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INVESTIGATIONS OF ANATOMICAL CONNECTIVITY IN THE INTERNAL 

CAPSULE OF MACAQUES WITH DIFFUSION MAGNETIC RESONANCE 

IMAGING 

 

KYLE ANDREW IGNATIUS TALJAN 

 

ABSTRACT 

 Understanding anatomical connectivity is crucial for improving outcomes of deep 

brain stimulation surgery. Tractography is a promising method for noninvasively 

investigating anatomical connectivity, but connections between subcortical regions have 

not been closely examined by this method. As many connections to subcortical regions 

converge at the internal capsule (IC), we investigate the connectivity through the IC to 

three subcortical nuclei (caudate, lentiform nucleus, and thalamus) in 6 macaques. We 

show that a statistical correction for a known distance-related artifact in tractography 

results in large changes in connectivity patterns. Our results suggest that care should be 

taken in using tractography to assess anatomical connectivity between subcortical 

structures. 
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CHAPTER I 

INTRODUCTION 

1.1 Deep Brain Stimulation  

Deep brain stimulation (DBS) is a medical procedure in which an electrode is 

placed deep in the subcortical structures of the brain to deliver electrical impulses to the 

surrounding tissues. Conceptually, it is believed that DBS plays an analogous role to a 

pacemaker for the heart, limiting erratic firing between subcortical structures thereby 

allowing normal firing patterns to be reestablished. Currently, DBS is the gold standard 

treatment for severe refractory Parkinson’s disease relieving a broad range of symptoms 

such as rigidity, bradykinesia, and tremor1-4. DBS has also been used for other motor 

degenerative conditions such as essential tremor and dystonia5,6. In addition, there is a 

great deal of research on expanding DBS to treat non-motor conditions such as epilepsy, 

obsessive-compulsive disorder, and severe depression7-9. Figure 1 shows a qualitative 

rendering of a typical DBS implant. 

However, even in the case of Parkinson’s disease there is a fundamental lack of 

understanding as to how DBS works10. Patients with similar clinical symptoms can 

undergo a DBS procedure with different results. One patient may experience a complete 
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reversal of symptoms regaining normal motor control, whereas another patient may 

experience some improvement in one symptom with an accompanying increase in 

secondary motor, cognitive, or emotional side effects11.  

 

 

Figure 1. A typical deep brain stimulation implantation. The electrodes penetrate deep 

into the subcortical structures of the brain, and the connective wires are run under the 

skin to a pacemaker that is implanted in the chest12.   

 

There is hope that DBS performance can be improved by constructing accurate 

models of Parkinson’s disease motor circuits13. However, the complex network 

architecture of the subcortical motor circuits presents a formidable challenge to modeling 

because it is not possible to discern direct cause and effect relationships. Each region in 

the motor circuit has many inputs and outputs so that stimulating the subthalamic nucleus 

does not just effect the thalamus, but also effects the putamen, globus pallidus, motor 
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cortex, etc. all of which are themselves interconnected. The result is that after years of 

DBS treatment for Parkinson’s disease there are still multiple subcortical targets for 

stimulation and disagreement as to which targets are optimum14,10.  

In modeling the effects of DBS stimulation on the motor circuits a simple first 

step is to understand which regions are being directly stimulated. Much work has been 

done to calculate the volume of tissue activated around the electrode15-17. Knowing the 

volume of tissue activated we can identify areas correlated with negative or positive 

clinical outcomes. For example, the subthalamic nucleus, one of the most common 

targets for DBS in Parkinson’s disease, is divided into motor and non-motor regions. A 

recent paper has shown that direct stimulation of non-motor regions is associated with an 

increase in negative side effects without an accompanying increase in positive 

outcomes11.  

 Determining the volume of tissue activated is only the first step in understanding 

how DBS modulates the motor circuits affected in Parkinson’s disease. The next step is 

to determine connections to the volume of tissue activated. By mapping the anatomical 

connections between the volume of tissue activated and other parts of the cortico-

subcortical motor circuit we can begin to unravel cause and effect relationships in order 

to optimize electrode placement and stimulation parameters10,13. 

 

1.2 Diffusion MRI and Tractography 

 Tractography is the only currently available method for noninvasively 

investigating anatomical connections in the brain18-20. Diffusion magnetic resonance 

imaging (dMRI) serves as the foundation for tractography. dMRI is capable of measuring 
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the diffusion of water in the brain on the millimeter scale. It is known that cell 

membranes of neurons present a barrier to the free diffusion of water21. An 

oversimplified conclusion is that given the diffusion profile in a brain voxel whichever 

direction diffusion is greatest is the same direction as the principle fiber tracts. 

Tractography is the process of implementing an algorithm to connect voxels based on the 

diffusion profiles and thereby create maps of anatomical connections. In order to put the 

tractography work performed here into context it is necessary to give a history and 

description of dMRI.  

Diffusion is the random movement of molecules in a fluid due to thermal energy 

independent of bulk flow. The theoretical description of diffusion on which dMRI is 

based was made by Einstein in 190522. Torrey was the first to describe how the Bloch 

equations (the central equations in magnetic resonance imaging) change with the addition 

of diffusion23. In 1965 Stejskal and Tanner published the paper that is still the practical 

foundation of dMRI today24. In this paper they derived the Stejskal-Tanner equation 

describing how scan parameters affect signal in diffusion scans. 

 

. 

(1)  

  In (1) S is the diffusion signal, S0 is the non-diffusion weighted signal, γ is the 

gyromagnetic ratio, G is the strength of the diffusion gradient, δ is the duration of the 

gradient, Δ is the time between gradients, and D is the diffusivity of the voxel. In 

discussing dMRI it is common to group all of the terms in the exponential together as a 
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single variable b. This b-value gives a measure of the amount of diffusion weighting. In 

practice to create a diffusion weighted image (DWI) we run a scan without any diffusion 

weighting (an S0 image). Then, selecting a b-value we measure our signal S allowing us 

to solve for the diffusion constant D.  

Figure 2 gives a qualitative explanation of how a diffusion weighted pulse 

sequence works. With no gradient the spins of hydrogen atoms process at the same rate in 

the constant B0 field. The first magnetic field gradient causes a gradient in the rate of spin 

procession. When we apply the second, opposite gradient all spins should realign and 

process at the same rate. However if water has diffused in the direction of the gradient 

there will be signal loss due to the mixing of dephased spins. Large signal loss means a 

large amount of diffusion in the gradient direction, and little signal loss means relatively 

little diffusion. Diffusion perpendicular to gradient will result in no signal loss because all 

hydrogen atoms perpendicular to the gradient will be processing at the same rate. 

Consequently, each DWI image is dependent on the direction of the applied gradient. 

Changing the gradient direction or misaligning the patient in the scanner results in 

different images.  
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Figure 2. Description of the effect of diffusion weighting gradients. With no magnetic 

gradient the spins process at the same rate. The first gradient causes spins in the higher 

field to process faster than those in the lower field. If there is no diffusion along the 

direction of the diffusion weighting gradient then the spins should perfectly rephase after 

the second, opposite gradient. If there is diffusion along the gradient then there will be 

signal loss (taken from25 figure 6).  

  

The need for an objective, i.e. gradient independent, method of modeling 

diffusion culminated in 1994 with Peter Basser’s implementation of the tensor model for 

diffusion26. Basser modeled diffusion in each voxel as a 3x3 positive, symmetric, semi-

definite tensor describing how to estimate the diffusion tensor from a series of at least 6 

different diffusion gradients using a least squares fitting algorithm27: 
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. 

 

 Diffusion tensors can be diagonalized into three eigenvalues and eigenvectors 

where the principle eigenvalue and eigenvector correspond to the direction of greatest 

diffusion for that voxel. The eigenvectors define the gradient independent coordinate 

system. The eigenvalues and eigenvectors can be visualized as a diffusion ellipsoid as 

seen in figure 3.  

 

 

Figure 3. Visualization of a diffusion tensor. The direction of the largest eigenvalue, y1, 

corresponds to the direction of greatest diffusion. All eigenvectors are orthogonal and 

define a gradient independent coordinate system for each voxel. 

 

Fractional anisotropy (FA), an important invariant of the tensor model, measures 

how much the diffusion ellipsoid is pointed28. High FA voxels have ellipsoids shaped like 
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cigars and generally correspond to densely packed white matter tracts. Low FA ellipsoids 

are spherical and usually correspond to grey matter or voxels with a mix of different fiber 

directions. 

 Shortly after the advent of the diffusion tensor model, researchers began 

developing algorithms to plot tracks through regions of high FA. Early tractography 

algorithms would plot a streamline from a seed voxel by calculating the single most 

likely path through the diffusion data29-31. Qualitatively, the cigar-shaped ellipsoids in 

these high FA regions functioned like arrows where streamline algorithms found the most 

likely path connecting these arrows. The underlying assumption was that these 

streamlines through the diffusion data somehow mirrored the actual anatomical tracts of 

white matter in the brain. 

 The diffusion tensor model and streamline tractography have serious limitations. 

The fiber structure in the brain is intrinsically complex with many regions where white 

matter tracts assume complex geometries such as crossing or kissing32. The diffusion 

tensor model is unable to resolve crossing fibers because the tensor has only a single 

peak. An example where this single peak in inadequate is the case of two fibers crossing 

at an acute angle in a single voxel. The tensor will have its principle eigenvector pointing 

between the two fibers accurately capturing the anatomy of neither tract.  

Streamline tractography does not account for the uncertainty in the fitting of the 

diffusion data33. This is a serious limitation given that streamline tractography plots only 

one fiber track per seed voxel and given that many fiber tracts pass through a single voxel 

in the actual brain. Figure 4 shows a comparison of the diffusion profile for the tensor 

model and persistent angular structure, a model that allows for multiple diffusion peaks. 
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There are numerous voxels with crossing fibers seen in the persistent angular structure 

reconstruction. These voxels with crossing fibers are inaccurately modeled as spheres in 

the tensor model. 

 

 

Figure 4. A comparison of the diffusion tensor model and persistent angular structure for 

the same section of the brain. (A) The diffusion tensor model is composed primarily of 

spherical diffusion profiles leading to the spurious conclusion that there are not tightly 

organized white matter fibers present. (B) Persistent angular structure is able to depict 

multiple diffusion peaks for each voxel revealing that the region is actually composed of 

well organized, crossing fibers.  

 

  Over the last decade many methods have been developed revamping the tensor 

model to allow for multiple diffusion peaks and exchanging deterministic tractography 

for probabilistic algorithms that plot numerous tracks from a single seed voxel34-36; 

however, it is unclear which of these methods may be optimum. The non-tensor models 

of diffusion often use functions such as high order spherical harmonics to capture 
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multiple diffusion peaks. Probabilistic algorithms calculate an uncertainty for each step 

along a track. This uncertainty in fiber direction in a voxel is used as the basis of a fibre 

orientation distribution (FOD). The FOD at each voxel is used as the sample distribution 

for determining each step as a track is plotted. The result is a large number tracks being 

generated for each voxel where the greater the uncertainty in the diffusion profile the 

greater the spread in tracks37.  

Recent studies using non-tensor models and probabilistic tractography have 

revealed striking results that seem to agree with past 18,20. However, tractography is an 

indirect measure of anatomical connectivity. Great caution must be taken before 

interpreting tracks generated via tractography as representing actual white matter 

fascicles38.  

Due to the propagation of uncertainty in the fiber orientation probability density 

functions there is a known artifact in probabilistic tractography in which proximal regions 

are systematically more highly connected than distal regions39,19. For probabilistic 

algorithms even along well-organized, straight fiber tracts, voxels close to a seedpoint 

will have a higher percentage of tracks than voxels further from the seedpoint because of 

the propagation of uncertainty. The result is a ‘flare’ pattern of high track frequency in 

regions near the seedpoint where uncertainty is low and low track frequency further from 

the seed as uncertainty grows. Subcortical structures are particularly susceptible to this 

bias because of their proximity to each other. Correcting this bias may prove essential in 

establishing probabilistic tractography as a noninvasive tool for measuring anatomical 

connectivity, especially in the subcortical regions important to DBS. However, almost no 

work has been done to correct for uncertainty propagation in probabilistic tractography.  
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Recently, Morris et al. have introduced a statistical correction (the “Morris correction”) to 

address this issue, but it has not been widely used39. 

 

1.3 Anatomy 

 The internal capsule (IC), a bundle of white matter fibers, is particularly important 

in DBS. The IC divides the thalamus and caudate from the lentiform nucleus running 

close to most of the important DBS targets including the subthalamic nucleus, globus 

pallidus interna, and thalamus40. Figure 5 below shows an axial view of the internal 

capsule along with the surrounding subcortical structures. The IC itself is the object of 

ongoing research as a potential target for DBS treatment for severe depression41,8,14.  

Given that the IC is highly connected to both subcortical and cortical structures it 

has the potential to spread stimuli far from the site of activation41. Such stimulus spread 

could be beneficial, allowing stimulation of a variety of target structures from one 

activation site. However, unintentional stimulation of the wrong structures could lead to 

side effects42. Of practical importance is that white matter requires lower stimulation 

thresholds than gray matter nuclei—a beneficial feature for DBS performance in 

general11.  
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Figure 5. Drawing of axial slice of one hemisphere of a human brain showing the 

internal capsule and other important subcortical nuclei. The internal capsule is a white 

matter tract separating the caudate and thalamus from the lentiform nucleus43.  

 

1.4 Overview 

 In this work we use tractography to segment the IC in 6 macaques based on 

anatomical connectivity to three subcortical nuclei: the caudate, lentiform nucleus (LN), 

and thalamus. We perform segmentation with and without the Morris correction. The 

principal foci of this work are: 

• Using tractography we demonstrate connection among deep brain structures 

correcting for the known distance bias. This is one of the few tractography studies 

of subcortical connections. 

• We find that the Morris correction has a large impact on connectivity results. 
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Without the correction, the patterns of connectivity are largely governed by 

proximity. With the correction we find many examples in which proximity does 

not determine connectivity. In some studies the correction reveals areas of the IC 

with no significant connections to one or more target structures. 

• We find that the caudate is most strongly and consistently connected to the 

anterior limb of the IC. The LN is most strongly and consistently connected to the 

lateral genu of the IC. The thalamus is most strongly and consistently connected 

to the medial genu of the IC. 
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CHAPTER II 

METHODS 

2.1 Imaging and Postprocessing  

 Six rhesus macaques (macaca mulatta) were scanned under a protocol approved 

by the Cleveland Clinic Institutional Animal Care and Use Committee. Animals were 

anesthetized with a propofol drip and held snugly on a Plexiglas board to minimize 

motion. High angular resolution diffusion imaging (HARDI)32 (71 diffusion weighted 

image volumes with b=1000 sec/mm2, 8 b=0 images) was performed at high spatial 

resolution (96x96mm FOV, 64x64 matrix, 1.5 mm slice thickness, yielding 1.5 x 1.5 x 

1.5 mm voxels) with TR=2000 ms, TE=87 ms, NEX ranging from 23 to 36 

(corresponding to acquisition time of 4-6 hours) on a Siemens 3 tesla Trio (Erlangen, 

Germany). Partial brain scans (14 or 15 1.5 mm thick slices) centered on the deep brain 

structures were performed to improve signal-to-noise ratio (SNR). The SNR was 

approximately 40 and 10 for the b=0 and diffusion-weighted images, respectively. Table 

1 below gives the SNR for the internal capsule, caudate, LN, and thalamus for each of the 

six studies for the b=0 scans (i.e. the non-diffusion weighted scans). Table 2 shows the 

SNR for the diffusion weighted scans. 
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Study Internal 

Capsule 

Caudate Lentiform 

Nucleus 

Thalamus 

1 30.1 37.1 26.8 33.6 

2 29.4 35.4 28.3 29.4 

3 34.0 54.4 37.4 34.6 

4 30.3 39.7 30.3 30.2 

5 45.5 53.6 43.8 48.1 

6 55.5 65.6 52.1 59.0 

 

Table 1. Signal to noise ratio for the non-diffusion weighted scans for each of the six 

studies. 

 

Study Internal 

Capsule 

Caudate Lentiform 

Nucleus 

Thalamus 

1 5.0 11.4 11.3 9.3 

2 4.9 8.9 10.0 9.2 

3 5.4 9.8 11.4 10.1 

4 5.1 10.9 10.9 9.2 

5 5.4 13.8 13.4 10.8 

6 5.7 12.8 14.0 11.2 

 

Table 2. Signal to noise ratio for the diffusion weighted scans for each of the six studies. 
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At each voxel, the diffusion tensor was calculated using a standard log-linear fit27 and 

fractional anisotropy (FA) was calculated from the diffusion tensor44. The fiber 

orientation distribution (FOD) was calculated at each voxel using regularized spherical 

deconvolution45,46. The FOD was then used as the basis of probabilistic tractography.  

 

2.2 Tractography  

We assessed anatomical connectivity between the IC and 3 surrounding 

subcortical structures: caudate, lentiform nucleus (LN), and thalamus. For each study, 

caudate, LN, and thalamus ROIs were drawn by hand on coronal and axial FA images on 

the right side of the brain using the Saleem and Logothetis MRI histology atlas of the 

rhesus macaque as a reference47. We limited the IC at the posterior using a line between 

the posterior borders of thalamus and lentiform nucleus and at the anterior using a line 

between anterior borders of caudate and lentiform nucleus48. The medial and lateral 

borders of the IC were easy to distinguish because of the sharp contrast between the 

bright white matter of the IC and the dark surrounding gray matter. The superior and 

inferior borders were defined based on the boundaries of the caudate, LN, and thalamus 

in conjunction with the Saleem atlas. Figure 6 shows an example of a manual ROI for 

one study. 
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Figure 6. Example of manual ROIs drawn on an FA map. (A) the FA map with labeled 

arrows pointing to the IC, caudate, LN, and thalamus. (B) is the color FA image, and (C) 

shows the ROIs selected for this slice. 

 

Probabilistic tractography was used to define anatomical connectivity between 

each voxel in the IC and the three subcortical structures of interest. We ran an in-house 

algorithm using a rejection sampling approach based on the FOD45,49. We generated 250 

tracks per IC seed voxel with a step length of 1.125 mm and maximum bending angle of 

90°. Tracks initiated in the seed region (IC) proceeded throughout the entire brain until 

the tracks left a mask defined using a robust range threshold on the b=0 image50.   

 

2.3 The Morris Correction 

As the tractography algorithm is probabilistic, a given voxel in the IC typically 

exhibited connections to each nucleus. To correct for distance-related bias, we performed 

the correction developed by Morris39. The correction provides a framework for 



18  

determining whether connectivity between a seed voxel and a given target is statistically 

significant. The method has been shown to account for distance artifact in anatomical 

connectivity results. The key insight of the Morris correction is to compare track counts 

generated by probabilistic tractography to a null distribution, thus allowing the statistical 

comparison. In practice, the null distribution is simply achieved by repeating the 

tractography with an isotropic FOD. The null distribution therefore provides a map of 

connections due purely to chance instead of the directionality inferred from diffusion 

anisotropy. 

 

2.4 Connection Profiles and Segmentation 

To assess the impact of the Morris correction, we generated an anatomical 

connectivity profile of the IC to each subcortical nucleus and then performed a so-called  

“hard segmentation” of the IC48. The anatomical connectivity profiles were generated by 

superimposing the target ROIs on the whole brain tractography results seeded from each 

IC voxel and adding up the number of tracks that intersect that ROI. The hard 

segmentation classified each IC voxel according to which target had the highest number 

of connecting tracks. The connectivity profiles and the segmentation were performed 

with and without the Morris correction.  
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CHAPTER III 

RESULTS 

 Figure 7 demonstrates the overall impact of the Morris correction. Connectivity 

through the IC from caudate is shown with and without the Morris correction. For 

comparison, the null distribution map is also shown. As the null distribution map does not 

include information from tissue microstructure, it primarily reflects the proximity 

between individual voxels of the IC and the caudate. The null distribution map and the 

connectivity map without the Morris correction demonstrate a high degree of similarity. 

After the correction, the connectivity profile is qualitatively different from the null 

distribution map. 

 

Figure 7. Overall impact of Morris correction on profile of connections from caudate 
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through the IC. (A) shows the null distribution map. (B) and (C) show connection profiles 

before and after the correction, respectively. 

 

Figure 8 demonstrates the effect of the Morris correction on the anatomical 

connectivity profile. Before the correction, regions of IC close to the caudate are more 

connected than those further away – there are many connections from caudate running 

through the anterior limb of the IC, fewer connections between caudate and genu of IC, 

and fewer still from caudate running through the posterior limb of IC. The correction 

results in a large reorganization of the connection pattern. The anterior limb is still highly 

connected. However, a portion of the genu and posterior limb (both relatively far from 

the caudate) become highly connected after the correction. Some of the posterior limb 

remains weakly connected, showing that the impact of the filter is not uniform. 

Variability of connectivity is particularly high in the posterior limb of IC even after the 

correction.  

 

Figure 8. Effect of Morris correction on connectivity between IC and caudate. (A) 

Fractional anisotropy image indicating location of the caudate (single arrow) and IC 
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(double arrow). Connectivity (B) without and (C) with correction. 

 

Figures 9 and 10 show reorganization of IC connections to the LN and thalamus 

due to the Morris correction. Without the correction, regions located closer to the LN or 

thalamus are systematically more connected than those further away. After the correction, 

lateral genu of IC shows high connectivity to the LN while medial genu of the IC show 

high connectivity to thalamus. These patterns are consistent among subjects.  

 

 

Figure 9. Effect of Morris correction on connectivity between the IC and LN. (A) 

Fractional anisotropy image, indicating location of the LN (single arrow) and IC (double 

arrow). Connectivity (B) without and (C) with correction. 
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Figure 10. Effect of Morris correction on connectivity between the IC and thalamus. (A) 

Fractional anisotropy image indicating location of the thalamus (single arrow) and IC 

(double arrow). Connectivity (B) without and (C) with correction. 

 

Figure 11 shows the connectivity profile after correction for each of the three 

targets across the 6 studies. Row A shows the connectivity profiles for the caudate, row B 

for the LN, and row C for the thalamus. We observe similar connection patterns to those 

mentioned above where caudate is most connected to anterior limb of IC, LN to lateral 

genu, and thalamus to medial genu. Significantly, with the correction we see that 

numerous regions across the different targets have no significant connections at all. Many 

voxels in the genu of the IC have no significant connections to the caudate (row A). 

Interestingly, there are still significant connections between the caudate and the distant 

posterior IC even in studies where voxels in the genu of the IC show no significant 

connection to the caudate. The LN shows least connection and occasional dropout of 

connection to posterior limb of IC and medial genu. The thalamus has highest 

connectivity throughout the entire IC with minimal number of insignificantly connected 
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voxels in the anterior limb and lateral genu.  

 

Figure 11. Connectivity maps after the Morris correction for all three structures across all 

6 studies. The top row (A) shows connectivity profiles between IC and caudate, the 

middle row (B) profiles between IC and LN, and the bottom row (C) between IC and 

thalamus. Across the three structures we observe regions with no significant connections.  

 

 Hard segmentation provides a means for comparing connection differences 

among the three target structures. The statistical correction had a strong impact on hard 
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segmentation results as 23±6% of voxels change classification. However, there does not 

appear to be an obvious pattern to which regions change classification because of the 

correction. Figure 12 shows hard segmentation results for all six studies before (row A) 

and after (row B) the correction.  

 

Figure 12. Impact of correction on hard segmentation across the 6 studies. Green regions 

had the highest probability of connection to caudate, purple and blue to LN and thalamus, 

respectively. The top row (A) shows segmentation before the correction. The bottom row 

(B) after correction. The patterns seem similar in top and bottom row, and although many 

voxels change classification it is not clear how the Morris correction impacted results. 
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CHAPTER IV 

DISCUSSION AND CONCLUSION 

 We investigated anatomical connectivity of the internal capsule to three bordering 

subcortical structures (caudate, LN, and thalamus) with particular focus on the impact of 

a statistical correction to account for distance-related bias. In general, the correction shifts 

connectivity patterns away from one in which proximity determines the degree of 

connectivity. After the correction, the caudate is most strongly and consistently 

connected to the anterior limb of the IC with some connection to the posterior limb. The 

LN is most strongly and consistently connected to the lateral genu of the IC. The 

thalamus is most strongly and consistently connected to the medial genu of the IC. 

Tracer studies provide support for the results. Leichnetz and Astruc  found 

connections between the anterior limb of the IC and the caudate51. Yeteran and Pandya 

noted a similar result52. Morecraft et al. observed a medial-lateral division in the anterior 

IC where medial regions were more connected to caudate and lateral regions to LN53. 

These results agree with the caudate and LN connectivity maps and the hard 

segmentation results. Tanaka found some evidence that medial regions in the genu and 

posterior limb were connected to the thalamus54. However, these tracer studies primarily 
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focused on cortical-subcortical connections and only noted if tracts passed through the IC 

along the way from subcortical nuclei to the cortex. Existing tracer studies therefore do 

not provide a comprehensive picture of connectivity between subcortical nuclei and the 

IC. 

This study complements recent tractography based studies of connectivity of the 

IC. Zarei et al. studied connectivity of cortical structures through the IC, showing 

connectivity largely consistent with anatomical tracer studies48. Sullivan et al. showed 

age-related changes of fractional anisotropy and diffusivity measures in IC segmented by 

cortical connections. In general, patterns of cortical connectivity of the IC show 

organization along the anterior-posterior direction55. However, we find a distinct pattern 

in the organization of connections to subcortical nuclei along the lateral-medial direction.  

The individual connectivity profiles may be more useful for DBS presurgical 

planning than hard segmentation results. To illustrate, figure 13 compares corrected hard 

segmentation with connectivity profiles indicating connectivity between IC and each of 

the three subcortical nuclei of interest. Although hard segmentation classifies the 

indicated voxel as most highly connected to thalamus, connectivity to caudate is nearly as 

large. This region would therefore be a poor target if selective stimulation of a single 

nucleus is expected to provide optimum therapeutic benefit.  
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Figure 13. Comparison of hard segmentation (A) with connectivity profiles for caudate 

(B), LN (C) and thalamus (D). The arrow indicates a region most connected to thalamus, 

but which is also very highly connected to caudate.  

 

This study was limited with regard to the ROIs. These limitations will be 

addressed in future studies. Although we followed the methodology of Zarei, et al., using 

FA maps to define ROIs48, ROI selection is typically performed on high resolution 

anatomical images. However, HARDI images in this study covered only part of the brain 

in the inferior-superior direction as part of a trade-off between the need for high spatial 

resolution, adequate SNR, and memory limitations of the scanner. Unfortunately, we 

found it impossible to reliably coregister these partial-brain images with high resolution 

anatomical scans with standard techniques. Furthermore, distortions from the echo planar 

acquisition for the HARDI images typically result in the need for manual editing of ROIs 

using the FA maps after coregistration.  

The inability to coregister to anatomical scans also prevented us from 

coregistering studies into a common space. Consequently, we were unable to generate 

average connectivity maps or quantify map consistency.  
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ROIs were determined manually, leading to systematic errors that can be 

addressed by automatic segmentation. Although there are widely used tools for 

automated segmentation of cortical structures, fewer tools exist for segmenting 

subcortical structures. Furthermore, these tools were optimized for human, not macaque, 

anatomy. As macaques are an important model for studies of the central nervous system, 

dedicated, automated methods for anatomical analysis of macaque images are an 

important need for the research community in general. 

Although we follow others’ precedents in using FA to identify regions48, other 

diffusion-based contrasts can be used to identify regions. For example, generalized FA 

should improve contrast particularly in regions with crossing fibers and partial volume 

averaging34.  

 A number of algorithms exist for tractography. Streamline tractography is 

commonly used29, but probabilistic tractography is required to perform the Morris 

correction. Although we have demonstrated the use of the Morris correction using an in-

house algorithm, the correction is completely compatible with publicly available tools 

such as FSL56, Camino57, and MRtrix58. Future work will evaluate the impact of the 

correction on different probabilistic tractography methodologies.  

The definition of anatomical connectivity is an open question for the research 

community at large. One important methodological issue is partial volume averaging. As 

the subcortical regions are small, a relatively large layer of voxels at the border of each 

region is, in fact, a mixture of the tissue of interest and other tissue. A substantial fraction 

of tracks passing through these border voxels therefore do not truly intersect the tissue of 

interest, but neighboring tissue. The approach taken here simply assumes that if a track 



29  

intersects the user-defined ROI, it intersects the tissue of interest. The partial volume 

effect may be addressed by close examination of the trajectory of each track, excluding 

those that graze the edge of the tissue of interest. Future work will examine the extent of 

this effect on measured connectivity values. 

The rejection sampling algorithm used to generate the tracks is simple, and further 

refinements may improve performance. Partial volume effects due to crossing fibers are 

accounted for by use of the FOD. However, beyond the relatively permissive 90 degree 

bending criterion, no further constraints were placed on track shapes. For example, tracks 

were not forbidden from looping back on themselves or re-entering the subcortical nuclei. 

Future work will examine appropriate constraints on track geometries for the assessment 

of anatomical connectivity. 

An important distinction should be made regarding the nature of the Morris 

correction. The correction works on overall statistics of track counts, but not on the track 

geometries themselves. For example, the correction does not filter tracks with improbable 

shapes from a mixture of tracks with plausible and implausible trajectories. An 

alternative approach examining the statistics of shapes may be a valuable approach with 

better properties, but is beyond the scope of this paper. 

Relatively little work has examined anatomical connectivity of subcortical 

structures by noninvasive means. The work of Iturria-Medina examined the connectivity 

patterns of a large number of brain regions, including subcortical regions59,60. An 

important issue to be examined is the degree to which the Morris correction would alter 

such patterns. 

Future work will examine the efficacy of the Morris correction and subcortical 
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connections in detail. For example, simulations on digital phantoms can be used to 

quantitatively test the ability of the Morris correction to account for the distance-related 

falloff in anatomical connectivity. Such simulations can also be used to clarify 

distinctions in performance of the Morris correction in conjunction with different 

probabilistic tractography algorithms. Furthermore, consistency with ground-truth studies 

of connectivity using anatomical tracers are another indirect method for validating 

anatomical connectivity results61. This type of approach has been taken by Hagmann et 

al62  

A number of opportunities for optimizing the methodology of measuring 

anatomical connectivity are available. Beyond the algorithmic approaches mentioned 

earlier in the discussion, details of the image acquisition such as spatial resolution, 

diffusion-weighting, and gradient acquisition scheme can each play an important role. 

Optimization requires a reliable methodology for ground-truth validation. Beside 

simulations and comparison with known anatomical connectivity patterns in macaques, it 

may also be possible to use electrophysiology measurements taken in humans during 

DBS placement. There have been several recent clinical studies using tractography in 

surgical planning for DBS. Gutman, et al. analyzed the connectivity patterns of 

subcallosal cingulate and anterior limb of internal capsule, two common stimulation sites 

for depression63.  Barkhoudarian, et al. looked at tractography results for three DBS 

patients suggesting that tractography could help clinicians characterize potential effects 

and side effects on a patient by patient basis64. Coenen, et al. used tractography to 

implicate the dentate-rubro-thalamic tract in controlling tremor in a single DBS patient65. 

None of these seem to have addressed the distance artifact. 
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DBS is attractive to study with tractography precisely because it provides some 

possibility of optimizing tractography parameters via cross-validation with interoperative 

electrophysiology and surgical outcomes. Modeling of stimulation patterns from 

implanted electrodes can be used to determine consistency between connectivity profiles 

and observed clinical outcomes and side effects66. Upon validation of the connectivity 

profiles, we hope to prospectively inform DBS implantation and stimulation parameters 

for improved clinical outcomes. 
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