306 research outputs found

    A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing

    Full text link
    Cloud computing is a style of computing in which dynamically scalable and other virtualized resources are provided as a service over the Internet. The energy consumption and makespan associated with the resources allocated should be taken into account. This paper proposes an improved clonal selection algorithm based on time cost and energy consumption models in cloud computing environment. We have analyzed the performance of our approach using the CloudSim toolkit. The experimental results show that our approach has immense potential as it offers significant improvement in the aspects of response time and makespan, demonstrates high potential for the improvement in energy efficiency of the data center, and can effectively meet the service level agreement requested by the users.Comment: arXiv admin note: text overlap with arXiv:1006.0308 by other author

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    A comparison of resource allocation process in grid and cloud technologies

    Get PDF
    Grid Computing and Cloud Computing are two different technologies that have emerged to validate the long-held dream of computing as utilities which led to an important revolution in IT industry. These technologies came with several challenges in terms of middleware, programming model, resources management and business models. These challenges are seriously considered by Distributed System research. Resources allocation is a key challenge in both technologies as it causes the possible resource wastage and service degradation. This paper is addressing a comprehensive study of the resources allocation processes in both technologies. It provides the researchers with an in-depth understanding of all resources allocation related aspects and associative challenges, including: load balancing, performance, energy consumption, scheduling algorithms, resources consolidation and migration. The comparison also contributes an informal definition of the Cloud resource allocation process. Resources in the Cloud are being shared by all users in a time and space sharing manner, in contrast to dedicated resources that governed by a queuing system in Grid resource management. Cloud Resource allocation suffers from extra challenges abbreviated by achieving good load balancing and making right consolidation decision

    An optimized cost-based data allocation model for heterogeneous distributed computing systems

    Get PDF
    Continuous attempts have been made to improve the flexibility and effectiveness of distributed computing systems. Extensive effort in the fields of connectivity technologies, network programs, high processing components, and storage helps to improvise results. However, concerns such as slowness in response, long execution time, and long completion time have been identified as stumbling blocks that hinder performance and require additional attention. These defects increased the total system cost and made the data allocation procedure for a geographically dispersed setup difficult. The load-based architectural model has been strengthened to improve data allocation performance. To do this, an abstract job model is employed, and a data query file containing input data is processed on a directed acyclic graph. The jobs are executed on the processing engine with the lowest execution cost, and the system's total cost is calculated. The total cost is computed by summing the costs of communication, computation, and network. The total cost of the system will be reduced using a Swarm intelligence algorithm. In heterogeneous distributed computing systems, the suggested approach attempts to reduce the system's total cost and improve data distribution. According to simulation results, the technique efficiently lowers total system cost and optimizes partitioned data allocation

    Power Consumption and Carbon Emission Equivalent for Virtualized Resources – An Analysis: Virtual Machine and Container Analysis for Greener Data Center

    Get PDF
    The International Energy Agency (IEA) revealed that the worldwide energy-related carbon dioxide (CO2) situation has hit a historic high of 33.1 Giga tonnes (Gt) of CO2. 85% of the rise in emissions was due to China, India, and the United States. The increase in emissions in India was 4.8%, or 105 Mega tonnes (Mt) of CO2, with the increase in emissions being evenly distributed across the transportation and industrial sectors, according to Beloglazov et al (2011). Environmental contamination brought on by carbon emissions is harmful to the environment. As a result, there is an urgent need for the IT sectors to develop effective and efficient technology to eliminate such carbon emissions. The primary focus is on lowering carbon emissions due to widespread awareness of the issue

    Energy-efficient resource allocation scheme based on enhanced flower pollination algorithm for cloud computing data center

    Get PDF
    Cloud Computing (CC) has rapidly emerged as a successful paradigm for providing ICT infrastructure. Efficient and environmental-friendly resource allocation mechanisms, responsible for allocatinpg Cloud data center resources to execute user applications in the form of requests are undoubtedly required. One of the promising Nature-Inspired techniques for addressing virtualization, consolidation and energyaware problems is the Flower Pollination Algorithm (FPA). However, FPA suffers from entrapment and its static control parameters cannot maintain a balance between local and global search which could also lead to high energy consumption and inadequate resource utilization. This research developed an enhanced FPA-based energy efficient resource allocation scheme for Cloud data center which provides efficient resource utilization and energy efficiency with less probable Service Level Agreement (SLA) violations. Firstly, an Enhanced Flower Pollination Algorithm for Energy-Efficient Virtual Machine Placement (EFPA-EEVMP) was developed. In this algorithm, a Dynamic Switching Probability (DSP) strategy was adopted to balance the local and global search space in FPA used to minimize the energy consumption and maximize resource utilization. Secondly, Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) algorithm was developed. In this algorithm, Local Neighborhood Search (LNS) and Pareto optimisation strategies were combined with Clustering algorithm to avoid local trapping and address Cloud service providers conflicting objectives such as energy consumption and SLA violation. Lastly, Energy-Aware Multi-Cloud Flower Pollination Optimization (EAM-FPO) scheme was developed for distributed Multi-Cloud data center environment. In this scheme, Power Usage Effectiveness (PUE) and migration controller were utilised to obtain the optimal solution in a larger search space of the CC environment. The scheme was tested on MultiRecCloudSim simulator. Results of the simulation were compared with OEMACS, ACS-VMC, and EA-DP. The scheme produced outstanding performance improvement rate on the data center energy consumption by 20.5%, resource utilization by 23.9%, and SLA violation by 13.5%. The combined algorithms have reduced entrapment and maintaned balance between local and global search. Therefore, based on the findings the developed scheme has proven to be efficient in minimizing energy consumption while at the same time improving the data center resource allocation with minimum SLA violation

    免疫学的および進化的アルゴリズムに基づく改良された群知能最適化に関する研究

    Get PDF
    富山大学・富理工博甲第175号・楊玉・2020/3/24富山大学202

    Energy-efficient Nature-Inspired techniques in Cloud computing datacenters

    Get PDF
    Cloud computing is a systematic delivery of computing resources as services to the consumers via the Internet. Infrastructure as a Service (IaaS) is the capability provided to the consumer by enabling smarter access to the processing, storage, networks, and other fundamental computing resources, where the consumer can deploy and run arbitrary software including operating systems and applications. The resources are sometimes available in the form of Virtual Machines (VMs). Cloud services are provided to the consumers based on the demand, and are billed accordingly. Usually, the VMs run on various datacenters, which comprise of several computing resources consuming lots of energy resulting in hazardous level of carbon emissions into the atmosphere. Several researchers have proposed various energy-efficient methods for reducing the energy consumption in datacenters. One such solutions are the Nature-Inspired algorithms. Towards this end, this paper presents a comprehensive review of the state-of-the-art Nature-Inspired algorithms suggested for solving the energy issues in the Cloud datacenters. A taxonomy is followed focusing on three key dimension in the literature including virtualization, consolidation, and energy-awareness. A qualitative review of each techniques is carried out considering key goal, method, advantages, and limitations. The Nature-Inspired algorithms are compared based on their features to indicate their utilization of resources and their level of energy-efficiency. Finally, potential research directions are identified in energy optimization in data centers. This review enable the researchers and professionals in Cloud computing datacenters in understanding literature evolution towards to exploring better energy-efficient methods for Cloud computing datacenters

    Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

    Get PDF
    The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence reduces the energy consumption in a cloud data centre. VM placement plays an important part in the consolidation of the VMs. The researchers have developed various algorithms for VM placement considering the optimised energy consumption. However, these algorithms lack the use of exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis relating to energy optimisation. The comparisons are made against the existing honeybee (HB) algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the participating algorithms confirm that the proposed HCMFF is more efficient than the other algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee algorithm, 6% less than HCT algorithm and 2% less than original firefly. The usage of the appropriate algorithm can help in efficient usage of energy in cloud computing

    A review of methods for resource allocation and operational framework in cloud computing

    Get PDF
    The issue of management and allocation of resources in cloud computing environments, according to the breadth of scale and modern technology implementation, is a complicated issue. Issues such as: the heterogeneity of resources, resource dependencies to each other, the dynamics of the environment, virtualization, workload diversity as well as a wide range of management objectives of cloud service providers to provide services in this environment. In this paper, first, the description of cloud computing environment and related issues have been reported. According to the performed studies, challenges such as: the absence of a comprehensive management for resources in the cloud environment, the method of predicting the resource allocation process, optimum resource allocation methods to reduce energy consumption and reducing the time to access resources and also implementation of dynamic resources allocation methods in the mobile cloud environments, have been addressed. Finally, with regard to the challenges, some recommendations to improve the process of allocation of resources in a cloud computing environment is has been proposed
    corecore