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Abstract
Designing a mechatronic system is a complex task since it deals with a high number of system components with
multidisciplinary nature in the presence of interacting design objectives. Currently, the sequential design is widely used by
designers in industries that deal with different domains and their corresponding design objectives separately leading to a
functional but not necessarily an optimal result. Consequently, the need for a systematic and multiobjective design
methodology arises. A new conceptual design approach based on a multicriteria profile for mechatronic systems has been
previously presented by the authors, which uses a series of nonlinear fuzzy-based aggregation functions to facilitate
decision-making for design evaluation in the presence of interacting criteria. Choquet fuzzy integrals are one of the most
expressive and reliable preference models used in decision theory for multicriteria decision-making. They perform a
weighted aggregation by the means of fuzzy measures assigning a weight to any coalition of criteria. This enables the
designers to model importance and also interactions among criteria, thus covering an important range of possible decision
outcomes. However, specification of the fuzzy measures involves many parameters and is very difficult when only relying
on the designer’s intuition. In this paper, we discuss three different methods of fuzzy measure identification tailored for a
mechatronic design process and exemplified by a case study of designing a vision-guided quadrotor drone. The results
obtained from each method are discussed in the end.

Keywords: mechatronic system; multicriteria design; decision support; interacting objectives; fuzzy measures

List of symbols

MMP : Mechatronic multicriteria profile
GC S : Global concept score
MI Q : Machine intelligence quotient
RS : Reliability score
C X : Design complexity
F X : Design flexibility
CT : Cost of manufacture and production
mi : Criteria values
φi : Normalized sub-criteria values
μ : Fuzzy measures
λ : Sugeno measure
I : Interaction index

φ : Importance index
Cμ : Choquet integral
E : Error criterion
u : A vector containing all the coefficients of fuzzy mea-

sures

1. Introduction

Multidisciplinary systems that include synergetic integration of
mechanical, electrical, electronic, and software components are
known as mechatronic systems (Rzevski, 2014). Because of the
high number of the constituent components, the multiphysi-
cal aspect of the subsystems, and the couplings between the
different engineering disciplines involved, the design of mecha-
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tronic systems can be rather complex and it requires a con-
current approach to obtain optimal solutions (Torry-Smith et
al., 2013; Mohebbi, Baron, Achiche, & Birglen, 2014c; Mohebbi,
Baron, Achiche, & Birglen, 2014d). In a similar manner to other
systems, the design of mechatronic devices includes three ma-
jor phases: conceptual design, detailed design, and prototyping
and improvements. Several problems and limitations are en-
countered when the design is at its early stages, as it requires
choosing the “Elite Set” that is the selection of components such
as mechanical, electrical, software, and control strategies. This
practice creates challenges due to insufficient support of a mul-
ticriteria approach for mechatronic system design, which calls
for a decision-making algorithm across various disciplines. In
such cases, design engineers tend to choose the first and the
best components from what they see as available and feasible
to meet their design requirements. Such decisions can often
lead to a functional design, but rarely to an optimal one. This
ill decision-making generally occurs due to improper selection
and assessment of performance criteria and lack of knowledge
about the co-influences among criteria.

The goal of concept evaluation is to compare the generated
concepts based on the design requirements and to select the
best alternative for further device and then product develop-
ment. To this end, the authors have previously presented a new
approach based on a newly introduced “multicriteria mecha-
tronic profile” (MMP) toward a better concept evaluation process
during the conceptual design phase (Mohebbi, Achiche, & Baron,
2014a). The MMP included five main elements: machine intel-
ligence, reliability, flexibility, complexity, and cost, while each
main criterion has several sub-criteria. To facilitate the decision-
making process in the presence of interacting criteria, the con-
cept of fuzzy measures and Choquet integrals were utilized in
this approach. However, specifying each fuzzy measure associ-
ated with the design criteria is difficult by only relying on the
intuition of decision makers (DMs). In this paper, we introduce
three methods of fuzzy measure identification customized for
the mechatronic design process and exemplified by a case study
focused on designing a vision-guided quadrotor drone. With the
proposed approaches, we aim to support the designers with
using fuzzy-based multicriteria decision-making (MCDM) tools
by facilitating the identification process of the parameters in-
volved. Ultimately, by helping the designers with choosing the
appropriate identification method, we plan to encourage the ap-
plication of MMP in mechatronic design cases.

This article is organized as follows. Section 2 reviews the
available literature on the fuzzy-based multicriteria design and
the identification of the fuzzy measures. Section 3 gives a brief
overview of the conceptual design of mechatronic systems and
the previously developed methodology based on the MMP as a
design evaluation index. Fuzzy decision support and the Cho-
quet aggregation technique are described in Section 4 alongside
the necessary definitions of fuzzy measures and integrals, illus-
trated with some properties. Section 5 describes three different
algorithms for elicitation and identification of fuzzy measures
with their philosophy, while Section 6 reports the results of a
case study to incorporate and compare all the design evaluation
attempts. Finally, Section 6 discusses the concluding remarks of
the presented research.

2. Literature Review

Tomiyama et al. (2009) presented a comprehensive description
of the design theory and methodology and an evaluation of

its application in practical scenarios. Ullman (1992) has ana-
lyzed four concept evaluation methods. All of these methods
provide qualitative frameworks to evaluate candidate solutions.
The results of these comparisons highly depend on the experi-
ence of the design engineer. Novice designers would make de-
cisions easier if quantitative evaluation methods are available
for them. To this effect, an evaluation index can be used to
rank the generated feasible solutions and therefore more easily
choose between design alternatives. Moulianitis, Aspragathos,
and Dentsoras (2004) introduced a mechatronic index that char-
acterizes the mechatronic designs by their control performance,
complexity, and flexibility. The overall evaluation was formu-
lated based on the averaging operators and weight factors were
manually applied to highlight the importance of each criterion.
They did not, however, consider the interactions between de-
sign criteria. Behbahani and de Silva (2007) proposed a frame-
work for the design of mechatronic systems in which the perfor-
mance requirements were represented by a mechatronic design
quotient (MDQ). Correlations between design criteria have been
taken into account by using fuzzy functions. MDQ was imple-
mented in some case studies (Behbahani & de Silva, 2008), and
was claimed to be efficient; however, the assessment of criteria
was very qualitative and no systematic measurement approach
has been presented nor implemented, which puts the burden on
the engineering designers.

Mohebbi et al. (2014a) presented a new approach based on
their newly introduced MMP for the conceptual design stage.
The MMP included five main elements: machine intelligence, re-
liability, flexibility, complexity, and cost, while each main crite-
rion has several sub-criteria. To facilitate fitting the intuitive re-
quirements for decision-making in the presence of interacting
criteria, three different criteria aggregation methods were pro-
posed and inspected using a case study of designing a vision-
guided quadrotor drone and also a robotic visual servoing sys-
tem. These methods benefit from three different aggregation
techniques, namely: Choquet integral, Sugeno integral (Mohebbi
et al., 2014a, Mohebbi, Achiche, Baron, & Birglen, 2014b), and a
fuzzy-based neural network (Mohebbi et al., 2014c). These tech-
niques proved to be more precise and reliable in multicriteria
design problems where interaction between the objectives can-
not, and should not, be overlooked (Moghtadernejad, Chouinard,
& Saeed Mirza, 2018, 2020). There are also various examples of
using fuzzy measures and Choquet integrals in MCDM cases in
economics and enterprise evaluations (Liu & Tang, 2016, 2018).
The Choquet integral is one of the most expressive preference
models used in decision theory. It performs a weighted aggre-
gation of criteria using a capacity function assigning a weight to
any coalition of criteria. This enables the expression of both pos-
itive and negative interactions and covering an important range
of possible decision dilemmas, which is generally ignored in
other MCDM methods (Grabisch, 1996, 1997). A 2-additive Cho-
quet integral has been used in the work of Mohebbi et al. (2014a),
which only uses relatively simple quadratic complexity and en-
ables the modeling of the interaction between pairs of criteria.

Despite the modeling capabilities, the specification of the
fuzzy measures has been always a place for various challenges,
which makes the practical use of such aggregation techniques
difficult. While the definition of a simple weighted sum oper-
ator with n criteria requires n − 1 parameters, the definition of
the Choquet integral with n criteria requires setting of 2n − 2 ca-
pacities (measures), which can become quickly unmanageable
even for low values of n and even for an expert who can as-
sess the coefficients based on semantical considerations. Most
of the previous works on the capacity specification for Choquet
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integral-based decision analysis consider a static preference
database as input (learning set) and focuses on the determina-
tion of a set of measures that best fits the available preferences
(Marichal & Roubens, 2000). For example, a quadratic error be-
tween Choquet values and target utility values prescribed by
the DM can be minimized on a sample of reference alternatives
(Meyer & Roubens, 2006). Generally, questions are asked to the
decision maker, and the information obtained is represented as
linear constraints over the set of parameters. An optimization
problem is then solved to find a set of parameters that mini-
mizes the error according to the information given by the DM
(Grabisch, 1995). In Marichal and Roubens (1998), it is supposed
that an expert is able to tell the relative importance of criteria
and identify the type of interaction between them if any. These
relations can be expressed as a partial ranking of the alternatives
on a global basis: partial ranking of the criteria, partial ranking
of interaction indices and also the type of interaction between
some pairs of criteria. These approaches differ with respect to
the optimization objective function and the preferential infor-
mation they require as input. Rowley, Geschke, and Lenzenb
(2015) and Moghtadernejad, Saeed Mirza, and Chouinard (2019)
proposed methods to extract the fuzzy measures using the prin-
cipal component analysis. The method is based on identify-
ing a measure of independence among design criteria. The ma-
jor problems of the aforementioned approaches are the lack of
transparency on how the measures are made, the lack of robust-
ness, and the lack of reproducibility (Timonin, 2013). Another al-
ternative seems to be appropriate when using an optimization
algorithm alongside a minimal intuitive determination by the
DM. These approaches take advantage of the lattice structure of
the coefficients (Mori & Murofushi, 1989).

While most of these methods are developed within a pure
mathematical framework, some others were reflected in a lim-
ited number of applications such as computer vision, pattern
recognition, software engineering, and website design. To our
knowledge, none of the developed approaches are applied to an
inherently cross-disciplinary engineering design problem with
multiple design objectives, e.g. mechatronics design. In this pa-
per, we will explore various approaches of fuzzy measure iden-
tification applied to a mechatronic design problem. A Choquet
integral aggregation was previously used by the authors for the
multicriteria design of a mechatronic system in Mohebbi et al.
(2014a) and Mohebbi, Achiche, and Baron (2019) where the mea-
sures were determined intuitively by the authors and a group of
30 researchers (all specialized in system design and mechatron-
ics) through a questionnaire.

3. Multicriteria Design of Mechatronic
Systems

3.1. Conceptual design

Conceptual design is an early stage of design in which the de-
signers generally choose among the concepts that fulfill the de-
sign requirements and then decide how to interconnect these
concepts into system architectures. Usually, at the beginning of
every conceptual design process, a large number of candidate
concepts exist for a given design problem. Consequently, a con-
siderable amount of uncertainty arises about which of these so-
lutions will be best fitted to the given requirements and objec-
tives. This is more evident when the designer has to meet highly
dynamic and interconnected design requirements. It is crucial to
abandon the traditional end-to-end and sequential design pro-
cess and to consider all aspects of a design problem concur-

Figure 1: Process of concept evaluation in design.

rently. This is particularly necessary for multidisciplinary sys-
tems such as mechatronic systems where mechanical, control,
electronic, and software components interact and a high-quality
design cannot be achieved without simultaneously considering
all domains (Rzevski, 2003).

3.2. Concept evaluation

To achieve more optimal mechatronics designs, one requires a
systematic evaluation approach to choose among the candidate
design solutions. This evaluation includes both comparison and
decision-making (Coelingh, de Vries, & Koste, 2002). In other
words, decision-making is achieved by selecting the “best” al-
ternatives by comparison. It is crucial to take into account both
correlation between system requirements and also interactions
between the multidisciplinary subsystems. The candidate solu-
tions are generated based on a series of design specifications.
The goal of concept evaluation is to compare the generated con-
cepts against the requirements and to select the best one for
the detailed design and optimization stages. This process is il-
lustrated in Fig. 1.

3.3. Mechatronic multicriteria profile (MMP)

One important challenge faced during conceptual design is to
find the right set of criteria to concurrently evaluate and synthe-
size the designs. Generally, making design decisions with multi-
ple criteria is often performed using a Pareto approach. Without
the identification of the system performance parameters and
the full understanding of their co-influences, it is unrealistic to
expect achieving optimal solutions. In order to form an inte-
grated and systematic evaluation approach, the most significant
criteria for mechatronic design and their related sub-criteria
have been quantified by the authors in Mohebbi, Achiche, and
Baron (2018) to form an index vector of five normalized elements
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Figure 2: MMP and all sub-criteria.

called MMP as follows:

MMP = [MIQ, RS, CX, FX, CT]T (1)

where MIQ is the machine intelligence quotient, RS is the relia-
bility score, CX is the design complexity, FX is the flexibility, and
CT is the cost of manufacture and production. Figure 2 describes
the MMP with all corresponding sub-criteria. MMP will be used
in this paper. We also define xi as the parameters used in cal-
culating a criterion i , using which the criteria values are calcu-
lated using a function f and 0 ≤ f (xi ) ≤ 1. After determination
and normalizing each sub-criterion, and by using a linear sum-
mation of weighted factors, the value of each main criterion will
be assessed as follows:

f (xi ) =
n∑

j=1

w j ρ̄i , (2)

where ρ̄i is the calculated value for each sub-criterion, n is the to-
tal number of sub-criteria, and w j are the assigned-by-designer
weights associated with each sub-criterion.

3.4. Detailed design

Preliminary features of a structure and the architecture of the
mechatronic system are decided in the conceptual design stage
where the components and subsystems of the product are spec-
ified. The control scheme is also selected in this stage with-
out specifying its parameters. Subsequently, the calculation and
specification of design parameters are done in the detailed de-
sign stage. Some of the design parameters can be specified or

Figure 3: Proposed detailed design procedure.

tuned after the machine is built (real-time parameters) and
some others are not (non-real-time parameters). Regardless of
these categories, all design variables should be computed and
optimized in a concurrent and integrated manner concerning
multiple criteria that affect the performance of the system. We
previously proposed an integrated approach for the detailed
design of mechatronic systems formulated in a multiobjective
cross-disciplinary design optimization problem in which the de-
sign objectives of all subsystems are considered alongside the
corresponding constraints (Mohebbi et al., 2019). This approach
is summarized in Fig. 3.

4. Fuzzy Decision Support and Aggregation
4.1. Criteria aggregation

The problem of aggregating criteria functions to form overall de-
cision functions is of considerable importance in many disci-
plines. A primary factor in the determination of the structure
of such aggregation functions is the relationship between the
criteria involved. Choquet integral is a nonlinear fuzzy integral
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820 A fuzzy-based framework to support multicriteria design of mechatronic systems

Figure 4: Graphical illustration of (a) weighted sum and (b) Choquet integral.

that has been successfully used for the aggregation of criteria in
the presence of interactions. For mechatronics design and af-
ter quantifying all MMP elements and corresponding subsets,
an effective comparison algorithm is needed. A global concept
score (GCS) as a multicriteria evaluation index can be defined to
enable the designers to compare the feasible generated design
concepts. GCS can be expressed as follows:

GC S = S (m∗
1, m∗

2, . . . , m∗
n) .

m∏
i=1

g (mi ), (3)

where m∗
i are the normalized criteria values, S(.) represents an

aggregation function which, in this paper, is the Choquet inte-
gral, and g(mi ) indicates whether a design constraint has been
met (binary value).

4.2. Fuzzy measures and Choquet integrals

Choquet integral provides a weighting factor for each criterion,
and also for each subset of criteria. Using Choquet integrals is
a very effective way to measure an expected utility when deal-
ing with uncertainty, which is the case in design in general and
mechatronics design in particular. The main advantage of using
this technique over other methods, such as weighted mean, is
that by defining a weighting factor for each subset of criteria,
the interactions between multiple objectives and criteria can be
easily taken into account as well as their individual importance.
To help a better understanding of the proposed solution, we will
state some definitions in the following paragraphs.

Definition 1: The weighting factor of a subset of criteria is rep-
resented by a fuzzy measure on the universe N satisfying the
following fuzzy measure (μ) equations:

μ (φ) = 0, μ (N) = 1, (4)

A ⊆ B ⊆ N → μ (A) ≤ μ (B) , (5)

where A and B represent the fuzzy sets (Sugeno, 1975). Equa-
tion (4) represents the boundary conditions for fuzzy measures
while Equation (5) is also called the monotonicity property of
fuzzy measures.

Definition 2: Let μ be a fuzzy measure on vector X, whose n ele-
ments are denoted by x1, x2, . . . , xn. The discrete Choquet inte-
gral of a function f : X → R+ with respect to μ is defined by

Cμ ( f ) =
n∑

i=1

( f (xi ) − f (xi−1)) μ
(
A(i )

)
, (6)

where indices have been permuted so that 0 ≤ f (x1) ≤ f (x2) ≤
. . . ≤ f (xn) and A(i ) = {(i ), . . . (n)} , and A(n+1) = ∅ while f (x0) = 0.
Figure 4 gives a graphical illustration of Choquet integral com-
pared to a weighted sum while Table 1 shows the most com-
mon semantic interactions among criteria pairs and the corre-
sponding fuzzy measures. The difference between μ(i, j) and
μ(i ) + μ( j) reflects a degree of interaction between criteria i and
j. If μ (i, j) = μ(i ) + μ( j), there is no interaction between two cri-
teria; if μ(i, j) < μ(i ) + μ( j), there is a redundancy (positive cor-
relation); and when μ(i, j) > μ(i ) + μ( j), there is a synergy (neg-
ative correlation).

A lattice representation can be used for describing fuzzy
measures in the case of a finite number of criteria. Figure 5gives
an illustration when n = 4. Please note that for simplicity we
use μi j instead of μ({i, j}).

Definition 3: Let μ be a fuzzy measure. The interaction index
I (μ, i j) for any pair of criteria i and j is defined as follows
(Marichal, 2002):

I (μ, i j) =
∑

T⊆N\i, j

(n − t − 2)!t!
(n − 1)!

× [μ (T ∪ i j) − μ (T ∪ i ) − μ (T ∪ j) + μ (T )] , (7)

where T is a subset of criteria. The interaction index ranges in
[−1, 1].

Definition 4: The importance index φ(μ, i ) for a criterion i is
computed by the Shapley value (φ) (Marichal, 2002), which is de-
fined as

φ(μ, i ) =
∑

T⊆N\i

(n − t − 1)!t!
n!

[μ (T ∪ i ) − μ (T )]. (8)
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Table 1: Fuzzy interactions and measurements.

# Description of the interaction Fuzzy relation

I Negative correlation (synergy) μ(i, j) > μ(i ) + μ( j)

II Positive correlation (redundancy) μ(i, j) < μ(i ) + μ( j)

III Substitution μ(T )T⊆N\i, j < {μ(T ∪ i )
μ(T ∪ j)

	 μ(T ∪ i ∪ j)

IV Veto effect μ(T ) ≈ 0 if T ⊂ N, i /∈ T

V Pass effect μ(T ) ≈ 1 if T ⊂ N, i ∈ T

VI Complementary μ(T )T⊆N\i, j 	 {μ(T ∪ i )
μ(T ∪ j)

	 μ(T ∪ i ∪ j)

Figure 5: Lattice of the coefficients of a fuzzy measure (n = 4).

The Shapley value ranges between [0, 1] and represents a true
sharing of the total amount μ(N), since

n∑
i=1

φ (μ, i ) = μ (N) = 1. (9)

It is convenient to scale these values by a factor n, so that an
importance index greater than 1 indicates an attribute more im-
portant than the average.

Lemma 1. If the coefficients μ({i}) and μ({i, j}) are given for all
i, j ∈ N, then the necessary and sufficient conditions that μ is
a 2-additive measure are∑

{i, j}⊆N

μ ({i, j}) − (n − 2)
∑
i∈N

μ ({i}) = 1 (Normality) (10)

μ ({i}) ≥ 0, ∀i ∈ N
∀A ⊆ N, |A| ≥ 2, ∀k ∈ A,

(Non − negativity) (11)

∑
i∈A\{k}

(μ ({i, k}) − μ ({i})) ≥ (|A| − 2) μ ({k}) (Monotonicity). (12)

The expression of the 2-additive Choquet is

Cμ ( f ) =
n∑

i=1

φ (μ, i ) f (xi )

− 1
2

∑
{i, j}⊆N

I (μ, i j)
∣∣ f (xi ) − f (xj )

∣∣. (13)

Here, I (μ, i j) = 0 means criteria i and j are independent while
I (μ, i j) > 0 means there is a complementary among i and j and
that for the DM; both criteria have to be satisfactory in order to
get a satisfactory alternative. If I (μ, i j) < 0, then there is sub-

Figure 6: Fuzzy-based design of a mechatronic system for (a) concept evaluation, and (b) detailed design using a multiobjective optimization scheme.
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822 A fuzzy-based framework to support multicriteria design of mechatronic systems

stitutability or redundancy among i and j. This means that for
the DM, the satisfaction of one of the two criteria is sufficient to
have a satisfactory alternative. It is worthy to note that a posi-
tive correlation leads to a negative interaction index, and vice versa.
The fuzzy measures should be specified in such a way that the
desired overall importance and the interaction indices are satis-
fied.

4.3. Fuzzy-based design schemes

Using the formulations described in Sections 4.1 and 4.2 for ag-
gregation of interacting criteria, the procedure of conceptual and
detailed design can now be illustrated as Fig. 6a and b. In the con-
ceptual stage and using the assessed MMP, the fuzzy measures
are used to specify the weight of importance and interactions
among design criteria. Then, each design alternative is evalu-
ated by incorporating a Choquet aggregation function and a rank
on the elite set of concepts is provided to port to the detailed
design stage. In detailed design, a multiobjective optimization
process is considered to concurrently design for real-time and
non-real-time variables that correspond to the optimal behav-
ior of the overall system. In order to provide the optimization
algorithm with an interactive objective function that includes
all the design requirements from various disciplines, a cascade
Choquet integral-based aggregation is used. This takes into ac-
count all the interactions among design objectives and also their
relative importance in the design process.

5. Identification of Fuzzy Measures

As shown in Fig. 6, in both stages, identification of fuzzy mea-
sures is a crucial stage that should be carefully done to cor-
rectly reflect on the decision-making process. We now address
the problem of identification of (2n − 2) fuzzy measures, μ, tak-
ing into account the monotonicity relations between the coef-
ficients and the preferences specified by requirements and the
DMs. Four different approaches are essentially discussed here.

5.1. Identification using Sugeno measures

As the number of criteria, n, grows specifications of the fuzzy
measures using the aforementioned methods become more and
more difficult. Sugeno (1975) created a way to automatically gen-
erate the entire lattice based on just the singleton μi densities,
thus (2n − 2 − n) values. The Sugeno λ−fuzzy measure has the
following additional property: If A, B ∈ � and A ∩ B = ∅,

μ (A∪ B) = μ (A) + μ (B) + λμ (A)μ(B) . (14)

It is proven that a unique λ can be found by solving the fol-
lowing equation:

λ + 1 =
n∏

i=1

(1 + λμi ), −1 < λ < ∞, λ �= 0, (15)

where μi = μ {xi }. Thus, the n densities determine the 2n values
of a Sugeno measure. There are three cases with regard to the
singleton measures:

If
n∑

i=1

μi > μ(N), then − 1 < λ < ∞. (16)

If
n∑

i=1

μi = μ(N), then λ = 0. (17)

If
n∑

i=1

μi < μ(N), then λ > 0. (18)

Figure 7: Identification of fuzzy measures using Sugeno process.

The process of using the Sugeno method to identify the full
lattice of fuzzy measures is summarized in Fig. 7.

5.2. Identification based on learning data

Having a set of learning data in hand, the parameters of a Cho-
quet integral model can be identified by minimizing an error cri-
terion. Suppose that ( fk, yk), k = 1, 2, . . . , l are learning data
where fk = [ f k(x1), . . . , f k(xn)]T is an n-dimensional input vec-
tor, containing the degrees of satisfaction or quantified assess-
ment values of alternative (concept) k with respect to criteria 1
to n, and yk is the global evaluation of object k (not necessarily
an aggregated value). There must be at least l = n!

[( n
2 )!]2

(when n is

even) or l = n!
[ n − 1

2 ]![ n + 1
2 ]!

(when n is odd) sets of learning data (Gra-

bisch, Nguyen, & Walker, 2013). Then, one can try to identify the
best fuzzy measure μ∗ so that the squared error criterion (E) is
minimized (Grabisch, 1996).

E 2 =
l∑

k=1

[
Cμ

(
f k (x1) , . . . , f k (xn)

) − yk
]2

(19)

Under a quadratic program form, we have

min
[

E 2 =
(

1
2

utDu + ctu
) ]

, (20)

where u is a (2n − 2) dimensional vector containing all the coef-
ficients of the fuzzy measure μ, except for μ∅ = 0 and μN = 1,
as follows:

u = [[μi ] , [μi j ] , [μi jk] , [μi jkl ] , . . .]T
. (21)

It is important to note that the components of u are not in-
dependent of each other because fuzzy measures must satisfy a
set of monotonicity relations. Moreover, D is a symmetric (2n − 2)
dimensional matrix and c is a (2n − 2) dimensional vector. The
first set of constraints contains the measures monotonicity con-
straints described as follows:

Au + b ≤ 0, (22)

where matrix A is a n(2n−1 − 1) × (2n − 2) dimensional matrix
and b is a n(2n−1 − 1) vector defined by

b =

⎡
⎢⎣0, . . . , 0, −1, . . . , − 1︸ ︷︷ ︸

n

⎤
⎥⎦

T

. (23)

More precisely for Equation (19) we have:

Cμ ( fk) = ct
k .u + f k (x1) , (24)

where ck is a (2n − 2) dimensional vector containing the dif-
ferences f (xi ) − f (xi−1), i = 2, . . . , n, so that there are at most
(n − 1) non-zero terms in it, which are all positive. Accordingly,
we attain

c = 2
l∑

k=1

(
f k (x1) − yk

)
ck. (25)
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Figure 8: Identification of fuzzy measures using learning data and quadratic pro-
gramming.

Additionally, Dk is a (2n − 2) dimensional square matrix
where

D = 2
l∑

k=1

Dk = 2
l∑

k=1

ckcT
k . (26)

Thus, we can rewrite the program in Equation (20) as

min
[

E 2 = 2
l∑

k=1
uT ckcT

k u + 2
l∑

k=1
cT

k .u ( f k (x1) − yk)
]

Subj. to Au + b ≤ 0
. (27)

Since uT Du consists of a sum of squares, thus for all u ≥ 0,
uT Du ≥ 0 and D is positive semi-definite. The above quadratic
program has a unique (global) minimum since the criterion to
be minimized is convex. This solution can be a point or a con-
vex set in [0, 1]2n−2. This program can be solved by any stan-
dard method of quadratic optimization, although matrix D may
be ill-conditioned (rank < 2n − 2) since based on the definition of
vector ck, matrix D contains columns and rows of zeroes. Obvi-
ously, this effect will disappear if the number of training data
increases.

Now, we can take into account the decision maker’s prefer-
ences with regard to the importance of criteria and interactions
among criterion pairs as constraint relations.

μ (A∪ i ) − μ (A) ≥ 0, ∀i ∈ N, ∀A ∈ N\i (28)

Cμ ( f ) − Cμ

( ′
f
)

≥ δC (29)

φ (μ, i ) − φ (μ, j) ≥ δφ (30)

Constraints on I (μ, i j) (31)

The process of using learning data in addition to the designer’s
preferences to identify the fuzzy measures is summarized in
Fig. 8.

5.3. Identification based on fuzzy measure semantics
and learning data

To reduce the complexity and provide better guidelines for the
identification of measures, the combination of semantical con-
siderations with learning data can lead to a more efficient al-
gorithm. With this approach, the objective would be to mini-
mize the distance to the additive equidistributed fuzzy mea-
sure defined by μ j = 1/n. Consequently, instead of trying to
minimize the sum of the squared errors between model out-
put and data, we try to minimize the distance to the additive

Table 2: Linguistic representation of the relative importance of
criteria.

Relative importance Value

Same level 0.9 ≤ η ≤ 1.1
A is a little more important than B 1.1 ≤ η ≤ 1.3
A is more important than B 1.3 ≤ η ≤ 1.7
A is quite more important than B 1.7 ≤ η ≤ 1.9

Table 3: Linguistic representation of dependence between criteria.

Criteria dependence Value

Highly dependent λ = 0.0
Dependent 0.0 ≤ λ ≤ 0.5
A little dependent 0.5 ≤ λ ≤ 1.0
Independent λ = 1.0

Table 4: Linguistic representation of support between criteria.

Criteria synergy Value

High support γ = 1.0
Support 0.5 ≤ γ ≤ 1.0
A little support 0.0 ≤ γ ≤ 0.5

equidistributed measure set uo. Thus, we can have the follow-
ing quadratic form.

Min J = 1
2 (u − u0)T (u − u0)

Subj. to Au + b ≤ 0
(32)

Here, training data are no longer in the objective function, but
are used as the second set of constraints.

yk − δk ≤ ct
k.u + f (x1) ≤ yk + δk (33)

Moreover, the DM needs to express some preferences about the
fuzzy measures on sets A and B.

μ (A) ≤ ημ (B) (34)

If the DM considers a positive correlation (redundancy) be-
tween A and B, then μ(A∪ B) < μ(A) + μ(B) and this interaction
can be modeled by

μ (A∪ B) = μ (A) + λμ (B) , (35)

where μA ≥ μB and η defines the degree of the relative impor-
tance of A with respect to B. For the interactions between criteria
A and B, λ ∈ [0, 1] and A and B are fully dependent when λ = 0,
and independent when λ = 1. The correlation between A and B
can be modeled by

μ (A∪ B) = μ (A) + μ (B) + γ [1 − μ (A) − μ (B)] , (36)

where γ specifies the level of support between criteria pairs.
All these constraints based on the DM’s preferences can be used
to modify the initial monotonicity constraint by adding to the
initial A and b and form a new constraint as

A′u + b′ ≤ 0. (37)

In order to use Equations (32–36) for modeling the relations be-
tween criteria pairs, we define the proper linguistics as de-
scribed in Tables 2–4.
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Table 5: Design alternatives adopted from Mohebbi et al. (2016a).

Components Concept I Concept II Concept III Concept IV

Frame structure X-shape H-shape X-shape H-shape
Material AL AL Poly Poly
Motors Brushed DC Brushed DC Brushless DC Brushless AC
Motor encoder Optical Magnetic Optical Magnetic
Visual servo PBVS PBVS IBVS IBVS
Camera config Mono Stereo Stereo Mono
Motion control PID LQR PID LQR
Position sensor GPS + Accel Motion Cam GPS + Accel GPS + Accel
Battery Li-ion Li-poly Li-ion Li-poly

Table 6: Estimated design parameters for generated concepts.

Requirements Concept I Concept II Concept III Concept IV

Power (W) 450 500 350 400
Max inertia moment (kg.m2) 5E-3 5.2E-3 4E-3 4.5E-3
Bandwidth (Hz) 70 70 60 60
Payload (Kg) 0.5 0.5 0.6 0.6
Cost (unit) (normal) 0.8 1 0.7 0.7

6. Case Study: Conceptual Design of a
Vision-Guided Quadrotor Drone

Recently, the quadrotors are being deployed as highly maneuver-
able aerial robots that have the ability of easy hover, take off, fly,
and land in small and remote areas (Mohebbi, Achiche, & Baron,
2015). Recent technological advances in energy storage devices,
sensors, actuators, and information processing have boosted the
development of unmanned aerial vehicle platforms with signifi-
cant capabilities. Unmanned quadrotor helicopters are excellent
examples of highly coupled mechatronic systems where the dis-
ciplines of aerodynamics, structures, materials, flight mechan-
ics, and control are acting upon each other in a typical flight con-
dition. Moreover, the integration of vision sensors with robots
has helped solve the limitation of operating in non-structured
environments (Mohebbi, Keshmiri, & Xie, 2016b).

Here, the discussed fuzzy measure identification methods
are utilized in a conceptual design process using the MMP for
a vision-guided quadrotor unmanned aerial vehicle. From our
previous work (Mohebbi, Achiche, & Baron, 2016a), we have cho-
sen four concepts to study the proposed design method. Table
5 shows the design alternative and the corresponding subsys-
tems and components. Based on the material used, the frame
structure and subsystems selected for one specific concept, the
total mass, required power, payload, maximum allowable inertia
moment, force, and bandwidth can be also easily estimated. An
approximation of the total cost can also be calculated based on
the components and manufacturing process.Table 6 briefly gives
the results for the estimated values for the proposed concepts.

Ultimately, by using a set of intuitive Choquet fuzzy mea-
sures, the evaluations for all concepts and corresponding de-
sign criteria are listed in Table 7. Details of the criteria assess-
ment and calculations are thoroughly discussed and exempli-
fied in our previous work introducing the MMP (Mohebbi et al.,
2014a, 2016a). The fuzzy measures used in the previous study
were obtained intuitively by the authors and a group of 30 re-
searchers (all specialized in system design and mechatronics)
through a questionnaire. In this questionnaire, the participants
were asked to reflect their intuitive idea about the importance of

each criterion in designing a good mechatronic product in terms
of a score between 1 and 10. Moreover, the degree of correlation
between each pair of criteria or the effect of increasing crite-
rion i on criterion j was also asked and reflected in terms of a
score between −10 and 10. Then, the obtained values were trans-
formed into fuzzy measures that fit the requirements discussed
in Equations (4, 5, 10–12). These measures are shown in Table 8:

	 = [φ1, φ2, φ3, φ4, φ5]

= [0.2085, 0.2612, 0.1598, 0.1431, 0.2020] . (38)

We remind that in order to calculate a Choquet integral and
its corresponding measures, a permutation on the criteria val-
ues should be initially performed in such a way that 0 ≤ f (x1) ≤
f (x2) ≤ . . . ≤ f (xn). However, throughout our case study and to
avoid any confusion, we reshape the outputs for measures and
also importance indices at the end of the identification algo-
rithm so that the following order always persists:

	 = [φ1, φ2, φ3, φ4, φ5]

= [φMI Q , φRS, φC X, φF X, φCT ] . (39)

6.1. Identification using Sugeno measures

Based on Equations (14 and 15) for five criteria illustrated in Table
7, we have

λ + 1 = (λμ1 + 1) (λμ2 + 1) (λμ3 + 1) (λμ4 + 1) (λμ5 + 1)

− 1 < λ < ∞, λ �= 0, (40)

where for μi we use the values from Table 8. The solution of the
above equation yields λ = 0.0255 and consequently, we attain
the results for fuzzy measures listed in Table 9.

The fuzzy measures obtained by the Sugeno λ−method yield
the following importance indices:

	 = [φ1, φ2, φ3, φ4, φ5]

= [0.2221, 0.2422, 0.1718, 0.1617, 0.2020] . (41)

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/7/6/816/5891770 by guest on 22 O

ctober 2021



Journal of Computational Design and Engineering, 2020, 7(6), 816–829 825

Table 7: Concept evaluations for design alternatives (Mohebbi et al.,
2014a, 2016a).

MMP Concept I Concept II Concept III Concept IV

MIQ 0.84 0.84 1 1
RS 0.86 0.91 0.93 1
CX 0.85 0.69 0.93 0.89
FX 0.91 0.96 0.91 0.88
CT 1 0.78 0.94 0.91
GCSμ 0.89 0.83 0.96 0.94

6.2. Identification using a learning set

As mentioned before, in order to identify the fuzzy measures,
it is possible to employ a “learning set”—a number of objects
whose assessment is manually performed by the DM. Accord-
ing to Grabisch et al. (2013), the minimum number of data sets
we need to solve the squared error minimization program (20) is
equal to

l = n![ n − 1
2

]
!
[ n + 1

2

]
!

= 5![ 5 − 1
2

]
!
[ 5 + 1

2

]
!

= 10. (42)

Accordingly, we need to provide 10 sets of criteria evaluation
and corresponding GCSs. The vector of variables contains the
30 fuzzy measures and as for the monotonicity constraints de-
scribed in Equation (22) we have the following matrices:

A[75 × 30], u[30 × 1], b =

⎡
⎢⎣0, . . . , 0, −1, . . . , − 1︸ ︷︷ ︸

5

⎤
⎥⎦

T

[75 × 1]

, (43)

in which we describe all 75 monotonicity relations such as

μ1 ≤ μ12, . . . , μ5 ≤ μ45,

μ12 ≤ μ123, . . . , μ45 ≤ μ345,

μ123 ≤ μ1234, . . . , μ345 ≤ μ2345,

μ1234 ≤ 1, . . . , μ2345 ≤ 1.

(44)

In order to form the objective function from Equation (20),
we also need to form the matrix D and vector c, which have the
following format:

D[30 × 30], c[30 × 1], ck[30 × 1]

c = 2
10∑

k = 1
( f k (x1) − yk) ck,

(45)

D = 2
10∑

k=1

Dk = 2
10∑

k=1

ckcT
k , (46)

in which ck is a 30D vector containing the differences f (xi ) −
f (xi−1), i = 2, . . . , 5 so that there are at most four non-zero

terms in it, which are all positive. Consequently, we get

ck (5) = f k (x5) − f k (x4) ,

ck (15) = f k (x4) − f k (x3) ,

ck (25) = f k (x3) − f k (x2) ,

ck (30) = f k (x2) − f k (x1) ,

ck (i ) = 0, (∀i �= 5, 15, 25, 30) . (47)

Finally, the DM’s preferences can be taken into account using the
constraints listed in Table 10.

The above problem will be solved here using MATLAB
quadratic programming from the optimization toolbox and the
method of “interior-point-convex.” Table 11shows the resulting
values for the fuzzy measures.

The above results will lead to the following importance in-
dices:

	 = [φ1, φ2, φ3, φ4, φ5]

= [0.2145, 0.2535, 0.1701, 0.1597, 0.1967] . (48)

6.3. Identification based on fuzzy measure semantics
and learning data

The linguistics described in Tables 2–4 in addition to the mono-
tonicity conditions are translated into the constraints as the
DM’s preferences as described in Table 12.

This approach can also include an interactive dialogue be-
tween the DM and the fuzzy measure identifying system. Solu-
tions are presented to the DM, who can refine them by specifying
or modifying the relative importance and interaction between
criteria if he is not satisfied with the solution. As an example,
here we use the concept evaluation data from our previous work.
As for the additive equidistributed singleton fuzzy measures, we
have

M0 = [0.2 0.2 0.2 0.2 0.2] . (49)

Moreover, we use the 10 training data sets from the previous
section to form the following second set of constraints based
on Equation (37) with δk = 0.35 :

0.54 ≤ cT
1 u + 0.84 ≤ 1.24, 0.47 ≤ cT

6 u + 0.64 ≤ 1.17,

0.48 ≤ cT
2 u + 0.69 ≤ 1.18, 0.19 ≤ cT

7 u + 0.45 ≤ 0.89,

0.61 ≤ cT
3 u + 0.91 ≤ 1.31, 0.53 ≤ cT

8 u + 0.75 ≤ 1.23,

0.59 ≤ cT
4 u + 0.88 ≤ 1.29, 0.58 ≤ cT

9 u + 0.85 ≤ 1.28,

0.44 ≤ cT
5 u + 0.72 ≤ 1.14, 0.07 ≤ cT

10u + 0.35 ≤ 0.77,

(50)

where cT
k is a [1 × 30] vector and can be calculated from Equa-

tion (33), while for u we have

u[30 × 1] = [[μi ] , [μi j ] , [μi jk] , [μi jkl...] , . . .]T
. (51)

By combining all the constraints in Equation (50), Table 13 and
also the monotonicity constraints, we can formulate a new lin-
ear constraint as A′u + b′ ≤ 0 and solve the quadratic program

Table 8: Fuzzy measures for the conceptual design of a Quadrotor drone equipped with a visual servoing system.

μ1 = 0.23 μ12 = 0.45 μ13 = 0.47 μ14 = 0.34 μ15 = 0.51
μ123 = 0.61 μ2 = 0.29 μ23 = 0.52 μ24 = 0.42 μ25 = 0.56
μ124 = 0.60 μ135 = 0.69 μ3 = 0.17 μ34 = 0.35 μ35 = 0.33
μ125 = 0.67 μ145 = 0.67 μ245 = 0.73 μ4 = 0.16 μ45 = 0.41
μ134 = 0.63 μ234 = 0.68 μ345 = 0.49 μ235 = 0.62 μ5 = 0.22
μ1234 = 0.77 μ1235 = 0.84 μ1345 = 0.84 μ2345 = 0.78 μ1245 = 0.82
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Table 9: Fuzzy measures identified using Sugeno λ-measures.

μ1 = 0.22 μ12 = 0.4613 μ13 = 0.3910 μ14 = 0.3809 μ15 = 0.4211
μ123 = 0.6333 μ2 = 0.24 μ23 = 0.4110 μ24 = 0.4010 μ25 = 0.4412
μ124 = 0.6232 μ135 = 0.5930 μ3 = 0.17 μ34 = 0.3307 μ35 = 0.3709
μ125 = 0.6637 μ145 = 0.5828 μ245 = 0.6030 μ4 = 0.16 μ45 = 0.3608
μ134 = 0.5526 μ234 = 0.5727 μ345 = 0.5324 μ235 = 0.6131 μ5 = 0.20
μ1234 = 0.7959 μ1235 = 0.8366 μ1345 = 0.7554 μ2345 = 0.7756 μ1245 = 0.8264

Table 10: DM’s preferences on criteria relations.

Maximum separation of alternatives
Cμ( f ) − Cμ( f ′) ≥ δc ( δc = 0.05)

Preferences on the importance of criteria
φ2 − φ1 ≥∈ φ2 − φ5 ≥∈
φ1 − φ3 ≥∈ φ5 − φ3 ≥∈
φ1 − φ4 ≥∈ φ5 − φ4 ≥∈
φ2 − φ3 ≥∈ φ1 = φ5

φ2 − φ4 ≥∈ φ3 = φ4

Preferences on the interactions between criteria pairs
I (1.5) − I (1.3) ≥∈ I (4.5) − I (3.4) ≥∈
I (2.5) − I (2.3) ≥∈ I (2.4) = I (3.4)
I (1.3) − I (2.4) ≥∈ I (1.4) = I (3.5)

in Equation (32). Again, by using MATLAB quadratic program-
ming and the interior-point-convex algorithm, we attain the fol-
lowing results.

Accordingly, we get the following Shapley values:

	 = [φ1, φ2, φ3, φ4, φ5]

= [0.2085, 0.2612, 0.1598, 0.1431, 0.2020] . (52)

7. Discussion and Comparison

Figure 9 describes the evolution of the full lattice of the fuzzy
measure identified using the three methods discussed in this
paper. Sugeno measures are among the most widely used fuzzy

measures (Tahani & Keller, 1990). Using λ-measures is an ab-
stract and efficient way when there is not enough information
about DM’s preferences or the order of preference on alterna-
tives or interaction and importance indices. It can rapidly gener-
ate the entire lattice of fuzzy measures based on just the single-
ton densities. However, not all expert reasoning can be described
by these measures and guessing the μi values intuitively is not a
trivial process. In that case, this method can be also regarded as
an optimization problem with all the preferences as constraints.
Further information can be found in Lee and LeeKwang (1995)
since a complete identification process on λ- measures was not
in the scope of this paper.

The identification based on learning data that uses mini-
mization of the squared error needs only a global score, which
can be provided by a ranking of the acts through a suitable mech-
anism. Besides the fuzzy measure, the output also provides an
estimation of the model error. One important advantage of us-
ing this method is that having a proper optimization solver; it
always provides a solution, which fits the given global scores.
Moreover, the method does not need any information on the de-
cision strategy (importance and interaction). It is perfectly suit-
able for identifying hidden decision behavior. However, it may
temper with the concept rankings provided by the DM.

In the identification based on combined fuzzy semantics and
learning data, we need a ranking of the acts, not necessarily the
global scores, a ranking on the importance of the criteria, and
possibly some information on the interactions. There is no no-
tion of model error in this approach in the sense that either
there is a solution satisfying the constraints, or there is not.

Table 11: Results for fuzzy measures identified using a learning set.

μ1 = 0.3292 μ12 = 0.4502 μ13 = 0.6366 μ14 = 0.2985 μ15 = 0.6416
μ123 = 0.7983 μ2 = 0.2829 μ23 = 0.5137 μ24 = 0.5615 μ25 = 0.5332
μ124 = 0.4398 μ135 = 0.7296 μ3 = 0.1901 μ34 = 0.4698 μ35 = 0.1789
μ125 = 0.8048 μ145 = 0.6610 μ245 = 0.8620 μ4 = 0.2584 μ45 = 0.5167
μ134 = 0.6273 μ234 = 0.8137 μ345 = 0.5088 μ235 = 0.5446 μ5 = 0.2082
μ1234 = 0.8093 μ1235 = 0.9334 μ1345 = 0.8093 μ2345 = 0.8093 μ1245 = 0.8444

Table 12: DM’s preferences as linear constraints.

Relative importance of criteria
μ2 ≤ 1.3μ1 0.9μ4 ≤ μ3 ≤ 1.1μ4

μ1 ≤ 1.3μ4 0.9μ3 ≤ μ5 ≤ 1.1μ3

μ2 ≤ 1.7μ4 0.9μ5 ≤ μ1 ≤ 1.1μ5

μ2 ≤ 1.7μ3 0.9μ5 ≤ μ1 ≤ 1.1μ5

Dependence between criteria pairs
μ2 + 0.5μ3 ≤ μ23 ≤ μ2 + μ3 μ3 + 0.8μ4 ≤ μ34 ≤ μ3 + μ4

μ2 + 0.5μ4 ≤ μ24 ≤ μ2 + μ4 μ4 + 0.5μ5 ≤ μ45 ≤ μ4 + μ5

μ2 + 0.5μ5 ≤ μ25 ≤ μ2 + μ5

The synergy between criteria pairs
μ1 + μ4 + 0.3(1 − μ1 − μ4) ≤ μ14 ≤ μ1 + μ4 + 0.7(1 − μ1 − μ4)
μ3 + μ5 + 0.3(1 − μ3 − μ5) ≤ μ35 ≤ μ3 + μ5 + 0.7(1 − μ3 − μ5)

μ1 + μ2 ≤ μ12 ≤ μ1 + μ2 + 0.3(1 − μ1 − μ2)
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Table 13: Fuzzy measures identified using a learning set and design semantics.

μ1 = 0.3243 μ12 = 0.4860 μ13 = 0.6160 μ14 = 0.2441 μ15 = 0.6318
μ123 = 0.8198 μ2 = 0.2615 μ23 = 0.4741 μ24 = 0.5514 μ25 = 0.5090
μ124 = 0.4258 μ135 = 0.7174 μ3 = 0.1705 μ34 = 0.4618 μ35 = 0.1748
μ125 = 0.8307 μ145 = 0.6068 μ245 = 0.8540 μ4 = 0.2700 μ45 = 0.5354
μ134 = 0.5572 μ234 = 0.7854 μ345 = 0.5212 μ235 = 0.5446 μ5 = 0.2104
μ1234 = 0.7810 μ1235 = 0.9584 μ1345 = 0.7810 μ2345 = 0.7810 μ1245 = 0.8255

Figure 9: Identification of fuzzy measures using learning data and quadratic programming.

Table 14: GCSs calculated using the identified fuzzy measures.

Global concept scores (GCS)

Identification
method Concept 1 Concept 2 Concept 3 Concept 4

Questionnaire 0.89 0.83 0.96 0.94
Sugeno 0.90 0.86 0.92 0.95
QP-LD 0.87 0.81 0.90 0.96
QP-SLD 0.88 0.80 0.91 0.95

This method only requires a piece of ordinal information on the
alternative and more importantly does not violate the ranking
provided by the DM. However, the method ideally needs some
information on the decision strategy. For example, one may use
the method without any information on constraints but only the
ranking of the relations. This makes the space of feasible solu-
tions very big that the solution chosen may not have a real in-
terpretation in terms of decision strategy. This method is more
suitable when we need to define or build a decision strategy in
terms of importance and interaction.

Table 14 shows the calculated concept scores using the iden-
tified measures by the questionnaire, Sugeno method, quadratic
program based on learning data (QP-LD), and quadratic program
based on measure semantics and learning data (QP-SLD). The

GCSs calculated using the three methods proposed in this paper
choose a different concept as the designer’s decision compared
to the method that has used a questionnaire among designers
to identify fuzzy measures. Evidently, the order of the design al-
ternatives has been changed using these methods. The discrep-
ancy between the scores calculated based on the Sugeno method
is larger than the differences between the scores calculated us-
ing the QP-LD and QP-SLD methods. However, the order of the
alternatives remains the same.

In order to support the designers to choose a proper identi-
fication method, Table 15 provides a summary of the use case,
inputs from the decision maker, and advantages and shortcom-
ings of each identification process.

8. Conclusions

Mechatronic systems are a combination of cooperative mechan-
ical, electronics, and software components aided by various
control strategies. They are often highly complex, because of
the high number of their components, their multiphysical as-
pect, and the couplings between the different engineering do-
mains involved, which complexify the design task. Therefore, to
achieve a better design process as well as a better final product
more efficiently, these couplings need to be considered in the
early stages of the design process.
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Table 15: Specifications of the proposed fuzzy measure identification methods.

Questionnaire DM input 1) Survey questions
2) Analytical interpretation of the semantics

Advantages 1) Simple calculations
Shortcomings 1) Not suitable for large numbers of criteria

2) Time consuming
Use case 1) A limited number of criteria are involved in the design process

2) A sufficient number of design experts are available
Sugeno DM input 1) Accurate assignment of singleton measures (μi )

Advantages 1) Simple calculations
2) Fast process

Shortcomings 1) Inaccurate estimation of interaction indices
2) Unable to interpret the decision maker’s semantics

Use case 1) No information about the decision maker’s preferences on the interaction and importance of
coalitions of criteria is available

QP-LD DM input 1) Initial values for scores and rankings of the design alternatives
2) Preference information in terms of constraints on interaction and importance indices

Advantages 1) Does not require fuzzy measure values of any kind
2) Implementable in an automated algorithm

Shortcomings 1) Large data sets should be available when a large number of criteria are involved in the design
activity
2) Complex computation

Use case 1) Only the relative global scores on design alternatives are available
2) A data set from previous design cases or available databases is available

QP-SLD DM input 1) Preference information in terms of constraints on fuzzy measures
Advantages 1) Does not require scores and rankings of the design alternatives

2) Implementable in an automated algorithm
Shortcomings 1) Multiple parameters are involved in the optimization which require tuning
Use case 1) No information about the global scores and the rankings on design alternatives is available

2) Preferences are not expressed in terms of interaction and importance indices

The concept of the MMP has been previously introduced to
facilitate fitting the intuitive requirements for decision-making
in the presence of interacting criteria in conceptual design. The
MMP includes five main elements: machine intelligence, reliabil-
ity, flexibility, complexity, and cost. Each main criterion has sev-
eral sub-criteria. The design process using MMP includes a fuzzy
aggregation function based on Choquet fuzzy integrals that can
efficiently model the interdependencies between a subset of cri-
teria. However, the main difficulty of the Choquet method is the
identification of its fuzzy measures that exponentially increase
by the number of design objectives.

The objective of this study was to provide a framework to
support the designers with the identification of fuzzy measures
based on various available information and design preferences.
We discussed three different methods of fuzzy measure iden-
tification applied to a case study of the conceptual design of
a vision-guided quadrotor drone. These methods include us-
ing a Sugeno fuzzy model, a learning data set, and fuzzy se-
mantics. The results obtained from each method have been pre-
sented in the case study section and finally, a discussion on each
method and their applications was carried out. From the imple-
mentation and results, we infer that in the case that there is
not enough information about the design preferences or the in-
teraction and importance of coalitions of criteria, using Sugeno
λ-measures can be an abstract and efficient way. When only the
relative global scores on each design alternative are available,
the identification based on learning data is shown to be effective.
However, this method requires information about the DM prefer-
ences on the importance and interaction indices. The data sets
can be obtained from previous design cases or from an available
database. This suggests an interesting subject of future work
where the implementation of a web-based integrated platform

connecting various design projects would be explored. In the ab-
sence of the global scores, the method combining the fuzzy mea-
sure semantics and learning data can be used. This method calls
only for ordinal information on the alternatives and their impor-
tance of the criteria.
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