654 research outputs found

    Investigations of Anatomical Connectivity in the Internal Capsule of Macaques with Diffusion Magnetic Resonance Imaging

    Get PDF
    Understanding anatomical connectivity is crucial for improving outcomes of deep brain stimulation surgery. Tractography is a promising method for noninvasively investigating anatomical connectivity, but connections between subcortical regions have not been closely examined by this method. As many connections to subcortical regions converge at the internal capsule (IC), we investigate the connectivity through the IC to three subcortical nuclei (caudate, lentiform nucleus, and thalamus) in 6 macaques. We show that a statistical correction for a known distance-related artifact in tractography results in large changes in connectivity patterns. Our results suggest that care should be taken in using tractography to assess anatomical connectivity between subcortical structure

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease

    Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing [“VBM-style”], ROI-based analysis). We observed high test–retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≄4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≀3%, ICC mostly ≄0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field

    Applied Visualization in the Neurosciences and the Enhancement of Visualization through Computer Graphics

    Get PDF
    The complexity and size of measured and simulated data in many fields of science is increasing constantly. The technical evolution allows for capturing smaller features and more complex structures in the data. To make this data accessible by the scientists, efficient and specialized visualization techniques are required. Maximum efficiency and value for the user can only be achieved by adapting visualization to the specific application area and the specific requirements of the scientific field. Part I: In the first part of my work, I address the visualization in the neurosciences. The neuroscience tries to understand the human brain; beginning at its smallest parts, up to its global infrastructure. To achieve this ambitious goal, the neuroscience uses a combination of three-dimensional data from a myriad of sources, like MRI, CT, or functional MRI. To handle this diversity of different data types and sources, the neuroscience need specialized and well evaluated visualization techniques. As a start, I will introduce an extensive software called \"OpenWalnut\". It forms the common base for developing and using visualization techniques with our neuroscientific collaborators. Using OpenWalnut, standard and novel visualization approaches are available to the neuroscientific researchers too. Afterwards, I am introducing a very specialized method to illustrate the causal relation of brain areas, which was, prior to that, only representable via abstract graph models. I will finalize the first part of my work with an evaluation of several standard visualization techniques in the context of simulated electrical fields in the brain. The goal of this evaluation was clarify the advantages and disadvantages of the used visualization techniques to the neuroscientific community. We exemplified these, using clinically relevant scenarios. Part II: Besides the data preprocessing, which plays a tremendous role in visualization, the final graphical representation of the data is essential to understand structure and features in the data. The graphical representation of data can be seen as the interface between the data and the human mind. The second part of my work is focused on the improvement of structural and spatial perception of visualization -- the improvement of the interface. Unfortunately, visual improvements using computer graphics methods of the computer game industry is often seen sceptically. In the second part, I will show that such methods can be applied to existing visualization techniques to improve spatiality and to emphasize structural details in the data. I will use a computer graphics paradigm called \"screen space rendering\". Its advantage, amongst others, is its seamless applicability to nearly every visualization technique. I will start with two methods that improve the perception of mesh-like structures on arbitrary surfaces. Those mesh structures represent second-order tensors and are generated by a method named \"TensorMesh\". Afterwards I show a novel approach to optimally shade line and point data renderings. With this technique it is possible for the first time to emphasize local details and global, spatial relations in dense line and point data.In vielen Bereichen der Wissenschaft nimmt die GrĂ¶ĂŸe und KomplexitĂ€t von gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche Daten dem Menschen zugĂ€nglich zu machen, benötigt man effiziente und spezialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz und Nutzen fĂŒr den Anwender. Teil I: Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur. Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem kombinierte, dreidimensionale Daten aus vielzĂ€hligen Quellen, wie MRT, CT oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visualisierungsmethoden. ZunĂ€chst stelle ich ein umfangreiches Softwareprojekt namens \"OpenWalnut\" vor. Es bildet die gemeinsame Basis fĂŒr die Entwicklung und Nutzung von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollaborationspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisierungen auch fĂŒr Neurowissenschaftler zugĂ€nglich. Anschließend stelle ich ein spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausalen Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwinkel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter Techniken zu verdeutlichen und anhand klinisch relevanter FĂ€lle zu erlĂ€utern. Teil II: Neben der eigentlichen Datenvorverarbeitung, welche in der Visualisierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell fĂŒr das VerstĂ€ndnis der Strukturen und Bestandteile in den Daten. Die grafische ReprĂ€sentation von Daten bildet die Schnittstelle zum Gehirn des Menschen. Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der strukturellen und rĂ€umlichen Wahrnehmung in Visualisierungsverfahren -- mit der Verbesserung der Schnittstelle. Leider werden viele visuelle Verbesserungen durch Computergrafikmethoden der Spieleindustrie mit Argwohn beĂ€ugt. Im zweiten Teil meiner Arbeit werde ich zeigen, dass solche Methoden in der Visualisierung angewendet werden können um den rĂ€umlichen Eindruck zu verbessern und Strukturen in den Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Paradigma: das \"Screen Space Rendering\". Dieses Paradigma hat den Vorteil, dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbeitunsgschritt angewendet werden kann. ZunĂ€chst fĂŒhre ich zwei Methoden ein, die die Wahrnehmung von gitterartigen Strukturen auf beliebigen OberflĂ€chen verbessern. Diese Gitter reprĂ€sentieren die Struktur von Tensoren zweiter Ordnung und wurden durch eine Methode namens \"TensorMesh\" erzeugt. Anschließend zeige ich eine neuartige Technik fĂŒr die optimale Schattierung von Linien und Punktdaten. Mit dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale rĂ€umliche ZusammenhĂ€nge in dichten Linien- und Punktdaten zu erfassen

    An introduction to model-independent diffusion magnetic resonance imaging.

    Get PDF
    ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided

    Modeling brain dynamics in brain tumor patients using the virtual brain

    Get PDF
    Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance
    • 

    corecore