
International Journal of Hybrid Intelligent Systems 11 (2014) 287–302 287
DOI 10.3233/HIS-140200
IOS Press

Savant: Automatic generation of a parallel
scheduling heuristic for map-reduce

Frédéric Pinela,∗ and Bernabé Dorronsorob
aUniversity of Luxembourg, Luxembourg, Luxembourg
bUniversity of Lille, Lille, France

Abstract. This paper investigates the automatic generation of a Map-Reduce program, which implements a heuristic for an
NP-complete problem with machine learning. The objective is to automatically design a new concurrent algorithm that finds
solutions of comparable quality to the original heuristic. Our approach, called Savant, is inspired from the savant syndrome. Its
concurrency model is based on Map-Reduce. The approach is evaluated with the well-known Min-Min heuristic. Experimental
results on two problem sizes are promising, the produced algorithm is able to find solutions of comparable quality.

Keywords: Pattern recognition, parallelism and concurrency, conversion from sequential to parallel forms

1. Introduction

Parallel algorithms are becoming necessary in every
aspect of computing with the widespread adoption of
distributed systems composed of multicore processors.
Up to now, parallelism was only required in specific
cases, usually for performance improvements. The de-
fault computer is becoming a parallel machine [1].
This trend is a consequence of the evolution of com-
puter processors, where physical limits are forcing
chip designers to reduce the clock frequency of pro-
cessors, and packaging more of them. Current com-
puters now come with multiple processors, which are
themselves multi-core. In addition, alternative parallel
co-processors are common, such as graphics process-
ing units (GPU). Mass markets are also favoring dis-
tributed systems such as clusters, assembled from off-
the-shelf components in contrast to specialized paral-
lel hardware [2]. Finally, recent Internet trends, such
as cloud computing, the ubiquity of JavaScript virtual
machines and mobile devices add another level in par-
allelism, by massively distributing computation across
cloud servers and browsers. However, the parallelism

∗Corresponding author: Frédéric Pinel, University of Luxem-
bourg, Luxembourg, Luxembourg. E-mail: frederic.pinel@uni.lu.

provided by the hardware requires the design of con-
current algorithms to be fully exploited. Recent algo-
rithms introduce concurrency as much as possible, but
programming languages for concurrent program are
still appearing [3–6], and manually designing a concur-
rent program remains a difficult task. Moreover a great
number of existing programs need to be adapted to the
parallel architectures.

In light of this trend, we are investigating a method
to automatically parallelize existing algorithms. This
is of course a challenging problem. As a first step, we
limit this problem’s scope in several ways.

– We relax a common constraint that the parallel
version must implement the original algorithm
(same algorithm but a different implementation).
We are searching for a different algorithm that
nevertheless performs the same function.

– We cast the problem as a supervised learning
problem, and leverage the efficiency of modern
machine learning techniques. This is inspired by
the Savant syndrome (Section 3.2), which hints to
a parallel machine performing seemingly sequen-
tial tasks. By analogy, we consider that the par-
allel version of the original algorithm must learn
the behavior of the original one.

– We evaluate our proposed approach on a spe-
cific algorithm (Min-Min), a well-known heuris-

1448-5869/14/$27.50 c© 2014 – IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/322375923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

288 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

tic for an NP-complete scheduling problem. This
use case is motivated by three factors. First, we
are familiar with this problem and its state-of-
the-art parallel solvers, which is useful to assess
the results obtained. Second, optimization prob-
lems highlight the key point of our approach:
the design of different algorithms that solve the
same problem. Indeed, solutions to optimization
problems are evaluated with a fitness function,
which score a solution regardless of how this so-
lution was found. This helps abandon existing al-
gorithms, as long as the solutions are of compara-
ble quality, and the produced design is concurrent.
Finally, solving combinatorial problems is com-
putationally intensive, and parallel heuristics is an
active research area that could benefit from au-
tomatic parallelization. The ultimate intention is
to evaluate this approach on other algorithms and
problems.

Our contribution is a method to automatically gener-
ate a parallel version of the chosen heuristic, under the
Map-Reduce architecture [7]. The method takes an ini-
tial sequential program that implements the scheduling
heuristic, and derives a Map-Reduce based program
that can exploit significant parallelism (hundreds of
cores) even for small problem instances. The concur-
rent design intentionally focuses on small problems,
where the source of concurrency does not lie in the data
or the complexity of the algorithm, as suggested by D.
Hillis [8]. This paper extends our previous work [9]:
the training configuration is refined, the algorithm’s ca-
pability is improved, and the results are further ana-
lyzed to better understand its behavior.

Section 2 describes the problem and reviews pre-
vious work. Section 3 presents and motivates our ap-
proach, called Savant. Section 4 reports the experimen-
tal results of the Savant approach.

2. Problem statement

In this section, we present the automatic paralleliza-
tion problem, and provide the necessary information
on the use case for our evaluation. Section 2.1 reviews
past and current automatic parallelization efforts. Sec-
tion 2.2 states the scheduling problem and the heuris-
tic used to evaluate the approach. Section 2.3 pro-
vides background information on the scheduling prob-
lem and it’s known solvers. Section 2.4 describes the
heuristic we have chosen for our evaluation.

2.1. Automatic parallelization

Parallelism was initially considered a part of the au-
tomatic build of executables from source code. This
optimization step is usually approached by applying
source-to-source transformations [10,11]. Transforma-
tions include loop-unrolling, data access patterns, and
rely on careful inspection of data dependencies to ex-
tract concurrency from the source program. This ap-
proach to parallelization preserves the algorithm and
most of the source code, by applying transformations
that respect the semantics of the original program. The
transformations are carefully defined, so as to guaran-
tee identical behavior, and may even rely on formal
reasoning [12]. Other authors apply AI techniques to
identify the transformations and their order of appli-
cation. Evolutionary algorithms and machine learning
were applied in [13–15].

As mentioned, our focus is not to preserve most
of the source program, nor even the algorithm, but to
find new algorithms and code. Genetic Programming
(GP) [16] is a method to achieve such a goal. Indeed,
GP aims to automatically evolve a program that dis-
plays a set of properties. Parallelism can be one of
them. A combined evolutionary and source-to-source
transformation technique was presented in [17]. There
is little detail presented however. In [18–20], the au-
thors use GP to evolve a program in order to achieve
parallelism. The programs found are evaluated both in
terms of correctness (their purpose) and their degree
of parallelism. Evolving the program allows for eas-
ier evaluation of the parallelism by executing the code.
We find that the programs evolved are relatively sim-
ple (O(100) assembly instructions), and require con-
siderable effort to find (the stopping condition is the
absence of progress in the last 106 − 108 evolutions).
GP is a general technique which comes with its draw-
backs, such as the computational effort required. Also,
defining parallelism as a fitness function is an elegant
formulation of the problem, but is not reliable regard-
ing the parallelism obtained. We believe more specific,
thus efficient, approaches can be used. Finally, genetic
algorithms can be used to evolve rules for computation,
instead of a solution to a problem [21]. Therefore, such
an approach could in principle be used for automatic
parallelization but we have not found previous work.

2.2. The min-min heuristic for the independent tasks
mapping problem

The proposed parallelization approach is applied to
the Min-Min heuristic, described in Section 2.4, which

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 289

finds solutions to the independent tasks mapping prob-
lem.

This problem assumes a set of independent comput-
ing tasks, which can be processed by a set of hetero-
geneous resources, or machines. Each task can only be
processed by a single machine (it cannot be split across
machines). A problem instance is defined by an Esti-
mated Time to Complete (ETC) matrix, which holds
the duration of each task on every possible machine.
The ETC is assumed given. The ETC is randomly gen-
erated according to the procedure in [22]. In this study,
the tasks and machines are considered highly hetero-
geneous, and the machines are consistent (a machine
cannot be slower than any other for a task, and faster
for another). An example ETC is:⎡

⎣
t1 t2 t3 ...

m1 12.3 17.8 45.7 ...
m2 15.9 18.3 73.0 ...

⎤
⎦ ,

where task t1 takes 12.3 units of time to execute on
machine m1.

The optimization problem is finding the solution that
minimizes makespan. Makespan is the time when the
last task finishes, across all machines. It is computed
using the ETC matrix, by summing the task’s ETC
on their respective mapped machine. The makespan
minimization problem is NP-complete [23]. A solution
to the problem is represented as an array of integers,
where solution[t] = m means that task t is assigned
to machine m.

2.3. Independent tasks mapping problem

The approach proposed in this paper is applied to
the resolution of a combinatorial problem from the
scheduling domain: the independent tasks mapping
problem. The complexity of this problem confines can-
didate solver algorithms to heuristic and metaheuristic
approaches, except for very small problems. This sec-
tion reviews the most relevant past work related to this
problem.

One of the most relevant heuristics applied to solve
this problem are the list scheduling algorithms. Be-
cause we make use of them in this paper, they are in-
troduced in a separate section (Section 2.4). Pinel et
al. propose in [24] a heuristic that works in two phases
by running first Min-Min and then improving its re-
sult with a local search heuristic. In addition to these
heuristics, metaheuristics have been successfully ap-
plied to this problem too. Some examples are Genetic
Algorithms [25,26], Ant Colony Optimization [27],
and other hybrid algorithms [27,28].

Due to the complexity of the problem and the quick
response needed, a number of parallel metaheuristics
have been proposed in the literature. Pinel et al. de-
signed a multi-threaded parallel cellular genetic algo-
rithm for the problem in [29]. Nesmachnow et al. pro-
posed a parallel CHC algorithm in [30] and test it on a
cluster of 4 quad core servers. There are also several of
works proposing parallel algorithms of the considered
problem for the GPU. Solomon et al. [31] presented
a Particle Swarm Optimization algorithm that provide
high speedups (up to 37 times faster), but the results
reported are worse than those of the compared heuris-
tics. Nesmachnow [32] proposed GPU implementa-
tions of two scheduling heuristics, reporting a maxi-
mum speedup of about 5 with respect to the sequential
version of the heuristic. Finally, Pinel et al. [33] pro-
posed two parallel designs for GPU of Min-Min and
a cGA, reporting speedups of up to 538 times faster
with respect to the sequential Min-Min. Additionally,
Pinel et al. [9] presented a novel framework, inspired
in the Savant syndrome, that automatically learns and
reproduce the behavior of a target algorithm. The re-
sulting algorithm can be executed using map-reduce
framework, so it can be run on large clusters, as well
as on multi-core and GPU architectures. It was applied
to learn the Min-Min heuristic, and it was even able to
outperform it.

The scheduling problem is inherently a multi-objec-
tive problem, since there are several conflicting objec-
tives to take into account, as those matching the in-
terests of the service provider (i.e., makespan, cost)
and the customer (especially those related to the
QoS) [34]. We discuss next the main works in the
literature proposing multi-objective evolutionary algo-
rithms (MOEAs) for the problem of independent tasks
scheduling. Before, we will briefly classify the main
existing techniques to solve multi-objective problems
(MOPs). We first may distinguish between hierarchi-
cal or simultaneous approaches.

The former class, also called lexicographic order-
ing in the specialized literature, lies in first establishing
some priority on the considered criteria. Then, these
criteria are optimized in the given priority order with-
out worsening the value of the higher priority ones. The
main drawback of this technique is that a pre-defined
ordering of objectives is required. This is not always
easy, and it bias the search and, therefore, the obtained
result and the performance of the algorithm. The alter-
native to lexicographic ordering is to optimize the cri-
teria at the same time. There are several approaches for
that, being the main techniques based on function ag-

290 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

gregation, ε-constraint, and Pareto dominance. In func-
tion aggregation technique, the multi-criteria problem
is transformed into a single-objective one by aggre-
gating the criteria into one single weighted function.
This method is commonly used in the literature be-
cause of its easy implementation, but it will not work
when the Pareto front is concave, regardless of the
weights used [35]. Additionally, the solution found by
the algorithm is obviously biased by the weights used
in the function aggregation. The ε-constraint method is
based on the optimization of one of the criteria, consid-
ered as the primary one, and redefining the other objec-
tives as constraints bound by some allowable levels εi.
Hence, the problem is reduced to a kind of constrained
single-objective optimization but, in practice, it will be
difficult to set accurate values for the constraints that
will still allow finding feasible solutions. In the Pareto
dominance technique, all the criteria are tackled as in-
dependent functions, and the algorithm is optimizing
all of them at the same time. For that, the concept of
dominance is introduced, meaning that one solution
dominates –is dominated by– another if it is better –
worse– or equal for all the objectives and strictly better
–worse– for at least one of them. Therefore, two solu-
tions are called non-dominated if none dominates the
other. The objective of the Pareto dominance technique
is then to find the Pareto optimal set, composed by the
best non-dominated solutions to the problem. In con-
trast to the previously mentioned methods, the output
of this technique is a set of non-dominated solutions,
and not only one single solution.

In 2006, Yu et al. [36] presented a genetic algorithm
(GA) to solve the problem of resource allocation by op-
timizing the execution time and the cost of the sched-
ule by using some ε-constraint technique. The primary
objective was in this case to optimize the makespan
with the constraint of a maximum given budget, which
is specified by the users for workflow execution. Here,
makespan is optimized to benefit the service provider,
but some minimum QoS level is ensured with the con-
straint added, thus benefiting the users. One year later,
Sweeney et al. studied a similar problem that was en-
hanced with two more constraints: a maximum num-
ber of total cycles to run the job and a maximum exe-
cution time. In that paper, they used both a GA and a
simulated annealing (SA) algorithm to solve the prob-
lem [37].

One of the most popular techniques to solve multi-
objective jobs scheduling problems is functions aggre-
gation. Works like those of Xhafa et al. [28,38,39],
Zhong et al. [40], and Kromer et al. [41] are examples

of the use of techniques like cellular GAs, memetic al-
gorithms (MA), differential evolution (DE), and tabu
search (TS), among others, for the optimization of an
aggregation function composed by the makespan and
flowtime. The considered problem in these works was
the scheduling of independent tasks where makespan
and flowtime are the criteria to optimize. In [42],
Abraham et al. compared this approach versus the
Pareto dominance technique for this problem on a GA,
SA, a fuzzy particle swarm optimization (PSO) algo-
rithm (all of them optimizing the aggregated function),
and MOEA, a multi-objective evolutionary algorithm
based on Pareto dominance. As a result, they found that
MOEA provided excellent results, outperforming the
compared algorithms.

Jakob et al. [43] studied the optimization of the
weighted sum of four objectives: two of them benefit-
ing the provider, namely makespan and resource uti-
lization, and two more focusing on the interests of the
customer, time and cost of each application. Later, they
extended their work by considering the reschedule of
previously scheduled non-executed tasks [44].

Nesmachnow [45] studies the performance of sev-
eral state-of-the-art multi-objective evolutionary al-
gorithms, namely MOCell, MOCHC, NSGA-II, and
SPEA2, on the problem of scheduling independent
tasks on Grids minimizing the total makespan and
flowtime. He concluded that MOCell was the most use-
ful tool among the compared ones for the considered
problem.

In [46], the same author proposes a new technique
that is hybrid between aggregation and Pareto domi-
nance for the same problem, but minimizing makespan
and the weighted response ratio (i.e., the total response
ratio of each task multiplied by its weight –priority–)
this time. The technique consists of structuring the
population into several subpopulations, each optimiz-
ing an aggregated function of the two objectives with
different weights using CHC evolutionary algorithm.
Then, Pareto dominance is used to build the Pareto
front from solutions in the different islands.

There are some works dealing with MO algorithms
for the robust scheduling problem, like [47], which is
considering some kind of robustness by optimizing, to-
gether with the resource utilization, the resources re-
liability by assigning some static reliability values to
every resource (i.e., a value meaning how reliable is
the resource) in the problem definition; or [48], di-
rectly optimizing a robustness metric together with
the makespan with four state-of-the-art MO algorithms
(MOCell, NSGA-II, IBEA, and MOEA/D).

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 291

Finally, there is a number of papers focusing on
multi-objective versions of the problem with energy ef-
ficiency considerations. In [49], the authors proposed a
number of multi-objective heuristics to solve the prob-
lem of independent tasks scheduling in multi-core het-
erogeneous Grid computing systems, accounting for
makespan and energy consumption minimization. In
that work, the algorithms exploit the heterogeneity of
resources to save energy in the computation of tasks.
There are other works that make use of dynamic volt-
age scaling techniques to save energy, subject to all
tasks are executed before their specified deadline [50].
Li et al. [51] presented an online dynamic power man-
agement strategy with multiple power saving states.
Then, they proposed an energy-aware scheduling algo-
rithm to reduce energy consumption.

2.4. List scheduling heuristics

The class of list scheduling techniques comprises
a large set of deterministic static scheduling methods
that work by assigning priorities to tasks based on a
particular ad-hoc heuristic [52]. After that, the list of
tasks is sorted in decreasing priority and each task
is assigned to a processor, regarding the task priority
and the processor availability. Algorithm 1 presents the
general schema of a list scheduling method.

Algorithm 1 Schema of a list scheduling algorithm.
1: while tasks left to assign do
2: determine the most suitable task according to

the chosen criterion
3: for each task to assign, each machine do
4: evaluate criterion (task, machine)
5: end for
6: assign the selected task to the selected machine
7: end while
8: return task assignment

The first algorithms following the generic schema
presented in Algorithm 1 were introduced in the pi-
oneering work by Ibarra and Kim [53]. Later, many
list scheduling techniques have been proposed in or-
der to provide easy methods for tasks-to-processors
scheduling. This class of methods has also often been
employed in hybrid algorithms, with the purpose of
improving the search of metaheuristic approaches for
solving scheduling problems.

The simplest category of list scheduling heuristics
applied to minimize the makespan metric uses a sin-
gle criterion to perform the tasks-to-machine assign-

ment [54]. Many popular heuristics fit into this cate-
gory, including Shortest Job to Fastest Resource and
Longest Job to Fastest Resource, which sort the tasks
by increasing/decreasing execution time (ET) and as-
sign them to the available resources, sorted by their de-
creasing computing capacity; Opportunistic Load Bal-
ancing, which sorts the set of tasks in an arbitrary order
and assigns them to the next machine that is expected
to be available, regardless of the ET for each task on
that machine; Minimum Execution Time, which sorts
the set of tasks in an arbitrary order and assigns them
to the machine with lower ET for that task, regardless
of the machine availability; and Minimum Completion
Time (MCT), which sorts the set of tasks in an arbi-
trary order and assigns each task to the machine that
can complete it earlier. More details about these simple
list scheduling heuristics can be found in the works by
Braun et al. [25] and Freund et al. [54].

Trying to overcome the inefficacy of these simple
heuristics, other list scheduling methods have been
proposed taking into account more complex and holis-
tic criteria to perform the task mapping, and then re-
duce the makespan values [25]. Some of the most pop-
ular heuristics in this class include:

– Min-Min: greedily picks the task that can be com-
pleted the soonest. The method starts with a set
U of all unmapped tasks, calculates the MCT for
each task in U for each machine, and assigns
the task with the minimum overall MCT to the
best machine. The mapped task is removed from
U , and the process is repeated until all tasks are
mapped. Min-Min does not consider a single task
at a time but all the unmapped tasks sorted by
MCT, and the availability status of the machines
is accordingly updated after every assignment.
This procedure generally leads to more balanced
schedules (i.e., better makespan values) than other
heuristics, since more tasks are expected to be as-
signed to the machines that can complete them the
earliest;

– Max-Min: is similar to Min-Min, but it assigns the
task with the overall maximum MCT to the best
machine. Therefore, larger tasks are allocated first
in the most suitable machines and shorter tasks
are mapped afterwards, trying to balance the load
of all machines. In some scenarios, Max-Min can
provide better schedules than Min-Min;

– Sufferage: identifies in each iteration the task that
will suffer the most if it is not assigned to a cer-
tain host. The sufferage value is computed as the
difference between the best MCT of the task and

292 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

its second-best MCT. Sufferage gives precedence
to those tasks with high sufferage value, assign-
ing them to the machines that can complete them
at the earliest time. This approach could lead to
find schedules with better makespan values than
Min-Min and Max-Min.

The Min-Min, Max-Min, and Sufferage list schedul-
ing heuristics follow a generic schema which applies
two phases to perform the task-to-resource assign-
ment: in the first phase, N pairs (task, machine) are
selected considering a specific criterion, and then in
the second phase one of the N pairs is selected re-
garding an overall comparison. Finally, there are some
efforts to design new implementations of these algo-
rithms with a lower complexity [55,56].

3. Approach

In this section, we present our approach to auto-
matic parallelization. Our starting point is a generic
parallel algorithm that satisfies our concurrency objec-
tives, Section 3.1. We briefly present the Savant syn-
drome, the source of inspiration for our approach, in
Section 3.2, and describe how we train the generic par-
allel algorithm to solve the optimization problem in
Section 3.3.

3.1. The target parallel model

In Section 2.1, we mentioned that the previous ge-
netic programming approaches considered parallelism
as an objective, this yields uncertain parallelism re-
sults. Here, we address the parallelism problem by
specifying a target parallel model. This approach will
only produce algorithms that conform to this model,
thus guaranteeing the degree of parallelism.

The chosen algorithmic model is a single iteration of
a Map-Reduce application. Open source and free soft-
ware frameworks exist for this model, on different ar-
chitectures (GPU, multi-core, clusters), which makes
it a practical choice. Moreover, theoretical works have
found it equivalent to BSP and PRAM [57], both well-
studied parallel models.

In this model, the input data is first processed in-
dependently by many mappers, whose results are then
further processed independently by reducers. Indepen-
dent processing means that the mappers and reducers
do not communicate or otherwise synchronize, a key
factor of parallel design. In addition to this qualitative
definition of the parallel model, we seek a high num-

ber of mappers or reducers, regardless of the problem
size. Also, the new algorithms must scale with respect
to problem size and hardware resources.

3.2. Analogy with the savant syndrome

Our automatic parallelization question can be re-
stated as: how to automatically design a scalable and
massively parallel Map-Reduce algorithm, that finds
solutions to the independent task mapping problem of
comparable quality (the fitness function computes the
makespan) to the Min-Min heuristic. We looked for
previous occurrences where a massively parallel ma-
chine (composed of weak computing nodes, to ensure
the reliance on parallel processing), was able to solve
small, sequential problems in a short time. This ques-
tion lead to the Savant syndrome [58–62].

People displaying symptoms of this syndrome can
compute small sequential tasks, such as calendar com-
putation (finding the day of the week for a given date),
in a very short time (700 msec), using largely unknown
methods. Their methods for calendar computation are
considered unknown because experiments showed that
the distribution of the response time does not match
those of known algorithms. Also, Savants can perform
other date computations with similar performance,
while this is more time-consuming for a computer al-
gorithms (and reported impossible with classical algo-
rithms [60]). Although not fully understood, the Sa-
vants seem to be learning pattern-recognition rules
from data, which are later applied in parallel to new
input. This matches their ability to perform calendar
computation while ignoring complicated details of cal-
endars, and to enumerate prime numbers while ignor-
ing what a prime number is, or even how to multi-
ply and divide. The mental activities that some Sa-
vants (such as D. Tammet) describe incline us to be-
lieve that their pattern-recognition learning method is
supervised.

Finally, Savants appear to rely on probabilities: their
answers are not 100% correct, and although they are
not very proficient in mathematics in general, they un-
derstand probabilities better than average. The learned
pattern matching is also consistent with other stud-
ies, such as chess perception in players of different
skill [63,64].

3.3. Application to automatic parallelization

In this section, we use the analogy of the Savant
syndrome for the resolution of the independent task

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 293

Fig. 1. Overview of the Savant parallel algorithm.

mapping problem. Figure 1 provides an overview of
the algorithm. As mentioned in Section 2.2, a solution
to the scheduling problem is an array of integers, one
per task assignment (the “output” in Fig. 1). Typical in-
stances involve many more tasks than machines, usu-
ally hundreds of tasks even for small problems. The
concurrent design therefore opts for parallelism at the
task level, and decomposes the task assignment into in-
dependent task assignment functions. The independent
functions are the mappers in the Map-Reduce frame-
work. The combinatorial nature of the problem sug-
gests this approach could find poor solutions, there-
fore, an additional step can be included to improve
the solutions found. This second step is the reducer
in Map-Reduce. The next paragraphs further detail the
Savant algorithm.

By analogy with the Savant syndrome, the task
assignment mappers are multi-class classifiers. Each
classifier attempts to correctly assign the task to a ma-
chine. Correctness means choosing the same machine
assignment as Min-Min, because this is the algorithm
we are parallelizing. The mappers’ input is the ETC
matrix. However, each mapper does not need all or
the same ETC data (Section 4.1 provides more de-
tails). The classifiers result from supervised learning,
in analogy to the Savant syndrome, and because it
is well-suited to the parallelization problem (we are
given an original algorithm or program to parallelize,
which can generate as much training data as required).
This efficiency is another advantage of the classifica-
tion approach over genetic programming, which ran-
domly proposes algorithms in hope of meeting the ob-
jectives. We use one mapper per task in the indepen-
dent task mapping problem. This introduces a high

number of mappers for a given problem instance, and
scales linearly with the problem size (the number of
tasks) and hardware resources (such as CPU cores).
Also, the classifiers work completely independently of
each other.

The reduce step collects the mappers’ output for all
tasks and assembles the final solution. A simple re-
ducer can do nothing: just relay the classifiers’ solu-
tion. However, the independent task mapping problem
optimizes a fitness (minimizes makespan), and this fit-
ness is not exploited so far. A reduce step could im-
prove the solution provided by the mappers, by ex-
ploiting the fitness function. The reducer we propose is
a random local search. It performs a fixed number of
random swaps in the solution (swaps machine assign-
ments between two randomly selected tasks) and up-
dates the solution when a swap improves fitness. This
reducer runs in constant time, because it only depends
on the number of swaps chosen, and is not problem
specific (beyond the fitness calculation).

As per Fig. 1, the input is an independent task map-
ping problem instance: an ETC matrix of size tasks ×
machines. The variousM boxes represent the mappers,
one for each task. Each box outputs a machine assign-
ment. The R box is the reducer, in this diagram the
simple reducer is shown, which collects the classifiers’
results.

The classifiers are trained under supervised learning,
an observation is an ETC and the Min-Min solution.
The next section details the parameters for the training
and evaluation of the approach.

4. Experimentation

This section presents the experimentation configu-
ration and the results observed, the solutions and their
quality.

4.1. Configuration

The ETC are randomly (but not uniformly) gen-
erated according to the procedure in [22]. The ETC
columns and rows are further sorted as follows. The
low-index tasks have smaller execution time than the
high-index tasks. The low-index machines are faster
than the high-index machines. The sorting criteria for
tasks is the sum of all ETC values, which represents an
approximative measure of a task’s execution time. The
machine sort is possible given the consistent property
of the instances [22]. Sorting is considered necessary to

294 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

produce classifiers with common index values for tasks
and machines, across ETC instances. The assumption
is that pattern-recognition rules depend on the nature
of the task and machines, but are invariant across in-
stances. Two scheduling problem sizes are used in the
experiments, 128 tasks to map across 4 machines (de-
noted 128 × 4), and 512 tasks to map across 16 ma-
chines (denoted 512 × 16). The intent is to observe
the behavior of the Savant algorithm when the problem
size increases.

The classifiers are multi-class SVMs (Support Vec-
tor Machines), available via libSVM [65]. We choose
the following, recommended, default parameters. The
kernel chosen is RBF. Cross-validation is used to select
the parameter values. 600 ETC different instances are
used for training with 128 × 4 instances. 1,000 ETC
different instances are used for training with 512 × 16
instances, because of the higher number of classes. 100
ETC different, unseen, instances are used for the eval-
uation. The ETC input data is scaled.

An important consideration for training of the Sa-
vant algorithm is the selection of features for the
SVMs. Choosing the entire ETC matrix values for clas-
sification yields poor prediction results, and requires
longer training time. We have chosen, after investi-
gation, to use a very simple rule: the features used
for the classifier of a given task are the values of the
ETC column of that task. In other words, a task clas-
sifier will rely only on the estimated execution times
of that task, on every machine. So, for the 128 × 4 in-
stances, each task classifier relies on only 4 features.
This is a surprising result because the nature of both
the combinatorial optimization problem (minimizing a
global solution fitness) and the Min-Min heuristic (also
relying on global knowledge) suggest that correctly
assigning a task requires more knowledge than just
the local task profile. Therefore we also investigated
several other feature selection mechanisms, however,
none improved the prediction scores of the simple rule.
First, we extended the features for a task’s classifier
to the ETC values of similar tasks. Because the ETC
is sorted, similar tasks are the neighboring tasks’ ETC
values. Extending the neighborhood by 1–4 columns
of the ETC lead to worse predictions on unseen in-
stances. Generalizing the exploration of features, we
built a genetic algorithm 1 that searched for the appro-
priate features for each task classifier [66–68]. The mo-
tivation was to depart from simpler, more intuitive fea-

1The GA was an implementation of a Cellular GA.

ture sets, at the expense of a long computerized search.
The GA proposed very irregular and complex feature
sets. Incidentally, the best feature selections included
the task’s ETC column. Although the search proposed
sets which improved the prediction (by a 5–10% per-
cent), the evaluation on completely unseen instances
proved slightly worse. Most likely, the GA search suf-
fered from overfitting, which we were not able to mit-
igate. Finally, the local search reducer of Section 3.3,
when used, is run for 10,000 iterations, for both prob-
lem sizes.

4.2. Savant’s mapper solution similarity

In this section, we compare the solutions to the
scheduling problem found by the Savant mapper algo-
rithm, to the ones found by Min-Min. The reducer sim-
ply assembles the results from the individual mappers
(task classifiers), the local search reducer is not ap-
plied. This comparison reflects the mapper’s accuracy
in predicting the Min-Min assignments for the evalu-
ation (unseen) problem instances. The similarity score
is the count of correct task-to-machine classifications
across the 100 evaluation problem instances, for each
task.

Figure 2 reports the similarity for 128 × 4 problems.
It shows that the accuracy for the smaller and big-
ger tasks is lower than average. The average accuracy
across tasks is approximately 82%, which is surpris-
ingly high, because the Min-Min algorithm chooses
machine assignments based on more information (the
ETC values of all unassigned tasks, and the current ma-
chine completion times) than the 4 ETC values of each
Savant mapper. When below average, the accuracy is
still greater than 60%. The assignment errors for larger
tasks is understandable because the Min-Min assign-
ment for larger tasks occurs later in the algorithm’s ex-
ecution, and depends on the previous task assignments,
information that the Savant’s mapper does not have.
The mismatch between the Savant’s mapper and Min-
Min for the smaller tasks is caused by approximation in
the tasks’ sorting, which determines the mapper model
to apply for a task. The tasks are sorted by the sum of
their ETC values (over the different machines), which
is imprecise. However, errors for the smaller tasks is
acceptable because they have little influence on the
overall fitness function.

Figure 3 reports the similarity between the solutions
found by the Savant’s mapper and Min-Min, for 512 ×
16 problems. The general curve of the plot is similar
to that of the 128 × 4 problem size, where accuracy

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 295

65
70

75
80

85
90

task

si
m

ila
rit

y
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

savant per task
savant average

Fig. 2. Savant mapper solution similarity for 128 × 4 problems (without the local search reducer).

40
50

60
70

task

si
m

ila
rit

y
(%

)

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

savant per task
savant average

Fig. 3. Savant mapper solution similarity for 512 × 16 problems (without the local search reducer).

for small and large tasks are below average. The accu-
racy of the mappers is worse than for the smaller prob-
lems. The average accuracy increased from the 58% of
the original study [9] to 63%. This confirms that the 16
machines to assign tasks to need more training obser-
vations than for the 4 machines of the smaller 128 × 4
problems. In this study, the task classifiers are trained
with 1,000 observations, versus 600 previously. Over-
all, the accuracy of the classifiers, operating on only 16
factors (the ETC values for the task), is high.

4.3. Savant’s mapper prediction accuracy

In this section, we report on the probability for each
Savant’s task mapper to correctly assign it’s task to
a machine, called prediction accuracy. A correct as-
signment means matching the Min-Min assignment.
This information is available in the SVM implementa-
tion [65].

The prediction accuracy is different to the similar-
ity plotted in Figs 2–3. The similarity of Section 4.2

296 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

0
20

40
60

80
10

0

task

pr
ob

ab
ili

ty
 to

 s
ol

ut
io

n
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Fig. 4. Savant mapper prediction accuracy for 128 × 4 problems (without the local search reducer).

0
20

40
60

80
10

0

task

pr
ob

ab
ili

ty
 to

 s
ol

ut
io

n
(%

)

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Fig. 5. Savant mapper prediction accuracy for 512 × 16 problems (without the local search reducer).

is based on the mapper’s decision, which is the classi-
fier’s highest probability estimate. Here, we report on
the probability to correctly assign each task, not al-
ways the highest probability. This is useful because in
case of mis-assignment (when the highest probability
points to a wrong assignment), we would like to know
what was the mapper’s probability for the correct as-
signment. This provides a broader accuracy measure

of the mappers. Indeed, the probability estimates of a
task for the various machine assignments vary greatly.
Several assignments can have very close probabilities,
reflecting an ambiguous choice, whereas some choices
for machine assignments have very different probabil-
ities, reflecting a strong preference.

For smaller problem instances, Fig. 4 shows that
the prediction of the SVMs is highly accurate, better

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 297

40
50

60
70

80

task

si
m

ila
rit

y
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

savant+ls per task
savant+ls average

Fig. 6. Savant solution similarity for 128 × 4 problems (with the local search reducer).

10
15

20
25

30
35

40
45

task

si
m

ila
rit

y
(%

)

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

savant+ls per task
savant+ls average

Fig. 7. Savant solution similarity for 512 × 16 problems (with the local search reducer).

than the similarity. This means that even in case of er-
rors, the correct assignment had a high probability for
the mapper. The distribution across tasks is similar to
Fig. 2.

For larger problem instances, Fig. 5 shows much
lower probabilities than the similarity of Fig. 3, be-
cause the probability of machine assignments is split
across more machines. Also, the accuracy of assign-
ments is less than for smaller problem instances. The

distribution of the probabilities across tasks is differ-
ent to Fig. 3, where the accuracy does not degrade with
larger tasks.

4.4. Savant’s reducer solution similarity

In the previous sections, we showed the accuracy of
the Savant’s mappers only. In this section, we show the
effect of the reducer step, with the application of the

298 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

savant vs minmin savant+ls vs minmin savant+ls vs ls

0
20

40
60

fit
ne

ss
 c

om
pa

ris
on

 (
%

)

Fig. 8. Savant solution quality for 128 × 4 problems.

savant vs minmin savant+ls vs minmin savant+ls vs ls

−
20

0
20

40
60

fit
ne

ss
 c

om
pa

ris
on

 (
%

)

Fig. 9. Savant solution quality for 512 × 16 problems.

stochastic local search, on the similarity to the origi-
nal Min-Min solutions. The motivation is to determine
if the fitness-based solution search leads to solutions
similar to Min-Min.

Figure 6 shows that the similarity to Min-Min for
128× 4 problems is less than the mapper’s. This means
that the local search, although improving the quality
of the solution, does not bring the mapper’s solution
closer to the Min-Min solutions.

Figure 7, for 512 × 16 problems, also shows lower
similarity to Min-Min than the mapper. However, more

clearly than in smaller problem instances, the distribu-
tion of similarity across tasks is different to the map-
per’s similarity, where similarity after local search in-
creases with the task size. Better quality solutions seem
to share the machine assignments of the larger tasks
across algorithms.

4.5. Savant solution quality

In this section, we evaluate the quality of the solu-
tions found by the Savant algorithm. This evaluation is

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 299

presented in the form of comparisons with other algo-
rithms. Three comparisons are shown for each problem
size; 128 × 4 and 512 × 16. The comparison results
are plotted as boxplots.

The leftmost boxplot (labeled “savant vs minmin”
in the figures) reports the differences in solution qual-
ity (fitness, expressed in %) between the Savant algo-
rithm without the local search reducer and the origi-
nal Min-Min algorithm, for the same 100 evaluation
ETC instances. The middle boxplot (labeled “savant+ls
vs minmin”) shows the same comparison but with the
local search reducer presented in Section 3.3. The lo-
cal search in the reducer may be solely responsible
for these results, because of its fitness-based stochas-
tic search. To measure the impact of the fitness-based
reducer, we add the rightmost boxplot (labeled “sa-
vant+ls vs ls”) that compares the Savant with local
search reducer with the same local search applied to
random solutions. This exposes the influence of the
mapper component of the Savant on the solution qual-
ity.

Figure 8 shows the boxplot results for the 128 × 4
problem instances. We note that the Savant algorithm
using only the classifiers (mappers) produces good re-
sults. The solutions are only 10% worse, in median,
than the Min-Min solutions, while 20% different. Ap-
plying the local search in the reduce step, Savant re-
sults are very good: the algorithm finds better solutions
than Min-Min. The rightmost boxplot (“savant+ls vs
ls”) shows that the classifiers do play a role in the qual-
ity of the solutions found, because the random solu-
tions with local search are much worse than the map-
pers with local search.

Figure 9 shows results for the larger 512 × 16 prob-
lem instances. The mapper only solutions are much
worse than the Min-Min solutions, although the fitness
is much improved upon our previous experiments [9]
with less training observations. We conclude that the
poor accuracy observed in Figs 3 and 5 impacts the
quality of the solutions found. However, the Savant
with the application of the local search reducer still
produces good results. The rightmost boxplot shows
that the Savant classifiers contribute significantly to the
quality of the solutions found. In both problem sizes,
we notice that the local search reducer significantly re-
duce the variance in the results. The same number of
local search iterations was performed on both problem
sizes, although the search space is much larger. This
may explain the greater difference in solution quality
for 512 × 16 problem instances.

5. Conclusions

This paper investigated the possibility of automati-
cally parallelizing a heuristic for a combinatorial opti-
mization problem. The parallel model is Map-Reduce.
The long term goal is to find a parallelization method
applicable to as many algorithms as possible. The
approach presented, Savant, contrasts with previous
work: we defined a generic parallel pattern-matching
engine (suited to Map-Reduce) that learns the algo-
rithm to parallelize. The parallel algorithm produced is
completely different from the original sequential algo-
rithm, yet achieves the same results. This approach is
more natural on an optimization problem, because the
quality of a solution is based only on the solution, and
not on the process that created or found it. We consider
the results presented promising. The Savant algorithm
provides solutions of comparable quality to the origi-
nal algorithm.

One could argue that the optimization problem in-
stances addressed are not large, and the original algo-
rithm (Min-Min) is fast on such problem sizes. How-
ever, our goal is to automatically design competi-
tive parallel algorithms, rather than rival on execution
speed, because of the on-going trend in computing ar-
chitectures.

There is also room for improvement. The degraded
solution similarity and quality when the problem size
increases needs to be addressed. We plan to use more
training samples when the number of classes increases,
as is the case when problem size increases. A more
fundamental improvement is the feature selection for
the tasks SVMs. We used a simple rule, common to all
task SVMs (that nevertheless achieves good results):
select the task’s ETC column. We are currently inves-
tigating the use of different feature selection rules for
each task, given the tasks’ differences. One alternative
is to use different ETC columns for each task’s classi-
fier. Another alternative is to use elements of the ETC
matrix, instead of columns. We plan to automatically
discover such rules, so as to meet our goal of automatic
parallelization. Another improvement is the re-design
of the reducer step, into a concurrent version that is
also generic.

Other future work will investigate if the Savant algo-
rithm is suitable for different, more elaborate and thus
time-consuming, algorithms for the same optimization
problem. Also, we need to understand how this ap-
proach performs on different problems altogether.

300 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

Acknowledgments

We thank the anonymous reviewers for their com-
ments and suggestions for improvement.

References

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.
Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek
et al., A view of the parallel computing landscape, Communi-
cations of the ACM 52(10) (2009), 56–67.

[2] A.S. William Gropp, Ewing Lusk, Using MPI. MIT Press,
1999.

[3] J. Armstrong, The development of Erlang, in Proceedings
of the second ACM SIGPLAN international conference on
Functional programming, ser. ICFP ’97. New York, NY, USA:
ACM, 1997, pp. 196–203. [Online]. Available: http://doi.acm.
org/10.1145/258948.258967.

[4] D. Callahan, B.L. Chamberlain and H.P. Zima, The cascade
high productivity language, in High-Level Parallel Program-
ming Models and Supportive Environments, 2004. Proceed-
ings. Ninth International Workshop on, IEEE, 2004, pp. 52–
60.

[5] Google, The go programming language, http://golang.org/.
[6] Mozilla, The rust programming language, http://www.rust-

lang.org/.
[7] J. Dean and S. Ghemawat, Mapreduce: simplified data pro-

cessing on large clusters, Communications of the ACM 51(1)
(2008), 107–113.

[8] D. Shasha and C. Lazere, Out of Their Minds: The Lives and
Discoveries of 15 Great Computer Scientists, 1st ed., Coper-
nicus Books, 1998.

[9] F. Pinel, B. Dorronsoro, P. Bouvry and S.U. Khan, Savant:
Automatic parallelization of a scheduling heuristic with ma-
chine learning, in: Nature and Biologically Inspired Comput-
ing (NaBIC), 2013 World Congress on, IEEE, 2013, pp. 52–
57.

[10] C.D. Callahan, K.D. Cooper, R.T. Hood, K. Kennedy and L.
Torczon, ParaScope: A parallel programming environment,
International Journal of High Performance Computing Appli-
cations 2(4) (1988), 84–99.

[11] F. Irigoin, P. Jouvelot and R. Triolet, Semantical interprocedu-
ral parallelization: An overview of the PIPS project, in: Pro-
ceedings of the 5th international conference on Supercomput-
ing, ACM, 1991, pp. 244–251.

[12] X. Leroy, Formal certification of a compiler back-end or: Pro-
gramming a compiler with a proof assistant, in ACM SIG-
PLAN Notices 41(1) (2006), 42–54.

[13] D. Zhang and J.J. Tsai, Machine learning and software engi-
neering, Software Quality Journal 11(2) (2003), 87–119.

[14] M. Harman, The current state and future of search based soft-
ware engineering, in: 2007 Future of Software Engineering,
IEEE Computer Society, 2007, pp. 342–357.

[15] C. Ryan, A.H. van Roermund and C.J.M. Verhoeven, Auto-
matic re-engineering of software using genetic programming,
Kluwer Academic, 2000.

[16] J.R. Koza, Genetic programming as a means for programming
computers by natural selection, Statistics and Computing 4(2)
(1994), 87–112.

[17] P. Walsh and C. Ryan, “Paragen: a novel technique for the
autoparallelisation of sequential programs using gp,” in Pro-

ceedings of the First Annual Conference on Genetic Program-
ming. MIT Press, 1996, pp. 406–409.

[18] S.M. Cheang, K.S. Leung and K.H. Lee, Genetic parallel pro-
gramming: Design and implementation, Evolutionary Com-
putation 14(2) (2006), 129–156.

[19] K.S. Leung, K.H. Lee and S.M. Cheang, Evolving parallel
machine programs for a multi-alu processor, in Evolution-
ary Computation, 2002. CEC’02. Proceedings of the 2002
Congress on, vol. 2, IEEE, 2002, pp. 1703–1708.

[20] K. Thearling and T.S. Ray, Evolving parallel computation,
Complex Systems 10(3) (1996), 229.

[21] D.E. Goldberg, Genetic and evolutionary algorithms come of
age, Communications of the ACM 37(3) (1994), 113–119.

[22] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Mah-
eswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao,
D. Hensgen and R.F. Freund, A comparison of eleven static
heuristics for mapping a class of independent tasks onto het-
erogeneous distributed computing systems, J. Parallel Dis-
trib Comput 61 (June 2001), 810–837. [Online]. Available:
http://portal.acm.org/citation.cfm?id=511973.511979.

[23] E. Horowitz and S. Sahni, Exact and approximate algorithms
for scheduling nonidentical processors, Journal of the ACM
(JACM) 23(2) (1976), 317–327.

[24] F. Pinel, B. Dorronsoro, J. Pecero, P. Bouvry and S.U. Khan,
A two-phase heuristic for the energy-efficient scheduling of
independent tasks on computational grids, Cluster Comput-
ing, The Journal of Networks, Software Tools, and Applica-
tions 16(3) (2013), 421–433.

[25] T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys and B. Yao, A compari-
son of eleven static heuristics for mapping a class of indepen-
dent tasks onto heterogeneous distributed computing systems,
Journal of Parallel and Distributed Computing 61(6) (2001),
810–837.

[26] J. Carretero and F. Xhafa, Using genetic algorithms for
scheduling jobs in large scale grid applications, Journal of
Technological and Economic Development – A Research
Journal of Vilnius Gediminas Technical University 12(1)
(2006), 11–17.

[27] G. Ritchie and J. Levine, A hybrid ant algorithm for schedul-
ing independent jobs in heterogeneous computing environ-
ments, in: Workshop of the UK Planning and Scheduling Spe-
cial Interest Group (PLANSIG), 2004.

[28] F. Xhafa, E. Alba, B. Dorronsoro and B. Duran, Ecient
batch job scheduling in grids using cellular memetic algo-
rithms, Journal of Mathematical Modelling and Algorithms
7(2) (2008), 217–236.

[29] F. Pinel, B. Dorronsoro and P. Bouvry, A new parallel asyn-
chronous cellular genetic algorithm for scheduling in grids, in
Nature Inspired Distributed Computing (NIDISC) sessions of
the International Parallel and Distributed Processing Sympo-
sium (IPDPS) Workshop, 2010.

[30] S. Nesmachnow, H. Cancela and E. Alba, Heterogeneous
computing scheduling with evolutionary algorithms, Soft
Computing 15(4) (2010), 685–701.

[31] S. Solomon, P. Thulasiraman and R. Thulasiram, Collabora-
tive multi-swarm PSO for task matching using graphics pro-
cessing units, in Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation (GECCO). ACM,
2011, pp. 1563–1570.

[32] S. Nesmachnow and M. Canabé, GPU implementations of
scheduling heuristics for heterogeneous computing environ-
ments, in Proceedings of the XVII Congreso Argentino de
Ciencias de la Computacion, 2011, pp. 1563–1570.

F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce 301

[33] F. Pinel, B. Dorronsoro and P. Bouvry, Solving very large in-
stances of the scheduling of independent tasks problem on the
GPU, Journal of Parallel and Distributed Computing 73(1)
(2013), 101–110.

[34] F. Xhafa and A. Abraham, Computational models and heuris-
tic methods for grid scheduling problems, Future Gener
Comp Sy 26 (2010), 608–621.

[35] I. Das and J.E. Dennis, A closer look at drawbacks of mini-
mizing weighted sums of objectives for pareto set generation
in multicriteria optimization problems, Structural and Multi-
disciplinary Optimization 14(1) (1997), 63–69.

[36] J. Yu and R. Buyya, A budget constrained scheduling of work-
flow applications on utility grids using genetic algorithms, in
HPDC, 2006, pp. 1–10.

[37] J. Sweeney and S.P. Ahuja, Heuristic solutions to resource al-
location in grid computing: A natural approach, J Supercom-
put 44 (2008), 179–198.

[38] F. Xhafa, J. Carretero, B. Dorronsoro and E. Alba, A tabu
search algorithm for scheduling independent jobs in compu-
tational grids, Comput Inform, special issue on Intelligent
Computational Methods and Models, vol. 28, 2009, pp. 1001–
1014.

[39] F. Xhafa, J.A. Gonzalez, K.P. Dahal and A. Abraham, A
GA(TS) hybrid algorithm for scheduling in computational
grids, in Hybrid Artificial Intelligence Systems, ser. LNAI, vol.
5572, Springer, 2009, pp. 285–292.

[40] L. Zhong, Z. Long, J. Zhang and H. Song, An efficient
memetic algorithm for job scheduling in computing grid, in
Information and Automation, ser. CCIS, vol. 86. Springer,
2011, pp. 650–656.

[41] P. Krömer, V. Snásel, J. Platos, A. Abraham and H. Ezakian,
Evolving schedules of independent tasks by differential evo-
lution, in Intelligent Networking, Collaborative Systems and
Applications, ser. SCI 329 (2011), 79–94.

[42] A. Abraham, H. Liu, C. Grosan and F. Xhafa, Metaheuris-
tics for Scheduling in Distributed Computing Environments,
ser. SCI. Springer, 2008, vol. 146, ch. Nature Inspired Meta-
heuristics for Grid Scheduling: Single and Multi-objective
Optimization Approaches, pp. 247–272.

[43] W. Jakob, A. Quinte, K.-U. Stucky and W. Süb, Fast multi-
objective scheduling of jobs to constrained resources using
a hybrid evolutionary algorithm, in Parallel Problem Solving
from Nature (PPSN X), ser. LNCS, vol. 5199. Springer, 2008,
pp. 1031–1040.

[44] W. Jakob, A. Quinte, K.-U. Stucky and W. Süb, Fast multi-
objective rescheduling of grid jobs by heuristics and evo-
lution,” in Parallel Processing and Applied Mathematics
(PPAM), ser. LNCS, vol. 6068. Springer, 2010, pp. 21–30.

[45] S. Nesmachnow, Parallel multiobjective evolutionary algo-
rithms for batch scheduling in heterogeneous computing and
grid systems, Computational Optimization and Applications
55 (2013), 515–544.

[46] S. Nesmachnow and S. Iturriaga, Multiobjective scheduling
on distributed heterogeneous computing and grid environ-
ments using a parallel micro-chc evolutionary algorithm, in
Int Confence on P2P, Parallel, Grid, Cloud and Internet Com-
puting, 2011, pp. 134–141.

[47] I. De Falco, A. Della Cioppa, D. Maisto, U. Scafuri and E.
Tarantino, A Multiobjective Extremal Optimization Algorithm
for Efficient Mapping in Grids, ser. Advances in Soft Com-
puting, Springer-Verlag, 2009, vol. 58, pp. 367–377.

[48] B. Dorronsoro, P. Bouvry, J.A. Cañero, A.A. Maciejewski and
H.J. Siegel, Multi-objective robust static mapping of indepen-
dent tasks on grids, in IEEE Congress on Evolutionary Com-

putation (CEC), part of the World Congress on Computational
Intelligence (WCCI), 2010, pp. 3389–3396.

[49] S. Nesmachnow, B. Dorronsoro, J.E. Pecero and P. Bouvry,
Energy-aware scheduling on multicore heterogeneous grid
computing systems, Journal of Grid Computing 11(4) (2013),
653–680.

[50] K. Kim, R. Buyya and J. Kim, Power aware scheduling of
bag-of-tasks applications with deadline constraints on dvs-
enabled clusters, in Proc. of the 7th IEEE International Sym-
posium on Cluster Computing and the Grid, 2007, pp. 541–
548.

[51] Y. Li, Y. Liu and D. Qian, A heuristic energy-aware schedul-
ing algorithm for heterogeneous clusters, in 15th Interna-
tional Conference on Parallel and Distributed Systems (IC-
PADS), 2009, pp. 407–413.

[52] P. Luo, K. Lü and Z. Shi, A revisit of fast greedy heuristics
for mapping a class of independent tasks onto heterogeneous
computing systems, J Parallel Distrib Comput 67(6) (2007),
695–714.

[53] O. Ibarra and C. Kim, Heuristic algorithms for scheduling
independent tasks on nonidentical processors, Journal of the
ACM 24(2) (1977), 280–289.

[54] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Hal-
derman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. Lima,
F. Mirabile, L. Moore, B. Rust and H. Siegel, Scheduling
resources in multi-user, heterogeneous, computing environ-
ments with SmartNet, in Proc. of the 7th Heterogeneous Com-
puting Workshop. Washington DC, USA: IEEE Computer So-
ciety, 1998, p. 3.

[55] E.K. Tabak, B.B. Cambazoglu and C. Aykanat, Improving the
performance of independenttask assignment heuristics min-
min, maxmin and sufferage, IEEE Transactions on Parallel
and Distributed Systems 25(5) (2014), 1244–1256.

[56] P. Ezzatti, M. Pedemonte and A. Martin, An efficient imple-
mentation of the min-min heuristic, Computers and Opera-
tions Research 40(11) (2013), 2670–2676.

[57] M.F. Pace, Bsp vs mapreduce, Procedia Computer Science 9
(2012), 246–255.

[58] H. Welling, Prime number identification in idiots savants: Can
they calculate them? Journal of autism and developmental
disorders 24(2) (1994), 199–207.

[59] L. Mottron, M. Dawson, I. Soulieres, B. Hubert and J. Burack,
Enhanced perceptual functioning in autism: An update, and
eight principles of autistic perception, Journal of Autism and
Developmental Disorders 36(1) (2006), 27–43.

[60] L. Mottron, K. Lemmens, L. Gagnon and X. Seron, Non-
algorithmic access to calendar information in a calendar cal-
culator with autism, Journal of Autism and Developmental
Disorders 36(2) (2006), 239–247.

[61] J.R. Hughes, A review of savant syndrome and its possible
relationship to epilepsy, 2010.

[62] H. Darius, Savant syndrome-theories and empirical findings,
Ph.D. dissertation, University of Skövde, 2007.

[63] W.G. Chase and H.A. Simon, Perception in chess, Cogni-
tive Psychology 4(1) (1973), 55–81. Available: http://www.
sciencedirect.com/science/article/pii/0010028573900042.

[64] N. Charness, E.M. Reingold, M. Pomplun and D.M. Stampe,
The perceptual aspect of skilled performance in chess: Ev-
idence from eye movements, Memory and Cognition 29(8)
(2001), 1146–1152.

[65] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support
vector machines, ACM Trans. Intell. Syst. Technol. 2(3) (May
2011), 27:1–27:27. [Online]. Available: http://doi.acm.org/
10.1145/1961189.1961199.

302 F. Pinel and B. Dorronsoro / Savant: Automatic generation of a parallel scheduling heuristic for map-reduce

[66] N.T. Siebel and G. Sommer, Evolutionary reinforcement
learning of artificial neural networks, International Journal of
Hybrid Intelligent Systems 4(3) (2007), 171–183.

[67] A. Castaño, F. Fernández-Navarro, C. Hervás-Martínez, M.
García and P.A. Gutiérrez, Classification by evolutionary
generalised radial basis functions, International Journal of

Hybrid Intelligent Systems 7(4) (2010), 239–248.
[68] C.M. Mufassil Wahid, A. Shawkat Ali and K.S. Tickle, Hy-

brid feature selection through feature clustering for microar-
ray gene expression data, International Journal of Hybrid In-
telligent Systems 10(4) (2013), 165–178.

Copyright of International Journal of Hybrid Intelligent Systems is the property of IOS Press
and its content may not be copied or emailed to multiple sites or posted to a listserv without
the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

