271 research outputs found

    Extrapolate: generalizing counterexamples of functional test properties

    Get PDF
    This paper presents a new tool called Extrapolate that automatically generalizes counterexamples found by property-based testing in Haskell. Example applications show that generalized counterexamples can inform the programmer more fully and more immediately what characterises failures. Extrapolate is able to produce more general results than similar tools. Although it is intrinsically unsound, as reported generalizations are based on testing, it works well for examples drawn from previous published work in this area

    Proceedings of the ACM SIGPLAN Workshop on Approaches and Applications of Inductive Programming (AAIP 2009)

    Get PDF
    Inductive programming is concerned with the automated construction of declarative, often functional, recursive programs from incomplete specifications such as input/output examples. The inferred program must be correct with respect to the provided examples in a generalising sense: it should be neither equivalent to them, nor inconsistent. Inductive programming algorithms are guided explicitly or implicitly by a language bias (the class of programs that can be induced) and a search bias (determining which generalised program is constructed first). Induction strategies are either generate-and-test or example-driven. In generate-and-test approaches, hypotheses about candidate programs are generated independently from the given specifications. Program candidates are tested against the given specification and one or more of the best evaluated candidates are developed further. In analytical approaches, candidate programs are constructed in an example-driven way. While generate-and-test approaches can -- in principle -- construct any kind of program, analytical approaches have a more limited scope. On the other hand, efficiency of induction is much higher in analytical approaches. Inductive programming is still mainly a topic of basic research, exploring how the intellectual ability of humans to infer generalised recursive procedures from incomplete evidence can be captured in the form of synthesis methods. Intended applications are mainly in the domain of programming assistance -- either to relieve professional programmers from routine tasks or to enable non-programmers to some limited form of end-user programming. Furthermore, in the future, inductive programming techniques might be applied to further areas such as supporting the inference of lemmata in theorem proving or learning grammar rules. Inductive automated program construction has been originally addressed by researchers in artificial intelligence and machine learning. During the last years, some work on exploiting induction techniques has been started also in the functional programming community. Therefore, the third workshop on |Approaches and Applications of Inductive Programming| took place for the first time in conjunction with the ACM SIGPLAN International Conference on Functional Programming (ICFP 2009). The first and second workshop were associated with the International Conference on Machine Learning (ICML 2005) and the European Conference on Machine Learning (ECML 2007). AAIP´09 aimed to bring together researchers from the functional programming and the artificial intelligence communities, working in the field of inductive functional programming, and advance fruitful interactions between these communities with respect to programming techniques for inductive programming algorithms, the identification of challenge problems and potential applications. For everybody interested in inductive programming we recommend to visit the website: www.inductive-programming.org

    The use of proof plans in tactic synthesis

    Get PDF
    We undertake a programme of tactic synthesis. We first formalize the notion of a tactic as a rewrite rule, then give a correctness criterion for this by means of a reflection mechanism in the constructive type theory OYSTER. We further formalize the notion of a tactic specification, given as a synthesis goal and a decidability goal. We use a proof planner. CIAM. to guide the search for inductive proofs of these, and are able to successfully synthesize several tactics in this fashion. This involves two extensions to existing methods: context-sensitive rewriting and higher-order wave rules. Further, we show that from a proof of the decidability goal one may compile to a Prolog program a pseudo- tactic which may be run to efficiently simulate the input/output behaviour of the synthetic tacti

    A supposedly fun thing i may have to do again : a HOAS encoding of Howe's method

    Get PDF
    We formally verify in Abella that similarity in the call-by-name lambda calculus is a pre-congruence, using Howe\u2019s method. This turns out to be a very challenging task for HOAS-based systems, as it entails a demanding combination of inductive and coinductive reasoning on open terms, for which no other existing HOAS-based system is equipped for. We also o er a proof using a version of Abella supplemented with predicate quantification; this results in a more structured presentation that is largely independent of the operational semantics as well of the chosen notion of (bi)similarity. While the end result is significantly more succinct and elegant than previous attempts, the exercise highlights some limitations of the two-level approach in general and of Abella in particular

    Progress Report : 1991 - 1994

    Get PDF

    A Deductive Verification Framework for Circuit-building Quantum Programs

    Full text link
    While recent progress in quantum hardware open the door for significant speedup in certain key areas, quantum algorithms are still hard to implement right, and the validation of such quantum programs is a challenge. Early attempts either suffer from the lack of automation or parametrized reasoning, or target high-level abstract algorithm description languages far from the current de facto consensus of circuit-building quantum programming languages. As a consequence, no significant quantum algorithm implementation has been currently verified in a scale-invariant manner. We propose Qbricks, the first formal verification environment for circuit-building quantum programs, featuring clear separation between code and proof, parametric specifications and proofs, high degree of proof automation and allowing to encode quantum programs in a natural way, i.e. close to textbook style. Qbricks builds on best practice of formal verification for the classical case and tailor them to the quantum case: we bring a new domain-specific circuit-building language for quantum programs, namely Qbricks-DSL, together with a new logical specification language Qbricks-Spec and a dedicated Hoare-style deductive verification rule named Hybrid Quantum Hoare Logic. Especially, we introduce and intensively build upon HOPS, a higher-order extension of the recent path-sum symbolic representation, used for both specification and automation. To illustrate the opportunity of Qbricks, we implement the first verified parametric implementations of several famous and non-trivial quantum algorithms, including the quantum part of Shor integer factoring (Order Finding - Shor-OF), quantum phase estimation (QPE) - a basic building block of many quantum algorithms, and Grover search. These breakthroughs were amply facilitated by the specification and automated deduction principles introduced within Qbricks
    corecore