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Abstract 
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with 

the ambitious goal of developing in-vivo histology of the brain. A recent methodological 

advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a 

histologically validated multi-compartment model to yield microstructural features of brain 

tissue such as geometric complexity and neurite packing density, which are especially useful 

in imaging the white matter. Since NODDI is increasingly popular in clinical research and 

fields such as developmental neuroscience and neuroplasticity, it is of vast importance to 

characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy 

young subjects twice over a rescan interval of 4 weeks to assess the within-subject 

coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the 

intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared 

regional and voxel-by-voxel reproducibility of the most common image analysis approaches 

(tract-based spatial statistics [TBSS], voxel-based analysis with different extents of 

smoothing [“VBM-style”], ROI-based analysis). We observed high test-retest reproducibility 

for the “orientation dispersion index” (ODI) and slightly worse results for the “neurite density 

index” (NDI). Our findings also suggest that the choice of analysis approach might have 

significant consequences for the results of a study. Collectively, the voxel-based approach 

with Gaussian smoothing kernels of ≥ 4mm FWHM and ROI-averaging yielded the highest 

reproducibility across NDI and ODI maps (CVWS mostly ≤ 3%, ICC mostly ≥ 0.8), 

respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, 

we demonstrate that image quality (signal-to-noise ratio) is an important determinant of 

NODDI metric reproducibility. We discuss the implications of these results for longitudinal 

and cross-sectional research designs commonly employed in the neuroimaging field.  

Keywords: Diffusion-weighted imaging, Neurite Orientation Dispersion and Density Imaging 

(NODDI), reproducibility, reliability, precision  
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Abbreviations 
BBR – boundary-based registration 

BMI – body mass index 

CI – confidence interval 

CSF – cerebrospinal fluid 

CV – coefficient of variation 

CVBS – between-subject variation expressed as a CV 

CVWS – within-subject variation expressed as a CV 

DW – diffusion-weighted 

DWI – diffusion-weighted imaging 

EPI – echo-planar imaging 

FA – fractional anisotropy 

FWHM – Full width at half maximum 

FSL – FMRIB Software Library 

GM – gray matter 

ICC – intraclass correlation 

ISO – isotropic volume fraction 

MD – mean diffusivity 

MRI – magnetic resonance imaging 

NDI – neurite density index (aka intra-cellular volume fraction) 

NODDI – Neurite Orientation Dispersion and Density Imaging 

ODI – orientation dispersion index 

RM-ANOVA – Repeated Measures Analysis of Variance 

ROI – region of interest 

SD – standard deviation 

SNR – signal-to-noise ratio 

TBSS – Tract-Based Spatial Statistics 
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T1w – T1-weighted 

WM – white matter  
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Introduction 
Although the cerebral cortex has a unique role in neural computation, about half of the 

human brain’s volume is comprised of fibres, often summarized as white matter (WM) tissue 

(Walhovd et al., 2014). Within the brain, axons insulated by myelin sheaths connect remote 

cortical and subcortical gray matter (GM) regions, therefore enabling efficient 

neurotransmission subserving consciousness, emotions, cognition, and motor functions 

(Filley and Fields, 2016; Sampaio-Baptista and Johansen-Berg, 2017). 

Non-invasive diffusion-weighted imaging (DWI) is a powerful magnetic resonance image 

technique which allows to infer microstructural features of WM such as axonal packing, 

membrane properties, and myelination in vivo by applying strong, directionally varying 

gradient fields (Alexander et al., 2019; Beaulieu, 2002; Jones et al., 2013). An increasing 

number of DWI studies have demonstrated that microstructural features of WM dynamically 

change throughout lifespan (Lebel et al., 2012; Mills et al., 2016) and are sensitive to 

modulations with disease, experience, lifestyle factors and learning (Bengtsson et al., 2005; 

Raja et al., 2019; Scholz et al., 2009; Voss et al., 2013).  

To yield biologically interpretable variables of WM tissue, the measured DWI signal reflecting 

the motion of water molecules within the local tissue environment has to be described in a 

mathematically plausible way (Alexander et al., 2019; Jones et al., 2013; Novikov et al., 

2018). Most commonly, DWI data are acquired with a single diffusion weighting constant (b-

value) for at least six noncollinear gradient directions (Jones, 2004), and the measured 

signals along different axes are fitted to a diffusion ellipsoid or tensor (Basser et al., 1994; 

Basser and Pierpaoli, 1996). Thus, the tensor is a simplified representation of diffusion 

attenuation that makes no assumptions about the underlying biophysical tissue properties 

(Hutchinson et al., 2017; Novikov et al., 2018; Novikov et al., 2019). Notwithstanding that, 

popular tensor-derived metrics like fractional anisotropy (FA) and mean diffusivity (MD) have 

shown to be sensitive to tissue microstructure in health and disease, especially in WM 

regions of approximately parallel fiber bundles (Alexander et al., 2019; Chang et al., 2017). A 

common criticism of the diffusion tensor and the conventionally used low b-values (≤ 1,000 

s/mm2) are their limited ability in resolving complex fiber geometries such as crossing, 

fanning and kissing fibers, although it is estimated that roughly 90% of the brain’s voxels 

exhibit such complex microstructure (Jones et al., 2013). Likewise, it has been emphasized 

that DWI with low b-values is rather insensitive to neurites (axons and dendrites) and neural 

tissue changes in gray and white matter (Fukutomi et al., 2019). 

To overcome these issues, it has been suggested to acquire DWI data with multiple b-values 

(multi-shell) and a high number of gradient directions (angular sampling), along with the use 

of a theory‐driven modeling framework to relate the b-value dependent diffusion signal to 
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more specific biophysical properties such as axon density and fiber dispersion (Alexander et 

al., 2019; Hutchinson et al., 2017; Novikov et al., 2019). One increasingly popular and 

clinically feasible biophysical model of diffusion is Neurite Orientation Dispersion and Density 

Imaging (NODDI; Zhang et al., 2012). The key parameters to emerge from this model are the 

neurite density index (NDI), a measure of axonal or neurite packing density, and the 

orientation dispersion index (ODI), a measure representing geometric complexity (angular 

variation) of neurite orientation and therefore reflecting tract disorganisation (Zhang et al., 

2012). Importantly, these novel indices of brain microstructure were found to be associated 

with changes typically observed in neurodegeneration (reviewed by Lakhani et al., 2020; 

Sone, 2019) and were also validated against histological counterparts (Grussu et al., 2017; 

Jespersen et al., 2010; Mollink et al., 2017; Schilling et al., 2018; Sepehrband et al., 2015; 

Wang et al., 2019). Therefore, NODDI has potential to characterize the biological 

mechanisms underlying group differences, brain-behavior-correlations, or brain changes over 

time in unprecedented biological plausibility.  

There is an increasing awareness of the importance of scientific quality standards such as 

accurate handling of effect sizes and scientific reporting (Loken and Gelman, 2017), 

appropriate sample sizes (Button et al., 2013; Szucs and Ioannidis, 2020), accounting for 

multiplicity of tests (Winkler et al., 2016) and using reliable measures (Poldrack et al., 2017; 

Zuo et al., 2019). Reliable measures are essential in neuroimaging research, as they are an 

important contributor to the sensitivity and specificity of the analysis in various statistical 

designs (Tofts, 2018b; Zuo et al., 2019). Yet surprisingly, our knowledge on NODDI 

reproducibility in the human brain's white matter is based on very limited data with sample 

sizes of n ≤ 10 (Andica et al., 2020; Chung et al., 2016; Granberg et al., 2017; Tariq et al., 

2013). Although the results of these studies are promising with reported within-subject 

coefficients of variation (CVWS) ranging from approximately 1–7% (Andica et al., 2020; Chung 

et al., 2016; Granberg et al., 2017; Tariq et al., 2013) and retest-correlation values 

(Pearson’s r or ICC) of ≥ 0.9 (Andica et al., 2020; Tariq et al., 2013), several important issues 

remain to be addressed. First, most previous studies focused on within-session (Andica et 

al., 2020; Chung et al., 2016; Granberg et al., 2017) rather than longitudinal reliability over 

longer time intervals (Tariq et al., 2013). Since repeated measurements in longitudinal 

neuroimaging studies are typically separated by weeks to several months (Lebel et al., 2012; 

Valkanova et al., 2014), reproducibility of NODDI maps with longer rescan intervals needs to 

be investigated. Second, a so far neglected area is the reproducibility of NODDI on the 

single-voxel level in stereotactic space, which is however the relevant quantity influencing 

popular voxel-by-voxel analysis methods (Cabeen et al., 2017; Snook et al., 2007; Vollmar et 

al., 2010). We consider this as the most important gap in knowledge, because many existing 

studies using NODDI carried out localized statistical testing based on a “VBM-style” 
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framework (e.g., Billiet et al., 2015; Broad et al., 2019; Churchill et al., 2019; Dowell et al., 

2019; Kraguljac et al., 2019) or the tract-based spatial statistics (TBSS; Smith et al., 2006) 

approach (e.g., Kodiweera et al., 2016; Timmers et al., 2016; Zhang et al., 2018). A problem 

intrinsically tied to “VBM-style” approach is the choice of an adequate extent of spatial 

smoothing, since this particular postprocessing step impacts the results of later statistical 

tests (Jones et al., 2005; Smith et al., 2006). 

Reproducibility of biophysical models of diffusion like NODDI is not only dependent on the 

choice of an adequate analysis approach, but also (and in the first place) on the quality of the 

underlying DWI data. DWI is an inherently signal-to-noise ratio (SNR) sensitive technique 

due to the loss of signal accompanying the application of strong diffusion gradients (Jones et 

al., 2013; Polders et al., 2011). In this respect, applying even stronger gradients – which is 

required to fit advanced biophysical models – leads to a further increase in signal 

attenuation, thus aggravating the SNR-problem (Chung et al., 2016; Hutchinson et al., 2017; 

Wang et al., 2019). In addition, factors like scanner hardware (e.g., field strength, gradient 

performance, receive coil sensitivity, scanner instabilities), geometric distortions (e.g., eddy 

current- and susceptibility-induced distortions), imaging protocol (e.g., number of diffusion-

weighted and non-diffusion-weighted images, number of b-values, angular sampling, choice 

of the highest b-value, voxel size) and other measurement issues (e.g., subject placement, 

head motion, cardiac pulsation) may also contribute to imaging artifacts (Chen et al., 2015; 

Chung et al., 2016; Farrell et al., 2007; Hutchinson et al., 2017; Parvathaneni et al., 2018; 

Roalf et al., 2016; Vollmar et al., 2010; Wang et al., 2019). Determining how the combined 

effect of all these confounds affects NODDI (and DTI) metric reproducibility is a research 

problem yet to be addressed. 

This paper examines the longitudinal reproducibility of NODDI metrics in white matter in a 

cohort of healthy adults at a magnetic field strength of 3T. We concentrate on a comparative 

evaluation of the region-of-interest (ROI) analysis approach – i.e. averaging voxels within 

atlas-derived WM tracts (cf. Froeling et al., 2016; Snook et al., 2007) – against the “VBM-

style” approach with different extents of spatial smoothing (cf. Jones et al., 2005) and against 

TBSS (Smith et al., 2006). Furthermore, we address the impact of image quality on the 

reproducibility of NODDI metrics. We will therefore be able to evaluate NODDI’s general 

reproducibility and to derive evidence-based recommendations regarding analysis 

approaches for future cross-sectional and longitudinal studies.  
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Materials and Methods 

Participants and experimental design 
In order to assess longitudinal reproducibility of NODDI microstructural maps, two MRI 

measurements separated by four weeks were acquired. This design was chosen because a 

between-scan interval of several weeks is frequently used in neuroimaging studies on 

plasticity (cf. Valkanova et al., 2014, for a review). 

Twenty-nine cognitively healthy adults (24 ♂, 5 ♀; age: M = 23.07, SD = 3.98, range 19–35; 

BMI: M = 23.76, SD = 3.02, range 18.99–29.99) with no history of neurological, psychiatric or 

systemic diseases were included. Note that an age range of 18 to 35 y reflects a comparably 

homogenous phase of human ontogeny in terms of cognitive functions (Li et al., 2004) and 

structural brain development (Mills et al., 2016). The study was performed in accordance with 

the ethical standards as laid down in the 1964 Declaration of Helsinki and its later 

amendments. Approval was granted by the Ethics Committee of Otto von Guericke 

University Magdeburg. Written informed consent was obtained from all individual participants 

included in the study. 

MR image acquisition 
MRI data were acquired on a 3T MAGNETOM Prisma system (Siemens Healthcare, 

Erlangen, Germany) using a 64-channel head coil. We used the same protocol for each 

volunteer and each scanning session. Whenever possible, subjects were measured at 

approximately the same time of day during the study. The imaging protocol consisted of a 

series of MRI sequences, as outlined below. Subjects were asked to relax, keep their mind 

free of any thoughts, and to move as little as possible. A pillow was placed surrounding the 

sides and the back of the head to minimize head motion and within- as well as between-

subject differences in positioning. 

Anatomical images were acquired using a T1w three-dimensional magnetization-prepared 

rapid gradient echo sequence (Mugler & Brookeman, 1990) with 240 sagittal slices. The 

imaging parameters used were as follows: inversion time, TI = 1,100 ms; repetition time, TR 

= 2,600 ms; echo time, TE = 5.18 ms; readout pulse flip angle, α = 7°; parallel GRAPPA 

acceleration factor = 2; acquisition matrix = 320 × 320; field of view, FOV = 256 × 256 mm2; 

nominal spatial resolution = 0.8 × 0.8 × 0.8 mm3; scan duration = 7 min 25 s. 

Whole-brain DW images were obtained with a monopolar single-shot spin echo EPI 

sequence: TE = 74 ms; TR = 4970 ms; flip angle α = 90°; parallel GRAPPA acceleration 

factor = 2, matrix: 130 × 130; FOV = 208 × 208 mm2; nominal spatial resolution = 1.6 × 1.6 × 

1.6 mm3; multiband acceleration factor = 2; phase-encoding direction: anterior >> posterior; 

228 isotropically distributed diffusion sensitization directions  (38 at b = 1,000 s/mm2, 76 at b 
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= 2,000 s/mm2, and 114 at b = 3,000 s/mm2) and 14 b = 0 s/mm2 images (interleaved 

throughout the acquisition) were collected. The sampling scheme was designed according to 

Caruyer and co-workers (http://www.emmanuelcaruyer.com/q-space-sampling.php; Caruyer 

et al., 2013). To generate appropriate fieldmaps to correct for susceptibility-induced 

distortions, nine b = 0 s/mm2 images with reversed phase encoding (posterior >> anterior) 

were also acquired. The total scan duration was 22 min 31 s. 

Processing of MR images 
In accordance with the majority of existing NODDI papers we opted for preprocessing tools 

provided by the FMRIB Software Library ([FSL] Smith et al., 2004; see Fig. 1 for a graphical 

overview of the pipeline). 

http://www.emmanuelcaruyer.com/q-space-sampling.php


10 
 

 

Figure 1: Graphical overview of the preprocessing pipeline (see text for details). 

After visual quality assessment, preprocessing of DW images started with the creation of a 

fieldmap using topup (Andersson et al., 2003) for later correction of susceptibility-induced 

distortions (unwarping). The approach combines the b = 0 s/mm2 images acquired with 

reversed phase-encoding as described in the previous section. Using the eddy tool 

(Andersson and Sotiropoulos, 2016), data sets were corrected for susceptibility (using the 
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fieldmap to emerge from topup), eddy current-induced distortions and head motion, and 

outlier slices were detected and corrected (Andersson et al., 2016). Realignment of images in 

the course of motion correction was accompanied by appropriate correction of gradient 

directions (Leemans and Jones, 2009). 

NODDI parameter maps were estimated from corrected multishell DW images images (b = 0 

s/mm2, b = 1,000 s/mm2, b = 2,000 s/mm2, and b = 3,000 s/mm2) using the NODDI Matlab 

Toolbox v1.0.1 (http://nitrc.org/projects/noddi_toolbox, default settings), implementing the 

model formulation of Zhang et al. (2012). In brief, NODDI models the diffusion signal in each 

voxel as contribution from three compartments: intraneurite signal, referring to the space 

bounded by the membrane of neurites, extraneurite signal, referring to the space around the 

neurites (glial cells, cell bodies), and CSF signal, referring to the space occupied by CSF. In 

the mathematical formulation of the model, intraneurite signal is represented by a set of zero-

radius sticks following a Watson distribution, extraneurite signal is represented by a 

cylindrically symmetric tensor and CSF is modeled as isotropic Gaussian diffusion. The full 

normalized signal A can be written as 

A = (1−νiso)(νicAic + (1−νic)Aec) + νisoAiso, 

 

(1) 

where Aic and νic refer to the normalized signal and volume fraction of the intra-cellular 

compartment; Aec is the normalized signal of the extracellular compartment; and Aiso and νiso 

are the normalized signal and volume fraction of the CSF compartment, respectively (Zhang 

et al., 2012). Microstructural maps to emerge from the model are NDI (synonymous to vic), 

the fraction of tissue that comprises axons or dendrites, ODI, a measure of spatial 

configuration of the neurite structures and therefore tract disorganisation, and ISO, 

representing the freely diffusing water (i.e., CSF). 

To analyse the region-based and voxel-wise reproducibility of these maps, it is paramount to 

have accurate registrations from native space to a standard template space. To this end, we 

used an established longitudinal TBSS-based pipeline (Smith et al., 2006; see Fig. 1) which 

has been evaluated in terms of reliability (Madhyastha et al., 2014) and has shown sensitivity 

to neuroplastic changes in longitudinal studies (e.g., Engvig et al., 2012; Lehmann et al., 

2020). As a first step, a diffusion tensor (Basser et al., 1994; Basser and Pierpaoli, 1996) 

was fitted at each voxel of the preprocessed images (b = 0 s/mm2 and b = 1,000 s/mm2 

shells; cf. Barrio-Arranz et al., 2015; Hutchinson et al., 2017; Novikov et al., 2018) using 

FSL’s dtifit. Second, diffusion indices such as fractional anisotropy (FA) and mean diffusivity 

(MD) were computed from the eigenvalues of the diffusion tensor with the respective 

formulas (Pierpaoli and Basser, 1996). Third, an unbiased halfway space between the two 

FA images of each participant was determined using the siena_flirt tool (Smith et al., 2002), 

http://nitrc.org/projects/noddi_toolbox
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as described by Engvig et al. (2012) and Madhyastha et al. (2014). Fourth, the original FA 

images were linearly registered to the computed halfway point and subsequently averaged to 

generate a subject-wise FA halfway template (Engvig et al., 2012; Madhyastha et al., 2014). 

Fifth, each subject-wise FA template in midpoint space was nonlinearly (Andersson et al., 

2007) aligned to every other one in order to identify the most representative template of the 

sample (Rueckert et al., 1999; Smith et al., 2006). Sixth, after warping each subject’s 

template to the target, images were registered to MNI152 space (FMRIB58 1mm template) 

using affine transformation (Jenkinson et al., 2002). Seventh, a group‐average FA image was 

computed and thinned/binarized with an FA‐value of > 0.25 (skeletonization). Eighth, the 

previously created warp fields were applied to all midpoint-space registered NODDI/DTI 

maps of both measurement points, and the aligned NODDI/DTI data was projected onto the 

skeleton. In sum, the aforementioned procedures yield linear transformations from native 

diffusion space to each subject’s individual template, and from each individual template to 

MNI152 space (see Fig. 1, C and D). Inversion of these transformations and warps allowed 

us to register atlas ROIs to each subject’s native diffusion space. 

For the “VBM-style” approach, registered maps were smoothed with Gaussian kernels of 

different sizes (0mm [unsmoothed], 2mm, 4mm, 6mm, 8mm and 10mm FWHM) based on 

previously reported settings applied in the literature (Billiet et al., 2015; Broad et al., 2019; 

Churchill et al., 2019; Dowell et al., 2019; Jones et al., 2005; Kraguljac et al., 2019). To 

minimize potential problems with mixing of tissue types (“partial voluming”, Smith et al., 

2006), only voxels within the group-specific, conservative white matter mask (see “Regions-

of-interest and masks”) were subjected to smoothing. 

Quality Assurance 
Because preprocessing pipelines cannot fully compensate for the effects of potential 

confounding factors (see “Introduction”), it is important to assure that these confounders did 

not exert an unsystematic influence on the pre- and post-measurements. For this purpose, 

we calculated a recently proposed index of DW image quality – the temporal signal-to-noise 

ratio (tSNR; Roalf et al., 2016) – from the preprocessed and brain-extracted DWI data. 

Average tSNR is estimated by first calculating the mean and standard deviation of each 

voxel's intensity over time, and then averaging the resulting values across all brain voxels to 

yield a single metric of image quality (Roalf et al., 2016). Note that these calculations were 

performed separately for each subject, session, and b-shell. 

As emphasized by Roalf et al. (2016), a note of caution should be sounded concerning the 

application of tSNR to diffusion-weighted images (b ≥ 0 s/mm2), because the latter have 

varying signal intensity and noise profiles. However, this potential drawback should be 
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bearable because significantly more diffusion-weighted than non-diffusion-weighted images 

were collected, thus providing a robust estimate of SNR (Roalf et al., 2016). 

Besides the question whether image artifacts are comparable between pre- and post-test, it 

is also important to check the data for the presence of outliers. To this end, we calculated the 

absolute deviation around the median (MAD; see Leys et al., 2013, for details) as a measure 

of dispersion separately for each b-shell (data from both sessions merged) and defined a 

moderately conservative rejection criterion of 2.5 times the MAD below the median (Leys et 

al., 2013). In other words, individual DWI data were categorized as outliers if their tSNR fell 

outside the predefined rejection criterion of 2.5*MAD below the median. 

Reliability metrics 
Reproducibility (or reliability) generally refers to the “degree to which multiple assessments of 

a subject agree” (Bartko, 1991, p. 483). Here, we analyse agreement both in terms of 

measurement precision (Sullivan et al., 2015) and in terms of consistent ranking of 

individuals (Bartko, 1991). 

Starting point of reliability analysis according to classical test theory is the decomposition of 

observed scores into between-subject variability (“true score”) and within-subject variability 

(Bartko, 1991; Hopkins, 2000; Tofts, 2018b). Within-subject variability describes the 

inconsistency (or dispersion) of observations when repeatedly measuring a single individual, 

thus representing the amount of random error or noise contributing to the measure. To 

calculate within-subject variability, the two measurements (or replicates) of each subject 

were first transformed according to 

𝑦̃𝑖 = 100 ∙ log 𝑦𝑖 (2) 

for scan (i=1) and re-scan (i=2) where log refers to the natural logarithm (Hopkins, 2000). 

This procedure was chosen because the standard deviation of observations often increases 

with mean value in brain measures (Tofts, 2018b), and quantities derived from log-

transformed data vary less with mean value (i.e., residuals are more uniform). Next, signed 

differences of the log-transformed data were calculated: 

Δ =  𝑦̃2 −  𝑦̃1. (3) 

Subsequently, the within-subject standard deviation in absolute units was computed 

according to the formula 

𝑆𝐷Δ =  
𝜎(Δ)

√2
 

(4) 

where σ refers to the standard deviation (Hopkins, 2000; Tofts, 2018b). Finally, SDΔ was 

converted to a coefficient of variation (CV) using the formula 
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𝐶𝑉𝑊𝑆 = 100 ∙ (𝑒
𝑆𝐷Δ

100⁄ − 1) 

 

(5) 

where e is the base of the (natural) exponential function (Hopkins, 2000). The CVWS is 

equivalent to the standard deviation of replicate measures for a subject, expressed as a 

percent of the subject’s mean value. For example, a CVWS of 10% reflects that the variation 

about the mean value is typically 1/1.1 to 1.1 times the mean, or ≈ 0.91 to 1.1 (Hopkins, 

2000). The interpretation of this measure is straightforward: the smaller the CVWS, the better 

the reproducibility. 

The other source of variability is arising from differences between subjects (between-subject 

variability) therefore representing an indicator of sample heterogeneity (Bartko, 1991; Tofts, 

2018b; Zuo et al., 2019). Between-subject variability was computed by first averaging the two 

measurements within-subject, second calculating the mean (x̅) and standard deviation (σ) of 

the resulting scores across subjects, and third calculating the CVBS according to the formula 

𝐶𝑉𝐵𝑆 =
𝜎

𝑥̅
∙ 100. (6) 

In line with most reliability studies, we also report the intraclass correlation coefficient (ICC; 

Bartko, 1991; Shrout and Fleiss, 1979), a ratio measure between the previously introduced 

sources of variability. Conceptually, the ICC reflects the fraction of observed test score 

variance that is attributed to between-subject variability (Tofts, 2018b). If within-subject 

variability is small compared to between-subject variability, ICC approaches 1. The ICC was 

computed using the two-way mixed model where agreement is defined in terms of 

consistency. According to the Shrout and Fleiss (1979) convention, this type of ICC is termed 

ICC(3,1), where the "3" refers to the two-way mixed model (i.e., participants are treated as 

random effect, sessions as fixed effect), while the "1" refers to the reliability of single 

repeated measurements (instead of the mean of several measurements). Assuming that the 

data is arranged in a convenient matrix with subjects in rows and repeated measurements in 

columns, ICC(3,1) is calculated according to 

𝐼𝐶𝐶(3,1) =  
𝑀𝑆𝑆𝑅 −  𝑀𝑆𝑆𝐸

𝑀𝑆𝑆𝑅 +  (𝑘 − 1)𝑀𝑆𝑆𝐸
 

(7) 

where k refers to the number of measurements/scans, MSSR refers to the mean sum of 

squares (i.e., between-subject) and MSSE refers to mean sum of squares of errors (within-

subject) (Shrout and Fleiss, 1979). 

As a sanity check that all formulas were rightly implemented, we calculated the ratio of 

CVWS/CVBS for each mask and for all analysis approaches and correlated the resulting scores 

with the ICC. Expectedly, the CVWS/CVBS ratio correlated very well with the ICC (R2 = 0.98, p 

< .001). The small difference to a perfect correlation can be explained by the fact that in the 
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present paper within- and between-subject variability were not calculated in exactly the same 

way as in the ICC formula. 

Regions-of-interest and masks 
Based on the most commonly used analysis strategies in the literature, we analyzed the 

reliability of NODDI maps on the ROI level as well as on the single-voxel level (“VBM-style” 

approach and TBSS). To comparatively evaluate the approaches, the probabilistic JHU 

white-matter tractography atlas (Hua et al., 2008; Wakana et al., 2007; thresholded at 25% 

probability) was used, which contains masks of twenty major white matter fiber tracts (Fig. 2). 

We focused on reproducibility of the maps in WM tracts, because the default fixed values for 

the compartment diffusivities in the original NODDI model are suboptimal for gray matter 

(Fukutomi et al., 2019; Guerrero et al., 2019). In case of the ROI-based analysis approach, 

atlas regions were transformed to each subject’s native diffusion space by inverting the 

previously created warp fields (Fig. 1, D). 

 

Figure 2: WM tract ROIs as derived from the probabilistic JHU tractography atlas (Hua et al., 2008; Wakana et al., 2007) in 
MNI152 space. Note that SLF_T_L and SLF_T_R were extracted from the unthresholded JHU atlas due to their small spatial 
extent in the 25% probability atlas. 

Abbreviations: ATR_L/ATR_R – anterior thalamic radiation left/right, CING_HC_L/CING_HC_R – hippocampal part of the 
cingulum bundle left/right, CING_L/CING_R – cingulum bundle left/right, CST_L/CST_R – corticospinal tract left/right,  FMA – 
forceps major, FMI – forceps minor, IFOF_L/IFOF_R – inferior fronto-occipital fasciculus left/right, ILF_L/ILF_R – inferior 
longitudinal fasciculus left/right, SLF_L/SLF_R – superior longitudinal fasciculus left/right, SLF_T_L/SLF_T_R – superior 
longitudinal fasciculus, temporal part left/right, UF_L/UF_R – uncinate fasciculus left/right. 

Additionally, we also evaluated and compared the reproducibility of the “VBM-style” and 

TBSS approaches in a voxel-by-voxel fashion. In this respect, we aimed to restrict the 

analyses mainly to WM voxels, whilst not excluding all voxels in adjacency to the cortex. To 

this end, we created a group-specific white matter mask in standard space with the following 

steps. First, each subject’s T1w-image was processed using the fsl_anat tool, including 

inhomogeneity correction, segmentation (Zhang et al., 2001) and brain extraction (Smith, 

2002). Subsequently, WM partial volume maps were extracted from each subject’s 

segmentation summary image, in which each voxel is assigned to the tissue class with the 

greatest partial volume fraction. Afterwards, intra-subject inter-modal registration (diffusion-

to-T1w) was performed using FSL’s epi_reg, which makes use of the white-matter 
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boundaries from the segmented T1w image and the grey-white intensity contrast in a b = 0 

s/mm2 image from the corrected diffusion data (Greve and Fischl, 2009; Jenkinson et al., 

2002). Next, the WM partial volume maps of each subject and session were registered to 

MNI152 space by concatenating the transformations from structural to native diffusion space, 

from native diffusion space to midpoint, and from midpoint to standard space (see 

“Processing of MR images”). Finally, normalized partial volume maps were summed across 

subjects and sessions and subsequently binarized at 2/3 of the total number of images. 

Therefore, the resulting group-specific white matter mask contains only voxels in which WM 

has the greatest partial volume in at least 2/3 of the sample.  

Reproducibility of image analysis approaches 
To investigate the reproducibility of the ROI-based analysis approach, we averaged voxel 

values of NODDI (DTI) maps within a respective region of the JHU atlas for each participant 

and session. Note that within-ROI average voxel values were derived from unsmoothed 

maps (Froeling et al., 2016). ICC(3,1), CVWS and CVBS were calculated according to the 

abovementioned formulas using R (R Development Core Team, 2013).  

With respect to reproducibility analysis in a voxel-by-voxel fashion in standard space (“VBM-

style”, TBSS), we used Matlab (Mathworks, Sherborn, MA) and bash scripts (based on 

fslmaths functions) to calculate the ICC(3,1), CVWS and CVBS, respectively (Fig. 3). 

Computation of reproducibility metrics was restricted to the group-specific white matter mask. 

Likewise, in case of the TBSS approach, an intersection mask of the tract skeleton and the 

white matter mask was used. 

To globally summarize the results across voxels constituting an atlas region, we focus on the 

median (50th percentile) of the reliability metrics. For example, if the median of the ICC in a 

given atlas region has a value of 0.8, this means that 50 % of the voxels in this region have 

an ICC of 0.8 or higher. With respect to the TBSS approach, the summary statistic is 

exclusively based on voxels located a) on the group skeleton and b) inside a given atlas 

region, i.e. voxels outside the skeleton are ignored.  
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Figure 3: Exemplary depiction of voxel-based reproducibility maps in a horizontal section. A and B show CVWS and ICC of NDI 
with 6mm smoothing within the group-specific white matter mask (“VBM-style” approach). C and D show the same 
reproducibility indices calculated based on the skeletonized NDI map (TBSS approach). To ensure fair comparison, the TBSS 
skeleton was masked with the group-specific white matter mask before reproducibility metrics were extracted. 

Descriptive and inferential statistical analysis 
Descriptive data underlying the comparison of the ROI-based approach against the voxel-by-

voxel approaches (different levels of smoothing and TBSS) were visualized using boxplots. 

The latter were created using the packages beeswarm (Eklund, 2016) and ggplot2 

(Wickham, 2016) running in an R v3.5.1 environment (R Development Core Team, 2013). 

With respect to inferential statistical analysis, we assumed that the analysis approaches 

reflect related groups. Since the normality assumption was not tenable in all cases, we used 

Friedman tests with reliability metrics (point estimates in case of ROI approach, median 

values in case of voxel-based and TBSS-approach) of the 20 tracts of the JHU atlas as 

dependent variables. Post-hoc comparisons between analysis approaches were conducted 

by means of Wilcoxon signed-rank tests. We report uncorrected results of all follow-up tests, 

but additionally indicate if comparisons would survive Bonferroni correction. Effect sizes of 

follow-up tests are reported as matched-pairs rank biserial correlation coefficient (King et al., 

2011). Rules of thumb for interpreting correlation-based effect sizes are |r| < 0.30 “small”, 

0.30 ≤ |r| < 0.50 “medium”, and |r| ≥ 0.50 “large” effects, respectively (Cohen, 1988).  

Not least, we also compared the “VBM-style” approach against TBSS in terms of 

reproducibility on the single-voxel level. To this end, we extracted the intensity of each voxel 

of the reproducibility maps (ICC, CVWS, CVBS) located within the group-specific white matter 

mask (or skeleton mask) using fslmeants. Distributions of reproducibility values within the 

masks were visualized as a function of analysis approach using boxplots. Because the 

assumption of normality was violated across imaging modalities and reproducibility metrics 

(positively skewed distributions) and there was an unequal number of cases (the TBSS 

skeleton contains fewer voxels than the white matter mask), Kruskal-Wallis tests were used 

for statistical inference. Post-hoc comparisons between analysis approaches were conducted 
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by means of Mann–Whitney U‐tests, and the respective effect sizes are reported as Cliff’s 

delta (Cliff, 1996). The magnitude of the effect can be classified as follows: 0.147 ≤ |d| < 0.33 

"small", 0.33 ≤ |d| < 0.474 "medium", |d| ≥ 0.50 "large" effect (Torchiano, 2016). 

Inferential statistical analyses as described above were calculated using R’s standard library 

and the packages rcompanion (Mangiafico, 2020) and effsize (Torchiano, 2016). 

Impact of data quality on NODDI reproducibility 
An increasing number of studies have suggested that data quality exerts a significant impact 

on NODDI reproducibility (Chung et al., 2016; Hutchinson et al., 2017; Parvathaneni et al., 

2018; Wang et al., 2019). In the present study, we make use of the observation that SNR in 

DWI images typically varies across distinct white matter regions (Chen et al., 2015; Choi et 

al., 2011; Chung et al., 2016; Farrell et al., 2007; Marenco et al., 2006; Polders et al., 2011) 

to ask whether regional differences in tSNR contribute to regional differences in NODDI/DTI 

reproducibility. This phenomenon has been attributed to factors like regionally varying T2 

relaxation, distance of the region from the receive coil elements as well as tissue type (gray 

matter versus white matter) and complexity of local fiber organization (Chen et al., 2015; 

Choi et al., 2011; Chung et al., 2016; Farrell et al., 2007; Marenco et al., 2006). 

To address this question, we first standardised (z-transformed) the tSNR maps of each 

subject and session. This step yields maps in which positive (negative) voxel intensities 

indicate that the local tSNR is higher (lower) compared to an individual’s white matter grand 

mean. Next, the z-transformed tSNR maps in native diffusion space were registered to 

MNI152 space according to the previously described procedure (see “Processing of MR 

Images”). Afterwards, all tSNR maps in standard space were averaged across subjects and 

sessions. The underlying idea of this procedure was to assign positive (negative) values to 

voxels where tSNR is inherently – i.e. in the average subject – high (low). 

Next, we tested whether local tSNR affects image reproducibility by means of regression 

models calculated using R’s standard library (v3.5.1) and the package yhat (Nimon and 

Oswald, 2013). To this end, within the 20 regions of the JHU white matter tractography atlas, 

we extracted the median intensities a) of the tSNR summary maps of all b-shells and b) of 

the unsmoothed ICC maps (NDI and ODI), respectively. Based on these data, multiple linear 

regression models with tSNRb0, tSNRb1000, tSNRb2000 and tSNRb3000 as predictors of ICC 

(separate models for NDI and ODI, respectively) were fitted. Although regression models 

were calculated based on only 20 cases, results from a recent simulation study suggest that 

two cases per predictor variable are sufficient for an adequate estimation of regression 

coefficients and associated standard errors (Austin and Steyerberg, 2015). Also note that, 

since we focused on within-ROI median values of tSNR and ICC, perfect voxel-to-voxel 
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correspondence between maps is not mandatory, such that the potential influence of 

registration imperfection on the tSNR-ICC regression results should be negligible. 

With respect to multiple regression, it must be assumed that the extent of shared variance 

between the predictors is high (high collinearity; cf. Nimon and Oswald, 2013), which 

complicates inferences about the relative importance of tSNR of each b-shell on NODDI 

reproducibility. Therefore, instead of reporting standardized regression weights, we used a 

method that decomposes multiple R2 into contributions from the individual regressors 

(“relative weights”/RLW; c.f. Fabbris, 1980; Nimon and Oswald, 2013). In a nutshell, RLW 

creates a set of regressors that is as highly correlated as possible with the original set of 

regressors but orthogonal (uncorrelated) to each other. Therefore, the RLW reflects the 

contribution of a predictor to variance of the dependent variable, considering the predictor’s 

unique contribution as well as its common contribution with the other predictors in the model 

(see Fabbris, 1980 and Nimon and Oswald, 2013, for statistical details). 

In the methodological literature on DW image processing, it has been suggested that spatial 

smoothing does not only compensate for registration misalignments, but also that it mitigates 

the effects of low SNR (Jones et al., 2005; van Hecke et al., 2010). If this applies, the benefit 

of smoothing on reproducibility should be higher (lower) in regions with inherently low (high) 

SNR. To directly test this assumption, we calculated regression models with the same 

regressors as described above, but with smoothing-induced percent change in ICC as 

dependent variable. ICC percent change maps were calculated between unsmoothed and 

6mm isotropically smoothed maps (Billiet et al., 2015; Broad et al., 2019; Churchill et al., 

2019). 

Reproducibility of clinically feasible NODDI 
Following recent recommendations in the literature, the analyses of NODDI’s reproducibility 

in this paper are based on a multi-shell resolution protocol with three equally spaced b-

values (Sotiropoulos et al., 2013; Wang et al., 2019), high angular resolution (228 diffusion 

sensitization directions), and a comparably high outer shell b-value of 3,000 s/mm2 

(Hutchinson et al., 2017; Parvathaneni et al., 2018). Due to time constraints in settings like 

the clinic, however, it might be necessary to use a scan protocol with a shorter acquisition 

time. We therefore compared NODDI reproducibility of the “full” scan protocol against a 

“standard” protocol with 30 and 60 directions at b = 1,000 s/mm2 and b = 2,000 s/mm2, 

respectively (Zhang et al. 2012). 

For the original set of 38 (at b = 1,000 s/mm2) and 76 (at b = 2,000 s/mm2) gradient 

directions, we used Camino’s "subsetpoints" tool (Cook et al., 2006) to search for an ordering 

that minimizes the electrostatic energy for the desired subsets with 30 (at b = 1,000 s/mm2) 
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and 60 directions (at b = 2,000 s/mm2), respectively. This ensures an as evenly spread of 

gradient directions over the sphere as possible. NODDI parameter maps were then re-

estimated from the subsampled data. Reliability metrics on the ROI- and single-voxel-levels 

were calculated as described before. 

Finally, the reproducibilities of the “full” vs. “standard” protocols were compared using a 

robust mixed ANOVA based on 20% trimmed means (cf. Wilcox, 2017) as implemented in 

the WRS package (Wilcox and Schönbrodt, 2019) running in R. “Protocol” (“rich” vs. 

“standard”) was defined as between-subjects factor and “analysis approach” as within-

subjects factor (levels: ROI-based approach, “VBM-style” approach without smoothing, 

“VBM-style” approach with 6mm isotropic smoothing, TBSS). As described before, ICC in the 

20 ROIs of the JHU tractography atlas was used as dependent variable. Between-protocol 

comparisons at each level of the within-subjects factor were conducted using post-hoc 

Wilcoxon signed-rank tests. 
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Results 

For the sake of clarity and to avoid overloading the exposition, we focus on the presentation 

of region-based NODDI reproducibility in the following. All analyses as conducted below 

were also performed on tensor-derived metrics (FA, MD), and the respective results were 

included in the Supplementary Material (Supplementary Figures 1–2, 6–7; Supplementary 

Tables 10–15, 25–31). Likewise, from time to time we refer to comparisons of the “VBM-

style” approach against TBSS on the single-voxel level, whose results can be found in the 

Supplementary Material, too (Supplementary Figures 3–5; Supplementary Tables 16–24).  

Quality assurance 
We started our analyses by comparing sessions for differences in tSNR and checking for the 

presence of outliers. There were no significant pre-post differences in tSNR for neither b-

shell as assessed with Wilcoxon signed-rank tests (all p’s ≥ .31; Table 1). Likewise, subjects’ 

individual tSNR values exceeded the predefined rejection criterion of 2.5*MAD below the 

median across all b-shells (Leys et al., 2013), thus indicating the absence of extreme outliers 

in the sample. 

Table 1: Between-session comparison and reproducibility (CVWS, CVBS) of tSNR in all b-shells. Descriptive statistics refer to 
median and interquartile range (25th and 75th percentile). 

 tSNR ses-1 tSNR ses-2 Wilcoxon 

test (p) 

CVWS (%) CVBS (%) 

b0 16.36 (16.02,17.37) 16.91 (16.18,17.59) .31 3.30 4.70 

b1000 6.25 (6.15,6.42) 6.33 (6.24,6.41) .65 1.66 2.41 

b2000 3.68 (3.63,3.78) 3.72 (3.68,3.77) .39 1.87 2.17 

b3000 2.79 (2.72,2.83) 2.80 (2.76,2.85) .31 1.55 2.33 

 

Longitudinal Reproducibility of NDI 
Fig. 4 visualizes scan–rescan CVWS and ICC’s of NDI as a function of the analysis approach. 

Friedman tests indicate that analysis approach has a significant impact on CVWS, χ2(7) = 

132.2, p < .001, CVBS, χ2(7) = 131.88, p < .001, and ICC, χ2(7) = 108.98, p < .001, 

respectively (for follow-up Wilcoxon signed-rank tests, see Supplementary Tables 1–3). 
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Figure 4: Reproducibility boxplots (CVWS, CVBS and ICC) of NDI in 20 ROIs of the JHU tractography atlas as a function of image 
analysis approach. Colored dots represent reproducibility of the median voxel within an ROI (in case of voxel-by-voxel 
approaches) or point estimates of reliability (in case of the ROI-based approach), respectively. Legend shown on top applies 
to all plots, tract abbreviations as in Figure 2. 

The median values across 20 tracts show a global trend towards decreasing CVWS and CVBS 

and increasing ICC with larger extents of spatial smoothing. This pattern of results can be 

explained by a stronger decline of CVWS compared to CVBS with increasing smoothing extent. 

Smoothing with Gaussian kernels of ≥ 4mm FWHM yielded excellent scan–rescan 

reproducibility (CVWS boxplot Mdn ≤ 2.6%, ICC boxplot Mdn ≥ 0.84), as did ROI-averaging 

(CVWS boxplot Mdn = 1.6%, ICC boxplot Mdn = 0.87). Remarkably, TBSS performs 

consistently worse than ≥ 2mm FWHM smoothing and the ROI approach, respectively, 

regarding both CVWS and ICC (Supplementary Tables 1–3). 

The same pattern of results emerges when comparing TBSS against the “VBM-style” 

approach with different smoothing kernels on the level of single voxels (Supplementary 

Figure 3, Supplementary Tables 16–18). Of note, these analyses revealed that TBSS and 

unsmoothed maps did not meaningfully differ with regard to CVWS (Cliff’s delta = 0.032, 

negligible effect), while there was a trend for higher CVBS in unsmoothed maps (Cliff’s delta = 

0.179, small effect). 
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Longitudinal Reproducibility of ODI 
Fig. 5 shows the scan–rescan CVWS and ICC of ODI. As with NDI, CVWS, χ2(7) = 124.82, p < 

.001, CVBS, χ2(7) = 128.92, p < .001, and ICC, χ2(7) = 78.6, p < .001 were significantly 

affected by analysis approach (for follow-up Wilcoxon signed-rank tests, see Supplementary 

Tables 4–6). 

 

Figure 5: Reproducibility boxplots (CVWS, CVBS and ICC) of ODI in 20 ROIs of the JHU tractography atlas as a function of image 
analysis approach. Colored dots represent reproducibility of the median voxel within an ROI (in case of voxel-by-voxel 
approaches) or point estimates of reliability (in case of the ROI-based approach), respectively. Legend shown on top applies 
to all plots, tract abbreviations as in Figure 2. 

In general, ODI shows consistently high reproducibility across all analysis approaches. 

Specifically, like in NDI, there is a trend for decreasing CVWS with increased extent of 

smoothing. While we found no significant difference between the ROI approach on the one 

hand and smoothing in a range from 4mm to 10mm on the other hand, smoothing with 

Gaussian kernels of ≥ 2mm FWHM yielded significantly lower CVWS than TBSS 

(Supplementary Table 4). 

Compared to NDI, a different pattern of results emerged when focusing on the ICC as a 

function of analysis approach. Here, the results indicate that ICC’s across smoothing kernels 

in a range from 4mm to 8mm FWHM (ICC boxplot Mdn ≥ 0.948) have higher ICC compared 
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to the ROI (ICC boxplot Mdn = 0.925) approach (Supplementary Table 6), and a large, but 

not significant effect was registered for the 4mm smoothing vs ROI comparison (r = -0.71). 

These results can be explained by the presence of tipping points after which CVBS falls 

disproportionately compared to CVWS. TBSS (ICC boxplot Mdn = 0.90) showed consistently 

lower ICC’s compared to Gaussian smoothing with ≥ 2mm FWHM. 

Again, the results from regional analysis are paralleled by voxel-by-voxel reproducibilities 

(Supplementary Figure 4, Supplementary Tables 19–21). Unsmoothed maps and TBSS 

reproducibility metrics were by and large comparable, only CVWS tended to be lower in TBSS 

(Cliff’s delta = 0.177, small effect). Equivalent results were registered for isotropic smoothing 

in a range from 4mm to 10mm in terms of the ICC (all Cliff’s deltas ≤ |0.084|, negligible 

effects). 

Longitudinal Reproducibility of ISO 
Fig. 6 shows the scan–rescan reproducibilities of ISO. Again, CVWS, χ2(7) = 133.48, p < .001, 

CVBS, χ2(7) = 135.15, p < .001, and ICC, χ2(7) = 80.85, p < .001 were significantly affected by 

analysis approach (for follow-up Wilcoxon signed-rank tests, see Supplementary Tables 7–

9).  
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Figure 6: Reproducibility boxplots (CVWS, CVBS and ICC) of ISO in 20 ROIs of the JHU tractography atlas as a function of image 
analysis approach. Colored dots represent reproducibility of the median voxel within an ROI (in case of voxel-by-voxel 
approaches) or point estimates of reliability (in case of the ROI-based approach), respectively. Legend shown on top applies 
to all plots, tract abbreviations as in Figure 2. 

Expectedly (cf. Andica et al., 2020; Chung et al., 2016), ISO showed consistently the poorest 

scan–rescan reproducibility of all NODDI maps. This is corroborated by the analysis of ISO 

reproducibility in a voxel-by-voxel fashion (Supplementary Figure 5, Supplementary Tables 

22–24). The overall results pattern resembled the one observed in the NDI maps revealing a 

tendency for decreased CVWS and increased ICC with larger extents of smoothing. Note, 

however, that reproducibility in some regions benefits from ROI averaging, whilst in others it 

does not. Again, this behavior can be explained by different effects of smoothing/averaging 

on CVWS and CVBS, respectively (Fig. 6). 

Impact of data quality on NODDI reproducibility 
Results emerging from relative weights analyses (Table 2) show that reproducibility of NDI 

and ODI can be well accounted for by data quality of the underlying DW images. Note that all 

predictors were positively related to the respective dependent variables (NDI_ICC, 

ODI_ICC); the higher the intrinsic tSNR of a tract, the higher the regional ICC and therefore 
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reproducibility. Likewise, intrinsic regional tSNR statistically accounted for smoothing-induced 

change of ICC (NDI_Δ_ICC, ODI_Δ_ICC). Here, the relationship was inverse: the lower 

(higher) regional intrinsic tSNR, the higher (lower) the smoothing-induced increase in ICC. 

Note that similar results were obtained for FA and MD predicted by tSNR of the b = 0 s/mm2 

and b = 1,000 s/mm2 shells (Supplementary Table 31). 

Table 2: Relative weights analysis of regional tSNR (b = 0 s/mm2, b = 1,000 s/mm2, b = 2,000 s/mm2 and b = 3,000 s/mm2 
shells) as predictor of regional NDI and ODI in 20 ROIs of the JHU tractography atlas. In statistical models denoted with “Δ”, 
percent change of ICC between unsmoothed maps and 6mm isotropic smoothing was used as dependent variable. Ninety-
five percent bias-corrected and accelerated bootstrap confidence intervals (95% BCa CI) are based on 10,000 bootstrap 
samples. Note that relative weights (RLW) of all predictors sum up to the multiple R2 of the respective multiple linear 
regression model. 

 Multiple R2 RLW_tSNR_b0 RLW_tSNR_b1000 RLW_tSNR_b2000 RLW_tSNR_b3000 

NDI_ICC R2 = 0.76, p < 

.001 

0.164 (0.063,0.293) 0.269 (0.211,0.374) 0.197 (0.168,0.258) 0.129 (0.113,0.219) 

ODI_ICC R2 = 0.74, p < 

.001 

0.402 (0.214,0.556) 0.128 (0.086,0.199) 0.126 (0.077,0.209) 0.086 (0.052,0.189) 

NDI_Δ_ICC R2 = 0.55, p = 

.014 

0.068(0.023,0.186) 0.207(0.139,0.356) 0.155(0.121,0.261) 0.115(0.089,0.327) 

ODI_Δ_ICC R2 = 0.71, p < 

.001 

0.366 (0.131,0.611) 0.126 (0.080,0.194) 0.126 (0.063,0.212) 0.097 (0.036,0.235) 

 

Comparison of “full” vs. “standard” DWI protocol 
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TSNR was expectedly lower in the “standard” compared to the “full” protocol for both the b = 

1,000 s/mm2 (pre-test: -2.13%, p < .001; post-test: -3.01%, p < .001) and the b = 2,000 

s/mm2 shell (pre-test: -3.05%, p < .001; post-test: -2.97%, p < .001). Mixed ANOVAs based 

on 20% trimmed means (Table 3 and Figure 7) yielded a significant main effect for the 

between-subjects factor “protocol” in both modalities (NDI and ODI), revealing that the “rich” 

three-shell protocol generally had higher reproducibility compared to the “standard” two-shell 

protocol. The main effect of the within-subjects factor in both modalities is well in line with the 

results reported in the previous sections, reinforcing that the choice of analysis approach 

significantly influences reproducibility. Highly significant interaction effects indicate that the 

reproducibility differences between protocols vary dependent on the level of the within-

subjects factor. Post-hoc Wilcoxon-tests to break down this interaction reveal that between-

protocol differences were most pronounced in analysis approaches without some kind of 

smoothing or voxel value averaging (i.e., “VBM-style” approach and TBSS; Table 3 and 

Figure 7). ICC differences between the protocols are weaker when considering the “VBM-

style” approach with 6mm FWHM smoothing, but the respective effect sizes are still “large” (p 

≤ .02, |r| ≥ 0.6). If averaging of voxel values over an entire fiber tract is applied (“ROI-based 

approach”), between-protocol differences are not significant anymore (p ≥ 0.165). 

Table 3: Results from mixed ANOVAs based on 20% trimmed means with between-subjects factor “protocol”, within-subjects 
factor “analysis approach”, and ICC as dependent variable. Follow-up Wilcoxon tests were conducted to compare “protocol” 
at each factor level of “analysis approach”. Note that W = 0 and W = 210 means that values consistently differed between 

Figure 7: Graph visualizing the interaction between scan protocol and analysis approaches (left side: NDI, right side: ODI). 
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samples, therefore indicating complete dominance of one protocol over the other. Effect sizes of Wilcoxon-tests are reported 
as matched-pairs rank biserial correlation coefficient (King et al., 2011). 

 NDI_ICC ODI_ICC 

Between-subjects factor (protocol) F(1, 35.84) = 415.17, p < .001 F(1, 34.49) = 58.06, p < .001 

Within-subjects factor (analysis approach) F(3, 23.68) = 67.29, p < .001 F(3, 21.06) = 22.76, p < .001 

Interaction (protocol * analysis approach) F(3, 23.15) = 120.33, p < .001 F(3, 21.41) = 20.88, p < .001 

Post-hoc ROI W = 143, p = .165, r = 0.36 W = 124, p = .50, r = 0.18 

Post-hoc VBM_6mm W = 208, p < .001, r = 0.98 W = 168, p = .02, r = 0.6 

Post-hoc VBM_0mm W = 210, p < .001, r = 1 W = 210, p < .001, r = 1 

Post-hoc TBSS W = 210, p < .001, r = 1 W = 210, p < .001, r = 1 
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Discussion 
Using multi-shell high-angular DWI along with theory-driven biophysical models of diffusion 

like NODDI (Zhang et al., 2012) allows to characterize the brain mechanisms underlying 

disease, development and plasticity in unprecedented biological plausibility. Here we 

assessed the longitudinal reproducibility of NODDI metrics in white matter of healthy subjects 

with special emphasis on the most frequently used image analysis approaches. 

Reproducibility of NDI and ODI was high during a comparably long time interval of four 

weeks. The voxel-based approach with Gaussian smoothing kernels of ≥ 4mm FWHM and 

ROI-averaging yielded the highest reproducibilities (CVWS mostly ≤ 3%, ICC mostly ≥ 0.8), 

whilst unsmoothed maps and TBSS had consistently higher CVWS and lower ICC. The need 

to apply some kind of smoothing or averaging of voxel values is even more important if a 

standard two-shell scan protocol is used. Descriptive statistics suggest that NODDI metrics 

had comparable (NDI) or even better (ODI) reproducibility than tensor-derived metrics (cf. 

Andica et al., 2020; Chung et al., 2016), although it must be kept in mind that the latter were 

computed only based on single-shell DWI data (Barrio-Arranz et al., 2015). Not least, our 

results indicate that data quality (SNR) is an important determinant of NODDI and DTI metric 

reproducibility. 

NODDI reproducibility and image analysis approach 

Collectively, our findings (CVWS, ICC) were coarsely consistent with one previous report on 

NODDI’s between-session reproducibility (Tariq et al., 2013). It is not surprising that 

between-session reproducibility as reported in the present study tended to be slightly lower 

than previous within-session reproducibility studies with (Andica et al., 2020) and without 

subject repositioning (Chung et al., 2016). Of note, the aforementioned studies exclusively 

assessed reproducibility of what we termed the ROI-based analysis approach (Froeling et al., 

2016; Snook et al., 2007), i.e. after voxel values within certain regions of the brain were 

averaged. In this study, we additionally explored reproducibility of two alternative analysis 

approaches commonly used in neuroimaging, namely “VBM-style” analysis (Billiet et al., 

2015; Broad et al., 2019; Churchill et al., 2019; Dowell et al., 2019; Kraguljac et al., 2019) 

and the TBSS framework (Kodiweera et al., 2016; Timmers et al., 2016; Zhang et al., 2018). 

As a general trend, we observed that with increasing levels of smoothing or averaging voxels 

within an atlas region, numerical NODDI voxel values across the sample tend to become 

more homogeneous (decreasing CVBS), as do the repeated measurements of a subject 

(decreasing CVWS). Therefore, our results align well with previous DTI scan-rescan studies 

showing that the ROI-based approach (Cabeen et al., 2017; Farrell et al., 2007; Luque 

Laguna et al., 2020; Vollmar et al., 2010) and smoothing (Cabeen et al., 2017) increase 



30 
 

precision (lower CVWS) compared to (unsmoothed) voxel-wise measures (“VBM-style” 

analysis/TBSS). However, a less noticed feature of ROI-averaging/smoothing is the 

concomitant reduction of interindividual variability (lower CVBS), which must be considered an 

undesired effect under the tacit assumption that CVBS (mainly) reflects true biological 

variation (Seghier and Price, 2018; Zuo et al., 2019). This indicates that there is a tradeoff 

among analysis approaches regarding precision and the preservation of sample 

heterogeneity, which has important consequences for statistical testing (as discussed in the 

next section). However, ICC – a ratio measure that essentially places the “noise” (CVWS) in 

the context of biological variation between subjects (CVBS) (Bartko, 1991; Tofts, 2018b) – 

also indicates that ROI-averaging and smoothing at least tend to outperform approaches 

without smoothing (i.e., unsmoothed “VBM-style”/TBSS). 

Implications for statistical testing 

If we now turn to the implications of NODDI reproducibility for statistical testing, it makes 

sense to differentiate between three common statistical designs, namely correlation analysis, 

group comparisons and analysis of within-subject changes over time (within or between 

groups). 

The ability to detect correlations with other constructs is crucially dependent on the ability of 

the variables to discriminate between individuals, or in other words on high ICC (Seghier and 

Price, 2018; Zuo et al., 2019). With respect to NDI data, researchers can be confident to 

detect correlations with other (reliable) constructs when using the “VBM-style” framework 

with ≥ 4mm FWHM smoothing or the ROI approach, yielding ICC’s of ≥ 0.8 in most 

regions/voxels of the white matter. Conversely, based on the ICC results of our study, 

smoothing extents of < 4mm FWHM and TBSS are clearly less well suited for correlational 

research using NDI data. We emphasize, however, that it is possible that TBSS outweighs its 

comparably worse ICC by markedly relaxing the necessary corrections for multiple 

comparisons across space, thus increasing statistical power (Bach et al., 2014). Regarding 

ODI maps, all analysis approaches can be used with confidence, as ICC’s are collectively in 

the very good to excellent range. The main reason for this seems to be rooted in the fact that 

voxel values of ODI maps do generally not cluster in a narrow numerical range, resulting in 

comparably high between-subject variation (cf. Chung et al., 2016). Interestingly, smoothing 

of ODI maps with Gaussian kernels of > 8mm FWHM and ROI-averaging leads to a 

disproportionate decrease of CVBS compared to CVWS, such that ICC tends to fall. 

Collectively, researchers have the highest chance to detect correlations between ODI and 

other constructs when opting for a “VBM-style” framework with smoothing kernels between 
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4mm and 8mm FWHM, but the other analysis approaches investigated here can also be 

used with confidence. 

Cross-sectional group comparisons and longitudinal statistical designs (within or between 

groups) have in common that variability within subjects/groups is assumed to reflect random 

noise (Hopkins, 2000; Tofts, 2018b; Zimmerman and Zumbo, 2015), such that the intuitive 

recommendation for researchers would be to choose an analysis approach with as low as 

possible CVWS. However, as repeatedly stressed in the literature (Cabeen et al., 2017; Chung 

et al., 2016; Snook et al., 2007; Vollmar et al., 2010), it is possible that high measurement 

precision (low CVWS) is at the expense of reduced sensitivity to “true” biological differences or 

changes. For example, adopting the ROI-based approach might reduce a map’s sensitivity if 

data from a comparably extended region are averaged, whilst the effect is only present in a 

small part of that region (Snook et al., 2007; Tofts, 2018a). The problem of averaging out true 

differences or changes might be less pronounced if spatial smoothing is applied, but this 

approach comes with the cost of an increased risk of partial volume effects (Cabeen et al., 

2017). In the present study, this problem was addressed by applying spatial smoothing 

exclusively within a rather conservative group white matter mask. However, to address the 

issue of an “optimal” analysis approach in an unbiased way, sensitivity analysis on a ground 

truth is urgently needed (van Hecke et al., 2009). For the time being, it seems to be a safe 

choice for researchers to follow the abovementioned recommendations for correlational 

studies. Interestingly, the majority of previous NODDI studies using “VBM-style” analysis 

opted for isotropic Gaussian smoothing with kernels ranging from 6mm (Billiet et al., 2015; 

Broad et al., 2019; Churchill et al., 2019) to 8mm (Dowell et al., 2019), which ensures – 

according to our data – a reasonable balance between CVWS and CVBS. 

Data quality as important determinant of NODDI reproducibility 
The impact of analytical and random biological variation on biomarkers of interest is 

unavoidable in the biological and medical sciences (Fraser and Fogarty, 1989; Hopkins, 

2000). To name only a few examples related to NODDI, previous studies have shown that 

factors like magnetic field strength (Chung et al., 2016), added noise (Hutchinson et al., 

2017) and DWI sampling scheme (Hutchinson et al., 2017; Parvathaneni et al., 2018; Wang 

et al., 2019) affect SNR and NODDI map reproducibility. Our results are generally in line with 

previous research indicating that regionally varying image quality (quantified via tSNR; Roalf 

et al., 2016) is highly correlated with regionally varying NODDI and DTI reproducibility. In line 

with this observation, we also demonstrate that the use of a clinically feasible two-shell scan 

protocol reduces tSNR and therefore the reproducibility of NODDI maps compared to a 

three-shell protocol with higher angular resolution. Both of the aforementioned results 

underline that high SNR, influenced for example by adequate hardware, good imaging 
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protocols and other measurement issues (see “Introduction”), constitutes a basic requirement 

for precise and reliable quantification of NODDI and DTI metrics (Chen et al., 2015; Farrell et 

al., 2007; Hutchinson et al., 2017; Jones, 2004; Wang et al., 2019). 

Moreover, we also show a significant inverse relationship between regional tSNR and 

smoothing-induced changes in ICC, therefore aligning with the notion that smoothing and 

ROI-averaging aid to mitigate the adverse effects of low SNR (Jones et al., 2005; Snook et 

al., 2007; van Hecke et al., 2010). Since it has been suggested that smoothing also 

suppresses the effect of registration inaccuracies (Jones et al., 2005; van Hecke et al., 

2010), it is possible that improved within- and between-subject image registration and 

skeleton projection (de Groot et al., 2013; Zalesky, 2011; see also the “Limitations” section) 

would reduce the observed reproducibility differences between analysis approaches with and 

without smoothing. However, given the high correlations between tSNR and DTI/NODDI 

reproducibility, we hypothesize that the beneficial effects of smoothing (ROI-averaging) are 

valid even if alternative methods of image registration/skeletonization would be used. 

Applications for monitoring individuals and sample size planning  
Reproducibility estimates of NODDI metrics (region- or voxel-based) as reported here can in 

principle be used for evidence-based monitoring of individuals and for sample size planning. 

We emphasize, however, that these estimates should only be regarded as an approximate 

order of magnitude due to possible effects of site, vendor, and many others (see “Limitations” 

section). 

If biomarkers are used for monitoring an individual (e.g. patient) over time, the major 

challenge that physicians/researchers face is to decide whether changes observed in the 

biomarker are meaningful or whether they are simply caused by analytical and random 

biological variation (Fraser and Fogarty, 1989; Hopkins, 2000). Monitoring of individuals can 

also be of high value in the research setting, for example if the aim is to test whether 

theoretical predictions are also manifested at the individual participant level (Smith and Little, 

2018). In terms of monitoring individuals, Hopkins (2000) has proposed that an observed 

change in an individual’s values exceeding (or deceeding) 1.5 to 2.0 times the CVWS would 

indicate that a real change has likely occurred (corresponding odds of a real change 6:1 to 

12:1). 

In the neuroimaging field, the influence of measurement reliability on statistical power 

(Kanyongo et al., 2007; Zimmerman and Zumbo, 2015) has at best indirectly been 

considered in sample size planning (Szucs and Ioannidis, 2020; Zuo et al., 2019). A solution 

for the most common statistical models (independent and dependent samples t-test and 

nonparametric equivalents, one-way ANOVA) suggests to multiply the expected population 
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effect size by the square root of retest reliability/ICC (Kanyongo et al., 2007; Zuo et al., 

2019). Since the composition of the sample of the present study was comparably 

homogeneous (healthy, young adults, narrow age range), ICC values reported here can be 

used for studies with assumingly similar or higher between-subject variation (Hopkins, 2000; 

see also “Limitations” section). 

Limitations 
Our results show that reproducible characterization of brain microstructure can be achieved 

using a contemporary 3T scanner, a multi-shell high-angular resolution imaging protocol with 

whole brain coverage and feasible acquisition time (≈22 min), and reasonable pre- and 

postprocessing steps. Nevertheless, we are aware that several potential limitations of the 

present study need to be considered. In the following, we separate the CVWS into its 

components biological and analytical variation (Fraser and Fogarty, 1989) to discuss these 

limitations in a structured way. Note that it is in principle possible to estimate the effect of 

different sources of error with more complex study designs (Brandmaier et al., 2018), but 

such an approach was beyond the scope of the present study. 

Regarding biological variation, we opted for a comparably long interval between 

measurements, consistent with frequently used study designs in the fields of developmental 

neuroscience and neuroplasticity (Lebel et al., 2012; Valkanova et al., 2014). However, 

unlike the case with simulated data or repeatedly measuring a phantom, the degree of “true” 

biological variation during this interval (e.g., due to developmental changes or cyclical 

rhythms) is unknown (van Hecke et al., 2009). This should be kept in mind against the 

background that scan-rescan experiments in humans are based on the tacit assumption that 

the subjects’ brains are unchanging during the study (Tofts, 2018b). In this vein, it is possible 

that the trajectory of short-term microstructural changes varies e.g. as a function of age and 

sex (Kodiweera, 2016, Lebel et al., 2018; Lawrence et al., 2020), although we are not aware 

of previous studies demonstrating such effects during time intervals as short as four weeks. 

Analytical variation is mainly influenced by measurement imprecision (see “Introduction”) as 

well as the applied pre- and postprocessing steps. Regarding the former, we used a 

contemporary 3T MRI scanner, but generalizability of results is limited by potential effects of 

imaging site and vendor (Andica et al., 2020). Furthermore, in line with recommendations in 

the literature, we used a multi-shell high-angular resolution protocol with three equally 

spaced b-values (Sotiropoulos et al., 2013; Wang et al., 2019) and a comparably high outer 

shell b-value of 3,000 s/mm2 (Hutchinson et al., 2017; Parvathaneni et al., 2018). When 

interpreting the results of the present study, it should be kept in mind that factors like the 

number of shells, choice of b-values, angular sampling (number of volumes/ diffusion-

encoding directions) and voxel resolution influence both image quality (and reproducibility) 
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and sensitivity to complex and heterogeneous neurobiological features (Chen et al., 2015; 

Farrell et al., 2007; Fukutomi et al., 2019; Hutchinson et al., 2017; Jones et al., 2013; Wang 

et al., 2019). The use of a high outer shell b-value, to name just one example, has shown to 

be beneficial in terms of precise quantification of NDI (Hutchinson et al., 2017; Parvathaneni 

et al., 2018), but comes at the cost of increased signal variance and rectified noise floor 

(Hutchinson et al., 2017), which lowers SNR. Conversely, ODI appears to be more sensitive 

to the number of diffusion-sensitized directions than to the use of high b-values 

(Parvathaneni et al., 2018). In this paper the importance of the aforementioned factors was 

exemplarily demonstrated by the comparison of a three-shell against a two-shell protocol. 

Regarding the pre- and postprocessing, we opted for default settings of FSL’s FDT diffusion 

and TBSS pipelines to keep the processing in line with frequent use in the neurodevelopment 

and neuroplasticity literature. According to evidence-based recommendations, we made use 

of unbiased individual halfway templates and applied only one nonlinear warp per subject to 

standard space (Engvig et al., 2012; Keihaninejad et al., 2013; Madhyastha et al., 2014; 

Ridgway et al., 2015). Note, however, that a vast number of alternative data processing 

options exist whose application might yield similar or even better NODDI metric 

reproducibility than reported here. A thorough treatment of these options would be of high 

value but was beyond the scope of this paper. For example, although FA maps are 

frequently used for registration of NODDI maps within- and between-subjects (e.g., Alfaro-

Almagro et al., 2018; Andica et al., 2020; Broad et al., 2019; Kodiweera et al., 2016), tensor-

based registration algorithms have also been evaluated with success (Keihaninejad et al., 

2013; Liu et al., 2014). Moreover, alternative approaches to construct within-subject and 

group-specific templates have been proposed (Reuter et al., 2012; Zhang et al., 2007; Zhang 

and Arfanakis, 2018). Furthermore, it has been suggested that the normalisation, 

skeletonization and skeleton projection steps of the most recent version of TBSS (v1.2) can 

be further optimized (Bach et al., 2014; de Groot et al., 2013; Leming et al., 2016; Schwarz et 

al., 2014; Zalesky, 2011). Our results are also somewhat limited with respect to the use of 

smoothing. For example, instead of using isotropic smoothing after map generation, it might 

have an influence to apply some kind of adaptive smoothing before (Tabelow et al., 2008) or 

after (van Hecke et al., 2010) computation of NODDI/DTI maps. Finally, for fitting the NODDI 

model, we used the non-linear routines introduced in the seminal Zhang et al. (2012) paper 

and implemented in the NODDI Matlab toolbox. Daducci et al. (2015) have proposed a re-

formulation of these routines as linear systems, which reduces the computational burden of 

fitting the model and renders Accelerated microstructure imaging via convex optimization 

(AMICO) an increasingly popular alternative to the non-linear model. Since extensive 

validation work by Daducci et al. (2015) revealed that differences between the linear and 
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non-linear model formulation are negligible, readers planning to use AMICO in their research 

should be able to use the reproducibility estimates reported here as benchmarks. 

Readers should also be aware of specific limitations when interpreting ICC and CVWS, 

respectively. Although the sample of the present study was comparably homogeneous 

including only young, healthy adults, we emphasize that the ICC crucially depends on the 

between-subject variation of a sample, which is generally not known a priori (Hopkins, 2000). 

Consequently, ICC does only generalize to individuals similar to those in the investigated 

sample (Hopkins, 2000). We therefore expect that the ICC of NODDI maps would be higher 

in more heterogeneous populations (e.g., wider age range, inclusion of diseased subjects 

etc.), and lower in more homogeneous populations (e.g., narrower age range, only one sex, 

similar expertise level etc.). In contrary, a remarkable property of the CVWS is that it can be 

estimated from a sample of individuals that is not particularly representative for the 

population, but nevertheless applies to most individuals in the population (Hopkins, 2000). 

To sum up, the evidence from this study suggests that NODDI maps generally possess 

sufficient measurement precision and remarkable properties to discriminate between 

individuals based on white matter microstructural features, thus rendering NODDI a suitable 

modality for the most common cross-sectional and longitudinal research designs. Related to 

the ability to mitigate the detrimental effects of low SNR (Jones et al., 2005; van Hecke et al., 

2010), we demonstrate that the voxel-based approach with Gaussian smoothing kernels of ≥ 

4mm FWHM as well as ROI-averaging yielded the highest reproducibility across NODDI 

metrics. Finally, our results underline the importance of data quality for precise and reliable 

quantification of NODDI metrics, such that researchers are well-advised to ensure as high as 

possible SNR in their studies (Chen et al., 2015; Farrell et al., 2007; Hutchinson et al., 2017; 

Jones et al., 2013; Wang et al., 2019). 
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