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Chapter

Remote Sensing and GIS 
Applications in Wildfires
Georgios Zagalikis

Abstract

Wildfires are closely associated with human activities and global climate change, 
but they also affect human health, safety, and the eco-environment. The ability of 
understanding wildfire dynamics is important for managing the effects of wildfires 
on infrastructures and natural environments. Geospatial technologies (remote 
sensing and GIS) provide a means to study wildfires at multiple temporal and spatial 
scales using an efficient and quantitative method. This chapter presents an overview 
of the applications of geospatial technologies in wildfire management. Applications 
related to pre-fire conditions management (fire hazard mapping, fire risk mapping, 
fuel mapping), monitoring fire conditions (fire detection, detection of hot-spots, fire 
thermal parameters, etc.) and post-fire condition management (burnt area mapping, 
burn severity, soil erosion assessments, post-fire vegetation recovery assessments 
and monitoring) are discussed. Emphasis is given to the roles of multispectral sen-
sors, lidar and evolving UAV/drone technologies in mapping, processing, combining 
and monitoring various environmental characteristics related to wildfires. Current 
and previous researches are presented, and future research trends are discussed. It 
is wildly accepted that geospatial technologies provide a low-cost, multi-temporal 
means for conducting local, regional and global-scale wildfire research, and 
assessments.

Keywords: wildfires, GIS, remote sensing, multispectral sensors, lidar, UAV, mapping

1. Introduction

Forest fires (term used in Europe to designate the unwanted fires burning forests 
and wildlands) are considered as one of the main environmental hazards worldwide. 
Forest fires are periodic disturbance events that dramatically affect the structure and 
distribution of global forest ecosystems, altering soil erosion, causing loss of biodi-
versity, habitat, production and productivity, endangering human life, and disrupting 
livelihoods [1].

The impacts of climate change are becoming more evident each year. Forest 
fires are more frequent and extreme, as also confirmed by the recent report of the 
International Panel on Climate Change (IPCC) “Climate Change 2022: Impacts, 
adaptation and vulnerability” [2] and the recent United Nations Environment 
Program report “Spreading like wildfire: The rising threat of extraordinary landscape 
fires” [3].
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In Mediterranean basin, natural forest fires are common and are an integral part 
of the terrestrial ecosystems (Figure 1). Fire has been used by man as management 
tool since early times. Mediterranean region is the most affected area from wildfires 
in Europe. Approximately 85% of the total burnt area occurs in the EU Mediterranean 
region [4]. This vulnerability of Mediterranean basin to be affected by fire is linked 
to its climate, which is characterized by rainy and mild winters followed by warm and 
dry summers [5]. Extreme weather conditions in summer (high temperature, strong 
wind, low relative humidity and drought) are a key factor in the ignition and spread 
of large forest fires [6–8].

Geospatial technologies such as remote sensing (RS) and geographic information 
systems (GIS) have been used for the management of forest fires several years ago 
with the use of aerial photographs and have been increasing as new type of sensors 
become available varying from spaceborne sensors to the newly era of UAVs sensors. 
Remote sensing provides the data used through the GIS or other decision support 
systems.

Three main levels can be distinguished, in which remote sensing and GIS provide 
results that can be applied directly to the subject of forest fires: pre-fire conditions 
(fire risk assessment, vegetation mapping, topography, risk of fire spreading, etc.), 
monitoring fire conditions (fire detection, detection of hotspots, fire thermal param-
eters, etc.) and post-fire (burnt area mapping, success of forest regeneration, flood 
risk, etc.). Different types of remote sensing platforms and sensors are used for data 
acquisition as satellites to UAVs and active sensors (SAR, Lidar) to passive sensors 
(optical, thermal infrared, multispectral).

The purpose of this chapter is to present a wide outline of the use of remote 
sensing and GIS in wildfire management. The chapter examines research in the 

Figure 1. 
Forest fires in the pan-European region in 2021 © EU, 2022.
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three main levels and within each level, and sub-level, current research trends and 
case examples are presented, divided by the platform and sensor type used. The 
goal of this chapter is to provide the reader with a broad view of the current applica-
tions of remote sensing and GIS technologies and techniques in the field of wildfire 
management.

2. Pre-fire condition management

A forest fire results from a complex interaction of biological, meteorological, 
physical and social factors that influence the likelihood of a forest fire breaking out, 
its propagation and intensity, duration and extent, and its potential to cause damage 
to economies, the environment, and society [3]. Terms such as fire hazard, fire risk or 
danger and severity have been introduced to define risk, hazard and the characteristic 
(or uncharacteristic) nature of forest fires [9].

Fire risk or danger is a term used to represent the vulnerability of an area to the 
ignition and spread of fire. This fire vulnerability is influenced by various factors 
that are dynamic and static in both spatial and temporal dimensions; therefore, it is 
a complex concept to measure [10]. Furthermore, fire risk factors are both biotic and 
abiotic [11]. Biotic conditions are aimed at studying the morphological (i.e., fuel bio-
mass load, species composition, height and density) and physiological (i.e., moisture 
status and chemical properties) characteristics of vegetation, while abiotic indicators 
are related to the study of external conditions such as topography and meteorological 
factors on the other hand [11, 12].

Fire risk assessments involve identifying the potentially contributing variables 
and integrate them into mathematical expression known as “index” [13]. Several risk 
indices have been developed for fire risk evaluation based on either the temporal scale 
[14, 15] or the variable data sources [16].

Mapping is used to visualize the fire risk assessments, and this is accomplished 
through two primary methods: (i) point-wise meteorological data-based operating 
systems and (ii) the use of remote sensing technologies and geographic information 
systems (GIS) [17].

The early methods, which assess fire danger, were based on meteorological 
factors since they have significant role in the occurrence of severe fire episodes 
[18, 19], including the Nesterov index for use in the former Soviet Union [20], the 
Forest Fire Danger Index (FFDI) for eastern Australia [21], the National Fire Danger 
Rating System for the USA [22] and the Canadian Forest Fire Weather Index (FWI) 
System [23]. These systems use meteorological data such as temperature, precipita-
tion, humidity and wind speed to assess fire danger over extent geographic regions. 
However, these systems suffer from several limitations as the need for an extent 
network of weather stations or the need for interpolation to generate fire danger 
maps. Since the geoinformatic technologies as remote sensing/GIS have the ability to 
obtain continuous data for an area, the ability to analyze those data is recognized as an 
effective alternative or addition for the creation of fire risk maps [15, 24].

2.1 Fire hazard mapping

Fire hazard divers from fire danger as it does not include a meteorological com-
ponent in the assessment [9]. Fire hazard or susceptibility maps are important in 
land use planning [25, 26], and that maps are useful as a valuable reference to reduce 
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vulnerability and could help to improve decision-making planning in ecological risk 
prevention [27]. Another potential use is in the insurance markets [28].

Several pre-fire conditions used in the fire hazard maps can be monitored using 
remote sensing [29]. Vegetation mapping (including fuel loads) is one of the first 
pre-fire conditions contributing to fire hazard models that are produced usually 
from high spatial resolution optical or radar images [30, 31]. The fuel maps may 
range from global-continental products derived from coarse-resolution sensors 
(AVHRR, Modis, Vegetation) to regional-local inventories, based on higher-resolu-
tion data (Landsat TM/ETM, radar or even Ikonos) [32].

Description of fuel properties is critical in all phases of fire management and 
fire science: prevention, fire danger estimation; suppression: fire behavior model-
ing; fire effect assessment: trace gas emissions and vegetation recovery after fire 
[33]. Several fuel characteristics are critical for fire propagation studies: crown bulk 
density, crown base height, canopy height, canopy closure, surface area to volume 
ratio, vertical and horizontal continuity, dead and live fuel loads, live woody loads 
and size of particles referring to vegetation geometry to the fuel type, which can be 
mapped, like classical vegetation mapping, from high spatial resolution optical or 
radar images [34].

Depending on the remote sensing data sources used different vegetation charac-
teristics can be interoperated because of the different spatial, spectral and temporal 
resolution (Table 1).

Multispectral remote sensing provides fundamental inputs for the mapping of 
fire hazard [15, 35]. Land cover type plays an important role in evaluating the risk 
of a given area to fire events as it is related to fuel types and characteristics; usually, 
classification is fulfilled using vegetation indices. The simplest form of vegetation 
index is simply a ratio between two digital values from independent spectral bands. 
The Normalized Difference Vegetation Index (NDVI=NIR  R/NIR + R), the most 
commonly used ratio transformation for vegetation studies, is used to monitor pho-
tosynthetic activity and provides information on vegetation biomass and phenology 
[36–38]. Biomass is also estimated using various remote sensing data [39, 40].

Usually low or medium spatial resolution multispectral sensors such as 
Landsat-TM [41, 42] or MODIS-ASTER [43, 44], and hyperspectral sensors, such 
as Hyperion [45], AVIRIS [46] or MIVIS (Multispectral Infrared Visible Imaging 
Spectrometer) [47] and lately the Sentinel-2A [48].

High resolution commercial satellites, such as Quickbird, Pleiades-1A, IKONOS, 
GeoEye-1, WorldView-2,3, have become operational over the past decades, offering 
data at finer than 10-m spatial resolution have also been used for fuel mapping [44, 
49]. Arroyo et al. [50] explored the utility of high resolution (4 m2) satellite imagery 
for the production of fuel type maps using a different data processing approach and 
object-oriented classification, which allows for considering spatial context of adjacent 
pixels in the eventual generation of the fuel map. It was concluded that this approach 
produced higher accuracies than would have been generated using traditional max-
imum-likelihood classifiers. Such data can be used for pre-fire studies, but hurdles 
such as high cost per scene and the limitation common to most of optical sensors, the 
inability to penetrate forest canopies [51].

Beyond optical remote sensing satellites active sensors such as SAR and Lidar 
have been used to estimate vegetation characteristics that are critical for fuel type 
mapping, such as foliar biomass, tree volume, tree height and canopy closure [52, 53]. 
Lidar data is used in combination with other remote sensing data airborne or space-
borne to estimate vegetation characteristics [49, 54].
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Remote sensing provides also topographic data as slope, aspect and elevation that 
all influence the risk of an area to fire ignition and/or spread [55]. In terms of terrain 
factors, altitude and slope can affect the moisture loss of vegetation, and in contrast, 
the aspect affects the amount of solar radiation received by vegetation, directly 

Sensor Spatial 

resolution

Temporal 

resolution

Advantages Disadvantages Info

Landsat 
MSS,TM, 
ETM+, OLI

15–30 m 16 days Free and easily 
accessible

Lack of canopy 
penetration, 
low temporal 

resolution

https://landsat.
gsfc.nasa.

gov/satellites/
landsat-8/

Sentinel-2 10–60 m 5 days Free, relatively 
high spatial 

and temporal 
resolution, 

multiple near-
infrared (NIR) 

bands

Lack of canopy 
penetration

https://sentinels.
copernicus.eu

MODIS 250 m–1 km 1 to 2 days Free and easily 
accessible, 

high temporal 
resolution, 
large area 
analysis

Lack of canopy 
penetration, 
coarse spatial 

resolution limits 
analysis of smaller 

areas

https://modis.
gsfc.nasa.gov/

about/

Pleiades 
Neo

0.3–1.2 m 1–3 per 
day

High spatial 
resolution

High cost https://earth.
esa.int/

eogateway/
missions/

pleiades-neo

AVIRIS 4–20 m Airborne High spatial 
resolution, 

hyperspectral 
sensor

High cost, 
complicated data 

processing

https://aviris.jpl.
nasa.gov/

AVIRIS-NG 0.3–4.0 m Airborne High spatial 
resolution, 

hyperspectral 
sensor

High cost, 
complicated data 

processing

https://avirisng.
jpl.nasa.gov/

aviris-ng.html

Hyperion 10–30 m 16 days Free and easily 
accessible, 

hyperspectral 
sensor

Decommissioned 
2017

https://
www.usgs.

gov/centers/
eros/science/

usgs-eros-
archive-earth-
observing-one-
eo-1-hyperion

UAV High 
centimeter-

level

Airborne High spatial 
resolution, 

hyperspectral 
sensor, lidar 

sensors

Cost it depends 
from the sensor, 

low endurance for 
areas 1–10 km2

Table 1. 
List of sensors commonly used or with potential usage in forest fires research.
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affecting the vegetation drying degree. For forests, terrain differences lead to differ-
ences in wind, water balance and heat transfer between different areas, affecting the 
spread of fire [56].

Another pre-fire condition that remote sensing systems provide is the historical 
statistical data about the date and time of the fire, fire location (administrative dis-
trict), fire size by land use category and fire cause [57, 58]. Historical data can be used 
to evaluate the accuracy of the fire hazard maps or the fire risk maps and the models 
used. Examples of remote-sensed databases of fire activity include the World Along 
Track Scanning Radiometer (ATSR) Fire Atlas [59], the MODIS and the VIIRS Active 
Fire Products [60] and the LSA SAF Fire Products [61].

In the last decade, unmanned aerial vehicles (UAVs) have become more afford-
able and one of the most important remote sensing data sources in various natural 
resource management applications [62–64]. UAV can use a variety of sensors, includ-
ing visible light, near infrared (NIR), shortwave infrared (SWIR), thermal infrared 
(TIR), SAR and Lidar sensors. UAV optical sensors, including visible, NIR and SWIR, 
also record data as multispectral or hyperspectral bands [65, 66]. Since the sensor 
technology advances, increasingly smaller, lighter and cheaper sensors have become 
available for UAV remote sensing applications. Manfreda et al. [67] and Constantine 
and Rey [68] provide detailed introductions to various UAV remote sensing systems. 
Also, Dainelli et al. [69] provide a systematic review analysis of unmanned aerial 
vehicle (UAV)-based forestry research papers.

Remote sensing provides data about proximity to human settlement/infrastruc-
ture to identify areas at risk of fire occurrence. Forest fires in the Mediterranean 
Europe and in Mediterranean basin in general are mostly related to human activities. 
More than 90% of fires originate from either deliberate or involuntary causes [70] 
Mapping ignition risk is an important tool for managers, helping to improve the effec-
tiveness of fire prevention, detection and firefighting resource allocation [71, 72].

In Mediterranean basin, in California and in Australia, electric power infrastruc-
ture has ignited several of the most destructive wildfires in recent history, even if 
there is a gap in published research work on wildfire prediction when the root cause 
of the fire is linked to the power grid infrastructure—despite the fact that some of the 
most devastating wildfires were sparked by power grids [73]. Remote sensing (RS) 
and geographic information system (GIS) technologies and their derived applications 
are effective tools for power line surveillance and disaster prevention [74]. UAVs can 
be used for detailed map of electric power grid and for identifying utility systems that 
pose a fire risk [75, 76].

Several methods have been used widely for forest fire occurrence. Based on the 
literature, there are two main methods and techniques for this aim, namely, data-
based (machine learning (ML)) and knowledge-based methods [77]. Numerous 
studies used knowledge-based methods for forest fire susceptibility mappings, such 
as fuzzy logic [78], the analytic hierarchy process (AHP) [79] and the analytical 
network process [80]. In recent years, an obvious trend in the use of machine learn-
ing algorithms is in a wide range of natural hazard assessment disciplines [81, 82]. 
Machine learning (ML) methods, such as logistic regression [83], artificial neural 
networks [84, 85] and Random Forest [86, 87], are also used for forest fire hazard 
mapping.

An example of fire hazard mapping is Fire Hazard Severity Zones Maps in 
California USA and it is produced by State of California and the Department of 
Forestry and Fire Protection. The Fire Hazard Severity Zone (FHSZ) maps are 
developed using a science-based and field-tested model that assigns a hazard score 
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based on the factors that influence fire likelihood and fire behavior. Many factors 
are considered such as fire history, existing and potential fuel (natural vegetation), 
predicted flame length, blowing embers, terrain, and typical fire weather for the area. 
There are three levels of hazard in the State Responsibility Areas: moderate, high and 
very high (Figure 2) [88].

2.2 Fire risk mapping

Fire risk mapping also includes dynamic variables such as weather and vegetation 
conditions. The result is a map that displays varying degrees of fire risk ranging from 
very low to very high. Fire risk maps in short term normally provide risk estimates 
that are only appropriate for a short period (days-weeks) after their creation. They 
use many of the same inputs as fire hazard maps but also include variables that are 
continuously changing such as fuel moisture content, weather conditions and veg-
etation conditions [9, 89]. Live fuel moisture content (LFMC) is one of the critical 
factors affecting fire ignition and fire propagation, and therefore is taken into account 
in most fire danger and fire behavior modeling systems [90]. Dead fuel moisture 
conditions also affects fire ignition and fire propagation and the computation is easily 
estimated from weather data and fuel characteristics, because dead fuel moisture is 
in balance with that of the surrounding atmosphere [91, 92]. Several studies con-
ducted in a wide range of ecosystems have found a significant correlation between 
burned area and LFMC [93, 94]. Accurate and comprehensive spatial and temporal 
estimations of LFMC are essential to assess wildfire danger [95] and to develop early 
warning systems for the evolution of critical conditions [96]. Field-based estimations 
of LFMC are labor and time intensive as well as costly, and they cover small areas and 
are difficult to be frequent.

Remote sensing methods cover large areas and this is why remotely sensed images 
have been used extensively for estimation of the LFMC using various methods, which 

Figure 2. 
California fire Hazard severity zone viewer web mapping application.
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may be generally classified into statistical (empirical) [97, 98], physical model-based 
approaches [99, 100] and recently machine learning approaches [101, 102].

The use of satellite data in LFMC estimation has been focused on coarse 
spatial resolution remote sensing data such as moderate resolution Imaging 
Spectroradiometer (MODIS) and Advanced Very High-Resolution Radiometer 
(AVHRR). Combinations of spectral indices have been successfully employed to 
estimate LFMC [94, 97, 103] usually including the reflectance in the near infrared and 
the reflectance in the 1.6-μm region [104, 105]. Other studies implement also thermal 
data to estimate LFMC [106], different satellite data (Sentinel-2) in combination with 
meteorological variables or without [107, 108] and microwave remote sensing [102, 
109, 110]. Yebra et al. [111] reviewed the use of remotely sensed data for estimating 
LFMC with particular interesting toward the operational use of LFMC products for 
fire risk assessment.

Fire Weather Index (FWI) module of the Canadian Forest Fire Danger Rating 
System (CFFDRS) is widely used in several countries such as Alaska, USA [112]; 
Indonesia and Malaysia [113]; Portugal [114]; Spain [115]; and others. It is also part 
of the European Forest Fire Information System (EFFIS) (Figure 3) [116]. The FWI 
System has six components rating fuel moisture content and potential fire behavior in 
a common fuel type (i.e., mature pine stand) and in no slope conditions.

Calculations are based on daily noon measurements of air temperature, relative 
humidity, wind speed and previous 24-h precipitation. Despite the global acceptance 
of the FWI, it has an inherent problem in delineating the spatial dynamics of the 
danger conditions, as it employs geographic information system (GIS)-based inter-
polation techniques [117]. Sirca et al. [118] assessing the performance of several fire 
danger indexes in the Mediterranean area concluded that FWI yielded better predic-
tions than the other indexes.

In Italy, the Civil Protection adopted the RISICO model, which is a fire danger rating 
system that was developed specifically for the vegetation cover of the Mediterranean 
[119]. RISICO integrates meteorological observations and forecasts from an NWP 
(Numerical Weather Predication) Limited Area Model (LAM) and ECMWF-Integrated 
Forecasting System (IFS) with vegetation cover and topography data. Another project 
developed in Sardinia, Italy called Daily Fire Hazard Index (DFHI) [120], the index is 
computed using satellite images and the meteorological data.

Figure 3. 
Forest fire danger forecast in the pan-European region for 02 Jun 2022 © EU, 2022.
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3. Fire detection and monitoring fire conditions

Fire detection is the earliest critical stage of forest fires management, which is 
aimed at either fighting or monitoring the fire. For firefighting the early detection is 
essential; so far, fire detection is based on human observation, the use of fixed optical 
cameras to monitor the surrounding environment or aerial survey [29]. The temporal 
and spatial analysis capabilities provided by current satellite sensors are not consid-
ered sufficient for firefighting operations by forest fire mangers.

3.1 Spaceborne multispectral sensors

Several of geo-stationary satellite sensors have been used for active fire detection 
and monitoring including but not only: Advanced Very High-Resolution Radiometer 
(AVHRR), Meteosat Second Generation, Spinning Enhanced Visible and Infra-red 
Imager (MSG-SEVIRI), Himawari-8, Geostationary Operational Environmental 
Satellite (GOES), DMSP OLS (US Air Force Defence Meteorological Satellite 
Programme – Operational Line-scan System), Visible Infrared Imaging Radiometer 
Suite (VIIRS) and moderate resolution imaging spectroradiometer (MODIS) [121–
123]. Early attempts of active fire detection and monitoring started during 80′ with 
the US Forest Service using NOAA satellites to identify forest fires in the western US 
[124]. AVHRR was the primary sensor system for active fire detection and monitoring 
until the eventual launch during 1999 of the MODIS sensors onboard the Terra and 
Aqua platforms [125]. MODIS Terra and Aqua have become the primary sensors at 
regional to global scales for active fire detection and monitoring due to their high tem-
poral resolution and special channels designed for fire monitoring. The Aqua MODIS 
instrument acquires data twice daily (1:30 PM and AM), as does the Terra MODIS 
(10:30 AM and PM). These four daily MODIS fire observations serve to advance 
global monitoring of fire processes and their effects on ecosystems, the atmosphere 
and climate [126]. Serval operational fire monitoring systems using MODIS active 
fire detection include the Canadian Wildland Fire Information System (CWFIS) 
(http://cwfis.cfs.nrcan.gc.ca), the USA Active Fire Mapping Service or the European 
Forest Fire Information System (EFFIS) (http://effis.jrc.ec.europa.eu). In the case 
of EFFIS, post-processing filters based on landcover ancillary data are applied to 
the MODIS product to reduce the number of false alarms produced by non-fire hot 
surfaces (e.g., industrial areas, hot ground soils) and therefore increase the reliability 
of the active fire detection [116]. Figure 4 shows active fires monitoring in the wider 
Mediterranean region.

Several studies found that MODIS fire detection algorithms had trouble detect-
ing smaller/cooler fires and frequently detected false alarms [127, 128]. Validation of 
MODIS and AVHRR active fire products used higher spatial resolution sensors such 
as Landsat TM and ASTER to evaluate the performance of the MODIS and AVHRR 
products [129, 130]. The accuracy of fire detection is calculated in terms of commission 
and omission errors as well as error distributions over various locations. Commission 
and omission errors have been reported by many studies errors of omission represent 
“failure to detect fires” and errors of commission represent “false alarms or false posi-
tives” pixels identified as fires [130]. Schroeder et al. [127] found errors of commission 
of approximately 35% over areas of active deforestation, and similarly, Forghani et al. 
[130] report that overall commission errors of MODIS and AVHRR hotspots over the 
5% sample data were 15 and 68%, respectively, and overall omission errors of MODIS 
and AVHRR hotspots were 17 and 23%, respectively. An interesting comparison of the 
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suitability of some of geo-stationary satellite sensors (AVHRR, MODIS, DMSPOLS) 
for fire detection was carried out by Cahoon et al. [131]. They found in their study that 
the minimum size for a detectable fire was approximately 213 m2 for MODIS, 435 m2 
for AVHRR and 45 m2 for DMSP-OLS, for a nominal fire front temperature of 1000 K 
and a background temperature of 305 K. Maier et al. [132] determined a minimum 
fire size of 100–300 m2 for the detection by the MODIS algorithm. Evaluation of the 
MODIS active fire product to quantify detection rates of both Terra and Aqua MODIS 
sensors was carried out by Hawbaker et al. [133]. Finally, MODIS had the ability to 
capture large fires in the US, but may under represent fires in areas with high cloud, 
rapid burning or small- and low-intensity fires that are often undetected.

To address these limitations found during evaluation of the MODIS fire detection 
algorithm, NASA’s Earth Observing System periodically reprocesses the raw instru-
ment data archive using newer fire detection algorithms. In the MODIS version 3 
active fire detection algorithm’s sensitivity to small fires was sacrificed to reduce false 
alarms over certain surface types during the day [134]. The MODIS 4, contextual fire 
detection algorithm was enhanced, which increased the ability to detect small cool 
fires [60]. For the recently released Collection 6 MODIS fire products, bands 1 (red), 
2 (near infrared), 7 (short-wave infrared), 21 (thermal infrared over a wide-range 
centered on 4 μm), 22 (thermal infrared in a narrow-range centered on 4 μm), 31 
(thermal infrared at 11 μm) and 32 (thermal infrared at 12 μm) are used to identify 
1-km “fire pixels” that contain at least one active fire at time of acquisition [128].

Further than MODIS, recent studies have used data from the Landsat 8 
Operational Land Imager (OLI) [135] and Sentinel-2 sensors [136]. Also, the use of 
geostationary weather satellites and their ability to detect active fires have been a 
research topic of great interest for several years [137–139].

Active fires can be detected by a wide variety of spectral sensors, but as active fire 
products are usually used to monitor ongoing fires and the ideal sensors for detecting 
them will possess a high temporal resolution; at the same time that kind of sensor 
have low spatial resolution. While sensors with higher spatial resolution like Landsat 
satellites and Sentiel-2 satellites work well for detecting active fires, their low tem-
poral resolution makes them less than ideal. This is the reason why most active fire 
products are generated from sensors such as MODIS and VIIRS, as these sensors have 

Figure 4. 
Active fires from MODIS during June 2022 © EU, 2022.
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a very short revisit time (<2 days) allowing for the active fire products to be rapidly 
updated [17]. Geostationary satellites have even higher temporal resolution, with 
updates every few hours or less. However, these high temporal resolutions come at the 
cost of lower accuracies due to the omission of smaller/cooler fires and commission 
errors caused by activities such as deforestation [127, 132, 140].

3.2 UAVs

The MODIS satellite imagery with the high temporal resolution (1–2 days 
 revisiting time) is commonly applied in forest fires detection and monitoring. 
However, the low spatial resolution of MODIS is insufficient for this task at local 
scales [65]. During the last decade, we have seen a great progress in the field of using 
unmanned aerial vehicles (UAVs) for forest fire monitoring, detection and even 
fighting [141]. UAVs have become smaller, more affordable and now have better com-
putation capabilities than in the past making them reliable tools for remote sensing 
missions in hostile environments [142]. UAVs provide rapid, mobile and cost-effective 
sensor systems that are currently being adopted for fire detection and monitoring 
[143, 144]. In their review of UAVs applications for forest fire monitoring, detection 
and fighting, Yuan et al. [144] define fire monitoring as involving the active search 
for possible fire occurrences, while fire detection involves the identification of fires 
in progress. UAVs used for fire monitoring and detection rely on sensors operating in 
the visible and thermal infrared wavelengths. In a more recent review of UAVs usage 
in forest fires, Akhloufi et al. [145] present a survey of different approaches for the 
development of UAV fire assistance systems. They conclude that UAVs can play an 
important role in the fight against wildland fires in large areas and with the decrease 
in their prices and their wider commercial availability, new applications in this field 
will emerge. However, limitations remain such as autonomy, reliability and fault toler-
ance; also security issues are a concern, as there are risks associated with having UAVs 
flying over firefighters or close to aircraft carrying water and fire retardants [145].

4. Post-fire condition management

The application of remotely sensed imagery to monitor and assess the impacts of 
fire on local and regional environments can be broadly divided into several applica-
tions such as burnt area mapping, burn severity assessments, vegetation recovery 
monitoring, effects on soil erosion, and general fire effects on air quality, soil, vegeta-
tion and fauna.

4.1 Burnt area mapping

Remotely sensed data have been extensively used for burnt area mapping at local, 
regional and global scales [146, 147]. Burned area mapping is critical importance for 
forest managers, climate scientist and policy makers; they provide accurate spatial 
representations of fire extents and perimeters. Accurate maps of the areas affected 
by forest fire are needed for rehabilitation planning, calculating the economic and 
environmental cost of fires, and for regional and global scale estimates in gas and 
particulate emissions [148, 149].

Fires produce a significant change in the structure and the reflectance of vegeta-
tion and the soil properties within the burnt area that are noticeable in the microwave, 
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visible and especially the infrared part of the electromagnetic spectrum [29]. The 
sensors used for burned area mapping differ depending on scale and purpose of the 
assessment. Since the 1980s, the majority of techniques have been developed for data 
acquired from the AVHRR sensor, and as such were restricted to a limited number of 
reflectance and thermal bands; most commonly method used is multi-temporal com-
parison of NDVI [150, 151]. Although data from the AVHRR sensor have low spatial 
resolution (i.e., 1.1 km), global data have been obtained from a series of different sat-
ellites since the 1980s allowed the long-term monitoring of large-scale fires in remote 
and isolated areas. During 2000s, other global burnt area datasets were derived from 
SPOT Vegetation and the ATSR-2 on board of Envisat [152–154]. Partial validations 
of the global burnt area products were performed by Roy et al. [155], Boschetti et al. 
[156] and Roy and Boschetti [157]. Pereira et al. [150] showed that the accuracy of 
the results for mapping burnt areas with AVHRR data in the Mediterranean region of 
Europe was about 80% for large fires. The methods were considered suitable only for 
fires larger than 1000 ha and reliable for fires larger than 2000 ha. However, the map-
ping of those fires would correspond only to approximately 30 and 21%, respectively, 
of the total yearly burnt area in the European Mediterranean region.

Until the launch of the MODIS sensor on board of the TERRA and AQUA satel-
lites, there was not a space-based system design specifically to “look” at terrestrial 
Earth. MODIS sensors add a new capability for regional mapping of burnt areas, the 
availability of free data of medium spatial resolution from the MODIS sensors since 
2000 provided a definite impulse for the use of remote sensing at the regional and 
global scales [134]. The higher spectral information and the better radiometry of the 
MODIS sensor in comparison with the previous sensor systems (e.g., AVHRR—an 
atmospheric mission), provided the right data for the mapping of burnt areas at these 
scales. At the global scale, the MODIS program has used to produce a standard prod-
uct on burned areas based on a multi-temporal change detection approach to analyze 
differences between modeled and actual reflectance, using an algorithm based on 
Bidirectional Reflectance Distribution Function (BRDF) change detection approach 
[155]. Giglio et al. [147] created an algorithm for burned area mapping using 1 km 
MODIS data, the normalized burn ratio (NBR) and temporal texture. The resulting 
algorithm (MCD64) was assessed based on Landsat-derived burned area maps for 
central Siberia, the western US and southern Africa. They found that the algorithm 
performed well overall, except in a closed canopy subregion in southern Africa where 
it underestimated burned area. In general, global burned area products have been 
shown to exhibit relatively large errors of omission and commission. The accuracies 
of several of these burned area products were compared by Padilla et al. [158]. Six 
global burned area products were compared using stratified random sampling in the 
first attempt to implement a statistically designed sample to validate burned area 
products on a global scale. The products used in this study included MCD45, MCD64, 
Geoland2, MERGED_cci, MERIS_cci and VGT_cci. The study found MCD64 to be the 
most accurate, followed by MCD45; however, all the products possessed burned area 
commission errors above 40% and omission errors above 65%.

At regional scale, MODIS is operationally used in systems such as Canadian 
CWFIS and the European EFFIS. Two full mosaics of MODIS data are received and 
processed daily in EFFIS to provide near-real time monitoring of wildfires and map 
burnt areas. The systems are thus updated up to two times daily, providing accurate 
information of fire impacts in Europe [159]. Rapid Damage Assessment (RDA) 
module of EFFIS was initially implemented in 2003 to map burned areas during the 
fire season, by analyzing MODIS daily images at 250-m spatial resolution. Since the 
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year 2016, the RDA incorporates the mapping of active fires and burnt areas from  
the VIIRS Sensor, onboard the NASA Suomi National Polar-orbiting Partnership 
(SNPP) and the NOAA-20, which allows the update of burnt areas maps one more 
time, every day. The EFFIS from 2018 is started using also Sentinel-2 imagery at 
20-m resolution, which allows the detection of fires below the 30-ha threshold and 
it is estimated that the areas mapped in EFFIS represent about 95% of the total area 
that burns in the EU every year. Figure 5 shows the extent of burnt areas as they were 
mapped from MODIS and Sentinel-2 imagery during the last fire season and Figure 6 
shows details about the area burnt (dates, location, area, type of vegetation affected).

At national to local scales, the wide variety of remotely sensed products at high 
to moderate resolution (1-m to 30-m ground spatial resolution) makes it possible the 
accurate mapping of burnt areas. Optical image satellites such as the Landsat-8 and 
Sentinel-2 constitute the latest generation Earth observation missions of the United 
States Geological Survey and European Space Agency, respectively. The Landsat-8 sat-
ellite, launched on February 11, 2013, has 11 bands ranging in spatial resolution from 
15 m (panchromatic) to 30 m (visible, near infrared, short-wave infrared) and then 
to 100 m (thermal). Within 16 days’ temporal resolution, Landsat-8 provides 30-m 
spatial resolution optical imagery on eight spectral bands via the Operational Land 
Imager sensor, which can be accessed freely [160, 161]. Landsat-8 30-m products can 
map small and spatially fragmented burned areas greater than 40 ha in size witch 
its more detail than other satellite sensors, such as the MODIS 500 m [162]. Sentinel 
2 is a high-resolution multispectral imaging satellite composed of Sentinel-2A and 
Sentinel-2B satellites. The Sentinel-2 satellite covers 13 spectral bands with ground 
resolutions of 10 m, 20 m and 60 m and provides red-edge spectral bands, the satellite 
temporal resolution 10 days [163]. Filipponi [164] using threshold-based classifica-
tion for burnt area mapping of on the 2017 Italy forest fires based on Sentinel-2 time 
series data reported the methodology generated commission error of around 25% and 
an omission error of around 40%.

Since the Sentinel-2 and Landsat-8 have similar wavelengths and the same geo-
graphic coordinate system, several studies combined both sensors for burnt area 
mapping [162, 165, 166]. Syifa et al. [166] using SVM and SVM–ICA algorithms for 
burned area mapping for the Camp Fire (California, USA) report that the SVM–ICA 

Figure 5. 
Burnt area mapping MODIS/SENTINEL2 from the last fire season © EU, 2022.
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produced a better accuracy (overall accuracies of 83.8 and 83.6% for pre- and post-
wildfire using Landsat-8, respectively; 90.8 and 91.8% for pre- and post-wildfire 
using Sentinel-2, respectively), compared to SVM without optimization (overall 
accuracies of 80.0 and 78.9% for pre- and post-wildfire using Landsat-8, respectively; 
83.3 and 84.8% for pre- and post-wildfire using Sentinel-2, respectively). Different 
methods of satellite-based burned area detection have been developed, including 
threshold-based methods using multi-spectral bands or spectral indices such as 
Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index 
(SAVI), and the Normalized Burned Ratio (NBR), supervised classification, logistic 
regression, random forest, etc. [162, 165, 167]. Reviews of burned area mapping 
algorithms are found in the studies by Boschetti et al. [168] and Chuvieco et al. [169]. 
Synthetic Aperture Radar (SAR) was also used for burned area mapping mainly in 
boreal or tropical regions [170, 171], but some examples for the Mediterranean area 
exist [172, 173]. Also, SAR data have been used in combination with optical data for 
burned area mapping [174].

4.2 Burn severity and soil erosion assessments

The term fire or burn severity was born out of the need to provide a description of 
how fire intensity affected ecosystems, particularly following forest fires where direct 
information on fire intensity was absent and effects are often quite variable within 
and between different ecosystems [175]. Burn severity impacts vegetation mortal-
ity and soil nutrient composition, and causes increased run-off due to decreased of 
organic matter in the soil and the aboveground vegetation [176, 177]. Burn severity is 
usually measured in the field using the composite burn index (CBI), which involves 
an optical assessment of burned areas to determine the fire impacts on ecological 
conditions. Due to the need for a systematic approach to estimate burn severity across 
different environments, this approach uses a measure called the composite burn index 
(CBI) designed to provide a single index to represent many different phenomena of 
interest to land managers [178]. The CBI combines fire severity metrics and ecosystem 
responses that include resprouting of herbs, shrubs and hardwood trees, and seedling 
colonization. The CBI was created to allow for visual estimates to be conducted by rat-
ing the degree of damage done by the fire, as well as the estimated vegetation recovery 
for the area, on a 0 to 3 scale [179].

Figure 6. 
Burnt area mapping from a fire occurred at July 16, 2022 near Cutro, Crotone, Italy © EU, 2022.
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Various remote sensors (e.g., MODIS, AVIRIS) have been tested for their ability to 
match field measurements of severity and the Landsat Thematic Mapper sensor was 
widely accepted as most appropriate for this task [180–182].

Spectral indices, such as the Normalized Burn Ratio (NBR) and NDVI, have been 
widely used for assessing burn severity through remote sensing in boreal regions 
[183–186]. The NBR has mostly replaced the NDVI as the standard index for burn 
severity assessment and been widely used as a means for approximating the burn 
severity and burned area using satellite imagery also in the Mediterranean basin [187, 
188]. The NBR is calculated using NIR and SWIR data, with the SWIR wavelength 
interval generally within the 2.08–2.35-μm range [189]. A numerous differenced 
indices for burn severity assessment using multi-temporal satellite data and bi-
temporal image differencing techniques have been used in boreal regions, such as the 
Differenced Normalized Burn Ratio (dNBR) [186, 190], the Differenced Normalized 
Difference Vegetation Index (dNDVI) [191, 192] and a relative version of the dNBR 
(RdNBR) [193]. The majority of this indices used NIR and SWIR data, where the NIR 
wavelengths are sensitive to the leaf structure of live vegetation, while the SWIR is 
sensitive to moisture content and some soil conditions [189, 194]. Vegetation affected 
by a fire show decreased NIR reflectance and increased SWIR reflectance [187].

Temporal differences in land surface albedo (LSA) and land surface temperature 
(LST) have been used to estimate burn severity [195, 196]. Quintano et al. [195] found 
that changes in LST showed high agreement with field-measured CBI when used to 
map burn severity for an ecosystem dominated by maritime pine (Pinus pinaster) in 
Sierra del Teleno, Spain. Zheng et al. [196] conclude that the results indicated that the 
deltaLST/EVI performed relatively better than some commonly used burn severity 
indices, and its performance was stable and steady across regional forest areas of dif-
ferent eco-type after fires. However, Veraverbeke et al. [197] and Quintano et al. [195] 
found that while changes in LSA and LST were highly related to burn severity they 
were highly dependent on seasonality.

With the launch of the Sentinel-2 sensors by the European Space Agency (ESA), 
with specific spectral bands to record data in the vegetation red-edge spectral 
domain, which is one of the best radiance-based descriptors of chlorophyll content 
[198], allowed for the development and application of new spectral indices to dis-
criminate burn severity.

Fernández-Manso et al. [199] used Sentinel-2A imagery to examine capabilities 
of red-edge spectral indices in the context of burn severity in central-western Spain. 
The area is a mixed of shrubs and trees, with maritime pine (Pinus pinaster) and 
Pyrenean oak (Quercus pyrenaica) being the dominate species. Results indicated that 
the red-edge spectral indices calculated using red-edge 1(B5) and red-edge 3(B7)/
NIR(B8) were most suitable for burn severity assessment. Filipponi [164, 200] tested 
Burned Area Index for Sentinel-2 (BAIS2, BAIS2α), based on Sentinel-2 spectral 
bands on various study cases in Italy for summer 2017 fires, and results show a good 
performance of the index and highlighted critical issues related to the Sentinel-2 
data processing. Burn severity assessments require imagery with a high to moderate 
(<100 m) spatial resolution such as Landsat series and the Sentinel-2 sensors, and the 
limitation of these sensors is the long temporal resolution, which can make the rapid 
acquisition of data on post-fire conditions difficult.

With the use of more advanced remote sensing technologies, such as hyperspec-
tral imagery, lidar, radar and UAVs, important fire effects may be more accurately 
and consistently inferred from imagery with higher spectral, spatial and temporal 
resolutions [201]. Lidar sensors provide a relative new technology, which can be used 
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for burn severity assessments. Lidar data can provide pre- and post-fire vegetation 
structure profiles, which can be used for severity of burning estimations. Wang 
and Glenn [202] showed the potential for lidar-derived burn severity estimates is 
sagebrush steppe rangelands using average vegetation height change. This method 
outperformed the dNBR index estimations, with an overall accuracy of 84%, and 
proved to be sensitive to differences between moderate and high severity burns. 
Wulder et al. [203] compared changes in boreal forest structure, obtained by lidar 
returns, to post-fire conditions, estimated using spectral indices for the Boreal Plains 
ecozone in Alberta, Canada. The researchers found that absolute and relative changes 
in post-fire forest structure exhibited a high correlation with post-fire conditions. The 
synergy of lidar with multispectral sensor data for burn severity assessment is a topic 
of ongoing research [204–206]. Viedma et al. [206] crossed high-resolution lidar data, 
acquired from an UAV after the fire and fire severity levels based on the relativized 
burnt ratio (RBR) derived from Sentinel 2A images acquired a few months before 
and after fire. They conclude that lidar metrics derived from vertical canopy profiles 
(VCPs) demonstrated promising potential for characterizing fine-grained post-fire 
plant structures and fire damage when crossed with satellite-based fire severity 
metrics, turning into a promising approach for better characterizing fire impacts at a 
resolution needed for many ecological processes.

UAV technologies have seen an important progression in the last decade and 
they are now used in a wide range of applications. This technology has recently 
been applied to research focusing on burn severity assessment using various sensors 
[206–213]. Ye et al. [211] used object-oriented method to determine the optimal 
segmentation scale for forest burn severity and a multilevel rule classification and 
extraction model is established to achieve the automatic identification and mapping. 
The imagery was obtained by a small, multi-rotor near-ground UAV and the results 
show that the method mentioned above can recognize different types of forest burn 
severity: unburned, damaged, dead and burnt with overall accuracy been 87.76%. 
Carvajal-Ramírez et al. [207] employed an UAV carrying a high-resolution multi-
spectral sensor including green, red, near-infrared and red-edge bands. Flights were 
carried out pre- and post-controlled fire in a Mediterranean forest. The products 
obtained from the UAV were a Digital Surface Model (DSM) and multispectral images 
orthorectified in both periods, temporal differences (d) between pre- and post-fire 
values of the Excess Green Index (EGI), Normalized Difference Vegetation Index 
(NDVI) and Normalized Difference Red Edge (NDRE) index, where used to after 
reclassification to produce fire severity classes. It was concluded that dNDVI was the 
index that best estimated the fire severity according to the UAV flight conditions and 
sensor specifications.

Forest fires can negatively impact water catchments, contaminating, increasing 
soil erosion, changing soil composition and slope stability for extensive periods. A 
major reason for post-fire assessments of fire or burn severity is that it is used as an 
important indicator of the potential water runoff and erosion [214–216], the loss of 
vegetation exposes soil to erosion and makes burned areas more vulnerable to runoff 
and then susceptible to flood [217].

Several studies used fire or burn severity data derived from remote sensing 
applications or/and GIS applications for post-fire soil erosion assessment [217–219]. 
Lanorte et al. [218] used a distributed model based on the Revised Universal Soil 
Loss Equation (RUSLE) to estimate potential post-fire soil loss for four different fire 
events occurred in Basilicata region (Southern Italy) during 2017. GIS techniques 
and remote sensing data have been adopted to build a prediction model of post-fire 
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soil erosion risk. Results show that this model is not only able to quantify post-fire 
soil loss but also to identify the complexity of the relationships between fire severity 
and all the factors that influence soil susceptibility to erosion. Fox et al. [217] used 
POSTFIRE a GIS-based model that maps the burn scar and quantifies fire impacts 
on runoff and soil erosion. The model used pre-fire and post-fire satellite images, 
calculates the impact of a fire on total rainfall event runoff, and maps soil erosion 
rates. Additionally, the model requires a Digital Elevation Model (DEM), a mask of 
the general contour of the fire, land cover map, and tables of runoff coefficients and 
sediment concentration values for the land covers. Preliminary results from two fires 
in SE France indicate the model is simple to use, adaptable to local conditions, and 
provides realistic outputs for the burn scar, discharge and soil erosion maps after a 
forest fire. UAV imagery has also been used for soil erosion modeling in various types 
of landscape [220–222].

4.3 Post-fire vegetation recovery monitoring

Vegetation recovery after a fire event is an important measurement for the 
 determination of the long-term impacts that fire has on an ecosystem. During the pro-
cess of recovery, vegetation may also be influenced by several environmental factors, 
such as fire severity/damage and climatological extreme events. Vegetation recovery 
depends on several climate factors, such as the occurrence of droughts, which may 
inhibit vegetation growth, but also on precipitation of high intensity, which con-
tributes to nutrient loss and erosion by runoff [223]. Anthropogenic factors such as 
grazing can also affect vegetation recovery [224, 225].

Monitoring post-fire vegetation recovery is crucial, as it provides valuable infor-
mation for analyzing ecosystem resilience, for determining landscape dynamics and 
for forest management purposes. Post-fire monitoring of vegetation recovery can be 
conducted on the field using plots sampling where they measure seedling germina-
tion, plant survival and restoration, and vegetation characteristics [226–228], or with 
the use of remote sensing technologies. Since field measurements of post-fire vegeta-
tion recovery are a very challenging and expensive task, remote sensing techniques 
are a time- and cost-effective way to monitor post-fire ecosystem recovery [229]. 
Remote sensing techniques for estimating vegetation recovery can be grouped into 
three categories: (1) image classification, (2) vegetation indices (VIs) and (3) spectral 
mixture analysis (SMA) [230].

The most practical way to monitor changes over large areas and periods is through 
image-processing techniques based on change detection or classification techniques 
[231]. Stueve et al. [232] used supervised classification to identify patterns of alpine 
tree recovery in Mount Rainer National Park, Washington, USA. They performed 
classification analysis of 1970 satellite imagery and 2003 aerial photography to delin-
eate establishment. Local site conditions were calculated from a lidar-based DEM, 
ancillary climate data and 1970 tree locations in a GIS. The supervised classification 
method proved successful, which can be credited to the very high spatial resolution 
of the data used in this study. Salvia et al. [233] used a combination of unsupervised 
classification and field data to successfully examine the influence of burn severity on 
vegetation cover and soil property recovery in the wetlands of the Paraná River Delta, 
Argentina.

Geographic object-based image analysis (GEOBIA) is an alternative method for 
image classification and uses geographic objects instead of pixels as the spatial unit of 
analysis [234]. GEOBIA are techniques that use both spectral response and contextual 
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information to assess post-fire vegetation characteristics in groups of pixels (geo-
graphic objects generated by image segmentation). Polychronaki et al. [235] per-
formed GEOBIA-based classification on multi-temporal Système Pour l’Observation 
de la Terre (SPOT) and European Remote-Sensing (ERS) (C-band VV) images 
covering the time period from 1993 to 2007 of Thasos, Greece, to estimate forest 
regeneration after two different forest fires occurred 19 and 23 years ago. Using data 
from field-stratified sampling, they found that the classification results were vali-
dated, achieving an overall accuracy of 90.5%. In the same area, Mitri and Gitas [236] 
used GEOBIA on a combination of very high spatial (VHS) resolution (QuickBird) 
and hyperspectral (EO-1 Hyperion) imagery to investigate Pinus brutia and Pinus 
nigra regeneration. After classification of the segmented imagery, validation showed 
an overall accuracy of 83.7%.

In relation to post-fire vegetation recovery, these indicators used generally rely on 
greenness measurements of red-near-infrared (R-NIR) vegetation indices [237, 238]. 
Several spectral indices based on the NIR is used for post-fire vegetation recovery 
estimations; nevertheless, the Normalized Difference Vegetation Index (NDVI), 
the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) are 
the ones used most frequently [239]. Veraverbeke et al. [240] tested the utility of 13 
red-near infrared (R–NIR) vegetation indices (VIs) spectral indices to detect and 
estimate vegetation recovery. The study found that the soil-adjusted vegetation index 
(SAVI) outperformed the NDVI in areas with a single type of vegetation, NDVI 
outperformed the SAVI in areas with heterogeneous vegetation cover and a single soil 
type, and overall, the NDVI was the most robust VI for assessing vegetation recovery. 
Several studies of post-fire vegetation responses are based on the discrimination of 
spectral bands and vegetation indices (mostly NDVI, dNBR and EVI) by MODIS, 
Landsat, SPOT and Sentinel multi-temporal imagery in different regions and forest 
ecosystems of the world [241–245].

Spectral mixture analysis (SMA) have also used in vegetation recovery monitoring 
[246, 247]. SMA studies have shown high correlation between mapped vegetation 
recovery and field sampling [248, 249]. There is disagreement on whether the SMA 
or spectral index-based approach is most effective at estimating vegetation recovery 
[17]. Specific nature of the vegetation’s spectral response and the different compo-
nents of forest recovery, the use of a single method may not be the best option, requir-
ing multiple methods to be deployed in each ecosystem. Riaño et al. [248] and Vila 
and Barbosa [250] compared Spectral Mixture Analysis (SMA) against quantitative 
vegetation indices (NDVI and Modified Soil Adjusted Vegetation Index (MSAV)), in 
different types of ecosystems, such as chaparral shrub communities SMA performed 
better in the contrary NDVI was most accurate applicable to coniferous forests with 
maquis.

Further than passive remote sensing active synthetic aperture radar (SAR) has 
been used for post-fire vegetation recovery assessments [30, 251–254]. Laurin et al. 
[30] used Cosmo-SkyMed data in a Mediterranean protected area covered by maquis 
to detect the burnt area extension and to conduct a mid-term assessment of vegetation 
regrowth. The positive results obtained in this research highlight the importance of 
the very high-resolution continuous acquisitions and the multi-polarization informa-
tion provided by COSMO-SkyMed for monitoring fire impacts on vegetation. Several 
studies also confirmed that the combination of SAR and optical information was 
essential for estimation of regeneration stages in different forest ecosystems [255–257] 
and for post-fire vegetation regrowth [258, 259]. De Luca et al. [259] integrating the 
use of Synthetic Aperture Satellite Radar (SAR) (Sentinel-1) and optical (Sentinel-2) 
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image time series in a Mediterranean ecosystem. They conclude that the use of optical 
short-wave infrared (SWIR) and SAR C-band-based data revealed that some ecologi-
cal characteristics, such as the woody biomass and structure, recovered at slower 
rates, comparing to those suggested by using near-infrared (NIR) and red-edge data 
and they proposed the optimized burn recovery ratio (BRR) for the estimation and 
mapping the spatial distribution of the degree of vegetation recovery.

Lidar sensors are capable of penetrating through vegetation and recording forest 
structural characteristics [260] makes the system ideal for monitoring vegetation 
recovery. Sato et al. [261] estimated post-fire changes in forest canopy height and bio-
mass using airborne Lidar in western Amazonia. Comparing burned and unburned as 
control sites found that even 10 years after the occurrence of an understory fire event, 
burned forests had significantly lower biomass and height than control sites. Gordon 
et al. [262] used lidar data to measure post-fire mid-story vegetation regrowth of open 
forests in Australia using also field surveys. They found that the metrics computed 
with the lidar data had moderate to strong positive associations with field-derived 
metrics and provided a suitable representation of post-fire vegetation cover. Several 
studies also have examined the combined use of optical sensor imagery and lidar data 
[205, 263–266]. Viana-Soto et al. [266] combine lidar with Landsat imagery to extrap-
olate forest structure variables over a 30-year period (1990–2020) to provide insights 
on how forest structure has recovered after fire in Mediterranean pine forests. They 
found that less than 50% of the area completely recovered to the pre-fire structure 
within 26 years, and the area subjected to fire recurrence showed signs of greater dif-
ficulty in initiating the recovery. They conclude that the use of Landsat data provides 
a unique opportunity to analyze the evolution through decades, but the 30-m pixel 
size may conceal a larger structural variability within. Even so, cover and height are 
important indicators of forest recovery that can be derived to larger areas, providing 
useful information to support post-fire restoration activities [267].

In addition to satellite or the conventional airborne sensors, the value of using 
unmanned aerial vehicles (UAV) for estimation and monitoring of post-fire forest 
recovery has also been incised with the use of a variety of sensors [206, 210, 268–274]. 
Pádua et al. [268] evaluated effectiveness for Post-Fire Monitoring of Sentinel-2 time 
series data in comparison with high-resolution UAV-based data in an area affected by 
a fire in north-eastern Portugal. Sentinel-2 images with 10-m resolution, different 
spatial resolutions of the UAV-based data (0.25, 5 and 10 m) were used and compared 
to determine their similarities. The results demonstrated the effectiveness of satellite 
data for post-fire monitoring, even at a local scale as more cost-effective than UAV 
data. Talucci et al. [273] evaluate the ability of two vegetation indices derived from 
UAV imagery, one based on the visible spectrum (GCC; Green Chromatic Coordinate) 
and one using multispectral data (NDVI; Normalized Difference Vegetation Index), 
to predict field-based vegetation measures collected across post-fire landscapes 
of high-latitude Cajander larch forests. Findings show the utility of UAV data for 
NDVI in this region as a tool for quantifying and monitoring the post-fire vegetation 
dynamics in Cajander larch forests.

UAV systems can also be used to deliver temporal digital surface models (DSM) 
to detect post-fire changes in vegetation recovery, and the DSMs are produced either 
from lidar or using photogrammetric approach from digital imagery. Qi et al. [210] 
used drone laser scanning (DLS) and mobile laser scanning (MLS) to describe post-
fire forest structures. There results demonstrate that fused DLS-MLS point clouds 
can be effective in quantifying post-fire tree structures, which facilitates foresters to 
develop site-specific management plans. Aicardi et al. [272] used change detection 
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analysis through a time sequence (2008–2015) of DSMs obtained from lidar and 
digital images (UAV), for a forest stand composed primarily of Scots pine (Pinus syl-
vestris) in the Aosta Valley Region, Italy. They conclude that these preliminary results 
highlight the usefulness of low cost, highly flexible UAV systems within areas affected 
by natural or anthropogenic disturbances, given the possibility to fly on-demand 
(e.g., immediately after the event) and quickly repeat measures when requested for 
environmental monitoring.

5. Discussion and conclusions

This chapter aimed to provide a wide review of remote sensing and GIS applications 
in the field of forest fires—wildfires. The topics include fire hazard and fire risk map-
ping, fuel mapping, active fire detection and monitoring, burned area estimations, 
burn severity assessments and mapping, soil erosion assessments and post-fire veg-
etation recovery assessments and monitoring. Fire hazard mapping can be improved 
with better mapping and monitoring of manmade Infrastructure like power lines 
using UAVs with active (lidar) or passive sensors. For fire risk mapping alternative 
geocomputational techniques as neural networks, classification and regression trees 
(CARTs), fuzzy modeling, and other machine learning techniques are currently a 
research subject [275]. Locally fuel mapping can be delivered from UAVs with active 
(lidar) or passive sensors in more detailed resolution than satellite data. Active fire 
detection and monitoring is limited from the low temporal or spatial resolution of 
the available satellite sensors. Smaller and cooler fires have proven difficult to detect 
in global active fire datasets and by geostationary sensors [132, 140]. Probably, in the 
near future, geostationary satellites with higher spatial resolutions may become avail-
able, allowing for near real-time detection and monitoring of small/cool fires, already 
new generation satellites for forest and grassland fire detection have been launched 
such as the Himawari-8 launched by Japan, GOES-R/S/T by the United States and 
Geo-Kompsat-2A (GK-2A) by South Korea, compared with the previous satellites, 
and these new-generation geostationary meteorological satellites have been improved 
in spatial resolution and observation frequency [276]. UAVs equipped with infrared 
or thermal or RGB cameras can be used where data can provide live feeds and be used 
to predict information such as propagation of a fire [277]. For burned area estimates 
mostly Landsat, MODIS, Sentinel, AVHRR and SPOT satellites are used, with the 
NDVI and dNBR the most frequently used vegetation indices compared to other indi-
ces. Relatively newer sensors as Sentinel-2 have improved the high rates of omission 
errors, common when using other satellite sensors, and allow the detection of small 
fires (< 100 ha) accounting for a significant proportion of total burned area globally 
[278]. Currently, burn severity assessments and mapping are mostly based using 
spectral indices such us dNBR (difference of the Normalized Burn Ratio) or relative 
differenced Normalized Burn Ratio (RdNBR), and classified according to the ground 
reference values of the CBI (Composite Burn Index). UAVs equipped with lidar or 
hyperspatial sensors allowed the rapid burn severity assessments and further research 
is needed to utilize the hyperspatial data provided from UAV sensors. Also, lidar tech-
nology derived from UAVs are able to provide forest structure parameters and become 
increasingly available. Similar erosion assessments can improve with the use of UAVs 
since they are able to provide higher spatial data. The use of remote sensing to analyze 
vegetation recovery is expected to grow even further in application and prominence 
as new sensors become available (i.e., UAVs and new satellites) and bring enhanced 
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spatial, spectral and temporal resolutions to the observations [239]. Current and 
future trends are the combination of remote sensing data from passive and active 
sensors either spaceborne or airborne. With the availability of several spaceborne 
sensors (passive and active) and the emerging improvements of UAVs technologies 
(flight endurance, sensors, affordability), the development of algorithms that can 
monitor changes through time irrespective of the characteristics of each platform 
[279] will improve the overall accuracy of the assessments in almost all the reviewed 
topics. Finally, recent advances in artificial intelligence (AI) will play a growing role 
in geospatial technologies as remote sensing (RS) applications [280–282].

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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