497 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    A Fuzzy-based Framework to Support Multicriteria Design of Mechatronic Systems

    Get PDF
    Designing a mechatronic system is a complex task since it deals with a high number of system components with multi-disciplinary nature in the presence of interacting design objectives. Currently, the sequential design is widely used by designers in industries that deal with different domains and their corresponding design objectives separately leading to a functional but not necessarily an optimal result. Consequently, the need for a systematic and multi-objective design methodology arises. A new conceptual design approach based on a multi-criteria profile for mechatronic systems has been previously presented by the authors which uses a series of nonlinear fuzzy-based aggregation functions to facilitate decision-making for design evaluation in the presence of interacting criteria. Choquet fuzzy integrals are one of the most expressive and reliable preference models used in decision theory for multicriteria decision making. They perform a weighted aggregation by the means of fuzzy measures assigning a weight to any coalition of criteria. This enables the designers to model importance and also interactions among criteria thus covering an important range of possible decision outcomes. However, specification of the fuzzy measures involves many parameters and is very difficult when only relying on the designer's intuition. In this paper, we discuss three different methods of fuzzy measure identification tailored for a mechatronic design process and exemplified by a case study of designing a vision-guided quadrotor drone. The results obtained from each method are discussed in the end

    Exploration of Compiler Optimization Sequences Using a Hybrid Approach

    Get PDF
    Finding a program-specific compiler optimization sequence is a challenge, due to the large number of optimizations provided by optimizing compilers. As a result, researchers have proposed design-space exploration schemes. This paper also presents a design-space exploration scheme, which aims to search for a compiler optimization sequence. Our hybrid approach relies on sequences previously generated for a set of training programs, with the purpose of finding optimizations and their order of application. In the first step, a clustering algorithm chooses optimizations, and in the second step, a metaheuristic algorithm discovers the sequence, in which the compiler will apply each optimization. We evaluate our approach using the LLVM compiler, and an I7 processor, respectively. The results show that we can find optimization sequences that result in target codes that, when executed on the I7 processor, outperform the standard optimization level O3, by an average improvement of 8.01 % and 6.07 %, on Polybench and cBench benchmark suites, respectively. In addition, our approach outperforms the method proposed by Purini and Jain, Best10, by an average improvement of 24.22 % and 38.81 %, considering the two benchmarks suites

    Contributions to artificial intelligence: the IIIA perspective

    Get PDF
    La intel·ligència artificial (IA) és un camp científic i tecnològic relativament nou dedicat a l'estudi de la intel·ligència mitjançant l'ús d'ordinadors com a eines per produir comportament intel·ligent. Inicialment, l'objectiu era essencialment científic: assolir una millor comprensió de la intel·ligència humana. Aquest objectiu ha estat, i encara és, el dels investigadors en ciència cognitiva. Dissortadament, aquest fascinant però ambiciós objectiu és encara molt lluny de ser assolit i ni tan sols podem dir que ens hi haguem acostat significativament. Afortunadament, però, la IA també persegueix un objectiu més aplicat: construir sistemes que ens resultin útils encara que la intel·ligència artificial de què estiguin dotats no tingui res a veure amb la intel·ligència humana i, per tant, aquests sistemes no ens proporcionarien necessàriament informació útil sobre la naturalesa de la intel·ligència humana. Aquest objectiu, que s'emmarca més aviat dins de l'àmbit de l'enginyeria, és actualment el que predomina entre els investigadors en IA i ja ha donat resultats impresionants, tan teòrics com aplicats, en moltíssims dominis d'aplicació. A més, avui dia, els productes i les aplicacions al voltant de la IA representen un mercat anual de desenes de milers de milions de dòlars. Aquest article resumeix les principals contribucions a la IA fetes pels investigadors de l'Institut d'Investigació en Intel·ligència Artificial del Consell Superior d'Investigacions Científiques durant els darrers cinc anys.Artificial intelligence is a relatively new scientific and technological field which studies the nature of intelligence by using computers to produce intelligent behaviour. Initially, the main goal was a purely scientific one, understanding human intelligence, and this remains the aim of cognitive scientists. Unfortunately, such an ambitious and fascinating goal is not only far from being achieved but has yet to be satisfactorily approached. Fortunately, however, artificial intelligence also has an engineering goal: building systems that are useful to people even if the intelligence of such systems has no relation whatsoever with human intelligence, and therefore being able to build them does not necessarily provide any insight into the nature of human intelligence. This engineering goal has become the predominant one among artificial intelligence researchers and has produced impressive results, ranging from knowledge-based systems to autonomous robots, that have been applied to many different domains. Furthermore, artificial intelligence products and services today represent an annual market of tens of billions of dollars worldwide. This article summarizes the main contributions to the field of artificial intelligence made at the IIIA-CSIC (Artificial Intelligence Research Institute of the Spanish Scientific Research Council) over the last five years

    Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning

    Get PDF
    The success of machine learning is fueled by the increasing availability of computing power and large training datasets. The training data is used to learn new models or update existing ones, assuming that it is sufficiently representative of the data that will be encountered at test time. This assumption is challenged by the threat of poisoning, an attack that manipulates the training data to compromise the model's performance at test time. Although poisoning has been acknowledged as a relevant threat in industry applications, and a variety of different attacks and defenses have been proposed so far, a complete systematization and critical review of the field is still missing. In this survey, we provide a comprehensive systematization of poisoning attacks and defenses in machine learning, reviewing more than 100 papers published in the field in the last 15 years. We start by categorizing the current threat models and attacks, and then organize existing defenses accordingly. While we focus mostly on computer-vision applications, we argue that our systematization also encompasses state-of-the-art attacks and defenses for other data modalities. Finally, we discuss existing resources for research in poisoning, and shed light on the current limitations and open research questions in this research field
    corecore