11 research outputs found

    Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard

    Get PDF
    [EN] Background: Crown fires are often intense and fast spreading and hence can have serious impacts on soil, vegetation, and wildlife habitats. Fire managers try to prevent the initiation and spread of crown fires in forested landscapes through fuel management. The minimum fuel conditions necessary to initiate and propagate crown fires are known to be strongly influenced by four stand structural variables: surface fuel load (SFL), fuel strata gap (FSG), canopy base height (CBH), and canopy bulk density (CBD). However, there is often a lack of quantitative data about these variables, especially at the landscape scale. Methods: In this study, data from 123 sample plots established in pure, even-aged, Pinus radiata and Pinus pinaster stands in northwest Spain were analyzed. In each plot, an intensive field inventory was used to characterize surface and canopy fuels load and structure, and to estimate SFL, FSG, CBH, and CBD. Equations relating these variables to Sentinel-2A (S-2A) bands and vegetation indices were obtained using two non-parametric techniques: Random Forest (RF) and Multivariate Adaptive Regression Splines (MARS). Results: According to the goodness-of-fit statistics, RF models provided the most accurate estimates, explaining more than 12%, 37%, 47%, and 31% of the observed variability in SFL, FSG, CBH, and CBD, respectively. To evaluate the performance of the four equations considered, the observed and estimated values of the four fuel variables were used separately to predict the potential type of wildfire (surface fire, passive crown fire, or active crown fire) for each plot, considering three different burning conditions (low, moderate, and extreme). The results of the confusion matrix indicated that 79.8% of the surface fires and 93.1% of the active crown fires were correctly classified; meanwhile, the highest rate of misclassification was observed for passive crown fire, with 75.6% of the samples correctly classified. Conclusions: The results highlight that the combination of medium resolution imagery and machine learning techniques may add valuable information about surface and canopy fuel variables at large scales, whereby crown fire potential and the potential type of wildfire can be classified.SIWe are grateful to the Galician Government and European Social Fund (Official Journal of Galicia DOG n° 52, 17 March 2014, p. 11343, exp: POS-A/2013/049) for financing the postdoctoral research stays of Eduardo González-Ferreiro at different institutions

    Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires

    Get PDF
    Mediterranean forests are recurrently affected by fire. The recurrence of fire in such environments and the number and severity of previous fire events are directly related to fire risk. Fuel type classification is crucial for estimating ignition and fire propagation for sustainable forest management of these wildfire prone environments. The aim of this study is to classify fuel types according to Prometheus classification using low-density Airborne Laser Scanner (ALS) data, Sentinel 2 data, and 136 field plots used as ground-truth. The study encompassed three different Mediterranean forests dominated by pines (Pinus halepensis, P. pinaster y P. nigra), oaks (Quercus ilex) and quercus (Q. faginea) in areas affected by wildfires in 1994 and their surroundings. Two metric selection approaches and two non-parametric classification methods with variants were compared to classify fuel types. The best-fitted classification model was obtained using Support Vector Machine method with radial kernel. The model includes three ALS and one Sentinel-2 metrics: the 25th percentile of returns height, the percentage of all returns above mean, rumple structural diversity index and NDVI. The overall accuracy of the model after validation was 59%. The combination of data from active and passive remote sensing sensors as well as the use of adapted structural diversity indices derived from ALS data improved accuracy classification. This approach demonstrates its value for mapping fuel type spatial patterns at a regional scale under different heterogeneous and topographically complex Mediterranean forests

    Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data

    Get PDF
    [EN] In this study, we used data from a thinning trial conducted on 34 different sites and 102 sample plots established in pure and even-aged Pinus radiata and Pinus pinaster stands, to test the potential use of low-density airborne laser scanning (ALS) metrics and terrestrial laser scanning (TLS) metrics to provide accurate estimates of variables related to surface and canopy fires. An exhaustive field inventory was carried out in each plot to estimate the main stand variables and the main variables related to fire hazard: surface fuel loads by layers, fuel strata gap, surface fuel height, stand mean height, canopy base height, canopy fuel load and canopy bulk density. In addition, the point clouds from low-density ALS and single-scan TLS of each sample plot were used to calculate metrics related to the vertical and horizontal distribution of forest fuels. The comparative performance of the following three non-parametric machine learning techniques used to estimate the main stand-and fire-related variables from those metrics was evaluated: (i) multivariate adaptive regression splines (MARS), (ii) support vector machine (SVM), and (iii) random forest (RF). The selection of the best modeling approach was based on a comparison of the root mean square error (RMSE), obtained by optimizing the parameters of each technique and performing crossvalidation. Overall, the best results were obtained with the MARS techniques for data from both sensors. The TLS data provided the best results for variables associated with the internal characteristics of canopy structure and understory fuel but were less reliable for estimating variables associated with the upper canopy, due to occlusion by mid-canopy foliage. The combination of ALS and TLS metrics improved the accuracy of estimates for all variables analyzed, except the height and the biomass of the understory shrubs. The variability demonstrated by the combined use of both types of metrics ranged from 43.11% for the biomass of duff litter layers to 94.25% for dominant height. The results suggest that the combination of machine learning techniques and metrics derived from low-density ALS data, drawn from a single-scan TLS or a combination of both metrics, may represent a promising alternative to traditional field inventories for obtaining valuable information about surface and canopy fuel variables at large scalesSIThis research was funded by the projects GEPRIF (RTA2014-00011-C06-04) and VIS4FIRE (RTA2017-00042-C05-05) of the Spanish Ministry of Economy, Industry, and Competitiveness and a pre-doctoral grant of the first author funded by the “Consejería de Educación, Universidad y Formación Profesional” and the “Consejería de Economía, Empleo e Industria” of the Galician Government and the EU operational program “FSE Galicia 2014–2020”

    Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data

    Get PDF
    In this study, we used data from a thinning trial conducted on 34 different sites and 102 sample plots established in pure and even-aged Pinus radiata and Pinus pinaster stands, to test the potential use of low-density airborne laser scanning (ALS) metrics and terrestrial laser scanning (TLS) metrics to provide accurate estimates of variables related to surface and canopy fires. An exhaustive field inventory was carried out in each plot to estimate the main stand variables and the main variables related to fire hazard: surface fuel loads by layers, fuel strata gap, surface fuel height, stand mean height, canopy base height, canopy fuel load and canopy bulk density. In addition, the point clouds from low-density ALS and single-scan TLS of each sample plot were used to calculate metrics related to the vertical and horizontal distribution of forest fuels. The comparative performance of the following three non-parametric machine learning techniques used to estimate the main stand- and fire-related variables from those metrics was evaluated: (i) multivariate adaptive regression splines (MARS), (ii) support vector machine (SVM), and (iii) random forest (RF). The selection of the best modeling approach was based on a comparison of the root mean square error (RMSE), obtained by optimizing the parameters of each technique and performing cross-validation. Overall, the best results were obtained with the MARS techniques for data from both sensors. The TLS data provided the best results for variables associated with the internal characteristics of canopy structure and understory fuel but were less reliable for estimating variables associated with the upper canopy, due to occlusion by mid-canopy foliage. The combination of ALS and TLS metrics improved the accuracy of estimates for all variables analyzed, except the height and the biomass of the understory shrubs. The variability demonstrated by the combined use of both types of metrics ranged from 43.11% for the biomass of duff litter layers to 94.25% for dominant height. The results suggest that the combination of machine learning techniques and metrics derived from low-density ALS data, drawn from a single-scan TLS or a combination of both metrics, may represent a promising alternative to traditional field inventories for obtaining valuable information about surface and canopy fuel variables at large scalesinfo:eu-repo/semantics/publishedVersio

    Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard

    Get PDF
    Background: Crown fires are often intense and fast spreading and hence can have serious impacts on soil, vegetation, and wildlife habitats. Fire managers try to prevent the initiation and spread of crown fires in forested landscapes through fuel management. The minimum fuel conditions necessary to initiate and propagate crown fires are known to be strongly influenced by four stand structural variables: surface fuel load (SFL), fuel strata gap (FSG), canopy base height (CBH), and canopy bulk density (CBD). However, there is often a lack of quantitative data about these variables, especially at the landscape scale. Methods: In this study, data from 123 sample plots established in pure, even-aged, Pinus radiata and Pinus pinaster stands in northwest Spain were analyzed. In each plot, an intensive field inventory was used to characterize surface and canopy fuels load and structure, and to estimate SFL, FSG, CBH, and CBD. Equations relating these variables to Sentinel-2A (S-2A) bands and vegetation indices were obtained using two non-parametric techniques: Random Forest (RF) and Multivariate Adaptive Regression Splines (MARS). Results: According to the goodness-of-fit statistics, RF models provided the most accurate estimates, explaining more than 12%, 37%, 47%, and 31% of the observed variability in SFL, FSG, CBH, and CBD, respectively. To evaluate the performance of the four equations considered, the observed and estimated values of the four fuel variables were used separately to predict the potential type of wildfire (surface fire, passive crown fire, or active crown fire) for each plot, considering three different burning conditions (low, moderate, and extreme). The results of the confusion matrix indicated that 79.8% of the surface fires and 93.1% of the active crown fires were correctly classified; meanwhile, the highest rate of misclassification was observed for passive crown fire, with 75.6% of the samples correctly classified. Conclusions: The results highlight that the combination of medium resolution imagery and machine learning techniques may add valuable information about surface and canopy fuel variables at large scales, whereby crown fire potential and the potential type of wildfire can be classified

    Caracterización del combustible del dosel arbóreo mediante sensores remotos y evaluación del efecto de las claras sobre el comportamiento y severidad potenciales del fuego en pinares del NO de España

    Get PDF
    En la presente tesis doctoral se han desarrollado modelos para estimar la distribución vertical de la carga de combustible disponible del dosel arbóreo, tanto a partir de datos LiDAR como de variables de rodal medidas en campo. Además, se han obtenido modelos de estimación de variables del combustible de superficie y del dosel arbóreo a partir de imágenes del satélite Sentinel-2A, que permiten generar cartografía del riesgo potencial de fuego de copas. Por otro lado, se ha evaluado el efecto a medio plazo del tratamiento de clara por si sola, sin intervención en los combustibles de superficie, sobre el complejo de combustible y el comportamiento y la severidad potenciales del fuego, así como la capacidad de los rodales quemados para proteger el suelo contra la erosión post-incendio. Todos estos estudios se realizaron en pinares del noroeste de España

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications—many times in combination—whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.SIPart of this work was funded by the Spanish Ministry of Science, Innovation and University through the project AGL2016-76769-C2-1-R “Influence of natural disturbance regimes and management on forests dynamics, structure and carbon balance (FORESTCHANGE)”

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Remote Sensing and GIS Applications in Wildfires

    Get PDF
    Wildfires are closely associated with human activities and global climate change, but they also affect human health, safety, and the eco-environment. The ability of understanding wildfire dynamics is important for managing the effects of wildfires on infrastructures and natural environments. Geospatial technologies (remote sensing and GIS) provide a means to study wildfires at multiple temporal and spatial scales using an efficient and quantitative method. This chapter presents an overview of the applications of geospatial technologies in wildfire management. Applications related to pre-fire conditions management (fire hazard mapping, fire risk mapping, fuel mapping), monitoring fire conditions (fire detection, detection of hot-spots, fire thermal parameters, etc.) and post-fire condition management (burnt area mapping, burn severity, soil erosion assessments, post-fire vegetation recovery assessments and monitoring) are discussed. Emphasis is given to the roles of multispectral sensors, lidar and evolving UAV/drone technologies in mapping, processing, combining and monitoring various environmental characteristics related to wildfires. Current and previous researches are presented, and future research trends are discussed. It is wildly accepted that geospatial technologies provide a low-cost, multi-temporal means for conducting local, regional and global-scale wildfire research, and assessments

    Measurement and modelling of catchment erosion dynamics under different land cover types, Jonkershoek Catchment, Western Cape

    Get PDF
    >Magister Scientiae - MScSeveral attempts have been made to assess the impact of post-fire soil erosion; however, erosion occurs as a result of the complex interplay between many factors, such as climate, land cover, soil and topography, making precise estimation difficult. Additionally, these factors are far from constant in space and time, and often interact with one another. To assess the impact of wildfire on soil erosion and factors influencing its variability, the post-fire soil erosion response of two mountainous headwater sub-catchments namely Langrivier and Tierkloof, with different vegetation cover in the Jonkershoek Valley was examined using a systematic approach that combines efforts in field and laboratory work, spatial analysis and process-based numerical modelling. Geospatial modelling shows high spatial variability in erosion risk, with 56 % to 67 % of surfaces being highly susceptible excluding rock cover. The model highlights the importance of terrain and vegetation indices, with predicted erosion being more severe on steep slopes with lower vegetation cover
    corecore