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Abstract
We formally verify in Abella that similarity in the call-by-name
lambda calculus is a pre-congruence, using Howe’s method. This
turns out to be a very challenging task for HOAS-based systems,
as it entails a demanding combination of inductive and coinductive
reasoning on open terms, for which no other existing HOAS-based
system is equipped for. We also offer a proof using a version of
Abella supplemented with predicate quantification; this results in
a more structured presentation that is largely independent of the
operational semantics as well of the chosen notion of (bi)similarity.
While the end result is significantly more succinct and elegant than
previous attempts, the exercise highlights some limitations of the
two-level approach in general and of Abella in particular.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal definitions and theory—semantics; F.4.1 [Mathe-
matical Logic]: Lambda Calculus and Related Systems—Mechanical
theorem proving, Proof theory; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving—Deduction, Inference engines,
logic programming, meta theory

General Terms Languages, Verification

Keywords Higher order abstract syntax; Co-induction; Similarity
in the lambda calculus; Howe’s method; Abella; Predicate quantifi-
cation.

1. Introduction
Howe’s method [14, 15] is a remarkably flexible syntactic tech-
nique to show the congruence properties of (coinductively de-
fined) functional program equalities, in particular in the presence
of higher-order functions. In fact, an equality between programs
shall better be not only an equivalence relation, but also compatible,
i.e. it should respect the way programs are constructed. This feature
allows equational reasoning to be compositional. A very nice and
recent introduction to Howe’s method for the untyped λ-calculus
can be found in [25].

However, the present paper is not concerned about formally
verifying the equivalence of concrete code fragments, for which
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more powerful techniques are now available, and for much more
interesting programming languages than call-by name λ-calculus,
see for example [16]. I am interested in formally verifying the
correctness of Howe’s method itself, not because I think it is flawed
– it is not, as mechanically first shown in [2] – but because it is a
very demanding benchmark for systems wishing to elegantly and
effectively formalize the meta-theory of programming languages.
More, I argue, than the useful, but by design quite simple examples
in [7] and exercising different features than the by now infamous
POPLMark challenge [3]. But, if this has already been done, as
in the aforementioned [2], what is the fuss, one may ask. The
point is in the elegantly and effectively qualifiers. The brute force
approach using De Bruijn’s indexes of [2], as I shall touch upon in
Section 6, simply does not scale and in no way can be considered a
springboard for more interesting languages and properties. In fact,
even the mild generalization to the polymorphic λ-calculus proved
to be too painful and lead to the development of the Hybrid tool
[8].

These, of course, are not new observations: more than twenty
years of research have provided us with alternatives to DB indexes,
the prominent one, given my pedigree, being higher-order abstract
syntax (HOAS). Or have they? Howe’s method turns out to be a
very challenging task for HOAS systems as well, as it entails a
rare combination of inductive and coinductive reasoning over open
terms, for which only one existing HOAS-based system seems to
be equipped: Abella [10] 1.

This paper offers two (related) formalizations of Howe’s method
as presented in [24]; the first one basically refines and replays in
Abella the proof outlined by Pitts in [20], which had been addressed
in Hybrid [8]. The second one uses what we informally refer to
as ∀pAbella, a version of Abella that permits predicate quantifi-
cation, available as branch 1.3.6-dev from Abella’s current main-
tainer, Kaustuv Chaudhuri. A word of caution: we do not have yet
a consistency proof for this logic, although Alwen Tiu (personal
communication), our cut elimination specialist in residence, is pos-
itive about that2. In any case, predicate quantification allows us to
encode Howe’s method in its generality [15], making it independent
of the operational semantics and of the very notion of (bi)similarity.

While in both cases the end result is significantly more succinct
and, especially the one using ∀pAbella, more elegant than the
previous attempt, the exercise highlights some limitations of the
two-level approach in general [19] and of Abella in particular,
which can be of general interests for logical frameworks designers.

1 The competition, in truth, out there being rather scarce:
Twelf/Delphin/Beluga do not support coinduction so far and Hybrid
only partially supports reasoning over open terms [7].
2 Note that the lack of a published proof of consistency does not seem to
have prevented the use of systems such as Isabelle/HOL and Coq, not to
name names.
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For the author of this paper, the verification of Howe’s method
was also a piece of unfinished business. Indeed, some 10 years ago
I co-authored a workshop paper [20], which purported to be the
first HOAS encoding of Howe’s proof. Somewhat to my embar-
rassment, the “proof” turned out to be unsatisfactory, not just for
the reasons we were aware of and mentioned in the paper: the repre-
sentation not being as adequate as it should be – this was one-level
Hybrid [1], after all – and the overhead needed to reason about
open terms, which, naively, I thought I could completely eliminate
by embracing the two-level architecture. The main culprit lied in-
stead in the proof of the substitutivity property for the Howe rela-
tion never being finished3. And understandably so, as it turned out
to be a major stumbling block for the present development as well.
It is with a sense of relief that I offer the present paper as a way to
make amends for the previous incomplete attempt.

The contributions of this paper are thus a “full HOAS” proof of
Howe’s method in two variants and probably the largest develop-
ment in Abella to date, consisting each of around 50 theorems. At
the same time I give some evidence, if any was needed, of the use-
fulness of ∀pAbella. On a secondary note, I describe a couple of
folk techniques to get around some of Abella’s (hopefully current)
limitations and I suggest some improvements, so that the next time
I will take on Howe’s method, if I choose to, it will be a breeze.

2. Howe’s method
Although this is not the main topic of the paper, some background
on program equivalence may be in order. Suppose we want to say
when two programs (two closed terms) have the same behavior. A
well known such relation is Morris-style contextual equivalence: m
and n are equivalent when, if inserted in any larger program frag-
ment (context), both larger programs evaluate to the same value, or
equivalently both terminate. While this notion of program equiva-
lence is valuable and intuitive, it is indeed difficult to reason about
its meta-theoretical properties, mainly due to the quantification on
every possible context. Bisimilarity has emerged as a more man-
ageable, yet, in this setting, equivalent idea. Roughly, m and n are
bisimilar if whenever m evaluates to a value, so does n, and all the
subprograms of the resulting values also bisimilar, and vice versa.
We will write m ≈◦σ n to denote that m and n have the same behavior
at type σ and define as: let Rσ be a family of typed binary relations
on programs. Define a new binary relation by cases on types by
setting, for example at σ ⊃ σ′, m Φ(Rσ⊃σ′ ) n just in case when-
ever m ⇓ λ x. p for any p, there exists a q such that n ⇓ λ y. q and
for every r:σ, p[r/x] is Rσ′ -related to q[r/y]; analogously when
n ⇓ λ y. q. If Rσ is a post fixed point, then m Rσ n entails that
m Φ(Rσ) n. As we want the relation ≈◦σ to characterize “all pos-
sible behaviors”, we take ≈◦σ as the greatest relation Rσ which is
a post-fixed point of Φ, that is, bisimilarity is the set coinductively
defined by Φ. This yields a co-induction principle, which can be
set-theoretically characterized by the following rule:

∃S : a ∈ S S ⊆ Φ(S )
CI

a ∈ gfp(Φ)
Using this principle, it is a matter of routine to show that bisim-
ilarity is an equivalence relation. On the other hand, establishing
the equivalence of specific programs requires providing the cor-
rect bisimulation S and this may be arduous. Equational reasoning
would be helpful and this is why it is crucial to establish bisimula-
tion to be a congruence.

Now, to stay closer to our proof, let me drop the symmetry part
and limit myself to similarity and pre-congruence. I will also focus

3 Not that we were not upfront about it: “ Moreover, the proof development
is not complete [. . . ] and there are a small number of lemmas which are
currently postulated rather than proved.” Page 2 of [20]

on an inherently trivial language, the simply-typed λ-calculus with
units: everything being strongly normalizable, similarity may as
well be defined by induction on types, the reader will object. This
is indeed true; we need to add at least (lazy) lists to make similarity
coinductively interesting4.

Recapping, we define similarity as the greatest fix point of this
coinductive

Definition 1 (Applicative simulation).

• m 4σ⊃σ′ n iff whenever m ⇓ λ x. p for any p:σ, there exists a
q:σ such that n ⇓ λ y. q and for every r:σ, p[r/x] 4σ′ q[r/y];
• m 4> n iff m ⇓ 〈〉 entails n ⇓ 〈〉.

Let me also recall that Linc-like logics, and so Abella, adopt
a proof-theoretical reading of the coinduction rule, which in this
instance would read as a right introduction rule for coinductively
defined predicates, e.g., in the (interesting) case of simulation:
Γ ` m S n u S v, u ⇓ λ x. p ` ∃q, v ⇓ λ y. q ∧ ∀r:σ, p[r/x] S q[r/y]

CIR
Γ ` m 4σ⊃σ′ n

Some further definitions: a (typed) pre-congruence is a compat-
ible transitive relation Rσ, i.e., such that it respects the way λ-terms
are constructed:

(C1) Γ, x:σ ` x Rσ x;

(C2) Γ, x:σ ` m Rσ′ n entails Γ ` (λx. m) Rσ⊃σ′ (λx. n);

(C3) Γ ` m1 Rσ⊃σ′ n1 and Γ ` m2 Rσ n2 entails Γ ` (m1 m2)Rσ′ (n1 n2);

Because of the presence of variable-binding operators, we have
switched to typed relations over open terms, that is families of bi-
nary relations indexed by variable typing Γ in addition to depending
on types σ. We say that a relation is substitutive if

(Sub) Γ, y:σ ` mRσ′ m′ and Γ ` nRσ n′ entails Γ ` m[n/y]Rσ′ m′[n′/y].

Some other properties are admissible: a compatible relation is re-
flexive and typed relations enjoy weakening (or monotonicity):

(Mon) Γ ` m Rσ n and Γ ⊆ Γ′ entails Γ′ ` m Rσ n.

Moreover, if Rσ is substitutive and reflexive, then it is also closed
under substitution:

(Cus) Γ, y:σ ` m Rσ′ m′ and · ` n : σ entails Γ ` m[n/y] Rσ′ m′[n/y].

Our aim is to show that similarity is a pre-congruence, but Def. 1
applies only to closed terms. It is therefore customary to extend
similarity to open terms via instantiation. For Γ = x1:σ1, . . . , xn:σn,
define

Γ ` m 4◦σ m′ iff for all i and closed pi:σi, m[pi/xi] 4σ m′[pi/xi]

Now, it is easy to show that open similarity is a pre-order and hence
(C1) and transitivity hold. Further, (C2) also holds, since simulation
satisfies

λ x.m 4σ⊃σ′ λ x. n iff for all p:σ, m[p/x] 4σ′ n[p/x]

However, a direct attempt to prove pre-congruence of open sim-
ilarity breaks down when dealing with (C3), for which one needs
(Sub). In fact, while open similarity is by construction closed under
substitution, it is not obvious that it is substitutive. Howe’s idea was
to introduce a candidate relation 4H (depicted in Fig. 1), which

4 Alternatively, one could stick to the untyped λ-calculus as in [25], where
there is no way to define applicative similarity inductively. Further, the
machinery to handle PCF with lazy lists following [24] is exactly what I am
going to describe here; however, in the phase of proof exploration, dealing
with the plethora of inductive cases generated by a richer language, being
Abella strictly a proof-checker, would have made my life miserable. Now
that the road is clear, I foresee no problem in treating a non trivial language.
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Γ ` 〈〉 4◦> n
ep

Γ ` 〈〉 4H> n

Γ, x:σ ` x 4◦σ n
var

Γ, x:σ ` x 4Hσ n

Γ, x:σ ` m 4Hσ′ m′ Γ ` λx. m′ 4◦σ⊃σ′ n
f un

Γ ` λx. m 4Hσ⊃σ′ n

Γ ` m1 4
H

σ⊃σ′ m′1 Γ ` m2 4
H
σ m′2 Γ ` m′1 m′2 4

◦
σ′ n

app
Γ ` m1 m2 4

H

σ′ n

Figure 1. Howe’s relation

• contains (open) similarity,
• can be shown to be “almost” a substitutive pre-congruence, i.e.,

being semi-transitive, see (1),

and then to prove that it does coincide with similarity.
The informal proof consists of several lemmata:

1. Semi-transitivity: the composition of the Howe relation with
open similarity is contained in the former. The proof goes by
case analysis using transitivity of open similarity.

2. Howe is reflexive. Induction on typing, using reflexivity of open
similarity.

3. Compatibility: (C2) and (C3) hold, an easy consequence of (2).

4. Open similarity is contained in Howe, which follows immedi-
ately from (1) and (2).

5. The Howe relation is substitutive. By induction on the first
premise, using (1) and (Cus) of open similarity.

6. The Howe relation “mimics” the simulation conditions:
• If λx. m 4H

σ⊃σ′
n, then n ⇓ λx. m′ and for every q:σ we have

m[q/x] 4H
σ′

m′[q/x]. This is proven first by inversion on the
Howe relation and similarity. Then apply semi-transitivity
and substitutivity of Howe.
• If 〈〉 4H> n, then n ⇓ 〈〉.

7. (“downward closure”) If p 4Hσ q and p ⇓ v, then v 4Hσ q.
Induction on evaluation, and inversion on Howe and simulation,
with an additional case analysis on v.

8. p 4Hσ q entails p 4σ q. By coinduction, using the obvious
invariant, point (6) and (7).

Once all of these properties have been proved, we are ready for the
main result:

Theorem 2. Γ ` p 4Hσ q iff Γ ` p 4◦σ q

Proof Right to left is point (4) above. Conversely, proceed by in-
duction on Γ using (8) for the base case and closure under substitu-
tion for the step.

Corollary 3. Open similarity is a pre-congruence.

3. Encoding in Abella
I assume familiarity with the HOAS approach to representing ob-
ject logics (OL), for which many sources are available, e.g. [11].
I also will not motivate the two-level architecture, but I will pay
attention at which level judgments are defined.

We start with encoding the static and dynamic semantics of
our OL language, which is carried out in the specification logic
(SL). This is standard, so we comment no further, except to refer to
Section 5 for why we need the is ty judgment.

value (abs M).
value ep.

eval C C :- value C.
eval (app F A) C :- eval F (abs M), eval (M A) C.
is_ty (arr S S’) :- is_ty S, is_ty S’.
is_ty top.

of (app F A) S :- of F (arr U S), of A U.
of (abs M) (arr S U) :- is_ty S,

pi x\ (of x S => of (M x) U).
of ep top.

We then establish some classic properties such as determinism of
evaluation, value soundness and subject reduction in the usual very
neat way that HOAS permits. We exemplify the former just to make
a point about Abella’s concrete syntax.

Theorem eval_det: forall E C1 C2,
{eval E C1} -> {eval E C2} -> C1 = C2.

Provability in the SL is denoted by curly brackets, so the statement
reads: “if there is a (SL) derivation of eval E C1 and of eval
E C2, then C1 and C2 can be proven to be the same value in the
meta-logic” (ML). The proof goes by induction on the height of the
first derivation. Note that implication and universal quantification
in the ML are denoted by -> and forall, while in the SL by
:- and pi, where x\ F is concrete syntax for Abella’s lambda
abstraction. For the sake of brevity from now on we will suppress
the outermost forall quantification, unless there are interesting
quantifier alternations and use the abbreviation Thm.

The OL typing context is translated into a SL context, for which
we define a context predicate ctx that reifies the informal standard
grammar:

Γ ::= · | Γ, x:σ
This is adequately and succinctly encoded via inductive definitions
in the ML, sporting nominal abstraction, more commonly known
as “nabla in the head” [12]. We also introduce a predicate that
recognizes when a term is a bound variable.

Define ctx: olist -> prop by
ctx nil ;
nabla x, ctx (of x S :: L) := {is_ty S} /\ ctx L.

Define name : tm -> prop by
nabla x, name x.

Because context predicates are inductively defined, lemma such
as the following are ubiquitous, but have very easy stereotyped
inductive proofs.

Thm ctx_member: ctx L -> member (of X S) L ->
name X /\ {is_ty S}.

So far, nothing controversial. Looking ahead, the candidate re-
lation in Fig. 1 is any HOAS fan’s wildest dream. It begs to be
formalized as a third order hypothetical judgments. Further, it is
substitutive, which should have a neat proof such as the one in the
Abella library for parallel reduction in the Church-Rosser theorem:
this points to a SL encoding, where the fun case would fold into
itself the var case like that:
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howe (abs M) N (arr S S’) :-
(pi x\ (pi Q\ howe x Q S :- sim x Q S) =>

sigma M’\ howe (M x) (M’ x) S’,
sim (abs M’) N (arr S S’)).

There are two problems with this approach, one minor, the other
much more serious. Firstly, Abella’s SL is currently restricted to
second-order logic and does not further allow (contrary to λProlog)
existentials in the scope of an implication. We can get around
this by rewriting the relevant clauses introducing an undefined
judgment, say hassn, as a place-holder for the var case and an
additional one hbody to code up the existential:

howe (abs M) N (arr S S’):-
(pi x\ hassn x S => hbody (M x) N (arr S S’).

howe X M S :-
hassn X S, sim X M S.

hbody (M X) N (arr S S’):-
howe (M X) (M’ X) S’,
sim (abs M’) N (arr S S’).

This is not pretty, but seems viable. The more pressing problem
is that the candidate relation depends on the notion of simulation
and the latter, being coinductively defined, has to live at the ML
level, at least in Abella’s official architecture. And if a judgment
calls anything at the meta-level, then it must be at the meta-level.
In other terms, once you go to the “dark side”, there is no turning
back. The connection between the two levels is “one way” only:
the specification-level can never look outside of itself, although
the meta-level may look at the specification-level, since the latter
is embedded in the former5. Thus, we have not much choice in
formalizing the candidate relation at the ML.

Back to simulation. Here is a first attempt:

CoDefine sim : tm -> tm -> ty -> prop by
sim M1 M2 (arr S S’) :=

(forall M, {eval M1 (abs M)} ->
exists M’ , {eval M2 (abs M’)} /\
(forall x, {of x S} -> sim (M x) (M’ x) S’));

...

Consider now reflexivity of simulation: ∀mσ,m 4σ m. The infor-
mal proof goes by coinduction, followed by a case analysis on σ.
However, our meta-logic does not have a notion of recursion on in-
dividuals, just on predicates, differently from type-theoretic logical
frameworks such as Twelf where the two things are identified. We
have to simulate this relationally via judgments embodying regu-
lar types. Hence the judgment is ty. So, in Abella we state the
theorem as follows:

Thm sim_refl_ty: {is_ty S} -> sim M M S.

Now the proof mirrors the informal situation; first apply coinduc-
tion and then invert on is ty S to obtain the relevant sub-cases.
But here is the rub: every time we use this result, which is often
enough, we need to show that S is indeed a type. We are faced with
the need either to make every relevant theorem using reflexivity of
simulation hypothetical on the typing annotation, or have those an-
notations be derivable. However, the first approach is not general
enough, since deep in the induction there may be type obligations
stemming from existentials – cf. the app case of the Howe relation
(Fig. 1) – that we will not be able to discharge.

What we have overlooked is that mathematical judgments such
as typed similarity yield by construction:

m1 4σ m2 =⇒ mi : σ (1)

Hence, we revise the definition of simulation so that the above
immediately holds:

sim M1 M2 (arr S S’) :=
{of M1 (arr S S’)} /\ {of M2 (arr S S’)} /\

5 See Section 7 for some speculation on how to overcome this.

(forall M, {eval M1 (abs M)} ->
exists M’, {eval M2 (abs M’)} /\
(forall x, {of x S} -> sim (M x) (M’ x) S’));

sim N N’ top :=
{of N top} /\ {of N’ top} /\
({eval N ep} -> {eval N’ ep}).

Note that the typing annotation are in the empty context, since we
are dealing here with programs. Coming back to reflexivity, we may
as well prove the stronger statement:

Thm sim_refl: {of M S} -> sim M M S.

In fact it is not a complicated matter to show that

Thm of_ty: ctx L -> {L |- of M S} -> {is_ty S}.

This in turns depends on a sort of strengthening lemma for OL
types6:

Thm ty_strength: ctx L -> {L |- is_ty S} -> {is_ty S}.

Now the proof of reflexivity proceeds as in the informal case with
the notable exception that in the fun case, once we need to use
to coinduction to establish sim (M1 x) (M1 x) S’, we need
to establish {of (M1 x) S’}. Here we appeal to the substitu-
tion lemma, that is SL instantiation and cut with the assumption
{L, of n S1 |- of (M1 n) S’} and {of x S1}. We mention
these details, as this is the last time we will be able to use SL’s tac-
tics such as cut and inst. The statement and proof of transitivity
are instead uneventful:

Thm sim_trans: sim M1 M2 S -> sim M2 M3 S -> sim M1 M3 S.

Now it is the turn of the candidate relationship: we agreed that
it has to live at the ML, but in which form? We could try and write
it down in its third-order incarnation, similarly to pp. 3:

Define howe : tm -> tm -> tp -> prop by
howe (abs M) N (arr S S’) :=
(forall x\ (forall Q\ sim x Q S -> howe x Q S) ->

exists M’\ howe (M x) (M’ x) S’ /\
sim (abs M’) N (arr S S’));

...

Abella complains that the definition is not stratified. Even if it were,
as in the case of our trivial OL language, a further problem is that
such a definition does not yield a strong enough induction princi-
ple. In the end, we have to bite the bullet and use explicit contexts
of type information, which mirror the SL typing context. It is im-
portant to keep the two in sync, as witnessed by the ubiquitous
ctx L assumptions in the development. This is going to be signifi-
cantly more painful – the SL having a much better support for con-
texts than the ML – but it should get us there. So we type howe as
olist -> tm -> tm -> ty -> prop. But wait a minute: now
that Howe is explicitly-contexted, so must be similarity. This brings
back the dreaded notion of open simulation, which I hoped I had
disposed of:

Define osim : olist -> tm -> tm -> ty -> prop by
osim nil M1 M2 S := sim M1 M2 S;
nabla x, osim (of x S :: L) (M1 x) (M2 x) S’ :=
nabla x, {L, of x S |- of (M1 x) S’} /\

{L, of x S |- of (M2 x) S’} /\
forall N, {of N S} -> osim L (M1 N) (M2 N) S’.

We define open simulation by inductively closing every hole, de-
noted by a name, with a program of the appropriate type. This is
similar to the notion of arbitrary cascading substitutions used in
[11] to generalize the induction hypothesis to open terms in a proof
of strong normalization.

A first trivial, yet useful, fact is:

6 Note that the SL handles for free weakening and exchange, but not
strengthening.
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Thm osim_of: ctx L -> osim L M N S ->
{L |- of M S} /\ {L |- of N S}.

Next, a sanity check that closed simulation is contained in the open
one:

Thm sim_osim : ctx L -> sim M M’ S -> osim L M M’ S.

proven by induction on the first assumption, using one of those
pruning lemmata that regulate (in this case forbid, since we are
dealing with programs) the occurrence of names in terms:

Thm prune_sim: nabla (x:tm),
sim (M x) (N x) S -> exists M’, M = y\M’ /\

exists N’, N = y\N’.

We extend the preorder properties to open simulation with
straightforward inductive proofs on the first judgment:

Thm osim_refl: ctx L -> {L |- of P S} -> osim L P P S.
Thm osim_trans: osim L P Q S -> osim L Q R S ->

osim L P R S.

To recap, we reformulate the howe relation as a first-order in-
ductive definition with an explicit context. We have a var case, dis-
tinguished by the name predicate, implementing the standard con-
text look-up. The whole encoding should be very familiar to nomi-
nal logicians, although this is accomplished via “nabla in the head”.
The complete listing is in Figure 2.

Let me start with the main development. Although we did not
type-annotate the Howe relation, we certainly did for osim and this
is enough for an inductive proof of:

Thm howe_of: ctx L -> howe L M1 M2 S ->
{L |- of M1 S} /\ {L |- of M2 S}.

Then we can follow the outline at page 3: points (1),(2),(3), and (4)
are immediate, exactly mirroring the informal proofs.

Thm howe_trans: howe L P Q S -> osim L Q R S ->
howe L P R S.

Thm howe_refl: ctx L -> {L |- of M S} -> howe L M M S.
Thm howe_c2: ctx L -> howe L F F’ (arr S S’) ->

howe L A A’ S ->
howe L (app F A) (app F’ A’) S’.

Thm howe_c3: nabla x, ctx L ->
howe (of x S :: L) (M x)(M’ x) S’ ->
howe L (abs M) (abs M’) (arr S S’).

Thm osim_howe: ctx L -> {L |- of E S} -> osim L E F S ->
howe L E F S.

The substitution lemma, step (5) at page 2, is where things get
hairier. It is easy to formulate, again using a nabla to denote the
place where the substitution occurs:

Thm howe_subst: nabla x,
howe (of x S :: L) (A1 x) (A2 x) S’ -> {of B2 S} ->
howe L B1 B2 S -> howe L (A1 B1) (A2 B2) S’.

However, we will have to sweat quite a bit to prove this. There
are two orders of difficulties, one more general, the other very
Abella-specific. First, the informal proof of every substitution
lemma7 requires in the binder case(s) some context manipulations
before applying the inductive hypothesis: namely, an application of
exchange (Xch) to the first derivation, if contexts are seen as lists,
as in most textbook presentations; then of weakening (Mon) to the
second one. Were the involved judgments defined at the SL, as in
the cited case of parallel reduction, this would be invisibly taken
care by the SL infrastructure. Alas, once we have an explicit context
in the ML, we need to handle it ourselves. In our setup, the binder
case, (abs y\ A1 y), requires weakening howe L B1 B2 S

7 This observation actually applies to inductive proofs of any other property
where we have a name in “head” position in a context, another example
being compatibility for abstraction (C2).

to howe (of y T :: L) B1 B2 S and exchanging
howe (of y T :: of x S :: L) (A1 x) (A2 x) S’ to
howe (of x S :: of y T :: L) (A1 x) (A2 x) S’.

As a matter of fact, the proof of (Mon) requires (Xch) for the
same reasons outlined above. Further, since howe is defined in
terms of osim, the latter must satisfy (Mon) and (Xch) as well.
Finding a good “structural” way to formulate a notion of exchange
that works for a tricky encoding such as osim turned out to be,
to my dismay, the hardest part of the whole endeavor. As this has
little to do with the mathematics of Howe’s method, we relegate
the details of the notion of context swap that we have adopted to
the Appendix (A). Here, it suffices to say that we prove

Thm howe_xch: howe L1 M N S -> swap L1 L2 -> ctx L2 ->
howe L2 M N S.

by induction on the first derivation using the analogous result for
osim, see the Appendix. Armed with that and with osim mono, we
show with a similar induction:

Thm howe_mono: howe L M N S -> ctx L -> {is_ty T} ->
nabla n, howe (of n T :: L) M N S.

Now for another of Abella’s idiosyncrasies. So what, if we have
to apply exchange to the context of an hypothesis before applying
the IH? Since we do have such a lemma, that should be no problem.
Not for Abella, alas. See, Abella’s induction is only structural,
forbidding us to apply a lemma before appealing to the IH, as we
comment further in Section 5..

The simplest way out is to induct on a different judgment, one
that does not need to be “changed” before calling the IH. In this
case, we choose to induct on the shape of (A1 x). We introduce a
definition that is essentially a projection of the howe relation:

Define mtm : tm -> prop by
mtm ep;
mtm (app E1 E2) := mtm E1 /\ mtm E2;
mtm (abs E) := nabla x, mtm (E x);
mtm X := name X.

and state the substitution lemma as:

Thm pre_howe_subst: nabla x, mtm (A1 x) ->
howe (of x S :: L) (A1 x) (A2 x) S’ -> {of B2 S} ->
howe L B1 B2 S -> howe L (A1 B1) (A2 B2) S’.

The case structure of the proof, which proceeds
by induction on mtm (A1 x) and inversion on
howe (of x S :: L) (A1 x) (A2 x) S’ is interesting:
since the “variable” case is not covered by a constructor, we get a
number of spurious cases such as name ep, which are immediately
discharged by inversion. Similarly, inversion on name (A1 x),
first leads to the case where the name is equal or not to x; in the
latter the main sub case is discharged using howe trans, while
the absurd one arising from x possibly occurring in the rest of
L is solved by a pruning lemma. The binder case requires some
work so that we can apply howe mono as described above. Overall,
although reasoning about names is very transparent thanks to the
nabla quantifier, the proof of a substitution lemma at the ML is
significantly more heavy handed than it would be at the SL.

Because it holds that howe L M N S -> mtm M, we can, in
this case, obtain as a corollary the original howe subst formulation
that we were after and use it obtain the (Cus) property.

Thm howe_cus: nabla x,
howe (of x S :: L) (A1 x) (A2 x) S’ ->
{of B S} -> howe L (A1 B) (A2 B) S’.

From this point up, it is reasonably easy sailing: “mimicking”
lemmata (6) such as

Thm howe_ev_abs: howe nil (abs M) P (arr S S’) ->
exists N,{eval P (abs N)} /\
forall Q, {of Q S} ->
howe nil (M Q) (N Q) S’.
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Define howe : olist -> tm -> tm -> ty -> prop by
howe L ep N top := osim L ep N top;
howe L (app F A) N S’ := exists F’ A’ S, howe L F F’ (arr S S’) /\ howe L A A’ S /\

osim L (app F’ A’) N S’;
howe L (abs M) N (arr S S’):= exists M’,nabla x, howe (of x S :: L) (M x) (M’ x) S’ /\

osim L (abs M’) N (arr S S’);
howe L X M S := name X /\ member (of X S) L /\ osim L X M S.

Figure 2. Encoding the Howe relation.

follow by Howe reflexivity, transitivity and substitutivity.
Once all this is in place we can state the main lemma (7):

Thm down_closed: {eval P V} -> howe nil P Q S ->
howe nil V Q S.

The proof, by induction on the derivation of the first judgment is
very delicate, longish (around 50 instructions for the application
case), and lead in a forward chaining fashion. The initial part of
the case {eval (app P1 P2) V} is not problematic, with the IH
being applied immediately after inverting on howe nil (app P1
P2) Q S; building on this, and only after appeal to Howe sub-
stitutivity and transitivity as well as inversion on simulation, we
can then reapply the IH. At this point we proceed by case analysis
on V, here realized via value soundness. The desired result is then
achieved by reasoning on simulation assumptions and composing
them by transitivity. The proof script hence contains several inter-
mediate statements being asserted and then discharged. Here au-
tomation, in the sense of Isabelle/Coq’s auto, is not likely to help –
the same observation was made by Ambler in his Isabelle develop-
ment [2], although, of course, at that time there was no sledgeham-
mer facility. The latter, however, seems to be used very sparingly
(as a matter of fact once) in comparable case studies such as the
ones distributed with the Nominal package [23].

Home stretch: part (8)

Thm howe_sim: howe nil M N S -> sim M N S.

is an easy coinduction using (6) and downward closure; we finally
extend this to

Thm howe_osim: ctx L -> howe L M N S -> osim L M N S.

which follows by induction on ctx L using howe sim in the base
case and closure under substitution in the step. Once we have this,
it is an easy feat to move the pre-congruence properties of howe to
osim and we are done.

4. Encoding in ∀pAbella
Abella originated as a logical framework with a first-order proof
theory, because proving the consistency for Linc-like logics is quite
intricate already in this setting – let me refer to [27] for more de-
tails. However, a version of Abella with predicate quantification is
(informally) available. Here we simply remove the type checking
limitations over the occurrences of the prop and o types. Every-
thing else stays the same: in this sense ∀pAbella is conservative
w.r.t. first-order Abella.

I do not have to argue about the benefits of predicate quantifi-
cation: in the present setting it allows us to structure the proof, un-
surprisingly, in a much more abstract way. In fact, Howe’s defini-
tive account of the method [15] is generic in the construction of
the candidate relation RH from a given putative equality relation R.
We have so far instantiated R with 4◦ and RH with 4H , but this is
just one possible choice. In their full generality the candidate re-
lation rules are depicted in Fig. 3, together with the encoding in

∀pAbella. Note how the cand definition is parametric in an un-
specified relation R of the appropriate type olist -> tm -> tm
-> ty -> prop. Note also that ∀pAbella is not polymorphic (yet)
and so we can only talk about typed binary relations over our spe-
cific signature.

The next step is “axiomatizing” the properties of R, resolving
some issues that were entangled in the concrete definition of osim.
Beyond being a pre-order, we require our relation to be well-typed,
invariant under swapping, monotonic and closed under substitution.
We call this a cus preorder:

wt R := forall L M N S, R L M N S ->
ctx L -> {L |- of M S} /\ {L |- of N S}.

xch R := forall L1 L2 X Y S, R L1 X Y S ->
swap L1 L2 -> ctx L2 -> R L2 X Y S.

mono R := forall L M N S S’, nabla n, R L M N S ->
ctx L -> {is_ty S’} -> R (of n S’ :: L) M N S.

cus R := forall L M1 M2 S S’, nabla x,
R (of x S :: L) (M1 x) (M2 x) S’ ->
forall N, {of N S} -> R L (M1 N) (M2 N) S’.

cus_preorder R := refl R /\ trans R /\ xch R /\
mono R /\ cus R /\ wt R.

We now lift8 the relevant “structural” properties from R to RH :

Thm cand_of: forall R, wt R -> wt (cand R).
Thm cand_xch: xch R -> wt R -> xch (cand R).
Thm cand_mono: cus_preorder R -> mono (cand R).

We restate the main properties of the Howe relation that we
listed at page 3 and encoded in the previous Section:

Thm cand_trans: trans R -> cand R L P Q S ->
R L Q R S -> cand R L P R S.

Thm cand_refl: refl R -> refl (cand R).
Thm cand_c2: refl R -> ctx L -> cand R L F F’ (arr S S’) ->

cand R L A A’ S ->
cand R L (app F A) (app F’ A’) S’.

Thm cand_c3: nabla x, refl R -> ctx L ->
cand R (of x S :: L) (M x)(M’ x) S’ ->
cand R L (abs M) (abs M’) (arr S S’).

Thm R_cand: ctx L -> {L |- of E S} ->
R L E F S -> cand R L E F S.

Thm pre_cand_subst: nabla x, cus_preorder R -> mtm (A1 x) ->
cand R (of x S :: L) (A1 x) (A2 x) S’ -> {of B2 S} ->
cand R L B1 B2 S -> cand R L (A1 B1) (A2 B2) S’.

Thm cand_cus: nabla x, cus_preorder R ->
cand R (of x S :: L) (A1 x) (A2 x) S’ -> {of B S} ->
cand R L (A1 B) (A2 B) S’.

The proofs are very similar to the previous ones in Section 3,
except by referring to the appropriate properties of R rather than
to the relative lemma about osim. For example cand refl has,

8 Thanks to the reviewers for pointing out these more “higher-
order” and elegant formulations. However, we will also de-
rive the “unfolded” versions, e.g. in the case of reflexivity,
refl R -> ctx L -> {L |- of M S} -> cand R L M M S, which
are easier to apply in the remainder of the proof.
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Define cand: (olist -> tm -> tm -> ty -> prop) -> olist -> tm -> tm -> ty -> prop by
cand R L ep N top := R L ep N top;
cand R L (app F A) N S’ := exists F’ A’ S, cand R L F F’ (arr S S’) /\ cand R L A A’ S /\

R L (app F’ A’) N S’;
cand R L (abs M) N (arr S S’):= exists M’,nabla x, cand R (of x S :: L) (M x) (M’ x) S’ /\

R L (abs M’) N (arr S S’);
cand R L X M S := name X /\ member (of X S) L /\ R L X M S.

Figure 3. The candidate relationship and its encoding in ∀pAbella

after unfolding, the same inductive structure of howe refl, save
for inverting on refl R rather than using osim refl.

Once we have reached this point, we need to get down to earth
and instantiate the general setup. First we show that osim is indeed
a cus preorder by simply applying the relevant results about
osim: for example

Thm i_osim_refl: refl osim.

Then we commit to osim as what the candidate relation refines.
Note that this is essentially just an abbreviation, but Define is the
only definitional mechanism in Abella.

Define howe : olist -> tm -> tm -> ty -> prop by
howe L M N S:= cand osim L M N S.

A property such as howe_refl follows now from cand refl by
instantiating in the proof R with osim and using i osim refl.

Once this preliminary phase is completed, the proof of the main
result (steps (6), (7), and (8)) is completely analogous to before and
will not be detailed further.

This more abstract treatment of the candidate relation, relying
on second-order quantification, is arguably more elegant than our
previous attempt, since

• it clearly separates and localizes the assumptions needed in
establishing the main properties of the candidate relations – e.g.
well-typedness ty and closure under substitution cus, which
were all mixed up in the definition of osim play now their
different roles;
• it makes the candidate relation independent from the opera-

tional semantics (be it CBN, CBV, or whatever, provided it sat-
isfies subject reduction, determinacy and value soundness) and
from the notion of simulation itself, which we could vary at our
leisure.

In fact, let us define ground similarity as in [24]:

sim M1 M2 (arr S S’) := ...
(forall A, {of A S} -> sim (app M1 A) (app M2 A) S’);

I have been able to easily and quickly prove it to be a pre-
congruence, with only very minor changes in the proofs of the pre-
order properties of sim, the mimicking lemma and of downward
closure.

From the perspective of the two-level style of encoding, our sec-
ond order treatment has the additional benefit of potentially freeing
the candidate relation from being an inductive notion depending on
a coinductive one – although the concrete instantiation of R will
likely be coinductive. This begs the question if, after all, we could

encode the candidate relation at the SL level and be merrier, not
having to deal with ML contexts. I discuss this further in the Con-
clusion.

5. Evaluation
So, what did we learn from this exercise? Let me start from the
paper-and-pencil proof by Andy Pitts [24]. Pitt’s account is ex-
tremely precise, although it heavily relies on the implicit machin-
ery of type-indexed relations to maintain typing invariants on judg-
ments such as simulation/Howe etc., for which we had to sweat.
Hence, I can offer only some very minor corrections: Lemma A.5(i)
(semi-transitivity of the candidate relation) is not proved by induc-
tion on the first judgment as it says in [24], but simply by inversion.
The Howe relation rule for nil in Pitts’ Figure 7 should read list
S, not S and in the bool case there is a spurious assumption. Finally
there is a typo in the app case of the downward closure lemma,
where it should read M′[A′/x], not M′[A/x], but the three latter
observations were obvious on paper too – although not present in
the Errata appendix to the paper9, suggesting that formal verifi-
cation entails some serious proof-reading of the informal theorem.
But the point of the exercise was not testing Pitt’s mathematical
skills, which were not in discussion, but the HOAS approach and
in particular the two-level architecture.

What about Abella, then? Let me be clear: Abella is a beauti-
fully designed, robust, easy to use, yet very expressive proof assis-
tant, which provides features that no other HOAS system can, at the
moment, match. In particular the tactic language is incredibly terse,
while being very effective – it can be described in two pages of the
already succinct reference manual, which is remarkable compared
to other more established proof assistants, here to be left unnamed.
This is not to say that all is peachy.

Implicit vs. explicit contexts The most striking lesson is that im-
plicit (SL) contexts are your friends, but explicit (ML) level ones
are your foes. This may have been obvious from the get go – af-
ter all, it is called a two-level approach for a reason; nevertheless
the user is well advised to formulate judgments on open terms via
the SL logic, whenever possible. This is not, it is probably useful
to stress, just an issue of stratification: certain judgments, such as
reducibility [11], can be expressed via implicit context in the ML,
informally argued to be stratified, and proven adequate under mod-
est assumptions (e.g. types not being empty). The real issue is that
the meta-logic would require yet another level to fully handle in-

9 www.cl.cam.ac.uk/˜amp12/papers/opebtp/opebtp-errata.pdf
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duction on such judgments; try (and fail) to prove type uniqueness
for our OL at the ML. However, once I was compelled to use ex-
plicit ML contexts, it became clear there are also Abella-specific
issues that, if addressed, could have made my life easier, without
changing the design of the meta-logic. The choice of viewing con-
texts as lists is natural, but overly concrete. It probably goes back
to λProlog’s roots of Linc-like meta logics, where embedded impli-
cations are added to the current database in a FIFO discipline (or
asserta, for the Prolog aficionado)10. Lists (and lists predicates)
are handy to specify contexts and context predicates, because of
the cons-notation, but not that handy as reasoning goes. Properties
such as weakening, exchange, strengthening may not be deep, but
often enough yield surprisingly annoying proof obligations, viz. the
case of (Sub). This is an old point, one that HOAS supporters have
enjoyed making against other more concrete approaches, and it is
somewhat ironical that it crawls back in Abella when working at
the meta-level. In fact, the SL is engineered so that contexts are
viewed as bags, but this is deep in the OCaml code implementing
the prover. However, no such support is offered for meta-level con-
texts. This also has a bad interaction with Abella’s restriction to
structural induction, as we elaborate next. So, maybe it is time to
have a stronger support for ML contexts11.

Structural (co)induction Abella employs an annotation-based
approach [10] to track when a (co)inductive hypothesis can safely
be applied. This means that the user does not have to mess around
with numeric values denoting derivations height, as it is the case
in Hybrid. However, such a luxury comes with a price: the has-
sle with non-structural induction. We are not allowed to apply a
lemma, even one that does not increase the height of the proof, viz.
exchange, before applying the induction hypothesis. Sometimes it
is not that difficult to sneak around it, as we did in the proof of
howe subst. In other cases, we may have to decorate the judg-
ments with explicit heights and then proceed by complete induc-
tion. This is OK in small case studies, but once indexes are intro-
duced, they tend to pollute the rest of the development. It would
be worthwhile to relax the annotation-based system to tolerate the
application of non-height increasing lemmata. We could begin per-
haps, via a trust me directive, or just returning a warning, such as
the one we receive with (non)stratification.

Weakness of the type system To maintain type invariants such as
(1) introduced earlier on page 4, I had to pepper the relevant judg-
ments with enough type annotations so that results as the afore-
mentioned would follow immediately. You have seen the end result
in Section 3. This is not only arguably inelegant, but those anno-
tations have an unpleasant backward and forward effect: the judg-
ment is ty, which we introduced to perform case analysis while
reasoning about similarity, percolates back to the very definition of
the static semantics of the OL language, viz the type annotation in
clause:

of (abs M) (arr S U) :- is_ty S,
pi x\ (of x S => of (M x) U).

Conversely, it creates several proof obligations that I had to dis-
charge more often that I care for. In fact, I spent an astounding
amount of time trying to minimize those type annotations, to lit-
tle appreciable result. It goes without saying that in a dependently
typed setting, a judgment such as simulation could be given, using
Twelf syntax, the intrinsic typing

tm : ty -> type.
sim : {A : ty} tm A -> tm A -> type.

10 This is also the view taken in the Twelf/Beluga school of thought [7],
arguably as influenced by logic programming as Abella was.
11 I am happy to report that, since I started on this case study, the Abella
team has committed to provide a primitive notion of bag with which to
encode contexts.

This not only provides induction on individuals, which the standard
extrinsic encoding would do as well, but keeps type invariants
automatically. The issue of type annotations was acknowledged
by the Abella designers, see [11], which envisioned an automatic
synthesis of those judgments. This has not been followed up and
adding recursion on individuals to Linc-like logics seems clearly
preferable. As a side remark, in Hybrid we can define OL types (in
this case, as they do not contain any binders) as a datatype in the
host system, and thus inherit an intrinsic case analysis principle;
the informal proof of reflexivity of similarity can then be replicated
without the additional judgment. Type invariants in judgments are
still an issue though, as Hybrid, even in its Coq incarnation, does
not mesh well with dependent types.

Somewhat to my surprise, I did not miss polymorphism too
much, although together with predicate quantification it would have
made my treatment of relations more general.

Brittleness of proof scripts To be fair, this is not just a Abella’s
problem, but it is more compelling here due to the lack of automa-
tion. To begin with, the system has a somewhat naive way to name
hypotheses, namely Hi+1. Whenever the user has to change the set
of assumptions of a given theorem, all the apply commands will
refer now to the Hi hypotheses and thus the script breaks down.
Some relief is offered by the backchain tactic, which, by match-
ing the current (atomic) goals with an assumption and keeping the
focus, does not need to be told which hypothesis to use. Further,
the possibility to use apply with unknown again makes the script
more independent of hypothesis numbering, although the inductive
hypothesis must (unsurprisingly) always be explicitly given [10].
It is natural to suggest the possibility of user-given names to hy-
potheses12, but it is a slippery slope: one then complains that the
top level interaction with the checker is underdeveloped, especially
if that someone is coming from old style Isabelle interaction, and in
a flash we have on our hands a full-fledged tactical language. I do
not have a prescription to resolve the well-known tension between
keeping the system simple and moving to a more developed tactical
language. Still, I missed simple things as the goal stack, postpon-
ing/preferring a goal, or simply renaming teh variables in an as-
sumption, for when Abella’s choice of names is not ideal. More in
general, the limitations of dealing with a bare-to-the-bones proof
checker become painfully clear when the OL system under study
gets richer, even in the mildest sense of moving from our λ-calculus
to PCF; proofs do not get more difficult, only longer and therefore
harder to handle. Just the possibility of creating “macros” of se-
quences of commands would be a plus.

6. Related work
The first HOAS-like formal verification of the congruence of a no-
tion of bisimilarity concerned the π-calculus [13] and was carried
out using the Theory of Contexts. Weak HOAS here works rea-
sonably well, if you can live with an axiomatic approach, as this
case study does not need hypothetical judgments, which are only
partially supported in such a style. However, Abella’s take to the
same issue [26] is much preferable; that paper details, among so
much more, a proof that similarity is pre-congruence for the finite
π-calculus, available from the Abella example suite. The encod-
ing is most elegant, where all issues involving bindings, names,
and substitutions are handled declaratively without explicit side-
conditions, thanks to the ∇-quantifier. However, when the authors
move to formally verify the bisimilarity of two specific (very sim-
ple) processes, it is fair to say that a proof checker such as Abella
is not the right tool for such an endeavor. The web appendix of

12 Again, I am happy to report that the development version of Abella now
provides support for (re)naming hypothesis.
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the paper also contains full adequacy proofs relating coinductive
notions such as similarity to their formal encoding, to which I re-
fer, in lieu of showing myself the adequacy of my encodings. Those
very detailed and non-trivial proofs should be compared to the more
sketchy ones done in a Coq setting (e.g. [5]), which seem to appeal
to a dubious “structural corecursion”, that is to a notion of circular
proofs in the mathematical informal world. It should be possible,
albeit not without considerable effort, to reformulate this following
[26].

In [2] the authors verify in Isabelle/HOL 9813 the same result
of the present paper and a bit more (they also show that similarity
coincides with contextual pre-order) for PCFL using DB indexes
as an encoding techniques for binders. The development, for the
congruence part, consists of around 160 lemmas/theorems, show-
ing not only Ambler’s sheer tenacity and capability with a tool that
was very different from what we know now – in particular the coin-
ductive package had some limitations, e.g. it would not allow impli-
cations in the antecedents, forcing the authors to a more convoluted
encoding of applicative simulation – but also, as often remarked by
Randy Pollack, that a concrete representation such as DB will get
you there, although you may not want to do this again any time
soon.

I am not aware of specific related work using the Nominal pack-
age, but, looking backwards our development of the properties of
the candidate relation is not dissimilar to what one would one do
in nominal logic, namely dealing somewhat extensively with ex-
plicit contexts and fresh names. The lack of HOAS in implement-
ing substitution and SL contexts would be likely leveraged by the
automation provided by Isabelle.

Coinduction in Agda is realized by delay, i.e. with suspension
type constructors akin to the way laziness is implemented in strict
functional languages. See [6] for some preliminary applications to
operational semantics. In our setting, this would have the benefit
of bypassing coinduction completely, and allowing us, at least the-
oretically, to work entirely in the SL. On the other hand, working
with thunks is never problem-free [28] and the jury is still out on its
feasibility wrt such a complex case study. A similar approach can
be taken in Twelf or, more perspicuously in Celf, possibly exploit-
ing the CLF monad as a delay monad, see Maxime Beauquier’s
forthcoming dissertation at ITU.

7. Conclusions and future work
I think we agree that the encoding of Howe’s method is an interest-
ing and challenging case study for HOAS-based proof assistants.
While I am pleased about the present formalization, especially the
one in ∀pAbella, there are still other avenues to explore, all leading
to avoiding using ML contexts in the first place.

As we left off at the end of Section 4, we could push the
candidate relationship at the SL level with the essential use of
predicate quantification:

type cand (tm -> tm -> ty -> o) -> tm -> tm -> ty -> o.

cand R (abs M) N (arr S S’):-
(pi x\ (pi Q\ cand R x Q S :- R x Q S) =>
sigma M’\ cand R (M x) (M’ x) S’, R (M’ x) N (arr S S’)).

Again, we have to massage it to make it digestible to Abella’s SL
and this is not completely straightforward. More seriously, any way
we decide to axiomatize relations, either at the SL or the ML, we
will eventually have to communicate results between the type o and
the type prop, once the instantiation of R with a coinductive notion
is done, in other terms we will need some form of reflection.

13 And as such that development, together with [20], is lost, like tears in
rain.

A second avenue would be to to try and push coinduction itself
to the specification logic, by making the latter coinductive, i.e.
admitting infinite proofs. In this way similarity would be encoded
and analyzed at that level. While the notion of cyclic proofs [4] has
been somewhat disappointing, it would be interesting to try and
apply Mints’ continuous cut elimination to the SL to recover this
crucial property w.r.t. infinite SL proofs.

Both ideas point to a general desire in the Abella community to
“open up the box” of the SL, so far being wired to second order
hereditary Harrop formulæ, to make it “user-programmable”, be it
higher-order, coinductive, sub-structural, you name it. Of course
logical correspondence between levels must be preserved, hence
caution is the word.

Eduardo de Filippo used to say “exams never end”; so addi-
tional interesting benchmarks for Abella are in store, taking inspi-
rations from a series of papers by Nakata and Uustalu [21, 22],
already fully formalized in Coq. The former requires reasoning by
mutual coinduction, which is not currently supported by Abella,
the latter sports an interesting combinations of induction and coin-
duction under similar constraints to what we have: being strictly
constructive and dealing with a monolithic notion of coinduction,
i.e., in Coq the CoFixpoint approach, in Abella “structural” coin-
duction. We are of course better positioned in generalizing Nakata
and Uustalu’s approach from variants of the While language to λ-
calculi. One avenue we are actively pursuing is using their trace-
based approach to get Leroy’s “Coinductive big-step operational
semantics” [18] right, fixing its encoding inadequacies, its over-use
of classical logic and hopefully providing an operational seman-
tics for which a coinductive big step reading of the progress lemma
holds: well typed programs either converge, diverge or raise an ex-
ception.

Finally, once we are satisfied with the consistency of ∀pAbella,
we can embark on HOAS-style relational reasoning in the sense
of [17], towards more modular and less labor-intensive proofs –
remember the arguably heavy-handed [9] – of results such as the
CIU theorem [25].
Proof scripts are available at:
homepages.inf.ed.ac.uk/amomigl1/Howe

Acknowledgments
Simon Ambler and Roy Crole introduced me to coinduction and to
Howe’s method. Thanks to Andrew Gacek for his help with Abella
in general and in particular with the inductive structure of the Howe
substitution lemma, to David Baelde, who told me to embrace the
use of meta-level contexts. This has been made somewhat less
painful by discussions with Amy Felty and Brigitte Pientka. Let
me also acknowledge a decade-long and still ongoing discussion
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A. Appendix: on exchange
After many wrong turns, I settled on a notion of context swap in-
spired by the elegant structural definition of permutations given by
Paulson, Rasmussen and Voelker in http://isabelle.in.tum.
de/library/HOL/HOL-Algebra/Permutation.html. As I do
not need the full power of permutations, I dropped the transitivity
requirement and ended up with a notion of a single swap occurring
somewhere in a context.

Define swap : olist -> olist -> prop by
swap nil nil;
swap (X :: Y :: L) (Y :: X :: L);
swap (X :: XS) (X :: YS) := swap XS YS.

Once I had the “right” definition, all following theorems have
reasonably easy proofs.
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While swapping is reflexive and symmetric, we only need one
direction of the fact that swapping does not affect the set underlying
the context:

Thm swap_member: swap XS YS -> member X XS -> member X YS.

The usual pruning lemmata allow us to remove spurious dependen-
cies from swappable contexts:

Thm swap_prune1: nabla (n:tm), swap XS (YS n) ->
exists YS’, YS = y\YS’.

Thm swap_prune2: nabla (n:tm), swap (YS n) XS ->
exists YS’, YS = y\YS’.

Lastly, I need to establish my swapping credentials w.r.t. OL types:
first, that swapping preserves contexts and then, of course, typing
judgments.

Thm swap_ctx_pres: swap L1 L2 -> ctx L2 -> ctx L1.
Thm swap_of_pres: swap L1 L2 -> ctx L1 ->

{L1 |- of M S} -> {L2 |- of M S}.

Now we are ready to establish (Xch) and (Mon) for open simu-
lation:

Thm osim_xch: osim L1 M N S -> swap L1 L2 -> ctx L2 ->
osim L2 M N S .

The proof goes by induction on osim L1 M N S and case analysis
on swap L1 L2. The base case follows from sim osim. The step
employs swap ctx pres, swap of pres to get the typing invari-
ants right. Finally, (Mon) makes an essential use of osim xch:

Thm osim_mono: osim L M N S -> ctx L -> {is_ty T} ->
nabla n, osim (of n T :: L) M N S.
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