128 research outputs found

    A Non-linear Model for Predicting Tip Position of a Pliable Robot Arm Segment Using Bending Sensor Data

    Get PDF
    Using pliable materials for the construction of robot bodies presents new and interesting challenges for the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator for surgical Operations (STIFF-FLOP), a bendable, segmented robot arm has been developed. The exterior of the arm is composed of a soft material (silicone), encasing an internal structure that contains air-chamber actuators and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural network with a structured series of pressures values applied to the arm's actuators. The model is developed across a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, traditional methods for position estimation (based on visual information or electromagnetic tracking) will not be possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our non-linear modelling approach across a range of data collection procedures

    Fabric-based eversion type soft actuators for robotic grasping applications

    Get PDF
    Humans have managed to simplify their lives by using robots to automate dull and repetitive tasks. Traditional robots have been very helpful in this respect, but in certain applications, the complexity of manufacturing and the requisite control strategies have rendered these systems inadequate. The concept of robots made of soft materials has increasingly been explored and a new avenue of research has opened up within the robotics community. In terms of construction, robots made of soft and flexible materials have several advantages over their rigid-bodied counterparts, among them simple design, simple control mechanisms, inexpensive constituent materials and the fact that they can be easily integrated into existing systems. Soft grippers in particular have been the subject of extensive research and we have witnessed significant development in terms of attributes like grasping, payload and sensing methodologies. Progress has been enhanced by the development of new materials used in the construction of actuators or end effectors of the grippers. The use of lightweight, non-stretch fabrics is a relatively new concept but initial studies have demonstrated their effectiveness in grasping applications. This thesis sets out a comparative study of popular gripping systems, focusing on the advantages of using fabrics in the construction of soft grippers. Multiple designs for fabric based finger like actuators, each addressing the drawbacks of the preceding design, are discussed along with the experimental evaluation of each design. A novel gripping mechanism in which the fingers of the gripper grow lengthwise from the tip (evert) to access and grasp the object is also presented. Large-scale fabric based eversion robots have been constructed to access environments with restricted access and for monitoring purposes. An experimental evaluation of the eversion capable finger is also presented, outlining important attributes such as payload, bending and force capability of the designed finger. An optical fibre based sensing methodology is also presented, capable of measuring the bending behaviour in soft actuators. The proposed sensor can be configured to sense bending angles, as well as the contact forces along different points along the length of the actuators

    Study and development of stretchable sensors for flexible surgical instrumentation.

    Get PDF
    Recently, attention has been focused to minimize the invasiveness of existing minimally invasive surgery (MIS) approaches: one example is the development of continuum-like and soft robots that can bend, extend, contract at any point along their length. This provides them with capabilities well beyond those of their rigid-link counterparts, thus allowing to perform whole arm manipulation. One recent approach to soft and modular systems is represented by the on-going EU project STIFF-FLOP (www.stiff-flop.eu). The STIFF-FLOP arm is not fabricated by rigid structures, but soft ones showing advanced manipulation capabilities for surgical applications, with multiple degrees of freedom (DOFs), and ability of multi-bending. Ideally, the entire robotic structure should safely move with contact and bend detection and the embedded sensors should not interfere with the movements: the use of small sensors, both soft and stretchable, which remain functional when deformed, becomes necessary. For the aforementioned reasons, we introduce a small, low-cost, soft and stretchable sensor composed of a silicone rubber (EcoFlex0030, SmoothOn), integrating a conductive liquid channel filled with biocompatible Sodium Chloride (NaCl) solution. By stretching the sensor the cross-section of the channel deforms, thus leading to a change in electrical resistance. The functionality of the sensor has been proved through testing: changes in electrical resistance are measured as a function of the applied strain. The advantage of using silicone rubber is its mechanical durability and high flexibility, non-toxicity, chemical stability and low cost. Furthermore, liquid conductors eliminate the need for rigid electronics and preserve the natural elasticity of the sensor, and the NaCl solution fulfills the need for a biocompatible liquid. Differently from existing solutions that are not truly stretchable and biocompatible, the contribution of this work is an effort for improving the current soft sensors technologies through the demonstration that NaCl filled channel rubbers represent a valid solution for measuring deformations in flexible surgical instrumentation

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    Artificial Muscles

    Get PDF
    Course material for "Artificial Muscles" e-course

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    A Helping Hand: Design process of a soft anthropomorphic end-effector for the construction industry.

    Full text link
    This thesis conducts design-led research to develop a soft anthropomorphic end-effector that is specifically designed for use with a collaborative robot on a construction site. As the construction industry changes to meet the demands of increasing populations and lack of skilled trades workers, new approaches are needed. This research explores the possibilities of a collaborative robot working on a construction site to help workers complete tasks deemed unsafe or detrimental to their health. The study acknowledges the different requirements of human-robot collaboration. However, it focuses on designing a hybrid end-effector that allows a collaborative robot to carry out more than a singular task on a construction site to increase productivity through all construction stages. The research conducts an iterative design process using soft robot techniques to replicate human hand elements, such as muscles and ligaments and currently available sensor technologies to create a hybrid end-effector. This end-effector is tested for grip strength and the ability to use both power and precision grasp functions to pick up a paintbrush, screwdriver, and a screw

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented
    corecore