost a fraction of the price paid for the JAI camera and the hyper-

spectral sensor. As stated previously, nitrogen estimation is not included in

this evaluation.

4: Data collection for a task like pastureland trait estimation is expensive

and would be expected to produce low yields. Given this limitation, can state

of the art deep learning methods be used to give acceptable results?

268 usable samples were collected during the main collection. Because

of the homogeneity of grass images, it was possible to augment the data, by

sub-dividing the images into patches, each inheriting scalar sensor and label

values from the parent sample. To find out whether the size of patch was
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significant, two patch sizes were tested, in each case running the same model,

with the same number of epochs against the data. As shown in Figures 7.13

and 8.5, minimum validation MAPE on biomass was within a few percentage

points on runs on small and large patch data. However, even the large patch

dataset had over 5,000 images, whereas the original collected dataset had less

than 270, so additional augmentation over and above the original image that

was incorporated into the models was significant.

5: Can Transfer Learning be used to bootstrap a solution that provides

better predictions in the case of limited data?

As shown in Figure 8.14, when the model architecture used RGB data,

in every case, ImageNet weights improved performance. As there was no

readily available weights for four-channel data, models using NIR as an extra

channel did not fare well, although the IncResNet NIR model performed

very slightly better than the IncResNet model, which used RGB with no

pre-trained weights. This strongly indicates that transfer learning using pre-

trained weights has boosted prediction.

The investigation of the overall hypothesis has been undertaken and the

outcome has indicated that the assessment of pastureland crop traits of bio-

mass and dryness can be assessed to an extent, using state-of-the-art machine

learning systems. Although current predictions would not be sufficient for

use in a commercial system, research so far has shown that the detail in an

RGB image, when fed into a deep-learning architecture, can yield more than
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expensive spot sensors that require pre-processing and calibration. For estim-

ating biomass, the addition of crop height data improve prediction enormously.

Both RGB image data and height data can be retrieved from an inexpensive

sensor platform.

9.3 Reflection on Work Involved

Having interpreted results and related them to the research question, it is

worth reflecting on the overall work in this research and how it demonstrates

the requirements of an artificial intelligence project. Results reported rely not

just on the algorithms that are implemented, but on the provenance of the

data being used to train models. To illustrate how this work was addressed,

Rogati’s AI Hierachy of Needs is a useful tool. This work comprehensively

covered each of the five steps in Rogati’s AI hierarchy of needs (Rogati, 2017),

reproduced in Figure 9.3. To illustrate this, the methods used to undertake

each step in this work will be discussed, starting from the base.

COLLECT: The investigation required not just data collection, but the

specification of data that needed to be collected. The data, instrumentation

required to collect the data, calibration and verification protocols to ensure

that the data were correct, all needed to be specified. The iterative cycle had

build, collect, label and evaluate steps, as described in Chapter 1.

MOVE/STORE: The movement and storage of raw data evolved between

the pilot phase and the primary collection phase. In the pilot phase, some of
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Figure 9.3
AI hierarchy of needs, noting overlap between this work and the GreenEyes project, after

(Rogati, 2017)

the data was offline, such as the weather station and phone data. Data were

stored on multiple distributed Rapberry Pis and then moved in a relatively

unstructured way into the cloud. In the primary collection phase, the School

of Engineering provided data in such a way that each sample’s sensed data

are returned to the controlling laptop and stored on a hard disk. Each sample

had a folder within the collection folder. This hard disk was backed up to

the cloud and replicated onto the ADAPT cluster. Although the data were

presented in multiple formats, there was a strict naming protocol for files.

EXPLORE/TRANSFORM: Extensive anomaly detection, or snagging
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was carried out, to ensure that collected data were optimal. It was not always

immediately obvious if a sensor was under-performing, but the author gener-

ated histograms (Figure 9.4a) and comparison charts, to show whether data

was useful and to highlight anomalies in the performance of scalar sensors

(Figure 9.4b). This step was also useful for showing the progression of data

over the four collection stages, from all images and sensors. Figure 9.4c shows

all data collected for narrowband 730nm for sample 9000, from both low-spec

(filtered cameras) and high-spec (spectrometer) sensors. These visualisations

allowed the GreenEyes team to perform continuous process improvement

during collection.

(a) Checking exposure on the JAI camera (b) Manual vs LiDAR height estimates

(c) Sample Pi NoIR image using 730nm filter, with corresponding hyperspectral signature for each of
the four collection stages

Figure 9.4
Sample data exploration visualisations to feed back as snag list

AGGREGATE/LABEL: Sensed data in the primary collection resulted in

80 files per sample. Sample labelling was not immediately connected to the

collected samples, as weighing, measuring and drying needed to be carried
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out. This presented its own challenges. The targets of biomass, dryness, leaf

nitrogen content and percentage sugar are not simple to retrieve. In the pilot

phase, a 10cm x 10cm square was harvested and used to estimate biomass

and moisture content. At the end of the pilot, experiments were conducted on

different sample sizes and different sub-samples from a 50cm x 50cm sample.

Based on experimentation in February 2019, it was decided to increase the

sample size and weigh the 50cm x 50cm harvested sample. Similarly, ex-

periments with four different types of weighing scales took place before it

was determined that consistent, repeatable weights were being returned. In-

formation on these experiments is available in Appendix A for the interested

reader.

Measuring dryness posed another problem in that researchers had tried a

number of approaches in estimating dryness. The chosen recommendation is

in widespread use by researchers (USDA, 2003). A further issue arose when

the number of samples for drying did not fit into a single oven, so multiple

ovens needed to be used and the outcome tested for consistency across ovens.

In one collection sample dryness labels were lost due to an oven malfunction.

In other collections, nitrogen uptake data were not taken due to a delay in

equipment delivery. Software was developed to aggregate the biomass,

dryness, nitrogen, sugar, LiDAR values, temperature values and GPS data for

each sample. Summary data are included in the visualisation of data collected

for each sample in the primary collection phase.

LEARN/OPTIMIZE: For the pilot phase, different architectures were
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tried, with different inputs and target values, training with and without aug-

mentation and dropout, varying the architecture and number of epochs, demon-

strating that the use of Inception ResNet produced a far superior prediction

model than more basic CNNs. The experience and knowledge gained from

doing this assisted in the development of models for the primary collection.

Analysis of data in the primary collection is described in detail in Chapters 7

and 8.

9.4 Greeneyes Project and This Work

The GreenEyes project was a collaboration between academia and industry,

but the work presented here is the author’s own work. As depicted in Figure

9.3 there was some overlap. The GreenEyes project was a wonderful oppor-

tunity for the author to specify, implement the collection of data. As a project

with partners, it did come with some caveats.

9.4.1 Caveats

1. Data collected for training prior to submission of this thesis depended

on a short term Innovation Partnership (IP 2018 0728) collaboration

between DIT (subsequently TU Dublin) School of Computer Science

and Tanco Autowrap, partly funded by Enterprise Ireland. No previous

trolley, network equipment or sensors were available to the team.

2. The target traits of fresh biomass and dryness were set following con-
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sultation with the industrial partner. These were subsequently expanded

to include nitrogen and sugars, but not enough labelled samples were

collected for analysis of either.

3. Data required to estimate traits needs to be collected from a platform on a

moving mower, meaning that all sensors needed to operate on a proximal

basis, within a couple of meters of the ground, but not penetrating the

soil.

4. Sensors chosen should be as inexpensive as possible.

5. Peripheral information on the collection site, such as nutrient treatments

or prior mowing events, are not guaranteed to be available so cannot be

factored into estimation.

6. During the course of the primary collection, it was planned that at least

600 samples would be collected. However, due to issues discussed in

Section 5.4.2, 268 samples were collected and labelled.

GreenEyes involved many researchers and engineers, and the areas of the

project for which the author was solely responsible, partly responsible or not

responsible are itemized here.

9.4.2 Author responsibilities

During the GreenEyes project, the author was solely responsible for:

1. Reviewing literature and specifying required data.
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2. Developing a protocol for collecting and labelling samples.

3. Designing and building software to evaluate data collected to feedback

to the collection and network maintenance team.

4. Initial draft build of pilot platform on wallboard.

5. Arranging for the pilot trolley to be built.

6. Testing weighing scales and ovens for sample labelling.

7. Testing sample sizes and variation for biomass labelling.

8. Retrieving, cleaning and wrangling data for use in deep learning.

9. Designing, building and tweaking software to estimate trait values.

The author was jointly responsible for and active in:

1. Choosing sensors.

2. Designing and building both pilot and primary collection networks.

3. Specifying trolley and platform requirements.

4. Sourcing and purchasing equipment.

5. Developing and testing software to operate pilot network.

6. Specifying pre-collection protocols, such as equipment and supplies pre-

paration and packing.

7. Driving volunteers to farms (for 5 collections).
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8. Collecting samples on farms (for 5 collections).

9. Labelling samples, both on farms and in TU Dublin’s Environmental

Sustainability and Health Institute (ESHI).

10. Attending planning meetings with the industrial partner.

The author was not responsible for:

1. Choosing farm sites.

2. Scheduling collections.

3. Building or transporting trolleys or networks.

4. Operating the network or checking data onsite.

5. Wiring of sensors.

6. Physical assembly or disassembly of trolleys.

7. Any network developments after the draft primary network (the indus-

trial partner continues to collect and label samples at time of submission).

9.5 Contributions

This work makes contributions throughout the life cycle and through research

publications and these are described below.

• A systematic review of methods of pastureland trait estimation, covering

nutrition requirements for a ruminant through to established methods
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of measuring pastureland traits and the sensors and procedures that are

required to do so.

• A well-documented guide to collecting data from active pastureland or

silage fields, determining not just the data, but the sensors and platform

required to collect that data.

• A method for labelling live organisms, either at collection time or within

a very short window was developed and optimized. This mechanism

should prove useful for further research in this area. The collected,

labelled data alone is a major contribution in an area where datasets are

not easy to find. As shown, this work has already produced unusual and

useful datasets.

• A dataset containing data on 267 samples. Data on each sample was

taken before and after harvesting. Data includes VISNIR images, GPS

location, hyperspectral spot signature and ambient and canopy temperat-

ure.

• A mechanism for storing and integrating the sensor data, evolved over

the pilot and first data collection phases, specifying naming, location

and replication protocols. Two full suites of software were developed

to explore the data, one per phase, and further software transformed

the data, first to augment it by sub-sampling into patches, and then to

transform and aggregate it for use in machine learning, using different

platforms and architectures and rearranging the data for cross-validation.
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• Deep learning architectures have trained models taking in VISNIR and

LiDAR data and predicting biomass and dryness. In addition to using a

baseline CNN, adaptations were tested using IncResNet and MobileNet.

Different combinations of data were used, from a pool of hyperspectral

data, RGB and VISNIR data, height and temperature differential data.

Performance improvement techniques were applied including transfer

learning, data fusion and multi-task learning, culminating in a model

with a mean MAPE of 28.56% for biomass and a mean MAPE of 11.32%

for dryness.

• Four publications, one abstract and one conference presentation have

resulted from this work; work on an extensive literature review (O’Byrne

and Ross, 2019), analysis of the pilot phase data is presented in (O’Byrne

et al., 2019) and (O’Byrne et al., 2021a) and collection and analysis of

the primary data was presented in (O’Byrne et al., 2021b), (O’Byrne

et al., 2021c) and (O’Byrne et al., 2021d).

This work has strengthened the hope that an architecture can be developed

that will estimate biomass and dryness of pre-harvested forage that can be of

use in agriculture, using less expensive sensors than those currently used, with

a strong awareness of the requirement for sustainability. This endeavour will

enhance the usefulness and usability of proximal sensing in agriculture and

further promote the use of deep learning in agriculture. As one of Ireland’s

research priorities (Naughton, 2018), this work has the potential to increase

265



farm competitiveness and sustainability.

9.5.1 Conclusions

• Overall the size of the dataset was small, and indeed as set out in Chapter

1, one of the very motivations for this research was to uncover to what

extent state-of-the-art type methods such as deep learning could be used,

even in the case of very expensive low-volume training data. There is no

doubt that with increased data volumes we would likely see an improve-

ment in validation scores as training and validation scores. Nevertheless,

the author believes that this work has validated the basic approach and

is now in a position to be scaled further. Indeed the industrial partners

have licensed the models and approach put forward in this work and

have, since these original data collections, embarked on a much more

ambitious data collection using a robotic platform to speed up the overall

data collection process. This work has contributed majorly to that private

sector initiative. It should also be noted, as discussed in the conclusion,

that we now see other methods such as semi-supervised learning as be-

ing very applicable to solving this low-volume data challenge, but this is

beyond the scope of the current work.

• The improvement in minimum validation MAPE resulting from IncRes-

Net I L indicates that the outcome of Inception Resnet V2 model, pre-

trained with ImageNet weights and fused with LiDAR data has potential
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to estimate pastureland biomass, using RGB images and LiDAR height

readings.

• The amount of data collected is far short of what would be required to

reach the potential of this model.

• The hyperspectral sensor was used without any light controls. On its

own, it did not perform well using the models chosen to work with it.

• The collection of samples for this work was very challenging, making

the resulting datasets very valuable.

• The NIR data collected did not boost learning, except when used with

the hybrid model. This could be because the higher performing models

used pre-trained weights. There were no pre-trained weights available

for four-channel multi-spectral images. The exposure of the NIR camera

may also have been a factor, where around 10% of the images had some

level of over-exposure.

• The use of temperature differential data collected did not improve es-

timation of moisture content, with Inception Resnet using RGB data,

pre-trained on ImageNet weights performing the best. Although the dif-

ferences in performance when add LiDAR and / or temperature data was

minimal.

• MobileNet I L performed well for estimating biomass (30.24%) and

required less processing time than Inception ResNet I L (28.56%). Sim-
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ilarly, MobileNet I performed well on estimating dryness (11.75%) com-

pared with the front runner IncResNet I (11.32%).

9.6 Recommendations and Future Work

As a result of the work carried out so far, there are issues that have come

to light that would be worth researching further. When undertaking a broad

piece of work such as this, there are always opportunities for further work,

whether it be to revisit previous decisions made, or to use further technology

to leverage previous achievements. In this case, future work can be broken

down over different spheres of interest.

Firstly, for data collection, future work could include:

• Leveraging NIR images further. To do this, it would be good to ensure

that future collections retook NIR images if the average intensity is

outside of threshold boundaries.

• Improving image consistency. To ensure that images can be properly

normalized, a luminosity sensor could be used to check ambient light

levels.

• Using leading edge inexpensive cameras. More advanced, but still inex-

pensive cameras could be trialled. In conjunction with the luminosity

sensor, this could improve image consistency, enabling a better model

performance.
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• Using leading edge processors. New hardware is constantly coming

online, including NVIDIA’s Jetson Nano (NVIDIA, 2022).

• Collecting further ground truth. Crude protein content of grass is a vital

ingredient in determining grass quality.

• Undertaking further labelling of existing data. In addition to biomass

and moisture content, there is a lot of interest in determining species that

are present in pasture, including (Narayanan et al., 2021; Skovsen et al.,

2021) working on the GrassClover Image Dataset (Skøvsen et al., 2019).

Similar research could be done using the dataset collected here.

• Collecting more samples. This single point could make a huge difference

in the performance of the models, by generalising the model to adapt to

a bigger and hence more diverse dataset.

• Conducting further research into collecting narrowband data inexpens-

ively.

• The crop traits being estimated in this work were mainly biomass and

dryness. Similar experimentation could take place in regard to crop

quality, in terms of ruminant requirements for protein, fibre and energy.

This process would require chemical analysis of the harvested material.

• Given the developed protocols for labelling samples with nitrogen and

sugar content, further collection could produce datasets that would be

ripe for analysis to predict these traits.
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• The current mechanism for emulating the results achieved by the Optics

Flame spectrometer have not produced the results required. Further

investigation into inexpensive ways of gathering narrow band data would

be worthwhile.

• although this project focused on pastureland, the techniques and techno-

logies investigated would apply equally to another crop. Skills learned

in this work could be transferred to estimating other crop traits.

Further work can also be done on machine and deep learning. In this area,

future work could include:

• Running promising models such as IncResNet I L with more data.

• Cautiously tuning hyperparameters using Bayesian optimization. In the

deeper models, such as Inception ResNet V2, hyperparameters have a

recommended default, researched by their designers. Although there

may be more optimal hyperparameters, finding them requires extensive

resources.

• Exploring the hyperspectral dataset further, using Random Forest or

Support Vector Machines.

• Optimising hyperparameters used when analysing hyperspectral data.

As the dataset is a lot smaller, this optimisation would not be as resource-

hungry as that required for image models.
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• As research into improving deep learning algorithms continues to im-

prove prediction accuracy and efficiency, this work can be repeated, us-

ing other algorithms, with the intention of reducing resource require-

ments and improving efficiency. For example, EfficientNet CNNs are

currently one of the leading models in the ImageNet challenge, showing

an accuracy of 97.1% and is designed to be less resource-hungry than

previous winners (Tan and Le, 2019).

• Running semi-supervised models. One very promising area of future

work that we strongly encourage would be the application of semi-

supervised learning methods to our datasets (Berthelot et al., 2019;

Roussi and Nord, 2020). Semi-supervised learning is a relatively new

branch of machine learning which aims to pull together many of the be-

nefits of supervised and unsupervised learning when low volumes of la-

belled training data are available. The basic principle of semi-supervised

learning is that mechanisms such as Siamese networks are used to build

feature extractors from the data based on distillation mechanisms, con-

trastive losses, or the use of so-called pre-text tasks such as performing

rotations. While early work on semi-supervised learning has focused

on its application to RGB data, there has recently been work which has

validated the approach on multi-spectral image data (Jain et al., 2021).

While these methods are computationally very costly to train, the runtime

performance of the resulting network is good. Thus these could be an
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ideal solution to the challenge of low-volume datasets such as this.

• The development of a set of weights for multi-spectral image reflectance

data would promote investigation into the usefulness of Near Infrared

data in estimating biomass and dryness. Although reflectance from the

NIR band allows calculation of the red edge and is also an indication

of the reflecting surface structure, it has proven less useful to this work

than RGB image data, using transfer learning with ImageNet weights.

However, if similar weights were available for NIR data, this situation

could change.

• Similarly, advances in hardware technology could provide better plat-

forms and sensors, one such example being the replacement of Rasp-

berry Pis as part of the platform with Nvidia Jetson Nanos (NVIDIA,

2022).

This work has approached the estimation of pastureland traits from a differ-

ent perspective, and although not all collected data were suitable for analysis

the incremental development of protocols, platforms and models provide a

fertile environment for further research on the estimation of crop traits.

272



Bibliography

Aarthy, B., Tamilpavai, G., and Tamilslvi, S. (2012). Multiple Representations

of Perceptual Features for Texture Classification. In International Journal

of Computer Applications. bibtex: aarthy_multiple_2012.

Abadi, M., Barham, P., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,

Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S.,

Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,

Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals,

O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016).

12TH $\{USENIX$\$ Symposium on Operating System Design and Imple-

mentation ($\{$osdi$\}$ 16). In TensorFlow: A System for Large-Scale

Machine Learning., pages 265–283.

Ahmed, F., Kabir, M. H., Bhuyan, S., Bari, H., and Hossain, E. (2014). Auto-

mated weed classification with local pattern-based texture descriptors. In-

ternational Arab Journal Information Technology, 11(1):87–94.

Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E., McDonald, A. J. S., and

273



Strachan, N. J. C. (2003). Weed and crop discrimination using image ana-

lysis and artificial intelligence methods. Computers and Electronics in

Agriculture, 39(3):157–171.

Ajanki, A. (2007). Example of k-nearest neighbour classification. Available

at:https://commons.wikimedia.org/w/index.php?curid=2170282#/media/File:KnnClassification.svg

Accessed on:24/04/2022.

Alam, F., Mehmood, R., Katib, I., Albogami, N. N., and Albeshri, A. (2017).

Data Fusion and IoT for Smart Ubiquitous Environments: A Survey. IEEE

Access, 5:9533–9554. Conference Name: IEEE Access.

Alam, T., Qamar, S., Dixit, A., and Benaida, M. (2020). Genetic Al-

gorithm: Reviews, Implementations, and Applications. arXiv:2007.12673

[cs]. arXiv: 2007.12673.

Albayrak, S. (2008). Use of Reflectance Measurements for the Detection of

N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors, 8(11):7275–

7286.

Ali, A. M., Darvishzadeh, R., Skidmore, A. K., Duren, I. v., Heiden, U., and

Heurich, M. (2016). Estimating leaf functional traits by inversion of PRO-

SPECT: Assessing leaf dry matter content and specific leaf area in mixed

mountainous forest. International Journal of Applied Earth Observation

and Geoinformation, 45:66–76.

Ali, I., Cawkwell, F., Dwyer, E., and Green, S. (2017). Modeling Managed

274



Grassland Biomass Estimation by Using Multitemporal Remote Sensing

Data—A Machine Learning Approach. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 10(7):3254–3264.

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., and Notarnicola,

C. (2015). Review of Machine Learning Approaches for Biomass and

Soil Moisture Retrievals from Remote Sensing Data. Remote Sensing,

7(12):16398–16421.

Allen, R. G. D. (1939). The Assumptions of Linear Regression. Economica,

6(22):191–201. Publisher: [London School of Economics, Wiley, London

School of Economics and Political Science, Suntory and Toyota Interna-

tional Centres for Economics and Related Disciplines].

Amaral, L. R., Molin, J. P., Portz, G., Finazzi, F. B., and Cortinove, L. (2015).

Comparison of crop canopy reflectance sensors used to identify sugarcane

biomass and nitrogen status. Precision Agriculture, 16(1).

Anaya, J. A., Chuvieco, E., and Palacios-Orueta, A. (2009). Aboveground bio-

mass assessment in Colombia: A remote sensing approach. Forest Ecology

and Management, 257(4):1237–1246.

Andrews, M., Edwards, G., Ridgway, H., Cameron, K., Di, H., and Raven,

J. (2011). Positive plant microbial interactions in perennial ryegrass dairy

pasture systems. Annals of Applied Biology, 159(1):79–92.

Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D. (2020). From

275



laboratory to proximal sensing spectroscopy for soil organic carbon estim-

ation—a review. Sustainability, 12(2):443. Publisher: Multidisciplinary

Digital Publishing Institute.

Askari, M. S., McCarthy, T., Magee, A., and Murphy, D. J. (2019). Evaluation

of Grass Quality under Different Soil Management Scenarios Using Remote

Sensing Techniques. Remote Sensing, 11(15):1835. Number: 15 Publisher:

Multidisciplinary Digital Publishing Institute.

Asner, G. P., Scurlock, J. M. O., and Hicke, J. A. (2003). Global synthesis of

leaf area index observations: implications for ecological and remote sensing

studies. Global Ecology, 12(3):191–205.

Aszemi, N. M. and Dominic, P. D. D. (2019). Hyperparameter Optimization

in Convolutional Neural Network using Genetic Algorithms. International

Journal of Advanced Computer Science and Applications (IJACSA), 10(6).

Number: 6 Publisher: The Science and Information (SAI) Organization

Limited.

AtlasScientific (2022). PT-1000 Temperature Kit. Available at: https://atlas-

scientific.com/kits/pt-1000-temperature-kit/ Accessed: 04/05/2022.

Ayrey, E. and Hayes, D. J. (2018). The Use of Three-Dimensional Convolu-

tional Neural Networks to Interpret LiDAR for Forest Inventory. Remote

Sensing, 10(4):649. Number: 4 Publisher: Multidisciplinary Digital Pub-

lishing Institute.

276



Azimi, S. M., Vig, E., Bahmanyar, R., Körner, M., and Reinartz, P. (2019).

Towards Multi-class Object Detection in Unconstrained Remote Sensing

Imagery. In Jawahar, C. V., Li, H., Mori, G., and Schindler, K., editors,

Computer Vision – ACCV 2018, Lecture Notes in Computer Science, pages

150–165, Cham. Springer International Publishing.

Bai, G., Ge, Y., Hussain, W., Baenziger, P. S., and Graef, G. (2016). A

multi-sensor system for high throughput field phenotyping in soybean and

wheat breeding. Computers and Electronics in Agriculture, 128(Supplement

C):181–192.

Ball, D. W. (2006). Field guide to spectroscopy, volume 8. Spie Press

Bellingham, Washington.

Barbedo, J. G. A. (2018). Impact of dataset size and variety on the effective-

ness of deep learning and transfer learning for plant disease classification.

Computers and Electronics in Agriculture, 153:46–53.

Baret, F. and Guyot, G. (1991). Potentials and limits of vegetation indices

for LAI and APAR assessment. Remote Sensing of Environment, 35(2):161–

173.

Baret, F., Guyot, G., and Major, D. J. (1989). TSAVI: A Vegetation Index

Which Minimizes Soil Brightness Effects On LAI And APAR Estimation.

In 12th Canadian Symposium on Remote Sensing Geoscience and Remote

Sensing, volume 3, pages 1355–1358, Vancouver, Canada. IEEE.

277



Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberl, J.,

Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano,

R. J., Li, H., and Moran, M. S. (2000). Coincident Detection of Crop

Water Stress, Nitrogen Status and Canopy Density Using Ground Based

Multispectral Data. In Proceedings of the Fifth International Conference

on Precision Agriculture, volume 1619, pages 1–15, Madison, WI 53711,

USA. ASA-CSSA-SSSA.

Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, M., and Ne-

mani, R. (2015). DeepSat: a learning framework for satellite imagery.

In Proceedings of the 23rd SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems, SIGSPATIAL ’15, pages 1–10,

New York, NY, USA. Association for Computing Machinery.

Baughman, M., Chard, R., Ward, L., Pitt, J., Chard, K., and Foster, I. (2018).

Profiling and Predicting Application Performance on the Cloud. In 2018

IEEE/ACM 11th International Conference on Utility and Cloud Computing

(UCC), pages 21–30, Zurich. IEEE.

Bendersky, E. (2018). Depthwise separable convolutions for machine learn-

ing, Eli Bendersky’s Website, https://eli.thegreenplace.net/2018/depthwise-

separable-convolutions-for-machine-learning/.

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., and Bareth, G.

(2014). Estimating Biomass of Barley Using Crop Surface Models (CSMs)

278



Derived from UAV-Based RGB Imaging. Remote Sensing, 6(11):10395–

10412.

Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp,

M. L., and Bareth, G. (2015). Combining UAV-based plant height from crop

surface models, visible, and near infrared vegetation indices for biomass

monitoring in barley. International Journal of Applied Earth Observation

and Geoinformation, 39:79–87.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter

optimization. The Journal of Machine Learning Research, 13(null):281–

305.

Berland (2007). Illustration of linear regression on a data set. Available from :

https://commons.wikimedia.org/wiki/File:LinearRegression.svg. Accessed

24 Apr 2022.

Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., and Vil-

lalobos, F. (2009a). Mapping canopy conductance and CWSI in olive orch-

ards using high resolution thermal remote sensing imagery. Remote Sensing

of Environment, 113(11):2380–2388.

Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., González-Dugo, V., and Fereres,

E. (2009b). Remote sensing of vegetation from UAV platforms using light-

weight multispectral and thermal imaging sensors. International Archives

279



of the Photogrammetry Remote Sensing and Spatial Information Sciences,

38(6).

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Raffel,

C. A. (2019). MixMatch: A Holistic Approach to Semi-Supervised Learn-

ing. In Advances in Neural Information Processing Systems, volume 32.

Curran Associates, Inc.

Bevacqua, R. F. and Cardenas, T. R. (2002). Nitrogen Monitoring Techniques

for Vegetable Crops. Circular 579, College of Agriculture and Home Eco-

nomics, New Mexico.

Birth, G. S. and McVey, G. R. (1968). Measuring the Color of Growing Turf

with a Reflectance Spectrophotometer1. Agronomy Journal, 60(6):640.

Blake, J. (2012). Grass factsheet 17 - grass silage analysis. Technical re-

port, Agriculture and Horticulture Development Board (AHDB), United

Kingdom.

Borra-Serrano, I., De Swaef, T., Muylle, H., Nuyttens, D., Vangeyte,

J., Mertens, K., Saeys, W., Somers, B., Roldán-Ruiz, I., and

Lootens, P. (2019). Canopy height measurements and non-destructive

biomass estimation of Lolium perenne swards using UAV im-

agery. Grass and Forage Science, 74(3):356–369. _eprint: ht-

tps://onlinelibrary.wiley.com/doi/pdf/10.1111/gfs.12439.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

280



Brigato, L. and Iocchi, L. (2021). A Close Look at Deep Learning with

Small Data. In 2020 25th International Conference on Pattern Recognition

(ICPR), pages 2490–2497. ISSN: 1051-4651.

Britt, J. H., Cushman, R. A., Dechow, C. D., Dobson, H., Humblot, P., Hutjens,

M. F., Jones, G. A., Ruegg, P. S., Sheldon, I. M., and Stevenson, J. S.

(2018). Learning from the future—A vision for dairy farms and cows in

2067. Journal of Dairy Science, 101(5):3722–3741.

Bronson, K., Thorp, K., White, J., French, A., Conley, M., Mon, J., and

Barnes, E. (2015). Combining active optical sensors, infrared thermometers

and ultrasonic height sensors for proximal sensing in irrigated cotton. In

Precision agriculture ’15, pages 83–90. Wageningen Academic Publishers,

The Netherlands.

Brownlee, J. (2019). Impact of Dataset Size on Deep Learning Model Skill

And Performance Estimates. In Machine Learning Mastery 6.

Bruce L. Bowerman, O’Connell, R. T., and Koehler, A. B. (2004). Forecasting,

time series, and regression : an applied approach. Thomson Brooks/Cole,

Belmont, CA, 4th ed. edition.

Buxton, D. R., Muck, R. E., Harrison, J. H., Pahlow, G., Muck, R. E., Driehuis,

F., Elferink, S. J. W. H. O., and Spoelstra, S. F. (2003). Microbiology of

Ensiling. In Agronomy Monograph. American Society of Agronomy, Crop

Science Society of America, Soil Science Society of America.

281



Campbell, G. S., Campbell, C. S., Cobos, D. R., Brown, D., Bissey Crawford,

L., Rivera, L., and Chambers, C. (2021). Soil moisture sensors—How

they work. Why some are not research-grade. Last Modified: 2022-04-

19T18:24:14+0200.

Cappelluti, G. (2009a). English: Average NDVI in June

2003 over the British Isles (NOAA AVHRR). Available at:

http://www.crazyverse.com/cappelluti/docs/anims/leicester/.

Cappelluti, G. (2009b). English: Average NDVI in October

2003 over the British Isles (NOAA AVHRR). Available at:

http://www.crazyverse.com/cappelluti/docs/anims/leicester/.

Castro, W., Marcato Junior, J., Polidoro, C., Osco, L. P., Gonçalves, W.,

Rodrigues, L., Santos, M., Jank, L., Barrios, S., Valle, C., Simeão, R., Car-

romeu, C., Silveira, E., Jorge, L. A. d. C., and Matsubara, E. (2020). Deep

Learning Applied to Phenotyping of Biomass in Forages with UAV-Based

RGB Imagery. Sensors, 20(17):4802. Number: 17 Publisher: Multidiscip-

linary Digital Publishing Institute.

Champoux, J. E. and Peters, W. S. (1987). Form, effect size and power in mod-

erated regression analysis. Journal of Occupational Psychology, 60(3):243–

255. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2044-

8325.1987.tb00257.x.

Chen, F. and Tsou, J. Y. (2021). DRSNet: Novel architecture for small patch

282



and low-resolution remote sensing image scene classification. International

Journal of Applied Earth Observation and Geoinformation, 104:102577.

Chen, S., Li, Y. F., Zhang, J., and Wang, W. (2008). Active Sensor Planning

for Multiview Vision Tasks. Springer Publishing Company, Incorporated,

New York, 1st edition.

Chen, X., Wang, X., Guo, C., Chen, C., Gou, S., Yu, T., and Jiao, C. (2020).

Hyperspectral Target Detection via Multiple Instance LSTM Target Local-

ization Network. In IGARSS 2020 - 2020 IEEE International Geoscience

and Remote Sensing Symposium, pages 2436–2439. ISSN: 2153-7003.

Chlingaryan, A., Sukkarieh, S., and Whelan, B. (2018). Machine learning

approaches for crop yield prediction and nitrogen status estimation in pre-

cision agriculture_ A review. Computers and Electronics in Agriculture,

151(2018):61–69.

Chollet, F. (2017). Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1251–1258.

Choudhary, A. (2020). Gradient Descent Slope. Available at:

https://medium.com/@ayushch612/gradient-descent-slope-3949df5dab5b.

Accessed: 21/04/2022.

Christiansen, P., Nielsen, L. N., Steen, K. A., Jørgensen, R. N., and Karstoft,

H. (2016). DeepAnomaly: Combining Background Subtraction and Deep

283



Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

Sensors, 16(11):1904.

Clercq, M. D., Vats, A., and Biel, A. (2018). Agriculture 4.0: The Future of

Farming Technology. In World Government Summit, pages 11–13, Dubai.

UAE.

Clercq, M. D., Vats, A., Biel, A., and Raynaud, E. (2019). Sustainable

and Resilient Food for Future Generations. Oliver Wyman, United Arab

Emirates.

Clevers, J. G. P. W. (1988). The derivation of a simplified reflectance model

for the estimation of leaf area index. Remote Sensing of Environment,

25(1):53–69.

Clevers, J. G. P. W. and Kooistra, L. (2006). Using Spectral Information at

the NIR water absorption features to estimate canopy water content and

biomass. In ISPRS mid-term symposium, volume 6, Enschede, The Nether-

lands.

Colin-Schoellen, O., Jurjanz, S., and Laurent, F. (2000). Metabolizable pro-

tein supply (PDIE) and restricted level of ruminally degradable nitrogen

(PDIN) in total mixed rations: effect on milk production and composition

and on nitrogen utilization by dairy cows. Livestock Production Science,

67(1):41–53.

Collins, M. and Moore, K. J. (2017). Preservation of forage as hay and silage.

284



In Forages, Volume 1: An Introduction to Grassland Agriculture, volume 1,

page 40. John Wiley & Sons, USA.

Cong, W.-F., Christensen, B. T., and Eriksen, J. (2019). Soil nutrient levels

define herbage yield but not root biomass in a multispecies grass-legume

ley. Agriculture, Ecosystems & Environment, 276:47–54.

Cook, R. (2021). Ranking Of Countries With The Most Cattle, Beef Market

Central, //beef2live.com/story-ranking-countries-cattle-0-106905.

Correll, O., Isselstein, J., and Pavlu, V. (2003). Studying spatial and temporal

dynamics of sward structure at low stocking densities: the use of an exten-

ded rising-plate-meter method. Grass and Forage Science, 58(4):450–454.

Coulloudon, B., Eshelman, K., Gianola, J., Habich, N., Hughes, L., Johnson,

C., Pellant, M., Podborny, P., Rasmussen, A., Robles, B., Shaver, P., Spehar,

J., and Willoughby, J. (1999). Sampling Vegetation Attributes. Interagency

Technical Reference. Interagency Technical Reference, USDA Bureau of

Land Management, Applied Resource Sciences Center.

Courtney, D. and Victoria (2002). Feed Value of Selected Foodstuffs for Beef

Cattle [ Electronic Resource]. Department of Primary Industries, Victoria,

Australia.

Cunningham, K., Shine, G., Mac Aodhain, C., Hosford, M., Hackett, R.,

O’Donovan, T., Lynch, B., Kelly, A., Patton, J., Lewis, E., O’Donnell,

J., McCall, N., Forristal, D., Kildea, S., Barry, D., Daniels, K., and et al.

285



(2017). The Maize Guide. A Guide to Growing, Conserving and Feeding

Maize Silage.

Currie, P. O., Hilken, T. O., and White, R. S. (1987). Evaluation of a single

probe capacitance meter for estimating herbage yield. Rangeland Ecology

& Management / Journal of Range Management Archives, 40(6):537–541.

DAFM (2021). Grass and White Clover Recommended List Varieties for Ire-

land 2021. Government, Department of Agriculture, Food and the Marine,

Crop Policy, Evaluation and Certification Division, Kildare, Ireland.

Dash, J. and Curran, P. J. (2004). The MERIS terrestrial chlorophyll index.

International Journal of Remote Sensing, 25(23):5403–5413.

Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll

Content in Higher Plants: Tests Using Eucalyptus Leaves. Journal of Plant

Physiology, 154(1999):30–36.

Dave, S. and Runtz, K. (1995). Image processing methods for identifying

species of plants. In , IEEE WESCANEX 95. Communications, Power, and

Computing. Conference Proceedings, volume 2, pages 403–408 vol.2.

Davis (2022). Vantage Pro2. Available from:

https://www.davisinstruments.com/pages/vantage-pro2. Accessed on:

10/05/2022.

Dawson, T. and Curran, P. (1998). A new technique for interpolating the

286



reflectance red edge position. International Journal of Remote Sensing,

19(11):2133 – 2139.

de Myttenaere, A., Golden, B., Le Grand, B., and Rossi, F. (2016). Mean

Absolute Percentage Error for regression models. Neurocomputing, 192:38–

48.

Deering, D., Rouse, J., Haas, R., and Schell, J. (1975). Measuring Forage

Production of Grazing Units from Landsat MSS data. In Proceedings of

the Internation Symposium on Remote Sensing of Environ, volume 2, pages

1169–1178, Ann Arbor, Mich.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li Fei-Fei (2009). Im-

ageNet: A large-scale hierarchical image database. In 2009 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 248–255, Miami,

FL. IEEE.

Dewancker, I., McCourt, M., and Clark, S. (2016). Bayesian Optimization for

Machine Learning : A Practical Guidebook. arXiv:1612.04858 [cs]. arXiv:

1612.04858.

Dos Reis, A. A., Werner, J. P. S., Silva, B. C., Figueiredo, G. K. D. A.,

Antunes, J. F. G., Esquerdo, J. C. D. M., Coutinho, A. C., Lamparelli, R.

A. C., Rocha, J. V., and Magalhães, P. S. G. (2020). Monitoring Pasture

Aboveground Biomass and Canopy Height in an Integrated Crop–Livestock

System Using Textural Information from PlanetScope Imagery. Remote

287



Sensing, 12(16):2534. Number: 16 Publisher: Multidisciplinary Digital

Publishing Institute.

Du, J. (2019). The Frontier of SGD and Its Variants in Machine Learning.

Journal of Physics: Conference Series, 1229:012046.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization. Journal of Machine Learning

Research, 12(61):2121–2159.

e-con Systems (2021). e-CAM51_usb - 5 MP OEM USB Camera Mod-

ule. Available from: https://www.e-consystems.com/5mp-usb-camera-

module.asp, Accessed 25/04/2022.

e-consystems (2022). Embedded Vision cameras. Available at: http://www.e-

consystems.com/embedded-vision-cameras.asp. Accessed 24th April 2022.

Earle, D. F. and McGowan, A. A. (1979). Evaluation and calibration of

an automated rising plate meter for estimating dry matter yield of pasture.

Australian Journal of Experimental Agriculture, 19(98):337–343.

EC (2018). EU agricultural outlook for markets and income, 2018-2030.

DG Agriculture and Rural Development, European Commission, Brussels.

Available at: https://ec.europa.eu/info/news/eu-agricultural-outlook-2018-

2030-growing-export-demand-dairy-products-world-population-expands-

2018-dec-07_en.

288



Elarab, M., Ticlavilca, A. M., Torres-Rua, A. F., Maslova, I., and McKee, M.

(2015). Estimating chlorophyll with thermal and broadband multispectral

high resolution imagery from an unmanned aerial system using relevance

vector machines for precision agriculture. International Journal of Applied

Earth Observation and Geoinformation, 43:32–42.

Erdle, K., Mistele, B., and Schmidhalter, U. (2011). Comparison of active and

passive spectral sensors in discriminating biomass parameters and nitrogen

status in wheat cultivars. Field Crops Research, 124(1):74–84.

Eurostat (2020). Agricultural production - livestock and meat. Eurostat Stat-

istics Explained, EU. Available at: https://ec.europa.eu/info/food-farming-

fisheries/animals-and-animal-products/animal-products/beef_en.

Fan, X., Kawamura, K., Guo, W., Xuan, T. D., Lim, J., Yuba, N., Kurokawa,

Y., Obitsu, T., Lv, R., and Tsumiyama, Y. (2018). A simple visible and near-

infrared (V-NIR) camera system for monitoring the leaf area index and

growth stage of Italian ryegrass. Computers and electronics in agriculture,

144:314–323.

FAO (2020). Animal production. Technical report, Food and Agricul-

ture Organization of the United Nations, International. Available at: ,

http://www.fao.org/animal-production/en/.

Ferreira, C., Melo, T., Sousa, P., Meyer, M., Shakibapour, E., Costa, P., and

Campilho, A. (2018). Classification of Breast Cancer Histology Images

289



Through Transfer Learning Using a Pre-trained Inception Resnet V2. Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), 10882 LNCS:763–

770.

Fix, E. (1985). Discriminatory Analysis: Nonparametric Discrimination,

Consistency Properties. USAF School of Aviation Medicine. Google-

Books-ID: s85PAQAAMAAJ.

Fletcher, J. E. and Robinson, M. E. (1956). A Capacitance Meter for Estimat-

ing Forage Weight. Journal of Range Management, 9(2):96–97.

Flynn, E. S. (2006). Using NDVI as a pasture management tool. Master’s

thesis, University of Kentucky, Kentucky, USA.

Font, R., del Río-Celestino, M., Luna, D., Gil, J., and de Haro-Bailón, A.

(2021). Rapid and Cost-Effective Assessment of the Neutral and Acid De-

tergent Fiber Fractions of Chickpea (Cicer arietinum L.) by Combining

Modified PLS and Visible with Near-Infrared Spectroscopy. Agronomy,

11(4):666. Number: 4 Publisher: Multidisciplinary Digital Publishing Insti-

tute.

Franz, E., Gebhardt, M. R., and Unklesbay, K. B. (1991). Shape Description

of Completely Visible and Partially Occluded Leaves for Identifying Plants

in Digital Images. Transactions of the ASAE, 34(2):0673–0681.

290



Freund, R. J., Wilson, W. J., and Sa, P. (2006). Regression Analysis. Elsevier.

Google-Books-ID: Us4YE8lJVYMC.

Fricke, T., Richter, F., and Wachendorf, M. (2011). Assessment of forage

mass from grassland swards by height measurement using an ultrasonic

sensor. Computers and Electronics in Agriculture, 79(2):142–152.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics

& Data Analysis, 38(4):367–378.

Gao, B.-C. (1996). NDWI A normalized difference water index for remote

sensing of vegetation liquid water from space. Remote Sensing of Environ-

ment, 58(3):257–266.

Gao, J., Li, P., Chen, Z., and Zhang, J. (2020). A Survey on Deep Learning for

Multimodal Data Fusion. Neural Computation, 32(5):829–864. Publisher:

MIT Press.

Gao, Y., Walker, J. P., Allahmoradi, M., Monerris, A., Ryu, D., and Jackson,

T. J. (2015). Optical Sensing of Vegetation Water Content: A Synthesis

Study. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 8(4):1456–1464.

Garmin (2018). LIDAR_lite v3HP Operation Manual and Technical Specifica-

tions. Available at: https://cdn.sparkfun.com/assets/9/a/6/a/d/LIDAR_Lite_-

v3HP_Operation_Manual_and_Technical_Specifications.pdf Accessed on:

4th May 2022.

291



Garroutte, E. L., Hansen, A. J., and Lawrence, R. L. (2016). Using NDVI and

EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage

for Migratory Elk in the Greater Yellowstone Ecosystem. Remote Sensing,

8(5):404.

Gerland, P., Raftery, A. E., Ševcíková, H., Li, N., Gu, D., Spoorenberg, T.,

Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T.,

Heilig, G. K., and Wilmoth, J. (2014). World Population Stabilization

Unlikely This Century. Science (New York, N.Y.), 346(6206):234–237.

Giannopoulos, M., Aidini, A., Pentari, A., Fotiadou, K., and Tsakalides, P.

(2020). Classification of Compressed Remote Sensing Multispectral Images

via Convolutional Neural Networks. Journal of Imaging, 6(4):24. Publisher:

Multidisciplinary Digital Publishing Institute.

Gilker, R. (2017). Here’s Why We Don’t Use Brix to Measure Forage Quality.

On Pasture. Available from: https://onpasture.com/2017/09/11/heres-why-

we-dont-use-brix-to-measure-forage-quality/ Accessed ibL04/10/2019.

Gitelson, A. and Merzlyak, M. N. (1994). Quantitative estimation of

chlorophyll-a using reflectance spectra: Experiments with autumn chestnut

and maple leaves. Journal of Photochemistry and Photobiology B: Biology,

22(3):247–252.

Gitelson, A. A. (2005). Remote estimation of canopy chlorophyll content in

crops. Geophysical Research Letters, 32(8).

292



Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D. (2002). Novel

algorithms for remote estimation of vegetation fraction. Remote sensing of

Environment, 80(1):76–87.

Gitelson, A. A., Merzlyak, M. N., and Lichtenthaler, H. K. (1996). Detection

of Red Edge Position and Chlorophyll Content by Reflectance Measure-

ments Near 700 nm. Journal of Plant Physiology, 148(3):501–508.

Gnv, P. (2020). ImageNet Challenge: Advancement in deep learning and

computer vision. Available at:https://medium.com/@prudhvi.gnv/imagenet-

challenge-advancement-in-deep-learning-and-computer-vision-

124fd33cb948 Accessed on: 12/05/2022.

Gobba, F. (2018). 1616a Main factors influencing occupational solar uv

exposure. Occup Environ Med, 75(Suppl 2):A86–A86.

Godde, C. M., Garnett, T., Thornton, P. K., Ash, A. J., and Herrero, M.

(2018). Grazing systems expansion and intensification: Drivers, dynamics,

and trade-offs. Global Food Security, 16:93–105.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Adapt-

ive Computation and Machine Learning. The MIT Press.

gps.humboldt.edu (2020). Vegetation indices and data transformations.

Available at: https://pages.cms.hu-berlin.de/EOL/gcg_eo/03_vegetation_-

indices.html Accessed on: 30/11/2021.

293



Grüner, E., Astor, T., and Wachendorf, M. (2019). Biomass Prediction of

Heterogeneous Temperate Grasslands Using an SfM Approach Based on

UAV Imaging. Agronomy, 9(2):54. Number: 2 Publisher: Multidisciplinary

Digital Publishing Institute.

Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., and Zhu, X. (2018a). Short-

Term Water Demand Forecast Based on Deep Learning Method. Journal of

Water Resources Planning and Management, 144(12):04018076. Publisher:

American Society of Civil Engineers.

Guo, Y., Han, S., Li, Y., Zhang, C., and Bai, Y. (2018b). K-Nearest Neighbor

combined with guided filter for hyperspectral image classification. Procedia

Computer Science, 129:159–165.

Guyer, D., Miles, G., and Schreiber, M. (1984). Computer Vision and Image

Processing for Plant Identification. In American Society of Agricultural En-

gineers, page 19, New Orleans, LA, USA. American Society of Agricultural

and Biological Engineers.

Halevy, A., Norvig, P., and Pereira, F. (2009). The Unreasonable Effectiveness

of Data. IEEE Intelligent Systems, 24(2):8–12. Conference Name: IEEE

Intelligent Systems.

Hammer, B. (2002). Recurrent networks for structured data – A unifying

approach and its properties. Cognitive Systems Research, 3(2):145–165.

294



Hancock, D. (2013). Top 10 Georgia Forages: at a glance. Technical report,

University of Georgia, Georgia, USA.

Hanna Instruments (2022). Digital Refractometer for Refractive Index and

Brix - HI96800. Available at: https://hanna-worldwide.com/hi96800-

digital-refractometer-for-refractive-index-and-brix Accessed on:

10/05/2022.

Hansen, P. M. and Schjoerring, J. K. (2003). Reflectance measurement of can-

opy biomass and nitrogen status in wheat crops using normalized difference

vegetation indices and partial least squares regression. Remote Sensing of

Environment, 86(4):542–553.

Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural Features

for Image Classification. IEEE Transactions on Systems, Man and Cyber-

netics, SMC-3(6).

Hardisky, M., Klemas, V., and Smart, R. (1983). The influences of soil salin-

ity, growth form, and leaf moisture on the spectral reflectance of spartina

alterniflora canopies. Photogrammetric Engineering & Remote Sensing,

1983(49):77–83.

Harmoney, K. R., Moore, K. J., George, J. R., Brummer, E. C., and Rus-

sell, J. R. (1997). Determination of Pasture Biomass Using Four Indirect

Methods. Agronomy Journal, 89(4):665–672.

Harper, L. A., Denmead, O. T., Freney, J. R., and Byers, F. M. (1999). Dir-

295



ect measurements of methane emissions from grazing and feedlot cattle.

Journal of Animal Science, 77(6):1392–1401.

Harris Geospatial (2022). Canopy Water Content. Available at:

http://www.harrisgeospatial.com/docs/canopywatercontent.html. Accessed:

10/09/2018.

Harrison, J. H., Blauwiekel, R., and Stokes, M. R. (1994). Fermentation and

Utilization of Grass Silage. Journal of Dairy Science, 77(10):3209–3235.

Hartley, H. O. (1961). The Modified Gauss-Newton Method for the Fitting of

Non-Linear Regression Functions by Least Squares: Technometrics: Vol 3,

No 2. Technometrics, 3(2):269–280.

Haug, S., Michaels, A., Biber, P., and Ostermann, J. (2014). Plant classifica-

tion system for crop /weed discrimination without segmentation. In IEEE

Winter Conference on Applications of Computer Vision, pages 1142–1149.

Haug, S. and Ostermann, J. (2015). A crop/weed field image dataset for the

evaluation of computer vision based precision agriculture tasks. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 8928:105–116.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning

for Image Recognition. Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016:770–778. arXiv: 1512.03385.

296



Henrich, V., Krauss, G., Götze, C., and Sandow, C. (2012). Index

DataBase A database for remote sensing indices. Available at: ht-

tps://www.indexdatabase.de/ Accessed on: 12/08/2018.

Herrera, P., Dorado, J., and Ribeiro, A. (2014). A Novel Approach for Weed

Type Classification Based on Shape Descriptors and a Fuzzy Decision-

Making Method. Sensors, 14(8):15304–15324.

Hikosaka, K., Niinemets, U., and Anten, N. P. R. (2015). Canopy Photosyn-

thesis: From Basics to Applications. Dordrecht: Springer, Netherlands.

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd Interna-

tional Conference on Document Analysis and Recognition, volume 1, pages

278–282 vol.1.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780. Publisher: MIT Press.

Hoffmann, P. C., Shaver, R. D., Combs, D. K., Undersander, D. J., Bauman,

L. M., and Seeger, T. K. (2001). Understanding NDF Digestibility of For-

ages.

Hofmann, R. R. (2019). 1. Morphophysiological Evolutionary Adaptations

of the Ruminant Digestive System. In 1. Morphophysiological Evolution-

ary Adaptations of the Ruminant Digestive System, pages 1–20. Cornell

University Press.

297



Holshof, G., Stienezen, M. W. J., and Galama, P. G. (2015). Calibration

of five rising plate meters in the Netherlands. In Proceedings of the 18th

Symposium of the European Grassland Federation, pages 233–235, Wagen-

ingen. Wageningen Academic Publishers.

Hosseini, S. M., Danesh Mesgaran, M., Vakili, S. A., and Naserian, A. A.

(2018). Effect of various silage additives applied in corn, alfalfa and whole

barley on in vitro duodenum utilizable crude protein in dairy cows. In 10th

International Symposium on the Nutrition of Herbivores.

Hotelling, H. (1992). Relations Between Two Sets of Variates. In Kotz, S.

and Johnson, N. L., editors, Breakthroughs in Statistics: Methodology and

Distribution, Springer Series in Statistics, pages 162–190. Springer, New

York, NY.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M., and Adam, H. (2017). MobileNets Efficient Convolutional

Neural Networks for Mobile Vision Applications. arXiv:1704.04861 [cs].

arXiv: 1704.04861.

Hsieh, C.-L., Widjanarko, D., and Guo, J.-J. (2017). Application of Discrimin-

ant Analysis to Classify Pangola Hay with Digital Images and NIR Spectra.

In 2017 Spokane, Washington July 16 - July 19, 2017, page 1. American

Society of Agricultural and Biological Engineers.

Huang, B., Wang, Z., Shang, J., Chen, G., and Radenkovic, M. (2022). A

298



Spectral Sequence-Based Nonlocal Long Short-Term Memory Network for

Hyperspectral Image Classification. IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, 15:3041–3051. Conference

Name: IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing.

Huang, B., Zhao, B., and Song, Y. (2018). Urban land-use mapping using a

deep convolutional neural network with high spatial resolution multispec-

tral remote sensing imagery. Remote Sensing of Environment, 214:73–86.

Publisher: Elsevier.

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing

of Environment, 25(3):295–309.

Huete, A., Justice, C., Van Leeuwen, W., Jacobson, A., Solanos, R., and Laing,

T. D. (1999). MODIS vegetation index (MOD13). Algorithm theoretical

basis document Version 3.1, 3:213.

Hughes, D. P. and Salathe, M. (2015). An open access repository of images

on plant health to enable the development of mobile disease diagnostics.

arXiv:1511.08060 [cs]. arXiv: 1511.08060.

Humphreys, J. and O’Kiely, P. (2007). Effects of two mixtures of per-

ennial ryegrass cultivars with contrasting heading dates, and differing

in spring-grazing frequency and silage harvest date, on characteristics

of silage from first-cut swards. Grass and Forage Science, 62(3):389–

299



404. Available at: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-

2494.2007.00593.x.

Hunt, E. R. and Rock, B. N. (1989). Detection of changes in leaf water

content using near-and middle-infrared reflectances. Remote sensing of

environment, 30(1):43–54.

Idso, S., Jackson, R., Pinter, P., Reginato, R., and Hatfield, J. (1981). Normal-

izing the stress-degree-day parameter for environmental variability. Agri-

cultural Meteorology, 24.

Instrumart (2022). Horiba B-741 / B-742 / B-743 LAQUAtwin

Nitrate Meter | ISE Meters | Instrumart. Available at:

https://www.instrumart.com/products/38817/horiba-b-741-b-742-b-

743-laquatwin-nitrate-meter Accessed on: 10/05/2022.

Intermap, T. L. C. (2013). Fundamentals of Remote Sensing.

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-

air-photos/satellite-imagery-products/educational-resources/9309.

Jackman, P., Lee, T., French, M., Sasikumar, J., O’Byrne, P., Berry, D., Lacey,

A., and Ross, R. (2021). Predicting Key Grassland Characteristics from

Hyperspectral Data. AgriEngineering, 3(2):313–322. Number: 2 Publisher:

Multidisciplinary Digital Publishing Institute.

Jackson, R., Pinter, P., Reginato, R., and Idso, S. (1980). Hand-held ra-

300



diometry: A set of notes developed for use at the Workshop of Hand-held

radiometry. Technical report, NASA.

Jackson, R. D. and Huete, A. R. (1991). Interpreting vegetation indices.

Preventive Veterinary Medicine, 11(3):185–200.

Jackson, R. D., Idso, S. B., Reginato, R. J., and Pinter, P. J. (1981). Canopy

temperature as a crop water stress indicator. Water Resources Research,

17(4):1133–1138.

Jain, P., Schoen-Phelan, B., and Ross, R. (2021). Multi-Modal Self-

Supervised Representation Learning for Earth Observation. In 2021 IEEE

International Geoscience and Remote Sensing Symposium IGARSS, pages

3241–3244. IEEE.

Jang, J. (1993). ANFIS: adaptive-network-based fuzzy inference system.

IEEE Trans. Syst. Man Cybern.

Jarchow, C., Didan, K., Barreto-Muñoz, A., Nagler, P., and Glenn, E. (2018).

Application and Comparison of the MODIS-Derived Enhanced Vegetation

Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study

in the Arid Colorado River Delta, Mexico. Sensors, 18:1546.

Jarrige, R., editor (1989). Ruminant Nutrition: Recommended Allowances

and Feed Tables, volume 115. The Journal of Agricultural Science.

Jemison Jr, J. M. and Fox, R. H. (1988). A quick-test procedure for soil

301



and plant tissue nitrates using test strips and a hand-held reflectometer.

Communications in Soil Science and Plant Analysis, 19(14):1569–1582.

Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-

Nielsen, H., Alves, B. J. R., Morrison, M. J., Peoples, M. B., Boddey, R. M.,

Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J. R., and Morrison,

M. J. (2011). Legumes for mitigation of climate change and the provi-

sion of feedstock for biofuels and biorefineries. A review. Agronomy for

Sustainable Development, 32(2):329–364.

Jensen, J. R. (2007). Remote Sensing of the Environment: An Earth Resource

Perspective. Pearson Prentice Hall.

Jensen, J. R. (2013). Remote Sensing of the Environment: An Earth Resource

Perspective. Pearson, New York, 2nd edition edition.

Jiang, F., Smith, A. R., Kutia, M., Wang, G., Liu, H., and Sun, H. (2020).

A Modified KNN Method for Mapping the Leaf Area Index in Arid and

Semi-Arid Areas of China. Remote Sensing, 12(11):1884. Number: 11

Publisher: Multidisciplinary Digital Publishing Institute.

Jiang, Y., Li, Y., and Zhang, H. (2019). Hyperspectral Image Classification

Based on 3-D Separable ResNet and Transfer Learning. IEEE Geoscience

and Remote Sensing Letters, pages 1–5.

Jiang, Y., Liu, H., and Cline, V. (2009). Correlations of Leaf Reletive Wa-

302



ter Content, Canopy Temperature, and Spectral Reflectance in Perennial

Ryegrass Under Water Deficit Conditions. HortScience, 44(2):459–462.

Jimenez-Marquez, S. A., Thibault, J., and Lacroix, C. (2005). Prediction

of moisture in cheese of commercial production using neural networks.

International Dairy Journal, 15(11):1156–1174.

Jin, X., Li, Z., Feng, H., Ren, Z., and Li, S. (2020). Deep neural network

algorithm for estimating maize biomass based on simulated Sentinel 2A

vegetation indices and leaf area index. The Crop Journal, 8(1):87–97.

Jones, D. (2017). Improving silage quality. Keenan Systems. Avail-

able at : http://www.keenansystem.com/ie-en/2017/04/24/improving-silage-

quality/.

Kaiser, A., Piltz, J., Burns, H., and Griffiths, N. (2006). Sil-

age note 6. Managing the wilting process. In Successful Sil-

age (TopFodder silage manual). Top Fodder Silage. Available

at: http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/229290/silage-

note-6-managing-the-wilting-process.pdf Accessed on: 20/08/2017.

Kamalov, F., Smail, L., and Gurrib, I. (2020). Stock price forecast with deep

learning. In 2020 International Conference on Decision Aid Sciences and

Application (DASA), pages 1098–1102.

Kamilaris, A. and Prenafeta-Boldú, F. X. (2018a). Deep learning in agricul-

ture: A survey. Computers and Electronics in Agriculture, 147:70–90.

303



Kamilaris, A. and Prenafeta-Boldú, F. X. (2018b). A review of the use of

convolutional neural networks in agriculture. The Journal of Agricultural

Science, 156(3):312–322.

Karmaus, A. L. and Jones, W. (2020). Future foods symposium on alternative

proteins: Workshop proceedings. Trends in Food Science & Technology.

Kartal, S. (2021). Comparison of semantic segmentation algorithms for the

estimation of botanical composition of clover-grass pastures from RGB

images. Ecological Informatics, 66:101467.

Kaufman, Y. J. and Tanre, D. (1992). Atmospherically resistant vegetation

index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and

Remote Sensing, 30(2):261–270.

Kauth, R. J. and Thomas, G. S. (1976). The tasselled cap – a graphic descrip-

tion of the spectral-temporal development of agricultural crops as seen by

Landsat. In LARS Symposia, page 159.

Keras Team (2022). Keras documentation: Keras Applications. Available at:

https://keras.io/api/applications/ Accessed on: 10/05/2022.

Khan, S., Islam, N., Jan, Z., Ud Din, I., and Rodrigues, J. J. P. C. (2019). A

novel deep learning based framework for the detection and classification of

breast cancer using transfer learning. Pattern Recognition Letters, 125:1–6.

Kim, S. and Kim, H. (2016). A new metric of absolute percentage error

304



for intermittent demand forecasts. International Journal of Forecasting,

32:669–679.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimiza-

tion. arXiv:1412.6980 [cs]. arXiv: 1412.6980.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman,

D. J. (2021). 1D convolutional neural networks and applications: A survey.

Mechanical Systems and Signal Processing, 151:107398.

Kiranyaz, S., Ince, T., Hamila, R., and Gabbouj, M. (2015). Convolutional

Neural Networks for patient-specific ECG classification. In 2015 37th

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), pages 2608–2611. ISSN: 1558-4615.

Klootwijk, C. W., Holshof, G., van den Pol-van Dasselaar, A., van Helvoort,

K. L. M., Engel, B., de Boer, I. J. M., and van Middelaar, C. E. (2019).

The effect of intensive grazing systems on the rising plate meter calibration

for perennial ryegrass pastures. Journal of Dairy Science, 102(11):10439–

10450.

Kohonen, T. (1997). Exploration of very large databases by self-organizing

maps. In Proceedings of International Conference on Neural Networks

(ICNN’97), volume 1, pages PL1–PL6 vol.1.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classi-

fication with Deep Convolutional Neural Networks. In Pereira, F., Burges,

305



C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural

Information Processing Systems 25, pages 1097–1105. Curran Associates,

Inc.

Kumar, A. (2022). Linear Regression Explained with Real Life Example.

Available at: https://vitalflux.com/linear-regression-real-life-example/ Ac-

cessed on: 24/04/2022.

Kung Jr, L. (2010). Understanding the biology of silage preservation to max-

imize quality and protect the environment. In Proceedings, 2010 California

Alfalfa & Forage Symposium and Corn/Cereal Silage Conference, pages

1–2, Visalia, CA.

Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. (2017). Deep Learn-

ing Classification of Land Cover and Crop Types Using Remote Sensing

Data. IEEE Geoscience and Remote Sensing Letters, 14(5):778–782.

Kuwata, K. and Shibasaki, R. (2015). Estimating crop yields with deep

learning and remotely sensed data. In 2015 IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), pages 858–861. IEEE.

Kuwata, K. and Shibasaki, R. (2016). Estimating Corn Yield in the United

States with MODIS EVI and Machine Learning Methods. In ISPRS An-

nals of Photogrammetry, Remote Sensing and Spatial Information Sciences,

volume III-8, pages 131–136. Copernicus GmbH.

L3HARRIS (2018). Vegetation Indices. Available at: ht-

306



tps://www.l3harrisgeospatial.com/docs/VegetationIndices.html Accessed

on: 12/11/2018.

Lahat, D., Adali, T., and Jutten, C. (2015). Multimodal Data Fusion: An

Overview of Methods, Challenges, and Prospects. Proceedings of the IEEE,

103(9):1449–1477.

LaptrinhX (2021). Understanding Optimization Algorithms. Avail-

able at: https://laptrinhx.com/understanding-optimization-algorithms-

3818430905/ Accessed on: 21/04/2022.

Larcher, W. (2003). Physiological Plant Ecology - Ecophysiology and Stress.

Springer, 4th edition.

Latimore, M. A. and McCormick, L. (2012). Pasture varieties used in New

South Wales 2012 - 2013.

Lavine, B. and Workman, J. (2008). Chemometrics. Analytical Chemistry,

80(12):4519–4531. Publisher: American Chemical Society.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W. E., and Jackel, L. D. (1989). Handwritten Digit Recognition with

a Back-Propagation Network. In NIPS.

Lee, M. A., Howard-Andrews, V., and Chester, M. (2019). Resistance of

Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.)

307



Varieties to Three Projected Drought Scenarios for the UK in 2080. Agro-

nomy, 9(3):159. Number: 3 Publisher: Multidisciplinary Digital Publishing

Institute.

Lemus, R. (2014). Brix Level in Your Forage: What

does it mean? Forage News, 7(2):2. Available at:

http://pss.uvm.edu/pdpforage/Materials/ForageQuality/Brix_Level_-

Forage_MissSt.pdf Accessed on: 04/10/2019.

Li, A., Dhakal, S., Glenn, N. F., Spaete, L. P., Shinneman, D. J., Pilliod, D. S.,

Arkle, R. S., and McIlroy, S. K. (2017). Lidar Aboveground Vegetation

Biomass Estimates in Shrublands: Prediction, Uncertainties and Applica-

tion to Coarser Scales. Remote Sensing, 9(9):903. Number: 9 Publisher:

Multidisciplinary Digital Publishing Institute.

Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid Search, Random Search,

Genetic Algorithm: A Big Comparison for NAS. arXiv:1912.06059 [cs,

stat]. arXiv: 1912.06059.

Liew, S. C. (2001). Principles of Remote Sensing - Centre for

Remote Imaging, Sensing and Processing, CRISP. Available

at: http://www.crisp.nus.edu.sg/~research/tutorial/rsmain.htm Accessed:

5.7.2016.

Lin, F., Zhang, D., Huang, Y., Wang, X., and Chen, X. (2017). Detection of

308



Corn and Weed Species by the Combination of Spectral, Shape and Textural

Features. Sustainability, 9(8):1335.

Ling, Q., Huang, W., and Jarvis, P. (2011). Use of a SPAD-502 meter to meas-

ure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis

Research, 107(2):209–214.

Linn, J., Hutjens, M. F., Otterby, D. E., Howard, W. T., and Kilmer, L. H.

(2017). Ruminant anatomy and physiology : Dairy Extension : University

of Minnesota Extension.

Liu, J. and Pattey, E. (2010). Retrieval of leaf area index from top-of-canopy

digital photography over agricultural crops. Agricultural and Forest Met-

eorology, 150(11):1485–1490.

Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., and Stachniss, C. (2017).

UAV-based crop and weed classification for smart farming. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), pages 3024–

3031. IEEE.

Lowenberg-DeBoer, J. (2015). Making the Modern Farmer. The Precision

Agriculture Revolution, May/Jun 2015:105–112.

Ludemann, C. I., Wims, C. M., and Chapman, D. F. (2017). Validation of

perennial ryegrass cultivar Forage Value Index rankings using independent

trial data. Journal of New Zealand Grasslands, page 3.

309



Lynch, T. M. H., Barth, S., Dix, P. J., Grogan, D., Grant, J., and Grant, O. M.

(2015). Ground Cover Assessment of Perennial Ryegrass Using Digital

Imaging. Agronomy Journal, 107(6):2347–2352.

Lüscher, A., Mueller Harvey, I., Soussana, J. F., Rees, R. M., and Peyraud,

J. L. (2014). Potential of legume based grassland livestock systems in

Europe: a review. Grass and Forage Science, 69(2):206–228.

MacTavish, J. N., Malone, P. G., and Wells, T. L. (1968). Rmar: A Reduced

Major Axis Regression Program Designed for Paleontologic Data. Journal

of Paleontology, 42(4):1076–1078. Publisher: Paleontological Society.

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., and Zhang,

Y. (2018). Very Deep Convolutional Neural Networks for Complex Land

Cover Mapping Using Multispectral Remote Sensing Imagery. Remote

Sensing, 10(7):1119.

Maitra, S. and Yan, J. (2008). Principle component analysis and partial least

squares: Two dimension reduction techniques for regression. Applying

Multivariate Statistical Models, 79:79–90. Publisher: Citeseer.
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Appendix A

Protocol and Field Trips

A.1 Early Development

Following advice from the author on data required, Dr. Damon Berry and

Dr. Patrick Jackman assisted in designing a platform to collect data. French

engineering students worked on testing the capabilities of the equipment.

A.2 Design and Construct a Low-Cost Data Collection and

Integration System

Two French students evaluated different types of low-cost cameras and de-

veloped software to allow images to be taken, triggered by a request from a

laptop to Raspberry Pi’s, one of which had an RGB camera and the other an

NoIR camera. The students evaluated the cameras’ performances at differ-

ent shutter speeds, luminosity and motion speeds. They also evaluated some

candidate filters for the NoIR camera to filter out RGB light. The current
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version is an unexposed photo film negative. Dr. Berry subsequently added a

LiDAR and FLIR device, programming them to work on a Raspberry Pi. Dr.

Hector Franco integrated all programs, so that an instruction from the laptop

will trigger all sensors to take a reading / image. There is another program

to retrieve the readings from the various Pi’s, back to the laptop. Mark Dee-

gan made a trolley using some new and some recycled materials as shown in

Figure 5.11a. Finbarr O’Meara assisted with some amendments. The trolley

has four quick release mountain bike wheels and a frame with two shelves.

There is a removable boom, with a sensor plate designed to be adjustable

height. The minimum height is 160cm from the ground, when the trolley is

fully assembled. This height can be extended upwards. Patricia O’Byrne

specified the programming and sensor requirements (see 5.12) and specified

the list of steps to take a set of sensor readings, evaluated test images and did

some troubleshooting.

The sensors involved are:

1. A JAI AD-130GE multi-spectral camera with 2 CCDs, one for taking

RGB images and the other for taking infrared images.

2. A Pi camera (RGB) attached to a Pi to take images of the grass.

3. A Pi NoIR camera attached to a Pi to take NIR images.

4. A LiDAR attached to the same Pi as the NoIR camera, to measure canopy

height above ground.
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Figure A.1
Quadrat with swatch

5. A FLIR device, attached to a Pi, to measure grass canopy temperature.

Sensors 1 to 4 are mounted on a boom at a height of approximately 160cm

from the ground. The fifth sensor, the FLIR device is at the same height as

the top shelf; approximately 1m from the ground. In addition to these meas-

urements, a Vantage WeatherStation was used. This option has not been fully

developed, but it is currently able to give humidity and ambient temperature.

A swatch was used for future calibration of images. A quadrat was used to

outline the area that would be sensed and sampled as shown in Figure A.1.

Additional equipment: A laptop, a switch, a router, 7 x Ethernet cables, 4 x

5V charged power banks, 2 x Power Gorilla power banks.

A.3 Grass Sampling

Dr. Jackman organized and specified initial ground truth acquisition – i.e.

sampling and analysing patches of grass. Equipment:

• a quadrat to outline the parts of the grass that were imaged and would be

analysed.
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• Sealable bags, markers and clippers.

• An analysis protocol, along with Claudio Terasuolo, from ESHI.

A.4 Pilot Field Trips

A series of field trips were made, to test sensors, platform, trolley and protocol

and to collect some pilot data.

A.5 Pilot Data Collections

A series of field trips were made, to test sensors, platform, trolley and protocol

and to collect some pilot data. During data collection, individual sample

areas were chosen by the advising Tanco Engineer with a view to selecting

areas that are representative of the entire pasture, roughly following a ‘W’

pattern through the pasture. An example of a sample collection taken during

a pilot collection is shown in Figure A.2. Both proximal sensing and direct

harvesting took place on the sample. The data collected will be described

over the next sections and includes point data and layers of 2D image data.

A.5.1 Report from 13th September 2018: Dungarvan

The trolley and boom were loaded into the Range Rover. Patrick Jackman and

Dr Mohammed Mesabbah drove the trolley in a Range Rover to Ahoun near

Dungarvan in Co. Waterford. Patricia O’Byrne travelled to the same location

separately. The session lasted from 10:30 to 1pm. We were warmly greeted

344



Figure A.2
Pilot collection: having taken sensor readings, the grass is clipped from one of the 25

sections of the quadrat.

by Michael French, a mechanical design engineer from Tanco, to his family

farm. He brought us to a location where the grass canopy was 14cm off the

ground. The grass was predominantly perennial ryegrass. There had been a

lot of rain a few hours previously but the weather was clear and dry (mostly).

It took about an hour to position the trolley and start up all sensors. This was

partly due to a fault that is either a problem with one of the battery packs. Two

of the three raspberry Pis worked, so some Pi readings were recorded. The

canopy height was measured with a tape measure. On observing the images

from the JAI camera, it transpired that one exposure worked well with RGB

and a different exposure was favoured by the NIR image. The process was

duplicated, changing the exposure between takes. A spirit level and a step
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ladder were required to ensure that the platform was level when images were

taken. When all images were taken, harvesting began. The quadrat is around

50cm x 50cm and is split into 25 squares. When the quadrat was placed

near the ground, it couldn’t be seen in the images, so it was placed on top

of the canopy. A series of bags had been labelled according to the square.

These were not in order, so this caused a delay. Separate squares were cut

and bagged. This took a very long time due to the smallness of the squares,

the length of the grass and the fact that the grass needed to be fed through the

squares so that only plants whose roots were in the square went into the bag

for that square. At one stage, a few drops of rain came. This meant that the

tarpaulin was required but this needed to be held. Michael held this onto the

trolley while we harvested the grass. As entry to the lab in ESHI could not be

later than 16:30pm at that time of the year, work finished at 12:30pm. It took

another half an hour to pack the equipment.

Some conclusions:

• A much longer time is required at each site if we are to get any meaning-

ful sampling done.

• The distance to the lab in ESHI curtails the number of samples that are

taken – the start and finish are time consuming so multiple samples in

one day is much more efficient than short visits.

Snag list:

• Fix the failing battery situation.
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• Resolve the problem of vanish IP addresses.

• Fix the LiDAR wiring and secure wiring to LiDAR and FLIR with heat

shrink wrap.

• Add exception handling to prevent looped programs from failing if a

sensor fails.

• Add LEDs to show connectivity.

• Explore the addition of the Weather Station.

• Get a rope to secure the tarpaulin, ensuring that it can’t be caught by the

wind.

• Explore alternatives to the current quadrat – the sections are much too

small for long grass.

• Investigate approaches to using quadrats in long grass – one suggestion

is that for long grass a 50cm x 50cm quadrat (without internal sections)

is required. (Wang et al., 2017) collected 233 grassland samples. At

each site, they assessed a 100m line transect to identify a representative

section and used 1x1m quadrats at 20m intervals, getting lat, long, el-

evation, species mix, plant coverage and grass type at each point. They

gathered the plants and dried them at 65C to determine biomass. The

biomass measured varied from 13.89g/m2 to 716.17g/m2.

• Streamline and formalize the sensing process.
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• Work on a plug-and-play solution

• Think about how to keep the platform level without having to hold it.

• Take two sets of JAI images, one with exposure at 16 and the other with

exposure at 12. Note: if VIs are being calculated, these must be from

images with the same exposure. However it is likely that exposure that

is good for VIs may not be good for image processing.

• Streamline and formalize the grass harvesting process.

• Have appropriate containers, ordered to minimize delay

• Streamline the equipment take-down and store.

• The power gorilla – switch adaptor is bent and doesn’t seem to be work-

ing, where it must have been under pressure during the boom storage.

We need to have a set of connections / disconnections that need to be

done during a collection run.

• Have a protocol of no off-topic conversations and no delays in moving

equipment.

• All members of any expedition should prepare prior to expedition by

knowing GPS position of venue and being appropriately attired.

• Explore the possibility of separating the in-field sampling time line from

the lab time-line, allowing for someone else to do lab sampling.
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Although samples were taken in Dungarvan, it was essentially treated as a

trial collection. Some sensors were not working so a complete set of data was

not acquired. However, aside from producing an important snag list, the data

gathered here was useful for data exploration.

A.5.2 25th September 2018

Dr. Patrick Jackman and Dr. Hector Penya travelled to Carlow by Jeep,

where they were met by Michael French. On the advice of the farmer, they

took samples from high-quality, medium-quality and low-quality swards. In

addition to the 25-panel quadrat, they employed a 4-panel quadrat, with each

square measuring 25cm2. There were some problems with sensors, but eight

samples (1015 to 1029) from this collection were fully processed, giving

initial data for designing the post-collection software.

A.5.3 Report from 11th October 2018: Nenagh

Logistic issues resulted in a planned collection that had been arranged for

5th October, being cancelled. This issue also incurred the need for a GoCar

van to be used on the 11th October. In addition to being a different vehicle,

this issue also resulted in the equipment being moved, disassembled and

reassembled quite a bit. This date was also coming to the end of the growing

season, but a farm in Lissyleamy, Nenagh, run by John Kennedy allowed a

collection to go ahead. The author visited the site with Dr. Hector Penya,

Dr. Mohammed Messabah and Michael French, and collected and labelled 14
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samples. Sampling incorporated taking Weather data, phone data and manual

measurements (LiDAR to ground and top of canopy to ground) for each site.

Each site was imaged in its natural state. Then a quadrat and swatch was

put in place, with all vegetation pulled through the bottom left square of the

quadrat. Only vegetation that had its roots in the quadrat was pulled through.

A second set of images was taken. A bag was prepared, and labelled with

the sample number. The grass in the chosen square was harvested to around

4cm from ground level. To ensure that the level was correct, the quadrat was

forced to ground level and the vegetation cut. This vegetation was placed in

the prepared bag and the bag was sealed and put in the cooler box. The labels

from these samples were 1131 and 1134 to 1146. Samples 1131, 1134 and

1135 were taken using a four-part quadrat. The remaining samples were taken

using a 25-part quadrat. All samples, except for 1135, were between 20 and

50g, including the weight of the bag. For all sites, a sample was processed in

the EHSI lab. For two sites (1136 and 1137), two samples were taken, one

of which was processed in the EHSI lab and the second was processed in a

domestic kitchen oven. On arrival at the EHSI lab it was evident that the full

bags would not fit into the KERN high precision scales, so initial weights

were taken on a domestic Camry scales that is accurate to around 1.5g. Each

sample was processed separately. Muffin cups were labelled with the sample

number and appended with a, b, c etc. Samples were separated into different

specimen cups. When vegetation in a specimen was folded rather than cut, it

unravelled and could not be weighed, so grass was cut to fit in the specimen
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cup. A funnel was used to ensure that the loss of grass while cutting was

minimized. The filled specimen cup was then weighed in the KERN scales

that is accurate to .0001g. The bags were weighed after being emptied. An

empty specimen cup was weighed prior to entry in the oven. This specimen

was labelled ‘empty’ and put in the oven. The oven was set to 60Celsius

and the specimens were left in the oven for 24 hours. After the 24 hours

had elapsed, the specimens had dried out. They were taken from the oven

and weighed again. The empty specimen cup was also weighed. In case of

error, all specimens for a sample were stored in a bag that was sealed, with

the specimen cups acting as a sample label. Sample 1135 was taken using the

4-part quadrat in error. This resulted in a sample weight of 150g. From this,

eight specimens were taken; a total of 98g. These were processed in the same

way as the other samples. As a further experiment, the two extra samples

1136P and 1137P were weighed on the Camry scales and the full sample was

put in a domestic oven that was set to roughly 60Celsius. However, as it

is a domestic oven, the settings are 50 or 100, so a meat thermometer was

used to show the temperature. The samples were left in the oven for 24

hours and weighed before and after on the domestic scales. As can be seen,

the thermostat shows that the temperature did not remain at 50 and went up

to near 70Celsius. While this method preserved the integrity of the sample

during drying, both the weighing and the temperature were not as granular as

in the lab.
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A.5.4 Report from 25th October 2018: Dublin

The team visited a park in Dublin and took samples. 20 samples taken (1157

to 1181) with an average Fresh density of 13,251.9kg/ha and an average Dry

density of 4,719.86kg/ha. There was a change in drying procedure to mitigate

the space restriction in the drying ovens provided. Rather than using just

the drying ovens and completely drying the samples, the USDA guidelines

(USDA, 2003) suggest air-drying at 60 C for 24 hours for silage purposes.

EHSI have two incubator ovens that are much larger than the drying ovens.

These go to 70C. Prof. Jesus Frias agrees that 60 Degrees will do for our

purposes. The ovens need to be specifically booked for two days after collec-

tion, while booking use of the ESHI facilities. As it is, we can use the lab

up until 10pm in the evenings, but cannot stay afterwards, unless we have

a fully trained ’buddy’ - i.e. two people would need to be there. Also, the

buddy system is required for Saturday access. The bigger ovens have a bigger

capacity. I discussed the use of other holders with Claudio. I have bought foil

trays to replace the muffin cases. These are a lot bigger and will require much

less cutting of material. We have ordered a scales that is advertised as being

accurate to .01g and bought smaller bags. We can weigh the sample in the

bag, transfer it to the foil case and put it straight in the oven.

A list of requirements has been drafted:

• Spiral wrap cables

• Flexible cables - Damon, are you getting cable cases?
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• Cable to hold things.

• Magnets

• Double side tape

• Duct tape

• Super glue (repair things)

• Paper tape (mark location)

• Bubble wrap

• Permanent maker (thin)

• Hooks / Handles

• Keyboard and mouse LOGITECH K400 Plus Wireless Keyboard - £27.99
in Amazon.

• Extra SD cards

• Strong transparent plastic bags

• Platform and new lenses for narrow band pictures (to be decided)

• Android phone

• Phone holder (GPS driving)

• Copper wire (maybe not)

• Raspberry case tower

• New long micro-usb cables

• Usb hub (to power the raspberries)

• Telescopic levelling (meter)

• Rubber bands

• Laptop hood

• Loaf tin liners - Done

• Anti cut gloves

• Weighing scales.
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A.6 Testing protocols

A.6.1 Report from 19th November 2018: Phoenix Park - harvesting and

oven

The purpose of this test was two-fold: to test the new harvesting protocol and

to test the oven equivalence in ESHI.

Hector and Patricia went to North Road in the Phoenix Park. There was

grass growing on the side of the road, but it was very wet and uneven. How-

ever, it was sufficient for testing the protocol and ovens. A photo was taken

of the area prior to laying the quadrat. It is evident from the photo that the

grass is dormant and covered with leaves. The ground beneath the grass was

very wet and in some places it is almost possible to see soil. The quadrat was

(a) Short dry grass (b) quadrat placed (c) quadrat placed

Figure A.3
Experiments on uniformity across quadrat

laid and two squares from opposite corners were prepared by pulling through

grass that was growing within those squares, omitting any overhang from

other squares and retrieving strands that were lying outside the squares but

with their roots in the squares. The grass was then harvested and placed in a
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sample bag. As there was so little growth, the sample weight, in its entirety,

was 14.11g. Another photo was taken to show the harvested squares. The

quadrat was replaced by one that had no sub-divisions and all of the grass

that grew inside this quadrat was harvested and put in a green plastic sack.

The harvested ground was photographed. Both the sample and the sack were

brought back to ESHI. Weighing: All items for weighing were weighed twice;

once on the Triton T3 scales that is accurate to .01g and once on the Camry

kitchen scales, accurate to around 1g. It was very difficult to balance the

heavy full-quadrat bag on the scales and be able to see the result. The weight

given for this, when rounded to 1g, was the same as the result for the Camry

scales. All other weights were possible, if a little tricky, on the Triton scales.

Drying: Instead of using paper cups, tin foil trays were used. The sample was

put in the incubating oven for 24 hours at 60 C. A similar weight of harvested

material from the green sack was taken and put in the drying oven at the same

temperature for the same time. The remainder of the harvested material was

discarded. On weighing the dried material from both ovens, both dried to

the same degree, having equivalent dry weight percentages. Conclusion:

It is worthwhile weighing the full-quadrat on-site, but the Camry scales has

a bigger weighing pad and would be more suitable for this. Given that the

weight of even a very sparse area was over 200g, accuracy to ~1g is sufficient.

The tin foil trays are better than the cups. The Triton scales is easier to use

than that lab one and the incubator oven is sufficient for our needs.
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A.6.2 Report from 26th Feb 2019: St. Kevin’s Park

The harvesting protocol was checked by Patricia O’Byrne, Patrick Jackman

and Damon Berry in St. Kevin’s Park on 26th Feb 2019. The overall process

took around half an hour.

(a) Short dry grass
(b) quadrat placed

(c) Short dry grass (d) quadrat placed

(e) Short dry grass (f) quadrat placed

Figure A.4
Collection protocol tests

A piece of ground in the park was chosen for harvesting. The grass was
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short, but dry (Figure A.4a). The 25 section quadrat was laid on the grass

(Figure A.4b). Then the material from the top left was cut and saved as

Sample 1 and from the bottom right as sample 2 (Figure A.4c). The top left

and bottom right corners were chosen for harvesting

The height of the canopy was measured and judged to be 8cm (Figure

A.4d).

Then the empty quadrat was placed on top. At this stage, we noticed that

there is a slight difference in circumference between the two quadrats (Figure

A.4e and A.4f).

We weighed the three samples (Figure A.4f). Sample 1: weight 10g.

Empty bag 3g. Fresh weight 7g, area is 10cm x 10cm = 100cm2 Sample

2: Weight 7g. Empty bag 3g. Fresh weight 4g. Sample 3: Fresh weight 86g.

Empty bag 18g. Fresh weight 68g. There is some deviation between weights

taken from the small squares and the overall weight taken from the bigger

area.

(a) Camry Scales

(b) Varying weights from same quadrat

Figure A.5
Weight equivalence tests
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A.6.3 Report from 28th Feb 2019 - Harvesting protocol

Harvesting protocol test 28th Feb 2019, Tullow (Shane Aughey’s farm).

Present were: Shane Aughey (Tanco), Patricia O’Byrne, Patrick Jackman.

Observers: Robert Ross, Damon Berry.

Four samples were taken; 2 per field.

Canopy height was estimated using 2 readings from opposite ends, sample

1 by eye, the remaining by placing a cardboard box on the grass. The box

to ground height in opposite corners was used to estimate canopy height. 25

part quadrat was laid. Grass was pulled through 2 x (10cm x 10cm) parts and

harvested, bagged, labelled as x.1 and x.2. One person stood on the quadrat

to make sure it was laying low in the grass. The Camry scales (accurate to 1g)

was used to weigh the bags. Prior to use, the scales was checked with a 10g

weight, to see if it was reporting weights properly. Both bags were weighed in

situ. The quadrat was replaced by the single part quadrat (50cm x 50cm). The

entire quadrat was harvested, bagged and weighed. The decision was made

that this included sticks, and any other vegetative matter that might be pulled

in by a mower. Overall fresh weight was calculated as the sum of weights

from the three bags in grams, minus the weights of the empty bags. The

estimated fresh weight (FW, in g/cm2) was calculated as (sum bagged-sum

bag)/2500. This value was multiplied by 100,000 to get Kg/Ha estimate. The

remaining samples were taken in the same way, but the canopy height was

measured by placing a cardboard box on the grass prior to using the quadrat.
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The box to ground height in opposite corners was used to estimate canopy

height. The average time taken was just under 20 minutes per sample. While

some speedup was seen in last sample, this was likely due to lighter grass

cover on hill top. Most of time is spent on combing and cutting. Labelling,

weighing, and even moving were minor consumers of time.

Timing and tips.

To speed up the process as much as possible:

• Blank labels should be put on bags before the event (2 x small bags, 1 x

large bag). Make sure they stick properly.

• The large scales was not necessary, but it is early in the season and as the

grass grows, it might be required for the full harvest weight. Similarly,

the large bag may not be sufficient to hold a full quadrat’s worth of grass

in a mature sward, but the bucket could be used instead.

• The bucket is too heavy when the sward is not mature.

• Work out a system of placing comb, pencil, bags, scissors, measuring

stick so that time is not wasted looking for tools.

• Most of the time is taken teasing the grass through the quadrat and

cutting it.

Equipment used (field): Quadrat x 3, Scissors, Measuring stick, Cardboard

box, Small bags, Large bags, Labels, Pencil, Cool box, Notebook, Camry
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scales, 10g weight. Knee board to allow comfortable data collection – may

speed process and remove wear / tear and irritation due to wet knees. All

samples were taken back to the ESHI lab, where measurements were repeated

on the Triton scales (accurate to .01g). All 10cm x 10cm samples were

put on labelled aluminium trays and put in the oven to dry for 24 hours.

Equipment used (in lab): Staff card, White coat, Triton scales, Aluminium

trays, Incubation oven.

A.7 Protocol and equipment evolution

Over the course of the pilot and primary collections, improvements were

implemented in both equipment and protocols as outlined in this Appendix.
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Appendix B

Developing the Platform

This Appendix describes the evolution of the trolley and network platform

in more detail, following a successful application to investigate the proposal

"Design and construct a low-cost data collection and integration system"

(GreenEyes Project Proposal 2018). The data requirements emerged from the

author’s review of existing methods to estimate biomass and moisture content

in pastureland, with the caveats that sensors must be clear of the ground and

should be inexpensive. At this stage in the project, a JAI AD-130 GE 2-CCD

four channel camera was available. However, for logistic reasons, it was not

possible to obtain a hyperspectral camera. Sensor selection was based on a

combination of sensors already available and ones that could be purchased by

Dr. Patrick Jackman within a short time frame.

The original design was considered by Dr. Berry, Dr. Jackman and Pa-

tricia O’Byrne and a schematic is shown in Figure B.1 The main data to be

collected is multi-spectral data in the red, green, blue and NIR channels. As

well as identifying scanners, the scanners need to relay the information to
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Figure B.1
Original Schematic for GreenEyes proposed equipment

storage, identifying the location, date-time, camera number, exposure and

shutter speed. The readings taken are shown in Table B.1 and B.2:

Data collected electronically

Sensor Dimensions Format Value Range Description
JAI AD-GE130 3D 964 x 1296 x 3 0 - 255 RGB Image

2D 966 x 1296 0 - 255 IR Image
Pi Camera 3D 480 x 640 x 3 0 - 255 RGB Image
Pi NoIR Camera 3D 480 x 640 x 3 0 - 255 RGB image with no IR filter
FLIR Lepton 2D 60 x 80 FLIR image
LiDAR point float Distance (cm)

Table B.1
Data sensed electronically for each sample
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Manually collected data
Description Granularity Format
Date Per visit Date
Time Per sample Time
Canopy height Per sample Float (cm)
Platform to canopy height Per sample Float (cm)
Platform to ground height Per sample Float (cm)
GPS location Per sample NMEA
Wind speed Per sample
Wind Direction Per sample
Temperature Per sample
Humidity Per sample
Rain rate Per sample
Luminosity Per sample

Table B.2
Data measured manually for each sample

B.1 Task 1: Testing cameras

Before testing for NIR, RGB cameras were considered. There was some

concern around taking images while in motion; whilst some cameras - and

wavelengths will cope with this adequately, others could cause blurring. As

the camera is intended to be mounted on a moving Tanco mower, they need to

be able to take clear images at mowing speed. Tanco engineers ran preliminary

tests, mounting a GoPro inside the hood of the mower and taking a video at the

expected maximum speed of around 20km/h. The video shows good footage,

with no interference from debris. This was a very useful experiment, but it

was hoped that less expensive cameras than GoPros can be used.

Following advice from the author on data required, Dr. Damon Berry

assisted in designing a platform to collect data, initially configuring Raspberry

Pi cameras and ELP cameras to ensure that images could be captured and
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stored through a Virtual Linux environment set up by Dr. Jackman, as shown

in Figure B.2 (6th June 2018).

Two Erasmus Plus students - Charles Silvestre and Adrien Coiffier - evalu-

ated different types of low-cost cameras and developed software to allow im-

ages to be taken, triggered by a request from a laptop to Raspberry Pis, one of

which had an RGB camera and the other an NoIR camera. The students evalu-

ated the cameras’ performances at different shutter speeds, luminosity and mo-

tion speeds. They also evaluated some candidate filters for the NoIR camera to

filter out RGB light. The proposed version was an unexposed photo film negat-

ive.

Figure B.2
Testing image capture from ELPs and Pi
cameras through Raspberry Pi and virtual

Linux box.

Firstly, Pi Cameras and ELP cam-

eras were compared. They planned

an experimental strategy and de-

veloped a naming convention for

the images, including the GPS loca-

tion, time and date, exposure, shutter

speed, motion speed, camera number

and added an image reference as an

offset. The first in-field experiment

involved a single camera (both ELP and Pi cameras were tested), mounted on

a bicycle and took place in Grangegorman campus on 26th June 2018. The

experiment took ten images for each configuration. Changes in configuration
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were bike speed (0, 5km/h, 10km/h, 15km/h and 20km/h). At each bike speed,

the shutter speed was altered, taking images at 0µs, 100µs and 200µs. The

ELP cameras were eliminated from the experiment as they could not handle

the exposure in daylight. Resulting images from the Pi camera at 200µs were

of reasonable quality for 0 and 5km/h, but from 10km/h upwards, blurring

occurred. There is some debate as to whether this was from motion blurring

or a different reason. Additionally there was a stark similarity to the images

in the R, G and B channels, as shown in Figure B.3. To test for NIR, a Pi

NoIR camera was used, with a filter of a photograph negative strip as shown

in Figure B.4. The project also has access to a JAI multi-spectral camera.

This camera was used in the feasibility study and it is intended to use it as

a calibration tool for the new configuration. The second test that was done

took place in St. Kevin’s Park, beside the Kevin Street DIT campus. Test

images for the same patch of ground were taken with the JAI AD-130GE

multispectral camera. The same patch was scanned with the Pi camera and

also a Pi NoIR camera with a filter of a photograph negative strip to filter out

non NIR channels, as shown in Figure B.4.

B.2 Incorporating other sensors

In addition to RGB and NIR data, it was necessary to collect thermal data, both

ambient and at canopy level. A Sparkfun Forward Looking Infrared Radar

(FLIR) Lepton was acquired and attached and programmed to read data onto
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Figure B.3
Sample stationary image from Pi camera at shutter speed 200 µs, showing a full colour

image, the red channel, green channel and blue channel.

one of the Raspberry Pi modules, with the purpose of reading canopy data. Dr.

Berry subsequently added a LiDAR, programming it to work with a Raspberry

Pi. Dr. Hector Franco integrated all programs, so that an instruction from

the laptop will trigger all sensors to take a reading / image. There is another

program to retrieve the readings from the various Pi’s, back to the laptop.
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Figure B.4
Filtering out unwanted channels from Pi NoIR camera using a negative

Figure B.5
Development stage of pilot platform, showing two Raspberry Pis with RGB and NoIR

camera peripherals, mounted on a piece of wallboard, beside the JAI camera.

B.3 Building the pilot trolley

In addition to identifying sensors, a mechanism for housing the sensor net-

work was required. The author bought a sheet of wallboard and marked out

areas for each sensor, taking into account that each would need to point to-

wards the ground and be positioned in such a way that the cables would be

able to connect them to the pi or laptop and that all sensors could operate sim-

ultaneously or in quick series. An image of the platform is shown in Figure

B.5. Having networked the cameras to the laptop, experiments took place to

ensure that images were properly recorded, as shown in Figure B.6.
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Figure B.6
The network configuration and platform viability were tested.

Figure B.7
Underside of platform showing Pi RGB camera, filtered NoIR camera and JAI camera (with

lens cap on) pointing outwards.

It was determined that a perforated metal plate would be more suitable for

working in the open air. The top of a music sheet stand was repurposed as a

sensor sheet to hold the sensors on the pilot trolley as shown in Figure B.7.

At the request of and in consultation with the author, Mark Deegan built a

trolley for the pilot collection using some new and some recycled materials

as shown in Figure B.8. The trolley has four quick release mountain bike

wheels and a frame with two shelves. The removable boom, with a sensor
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Figure B.9
Pilot trolley, equipped with sensor platform (on top of boom), laptop, batteries and router on

top of trolley and storage and note-taking equipment in base of trolley.

plate is designed to be adjustable height. The minimum height is 160cm from

the ground, when the trolley is fully assembled. This height can be extended

upwards. Finbarr O’Meara assisted with some amendments.

Figure B.8
Pilot trolley, prior to installation of
platform, in the DIT Bolton Street

campus.

The laptop, batteries and router were held

on the top of the trolley, while the base was

reserved for bags, notebooks, a cooler box

to hold the grass, clippers, gauntlet and first

aid box. The trolley is pictured on the DIT

Kevin Street campus in Figure B.9.

The author specified the programming

and sensor requirements and specified the list

of steps to take a set of sensor readings, eval-
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uated test images and did some troubleshoot-

ing. The sensors involved are:

1. A JAI AD-130GE multi-spectral camera with 2 CCDs, one for taking

RGB images and the other for taking infrared images.

2. A Pi camera (RGB) attached to a Pi to take images of the grass.

3. A Pi NoIR camera attached to a Pi to take NIR images.

4. A LiDAR attached to the same Pi as the NoIR camera, to measure canopy

height above ground.

5. A FLIR device, attached to a Pi, to measure grass canopy temperature.

Sensors 1 to 4 are mounted on a boom at a height of approximately 160cm

from the ground. The fifth sensor, the FLIR device is at the same height as

the top shelf; approximately 1m from the ground. In addition to these meas-

urements, a Vantage WeatherStation was used. This option has not been fully

developed, but it is currently able to give humidity and ambient temperature.

The area is defined by a 2D quadrat that is placed in the selected area. A

colour swatch is placed near the quadrat to calibrate colour as shown in Figure

B.10.

Additional equipment: A laptop, a switch, a router, 7 x Ethernet cables, 4

x 5V charged power banks, 2 x Power Gorilla power banks.

Dr. Jackman organized and specified initial ground truth acquisition – i.e.

sampling and analysing patches of grass. Equipment:
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Figure B.10
50cm2 Quadrat with 25 sub-divisions and 24-colour swatch, or ColourChecker

• a quadrat to outline the parts of the grass that were imaged and would be

analysed.

• Sealable bags, markers and clippers.

• Chainmail gauntlet.

• First Aid box.

• A meter rule.

B.3.1 Cameras

The JAI AD-130GE multi-spectral camera proved to be reliable and was used

throughout the collections. However, the low-spec alternatives went through

several phases of evolution. Initially, Pi cameras were used for RGB, but the

images from them were not of a high quality. The alternative camera chosen

for this project is an e-con RGB camera.

The Raspberry Pi camera and NoIR camera were both module-2 type
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cameras from Raspberry Pi, which are Sony IMX 219 PQ CMOS image

sensors in a fixed-focus module. Whilst the resolution is 8-megapixel, with a

possible still picture resolution 3280 x 2464, resolution in this case was set

to 640 x 480 pixels. Full details and datasheet are available (Raspberry Pi,

2021).

The e-con camera used was a e-CAM51B_USB, which is a 5 MP HD auto

focus camera, USB 2.0 colour. This camera has a maximum image resolution

of 2592 x 1944 pixels, but was set to 640 x 480 for this work (e-con Systems,

2021).

Developments in camera technology have enabled other cameras to come

to market that may be even better. Low cost embedded vision cameras that

are available for purchase at the time of writing include offerings from Qual-

comm, NVIDIA Jetson, Raspberry Pi 4, NXP, Rockchip, Google coral Cam-

era, Xilinx, AVerMedia, Diamond Systems and Connect Tech RGB cameras

(e-consystems, 2022).

B.3.2 Trolley and Network

After the pilot collections had taken place, there was time to evaluate the per-

formance of aspects of the process that could be improved. Many of the snags

noted by the author are listed in Appendix A. The trolley was replaced in full,

by a new trolley, built by engineers in Tanco, to the specifications provided by

the academic team. To assist in specifying requirements, the author tried sev-

eral designs.
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(a) Measuring the lens tube
(b) Roughly printed cover for

camera (front)
(c) Roughly printed cover for

camera (back)

Figure B.12
Assessing the possibility of using a 3D printer to house camera, dielectric filter and lens

tubes

Figure B.11
Assembling the new

network

Further Raspberry Pis, cameras and sensors were

added to the platform. An Atlas Scientific PT-1000

thermocouple replaced the FLIR device, operating

from the trolley top, connected to the laptop. A u-

blox GPS receiver was also connected to the laptop

to record location.

When designing the new platform, each of the

sensors needed to be free to sense the target area

without the risk of moving as the trolley is moved

from one location to another, assembled and disas-

sembled. Also, each camera required a dedicated Raspberry Pi, so there were

twelve Raspberry Pis. The author built an ad-hoc network with Raspberry

Pis connected to the router and laptop, to see how it could work as shown

in Figure B.11. For simulating narrowband and NIR images, each camera

needed to be fitted with a dielectric filter. To establish feasibility of using 3D

printing to hold the camera and filter in place, the author experimented with a

cheap home 3D printer as shown in Figures B.12, B.12a, B.12b and B.12c.
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Figure B.13
Fledgling primary phase network, showing [1] laptop, [2] cabling for JAI camera, [3] Ocean
Optics Flame Hyperspectral sensor, [4] FLIR sensor, [5] Raspberry Pi, [6] JAI Camera and

[7] LiDAR sensor.

Figure B.14
Networking Pis and cameras. [1] Cables connecting Pis to router, [2] Part of bank of

Raspberry Pis, [3] JAI camera, [4] lens tubes, [5] Pi camera in protype 3D printed casing, [6]
Remainder of bank of Raspberry Pis, [7] Wiring for FLIR

Further sensors were added to the network as shown in Figure B.13. Figure

B.14 shows an early layout of the upper platform on wallboard.

Following lengthy consultation, the network was fitted to the new trolley

made by Tanco. Figure B.15 shows the bank of Pis and securing plates. The

platform is shown with a base plate with holes engineered to allow the lenses

and lens tubes to point towards the ground. The camera moldings and bank
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Figure B.15
Pi bank and securing plates in Tanco workshop, prior to fitting.

of pis are visible in Figure B.16. The underside of the base plate is shown in

Figure B.17. The base plate is shown as it would be positioned on the final

platform, in Figure B.18. The platform, just prior to being enclosed, is shown

in Figure B.19.

B.3.3 Hyperspectral sensor

Due to logistical problems, no hyperspectral sensor was available during the

pilot collection. The author undertook a lengthy process of contacting suppli-

ers regarding functionality, price of hyperspectral sensors and the ability to

buy one for use in Ireland. The Crop Circle range of sensors was not available

for purchase and shipment to Ireland. The GreenSeeker was excluded on the

basis of operating range (max 48 inches) and limited range of bands. The ASD

FieldSpec Handheld 2 Standard (325-1075nm) fitted specifications. However,
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Figure B.16
Platform base plate [1] during fitting, with bank of Pis [2]

Dr. Jackman sourced the Ocean Optics FLAME-S-VIS-NIR spectrometer in-

corporates two Microspectrometers - the STS-VIS-L-100-400-SMA senses in

the range 350 - 800nm with 100µ, and the STS-NIR-L-100-400-SMA senses

in the range 600-1100nm.

This sensor was used throughout the primary collection.
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Figure B.17
Underside of platform base plate, showing [1] the base plate, [2] lens tubes fixed in place,

[3] JAI camera and [4] Lidar sensor fitted.
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Figure B.18
Base plate of platform, held perpendicular to the ground, showing [1] underside with sensors
pointing groundward, [2] the plate and [3] the top side of the plate, with fitted sensors and Pi

bank.

Figure B.19
Fitted platform, with [1] Pi bank, [2] JAI camera and [3] secured Pi cameras.

B.3.4 Weighing scales

Initially, a high precision, bench-mounted KERN scales was used, accurate

to .0001g. However, this could not accommodate the amount of grass that

was required. Several further scales were tested, including a Camry domestic

scales, a Triton scales and a higher capacity Kern scales was set up and
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Figure B.20
The top of the trolley base, showing [1] batteries, [2] switch, [3] router and [4] laptop. The

red trailing thermocouple is used to sense the canopy temperature.

Figure B.21
Finished trolley base, with quick release wheels [1], packed with [2] cool box for storing

grass, first aid kit, bags and notebooks. The [3] leveling plate and quadrat are leaning against
the trolley.
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Figure B.22
The completed trolley, posed for sensing. [1] Platform is raised on a boom, at an angle to the
trolley, [2] a leveling plate and colour checker swatch is on the ground. The sensing system

is operated through the laptop [3].

Figure B.23
Primary collection in operation. [1] The protocol, on a clipboard, [2] long ryegrass, [3]
flip-out plate for colour checker, and [4] meter stick for manual height measurement.

calibrated in a fixed position in the jeep, at the start of every collection, to

weigh fresh biomass. Following experimentation (see Section A.6.1) the

decision was agreed that to calculate biomass, the full 50cm_2 quadrat would

be harvested and weighed.
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B.3.5 Ovens

Initially, for the pilot collections, a Memmert drying oven was used. However,

this did not have capacity for the number of samples required, so two Mmmert

HPP260 ovens were used. To test them for equivalence, the author prepared

twenty sub-samples and split each in two by weight. The sub-samples were

put in separate ovens at 60 °C for 24 hours and then weighed. Equivalence

testing was done on the result, showing that each oven dried equivalently.

This allowed for 32 samples to be dried in each oven. The drying protocol

specified that four pre-weighed foil trays were loaded with between 18 and

24g from each sample, labelled with the sample number, suffixed with a, b,

c or d. The labelled samples were put in separate ovens. After drying, the

dryness value was calculated based on the average percent of dry matter in

each tray from the sample. After an incident where the ovens malfunctioned,

the protocol was amended to advise the operator not to discard any trays until

the dryness had been calculated.
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Appendix C

Details of Dryness Analysis

This Appendix holds tables giving details of dryness analysis for the models

IncResNet I (Table C.1), IncResNet NIR (Table C.2), IncResNet I L (Table

C.3), IncResNet I T (Table C.4), MobileNet I (Table C.5), MobileNet I L

(Table C.6), Hybrid NIR I L (Table C.7) and IncResNet NIR L (Table C.8).

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.65% 11.48%
0.89% 13.72%
0.75% 10.27%
0.96% 10.21%
0.75% 10.91%
0.80% 11.32%
0.12% 1.44%

Table C.1
Minimum MAPE, pre-trained IncResNet using (240,240,3) data (IncResNet I)
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

2.18% 12.84%
2.11% 13.48%
2.49% 10.86%
1.86% 10.82%
1.96% 12.36%
2.12% 12.07%
0.24% 1.19%

Table C.2
Minimum MAPE, IncResNet using (240,240,4) data (IncResNet NIR)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.85% 11.79%
0.86% 12.28%
0.85% 10.09%
0.85% 10.31%
0.82% 10.31%
0.85% 10.96%
0.01% 1.00%

Table C.3
Minimum MAPE, pre-trained IncResNet using (240,240,3) data with LiDAR (IncResNet I

L)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.68% 12.48%
0.71% 13.23%
0.72% 9.70%
0.87% 10.27%
0.81% 11.42%
0.76% 11.42%
0.08% 1.47%

Table C.4
Minimum MAPE, pre-trained IncResNet using (240,240,3) data with Temperature

differential (IncResNet I T)
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.71% 12.00%
0.74% 13.70%
0.78% 10.65%
0.74% 10.97%
0.75% 10.91%
0.74% 11.75%
0.02% 1.20%

Table C.5
Minimum MAPE, pre-trained MobileNet using (240,240,3) data (MobileNet I)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.71% 12.35%
0.74% 13.31%
0.72% 10.65%
0.82% 11.27%
0.75% 11.85%
0.74% 11.88%
0.04% 1.03%

Table C.6
Minimum MAPE, pre-trained MobileNet using (240,240,3) data with LiDAR (MobileNet I

L)

Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

0.74% 11.51%
0.64% 12.89%
1.54% 10.74%
0.90% 10.95%
0.83% 11.04%
0.93% 11.43%
0.35% 0.87%

Table C.7
Minimum MAPE, pre-trained IncResNet model using (240,240,3), ResNet50 using NIR and

LiDAR (Hybrid NIR I L)
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Fold

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Average
St Dev

Dryness

Training Validation

1.90% 12.51%
1.78% 13.21%
2.54% 10.72%
2.14% 10.74%
2.16% 11.93%
2.10% 11.82%
0.29% 1.10%

Table C.8
Minimum MAPE, IncResNet using (240,240,4) data with LiDAR (IncResNet NIR L)
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Appendix D

Publications from this thesis

During the development of the thesis, a number of papers were published.

The abstracts from these papers are given here.

D.1 Multi-spectral visual crop assessment under limited

data constraints

This paper was written by the author and presented at the Irish Machine

Vision and Image Processing Conference, 2019 and is based on analysis of

data collected during the pilot collection.

Abstract

In an era of climate change and global population growth, deep learning based

multi-spectral imaging has the potential to significantly assist in production

management across a wide range of agricultural and food production domains.

A key challenge however in applying state-of-the-art methods is that they, un-

like classical hand crafted methods, are usually thought of as being only useful
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when significant amounts of data are available. In this paper we investigate

this hypothesis by examining the performance of state-of-the-art deep learning

methods when applied to a restricted data set that is not easily bootstrapped

through pre-trained image processing networks. We demonstrate that signific-

ant result improvement can be obtained from deep residual networks over a

baseline image processing model – even in the case where data collection is

highly expensive and pre-trained networks cannot be easily built upon. Our

work also constitutes a useful contribution to understanding the benefit of

applying deep image multi-spectral processing techniques to the agri-food

domain (O’Byrne et al., 2019).

D.2 Transfer Learning Performance for Remote Pasture-

land Trait Estimation in Real-time Farm Monitoring

This paper was written and presented by the author at the International Geoscience

and Remote Sensing Symposium 2021, where the author also chaired a ses-

sion. This paper is based on analysis of data collected in the primary collec-

tion.

Abstract

In precision agriculture, having knowledge of pastureland forage biomass and

moisture content prior to an ensiling process enables pastoralists to enhance

silage production. While traditional trait measurement estimation methods

relied on hand-crafted vegetation indices, manual measurements, or even de-
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structive methods, remote sensing technology coupled with state-of-the-art

deep learning algorithms can enable estimation using a broader spectrum of

data, but generally require large volumes of labelled data, which is lacking

in this domain. This work investigates the performance of a range of deep

learning algorithms on a small dataset for biomass and moisture estimation

that was collected with a compact remote sensing system designed to work

in real time. Our results showed that applying transfer learning to Inception

ResNet improved minimum mean average percentage error from 45.58% on

a basic CNN, to 28.07% on biomass, and from 29.33% to 8.03% on moisture

content. From scratch models and models optimized for mobile remote sens-

ing applications (MobileNet) failed to produce the same level of improvement

(O’Byrne et al., 2021a).

D.3 Just-in-time Biomass Yield Estimation with Multi-Modal

Data and Variable Patch Training Size

This paper was written and presented by the author at the 17th Artificial

Intelligence Applications and Innovations Conference - AIAI 2021.

Abstract

The just-in-time estimation of farmland traits such as biomass yield can aid

considerably in the optimisation of agricultural processes. Data in domains

such as precision farming is however notoriously expensive to collect and deep

learning driven modelling approaches need to maximise performance but also
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acknowledge this reality. In this paper we present a study in which a platform

was deployed to collect data from a heterogeneous collection of sensor types

including visual, NIR, and LiDAR sources to estimate key pastureland traits.

In addition to introducing the study itself we address two key research ques-

tions. The first of these was the trade off of multi-modal modelling against a

more basic image driven methodology, while the second was the investigation

of patch size variability in the image processing backbone. This second ques-

tion relates to the fact that individual images of vegetation and in particular

grassland are texturally rich, but can be uniform, enabling subdivision into

patches. However, there may be a trade-off between patch-size and number of

patches generated. Our modelling used a number of CNN architectural vari-

ations built on top of Inception Resnet V2, MobileNet, and shallower custom

networks. Using minimum Mean Absolute Percentage Error (MAPE) on the

validation set as our metric, we demonstrate strongest performance of 28.23%

MAPE on a hybrid model. A deeper dive into our analysis demonstrated that

working with fewer but larger patches of data performs as well or better for

true deep models – hence requiring the consumption of less resources during

training (O’Byrne et al., 2021d).
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D.4 Enhanced Image Processing Methods for Grassland

Traits Analysis in Precision Farming

This was presented by the author at the Thirteenth International Conference

on Digital Image Processing and received an award for best presentation.

Abstract

Image processing is a keystone technology within the rapidly growing do-

main of precision agriculture. While inexpensive sensor technology can be

deployed for monitoring tasks, the largest challenges faced centre on the costs

of labelled data collection. Bootstrapping with transfer learning is however

non-trivial since image analysis within an agricultural setting will often not

be limited to RGB data, but will instead be multi-spectral, or make use of

hybrid sensor platforms to provide information on depth, temperature, etc.

In our work we investigate the realities of neural network creation and per-

formance for real-world precision farming – particularly for the domain of

just-in-time grassland analysis for metrics such as biomass yield, i.e., the es-

timated weight of the crop that is to be cut, and moisture content. In this talk

we provide a brief overview of our data collection processand sensor platform,

but will focus on our investigation of the application of Transfer Learning

methods considering factors such as network architecture, and our ability to

take advantage of the positional invariance of observations to increase the

number of samples available. Using the dataset collected, a selection of es-
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timation models were built on our RGB images using shallow convolutional

neural networks and MobileNet, experimenting with the inclusion of pasture

height and pre-trained weights from ImageNet. The visual dataset was aug-

mented by generating sub-patches of the images in two ways, once using

156x156 pixel images and then using 240x240 pixel images. Performance

is presented using Minimum Mean Average Precision Error (MAPE) due to

its usefulness in comparing the relative performance for multiple real-valued

targets at different scales. Results ranged from 62.4% MAPE on biomass

yield estimation when feeding 240x240 pixel images into the shallow CNN

(MAPE 62.84), to 30.2% when feeding 240x240 pixel images and pasture

height into MobileNet using ImageNet pre-trained weights. Analysis showed

that performance significantly improved through the application of pre-trained

weights despite the very low levels of labelled training data available, and that

the application of scalar sensor information provided a significant improve-

ment over image-only based analysis. On the question of patch size, results

were more inconclusive. While larger patches did demonstrate improvements

with respect to pre-trained models, a reduction in performance was seen in

models trained from scratch. We hypothesise that this variance may be due to

the reduction of training samples when using larger patches (O’Byrne et al.,

2021c).
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D.5 Predicting Key Grassland Characteristics from Hyper-

spectral Data

This paper was written by a colleague from the Greeneyes team, using the

hyperspectral data collected in the primary collection.

abstract

A series of experiments took place to measure and quantify the yield, dry

matter content, sugars content and nitrates content of grass intended for en-

silement. These experiments took place in the East Midlands of Ireland during

the Spring, Summer and Autumn of 2019. A bespoke sensor rig was construc-

ted; included in this rig was a hyperspectral radiometer that measured a broad

spectrum of reflected natural light from a circular spot approximately 1.2

metres in area. Grass inside a 50cm square quadrat was manually collec-

ted from the centre of the circular spot for ground truth estimation of the

grass qualities. Up to 25 spots were recorded and sampled each day. The

radiometer readings for each spot were automatically recorded onto a laptop

that controlled the sensor rig, and ground truth measurements were either

made on site or within 24 hours in a wet chemistry laboratory.

The collected data was used to build Partial Least Squares Regression

(PLSR) predictive models of grass qualities from the hyperspectral dataset

and it was found that substantial relationships exist between the spectral re-

flectance from the grass and yield (r2 = 0.62), dry matter % (r2 = 0.54), sugar

content (r2 = 0.54) and nitrates (r2 = 0.50). This shows that hyperspectral
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reflectance data contains substantial information about key grass qualities and

can form part of a broader holistic data driven approach to provide accurate

and rapid predictions to farmers, agronomists and agricultural contractors

(Jackman et al., 2021).

D.6 Forage traits and their estimation in silage quality op-

timisation - a review

In a previous format, the paper was also submitted to Transactions of the

ASABE, Applied Engineering in Agriculture, but was declined with feedback

relating to the novelty of the content. Content was updated prior to submission

to the Journal of Agricultural Engineering. In its current format, this paper

was submitted to the Journal of Agricultural Engineering at the start of 2020.

On being requested for feedback, the journal replied that they couldn’t find

reviewers. On checking their website in Feb 2022, it has not been accepted

for publishing, but no feedback has been forthcoming. Steps are being taken

to archive this work and prepare if for submission to a different journal.

Abstract

In this paper we provide a review of a number of traits that impact on silage

quality, and the state-of-the-art in proximal pastureland trait estimation meth-

ods that can be used to assess them. The review focuses on biomass, moisture

content and nitrogen content, and begins by providing an orientation for the

reader with respect to interaction between vegetation and the electromagnetic
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spectrum. The review of estimation methods focuses on those suitable for use

on-site rather than in lab-settings, and covers methods ranging from manual

through to the most recent advances centred on Deep Learning based image

analysis. With respect to those methods that are sensor driven, we review

sensor types and their properties. Future trends are discussed with reference

to advances in domains beyond pastureland traits themselves.
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Appendix E

Tuning and Optimising

This appendix details methods to optimise the choice of hyperparameters

during machine learning, and reviews optimisers that can be used, building

from Gradient Descent to the more recently introduced Adam optimiser.

E.1 Hyperparameter Optimisation

The term ‘hyperparameter’ refers to parameters of a learning algorithm that

are set before training begins. One example is the setting of the k value

in k-nearest neighbours. Hyperparameters include initialisers and optimisers.

Although these hyperparameters differ depending on the algorithm being used,

appropriate values must be selected for them to run the algorithm. These

hyperparameters can be chosen manually, using either the personal experience

or recommendations from other research, however, there are a number of ways

in which this choice can be automated, including Grid Search, Random Search

or by using a Genetic Algorithm (Liashchynskyi and Liashchynskyi, 2019) or
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Bayesian Optimisation (Dewancker et al., 2016). Grid Search creates a search

space which is a grid of discrete values for each hyperparameter, across the

range of possible values for that hyperparameter and runs a k-fold cross-

validated model using each combination, ascertaining which combination is

the best. Whilst this can be effective, as the number of parameters and the

number of folds grow, its cost can be prohibitive. Rather than searching all

combinations from the grid, random search searches random points from the

grid and is often more effective (Bergstra and Bengio, 2012).

A further method of choosing hyperparameters is to use genetic algorithms.

The concept of genetic algorithms is based on the biological reproduction pro-

cess, where chromosomes are selected, converged and mutated to generate

new individuals. In the case of hyperparameter selection, each individual is

a set of values for each hyperparameter. The algorithm goes through gen-

erations. In each generation, a k-fold cross-validated model is run, using

the hyperparameters for each individual, measuring the individuals’ fitness.

Choosing fit individuals, with possible mutation, genes are modified to pro-

duce a new generation of individuals. The process continues until either a

maximum number of generations has been reached, or an optimal individual

has been produced (Alam et al., 2020). This process has been applied to

hyperparameter optimisation with some success (Aszemi and Dominic, 2019;

Liashchynskyi and Liashchynskyi, 2019). However, even using genetic al-

gorithms, this process is extremely resource intensive.

Bayesian optimisation is another alternative (Dewancker et al., 2016),
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which again requires that the model is run for every proposed set of values.

Bayesian optimisation keeps track of past evaluation results and uses them

to form a probabilistic model mapping hyperparameters to a probability of a

score on the objective function.

As the purpose of machine learning is to optimise prediction, the choice

of optimiser is significant. An optimiser is an algorithm that is dependent on

the model’s learnable parameters (e.g. weights).

E.2 Optimisers

Optimisers are used to incrementally reduce the training error during the

machine learning process. This is done by adjusting weights of parameters

that contribute to prediction. There are several possible ways this can be done.

Firstly, the loss function J measures the difference between a single predicted

value (ŷ) and the actual value (y): The error or loss function J is defined as

follows:

J = 1
2(y − ŷ)2. (E.1)

The cost function is the average of the loss functions for the entire training

set. Collectively, the weights can be denoted by w and the cost function by

J(w). At its simplest, the cost function can be visualised as a parabola, with

the cost on the y-axis and the weights on the x-axis. The aim of optimisation

is to find the value of the weights that minimizes the cost function, as shown

in Figure E.1. A gradient is a partial derivative with respect to its inputs - a
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Figure E.1
Gradient Descent Slope. Change in cost function J(w) w.r.t. weights (w), showing initial

weight, gradient and global cost minimum Jmin(w). source: Choudhary (2020)

Figure E.2
Batch Gradient Descent, depending on whether the learning rate is small (left), correct, aka

right (middle) or big (right). Source: LaptrinhX (2021)

change in weights with regard to the change in error.

Optimisers are used to reduce this cost. The optimisers listed here are

Gradient descent, mini batch gradient descent, stochastic gradient descent,

momentum gradient descent, RMSprop gradient descent and Adam optimiser.
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Figure E.3
The path to the minimum cost is more direct using Batch Gradient Descent, compared with

Mini-Batch Gradient Descent. Source: LaptrinhX (2021)

E.2.1 Gradient descent

The gradient descent algorithm updates weights to obtain the minimum cost

algorithm. Weights are adjusted after each pass, depending on the learning

rate. The length of the path depends on the learning rate, as shown in Figure

E.2.

This optimiser loads in the whole dataset (X) each time, making it very

slow. If the dataset is very large, or the feature set is very large, then the

algorithm will run out of memory.

E.2.2 Mini batch gradient descent

One solution to this problem is to divide X into mini-batches. Say X has

100,000 entries, each mini batch could be 1,000, so there would be 100 mini

batches. Each mini batch goes through the algorithm in turn, retaining the
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weight correction from the previous batches. However, the mini batch can

only make amendments based on the current batch, so although each batch

will make incremental steps towards a local minimum, a new batch gets the

starting position, but must establish its own direction of descent. This results

in the gradient descent following a zigzag path to the local minimum, rather

than a direct path, as shown in Figure E.3.

E.2.3 Stochastic Gradient Descent

If the dataset is very large, even mini batch gradient descent can be very

slow and cumbersome to run. In this case, Stochastic Gradient Descent -

mini batch gradient descent where a random data point is taken to represent

each batch (SGD) - can be used. The stochastic, or random aspect is that a

single data point is randomly chosen from each batch. Stochastic Gradient

Descent replaces the gradient with a stochastic approximation to the gradient.

Again, each new batch’s data point starts with the updated weights from

the previous batches. Whilst this is a lot quicker than Batch or Mini-Batch

Gradient Descent, because the gradient is replaced with an approximation,

the gradient direction can be lost and approach to the minimum cost can be

slower. As the mini batches are processed, the time taken to run the model

reduces. Where the number of instances is less than 2,000, batch gradient

descent is preferred - i.e. the whole dataset is used as a single batch. As

depicted in Figure E.2, gradient descent for a single parameter is a parabola.

For two parameters, it is a 3D space. This is projected onto a 2D contour as
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Figure E.4
Stochastic Gradient Descent, compared with Batch and mini-batch Gradient Descent.

Source: LaptrinhX (2021)

shown in Figure E.4.

E.2.4 Momentum Gradient Descent

Momentum gradient descent is an optimisation technique that improves the

performance of a model in deep learning. Observing Figure E.5, stochastic

gradient descent can move in the vertical direction instead of going in the

horizontal direction towards the minimum, thereby taking longer to get to a

minimum. To overcome this problem, Momentum Gradient Descent activates

smoothing, using an exponentially weighted moving average. An exponen-

tially weighted moving average calculates the average at each point, but adds

a term for previously visited points, giving the current and recently visited
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Figure E.5
Stochastic Gradient Descent, with and without momentum. Source: Du (2019)

points a higher weighting than the points visited in the distant past.

E.2.5 Adagrad

Whilst Momentum Gradient Descent updates all components using the same

learning rate, the Adaptive subgradient method has different learning rates for

each component. Parameters associated with frequently occurring features

are assigned a lower learning rate, and less frequently occurring features are

assigned a higher learning rates. This makes it suitable for dealing with sparse

data. (Duchi et al., 2011).

E.2.6 RMSprop Gradient Descent

Root Mean Square Propagation changes the formula yet again. RMSprop

stands for Root Mean Squared Propagation. As with Adagrad, it speeds up

Gradient Descent by slowing learning in the vertical direction and speeding it

up in the horizontal direction, but RMSprop applies the exponential moving

average of the squares of the derivatives (Figure E.6).
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Figure E.6
RMSprop speeds up learning in the direction of the minimum Source: LaptrinhX (2021)

Figure E.7
Comparison of optimiser performance when training multilayer neural networks on MNIST

images, using dropout stochastic regularisation. Source: Kingma and Ba (2017)
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E.2.7 Adam optimisation

The Adaptive Moment optimizer takes advantage of the improvements made

in the Momentum Gradient Descent algorithm and RMSprop, by both adapt-

ing the learning rate independently for each feature and also retaining learned

weights from previous passes. This results in an optimizer that is computation-

ally efficient and straightforward to implement (Kingma and Ba, 2017). The

Adam optimizer works better than either Momentum or RMSprop as illus-

trated by (Kingma and Ba, 2017), reproduced in Figure E.7 and recommends

a default training rate of 0.001.

E.2.8 Conclusion

For the training of neural networks and in particular Deep Neural Networks,

gradient descent based optimisers are almost exclusively used due to their

compatibility with the backward propagation algorithm for weight updates

(Goodfellow et al., 2016). Within the class of gradient descent based optim-

isers, there are several extensions of note beyond the classical gradient descent

optimiser. These include the use of adaptive gradients (Duchi et al., 2011),

momentum (Qian, 1999) and also the use of small stochastic batches rather

than using the complete training set per epoch (Robbins and Monro, 1951).

While each of these are considered to have improved overall performance –

and in some cases also training time to convergence, these solutions need not

be used in isolation. The Adam optimiser makes advantage of each of these
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improvements over basic gradient descent and captures them within a single

optimisation process. The Adam optimiser is widely recognized as being an

effective optimiser that is commonly applied in neural networks and deep

learning training and has demonstrated strong performance across a range of

different data types including time series and image datasets (Kingma and Ba,

2017).
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Appendix F

Hyperspectral Model Parameters

This appendix shows the model layers used in the three machine learning mod-

els that were attempted for estimating biomass and dryness from hyperspectral

data. The models are a fully connected artificial neural network (Figure F.1),

a 1D convolutional neural network (Figure F.2) and the LSTM model (Figure

F.3)

Figure F.1
Artificial Neural Network layers for use with hyperspectral samples.
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Figure F.2
Layers in the 1D CNN model

Figure F.3
Layers in the LSTM model
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Glossary

abomasum Ruminant’s fourth stomach - similar to a non-ruminant stomach,

this digests the food. 23

ACS-210 Active narrowband sensor sensing emission from 590nm and 880nm.

83

ACS-430 Narrowband sensor sensing emission from 670nm, 730nm and

780nm, using pseudo-solar reflectance. 83

active sensor A sensor equipped with an energy source - transmits the same

wavelength as it is trying to sense. 76

additive concentrates Additives to ruminant feeds, to improve nutrient bal-

ance. 3

ADF Acid Detergent Fibre. 25

anaerobic fermentation A metabolic process that converse carbohydrates

(sugar) to organic acids, gases or alcohols, in the absence of air. 27

ANFIS Adaptive Network-based Fuzzy Inference System. 107

ANN Artificial Neural Network. 107
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augment To increase the amount of data by adding modified copies of already

existing data. iii

BDR Bi-Directional Radiometer. 82

biomass Weight of material or dry matter collected, per hectare (Kg/Ha). 4

boom In this context, a boom is a shaft used to raise the sensor tray above

the trolley, to a height of approx 1.5m from the ground. 140

booting Stage at which the seedhead is contained within the leaf sheath of

the flag leaf. 89

brixometer Measures the Brix (Bx) measurement of a liquid. 16

broadband Broadband data refers to a collection of reflectance readings,

where one piece of data represents a single reading from a broad band

(e.g. 100nm) of wavelengths. 15

broadband VIs Vegetation indices that use broadband reflectance data. 48

CCCI Canopy Chlorophyll Content Index. 67

CFU Cattle Feed Units. 24

cfu Colony forming units. 26

chemometric Statistically oriented techniques specifically used in analysis

of chemical data. 96, 102
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chlorophyll Green pigment in plants that absorb blue and red light for use in

photosynthesis. 27

Chromaticity An objective specification of the quality of a colour, regardless

of its intensity. 112

CI Chlorophyll Index. 83

CNN Convolutional Neural Network. 117

CP Crude Protein. 26

crop canopy The surface area at the top of a crop. 4

cross validation A resampling procedure used to evaluate machine learning

models on a limited data sample. iii

CTVI Corrected Transformed Vegetation Index. 54

data fusion Combining diverse sources of data to inform learning. iii

deep learning Learning structures that build complex concepts from a hier-

archy of simple concepts, enabling them to learn representations of data

with multiple levels of abstraction. i, 115

dielectric-coated filter These bandpass filters allow the transmission of a

well-defined wavelength band of light, while rejecting other unwanted

radiation. The central wavelength and bandwidth is set by the number

and thickness of layers. 131
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diploids In this context, grasses with four sets of chromosomes per cell. 28

Distance-Based VIs Vegetation Indices that depend on distance from the soil

line. 50

DM Dry matter - weight of matter that is available after drying in kilos per

hectare. 24

DMD Dry matter digestibility. 25

DVI Difference Vegetation Index. 57

ensiling The process of making silage from dry matter. 22

epiphytically An epiphyte is an organism that grows on another plant upon

which it depends for mechanical support but not for nutrients. Also

called aerophyte, air plant. 33

evapotranspiration Plant’s mechanism for cooling, the water loss occurring

from the processes of evaporation and transpiration. 46

FDR Frequency Domain Reflexometry. 41

feedforward neural network An artificial neural network in which the con-

nections between nodes does not form a cycle. 115

FMC Fuel Moisture Content. 36

forage Plant material eaten by grazing animals. 5
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GPF Green pixel fraction - a formula for estimating fraction of green area

per ground area. 85

GPS Global Positioning System. ii

GreenSeeker Active narrowband spot sensor measuring emission at 600nm,

660nm and 700nm. 83

ground truth Measurements of target values for a sample, taken with the

sensor data. 146

herbage mass The amount of forage at a particular point in time in a specific

pasture. 39

heterogeneous sensor types Different types of sensors, such as cameras, LiDAR,

thermocouples, GPS. 15

homoscedastic The residual error in a regression model is homoscedastic if

variance on the error term is constant. 100

hyperspectral data Hyperspectral sensors record narrowband reflectance data

across the electromagnetic spectrum. A hyperspectral sensor can sense

values from hundreds of wavelengths. ii

hyperspectral scanner Scanners (usually spectrometers) that scan on five or

fewer bands. Can be narrow or broad. 75

IC Intake capacity - a ruminant’s total intake capacity. 24
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imaging spectroradiometer An imaging spectroradiometer provides a 2D

array of pixels representing reflectance from the target area, for each

wave band being sensed. 75

Inception Resnet Inception ResNet is a deep CNN from the Inception family,

incorporating residual connections. iii

k-nn k-nearest neighbours. 103

labelling The process of adding actual target values from ground truth to

observations. 127, 146

LAI Leaf Area Index - the total one-sided area of leaf tissue, per unit ground

surface area, varying in value from zero on bare ground, to ten in densely

forested areas. 53

Lambertian Reflecting light equally in all directions. 77

levelling plate A 50x50 cm aluminium sheet, used to provide a level surface

for the LiDAR measurements. 147

LNA Leaf Nitrogen Accumulation. 89

LR Linear Regression. 98

machine learning Algorithms that can be trained to classify or estimate val-

ues by abstracting patterns from labelled data. i

ME Metabolisable energy. 24, 88
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MLR Multiple Linear Regression. 98

MobileNet MobileNet is a type of convolutional neural network designed for

mobile and embedded vision applications. iii

moisture content Percentage of measured volume that is moisture. 22

morphological Relating to the form and structure of an organism. i

mosaic images Create a large image of a scene from multiple smaller images.

78

MPLSR Modified Partial Least Square Regression. 102

MSI Moisture Stress Index. 69

multispectral Relating to multiple bands of wavelengths in the EM spectrum,

where each band is typically 100nm or more wide. 49

Multispectral scanner Scanners (usually spectrometers) that record a value

for multiple bands (typically around 5). 75

multi-task learning A model is trained to predict multiple targets simultan-

eously. iii

narrowband Distinct reflectance readings from very narrow wavebands (e.g.

3 to 10nm). 15

NDF Neutral Detergent Fibre. 25

NDII Normalized Difference Infrared Index. 68
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NDRE Normalized Difference Red Edge. 67

NDVI Normalized Difference Vegetation Index - the difference between re-

flectance values from the NIR region of the EM spectrum and from the

red region, normalized by their sum. 51

NDWI Normalized Difference Water Index. 69

NE Net Energy. 24

NEg Net Energy required by cattle for gain. 24

NEl Net Energy required by cows for lactation. 24

NEm Net Energy required by cattle for maintenance. 24

NIR Near Infrared. This area of the electromagnetic spectrum is 780 nm to

2500 nm. 45

nitrometer Measures nitrate-nitrogen (NO3-N) in the plant’s petiole or leaf

stem sap. 16

NMDI Normalized Multiband Drought Index. 69

noIR camera A noIR camera has no infrared (IR) filter, whereas RGB cam-

eras do.. 131

Normalized Difference Vegetation Index The difference between reflectance

values from the NIR region of the EM spectrum and from the red region,

normalized by their sum. AKA NDVI. 20
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NRVI Normalized Ratio Vegetation Index. 51

OLSR Ordinary Least Squares Regression. 98

omasum Section of a ruminant’s stomach. 23

passive sensor A sensor that uses ambient light as its light source (e.g. the

Sun). 76

patch size Size of the area of sample images that is used to represent an

observation in the dataset. iii

PDI Protein Digestible in the Intestine. 25

PDIE PDI given available energy. 25

PDIM Microbial PDI. 25

PDIME PDIM given available energy. 25

PDIMN PDIM given available nitrogen. 25

PDIN PDI given available nitrogen. 25

phenology Plant’s biological life cycle, subject to habitat, climate and season.

46

photosynthesis The process by which plants use sunlight, water, and carbon

dioxide to create oxygen and energy in the form of sugar. 27

pilot collection In this context, the pilot collection was a trial collection car-

ried out in September and October of 2018. 10
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pilot trolley In this context, a trolley is a manually propelled, four wheeled

platform, that houses a network of sensors. 13

PLSR Partial Least Squares Regression. 102

pre-trained weights Weights derived by a neural network that has been trained,

usually on a large body of input data, that can be set as initial weights in

a new training session. 16

primary collection A series of sample collections that were taken from farms

from May to October 2019. 10

proximal Within 2m of the target, without touching it. ii

proximal sensing uses sensors that are near the area being sensed, but do

not touch it. Proximal sensing in this context is considered to be within

2m of the target, although some reviewed sensors may operate within a

couple of hundred metres of the target. 74

pubescence Hair on the leaf. 46

PVI Perpendicular Vegetation Index. 55

quadrat A frame that determines an area of ground to be sampled. In this

context, the quadrat is a 50cm x 50cm square wire frame. In the pilot

collection, this quadrat had a grid-frame subdividing the square into

10cm x 10cm squares. 137, 146
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radiometer A scanning device that measures EM energy emitted from a

target point and represents it as a digital value. 74

radiometric resolution the number of bits allocated to the digitized number

holding the value for a single point and band. 76

Raspberry Pi A small, single-board computer. In this context, Raspberry Pi

4 computers were used. 131

RBM Restricted Boltzmann machine. 116

RED Required Energy Density. 24

red edge A marked increase in reflectance between the Red bands and the

NIR bands. 45

regression analysis A procedure of statistical calculations to estimate a de-

pendent variable based on one or more independent variables. 49

remote sensing using sensors on remote platforms, such as UAVs, high-

flying aircraft or satellite. ii, 74

reticulum Ruminant’s stomach. Absorbs moisture from digestive contents.

23

RF Random Forest Regression. 104

RMAR Reduced Major Axis Regression. 99

RNN Recurring Neural Network. 115
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rumen Ruminant’s fermenting chamber (first of the ’four stomachs’). 23

ruminant Ruminants are herbivorous grazing four-legged mammals that can

acquire nutrients from plant-based food. 22

RVI Ratio Vegetation Index. 51

sampling frequencies The frequency at which samples are taken. 3

SAVI Soil-adjusted Vegetation Index. 59

senesce Deteriorate with age. 45

sensor A sensor is a device that detects and responds to some type of input

from the physical environment. i

SGB Stochastic Gradient Boosting. 104

SGD Stochastic Gradient Descent - mini batch gradient descent where a

random data point is taken to represent each batch. 400

Slope-Based VIs Vegetation indices that use the contrast between spectral

response patterns in the Red and NIR range of the EM spectrum. 50

soil line When Red and NIR reflectance values are plotted against each other,

the soil line is a line representing pixes with bare soil. 55

SPAD Soil Plant Analysis Development chlorophyll meter . 42

spatial resolution A function of the spatial density of the image and the

optical resolution of the lens. 3
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spectral reflectance A measure of the wavelength of the electromagnetic en-

ergy reflected from a surface in a given waveband to the energy incident

in that waveband. 48

spectral resolution Central wavelength of the wave band being sensed, the

width of the wave band and the multiplicity of wave bands being sensed.

75

Spectralon A material that returns highly diffuse reflectance that can be used

as a reference panel for sensor calibration. 77

spectroradiometer Returns a vector of values representing reflectance of

different wave bands emitted from a target point. 74

Spot sensor Return a single value for each wave band sensed, i.e., a vector

of wave band intensities representing reflectance from its field of view.

74

SR Simple Ratio. 51

stomata Stomata are epidermal pores on a plant’s surface that are essential

for the control of water balance in plants. 30

SVM Support Vector Machine. 105

sward An area of grass. 38

sward stick A stick, like a rule, with markings, that is used to measure the

height of grass. 37
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SWIR Short Wave Infrared. 69

TDR Time Domain Reflexometry. 41

tedder A machine that uses moving forks to aerate and therefore dry mown

grass. 30

temporal resolution If sensing is done at a fixed frequency, this is the tem-

poral resolution. 76

tetraploids In this context, grasses with two sets of chromosomes per cell.

28

thermocouple A sensor for measuring temperature. 136

thermowell A cylindrical fitting in a thermocouple, used to protect it. 136

tiller An above-ground branch on a grass plant. 28

tillering The growth stage of grass when shoots emerge. 31

topographic Relating to the arrangement or accurate representation of the

physical features of an area. 51

transfer learning A machine-learning technique whereby a successful model

generates weights by training on a large dataset. Subsequently, these

weights are used as initial weights when running the model on a new but

similar dataset. iii
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transpiring During hot weather, water from the stem and roots moves up-

wards into the leaves and is released as water vapour, to cool the plant

down. 46

TTVI Thiam’s Transformed Vegetation Index. 55

TVI Transformed Vegetation Index. 54

UF Unité Fourragère. 24

UFL Unité Fourragère Lait. 24

UFV Unité Fourragère Viande. 24

UPS Ultrasonic Proximity Sensor. 83

VDMI Voluntary Dry Matter Intake - amount a ruminant will voluntarily eat.

24

vegetation index Vegetation Index is a formula for measuring vegetation

traits. Please see individual entries. 50

vegetation indices Vegetation Indices are formulae for measuring vegetation

traits. Please see individual entries. ii

VI Vegetation Index. 48

WDRVI Wide Dynamic Range Vegetation Index. 54

WDVI Weighted Difference Vegetation Index. 58
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WI Water Index. 69

WSC Water Soluble Carbohydrates. 33
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