1,008 research outputs found

    Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes

    Get PDF
    Spatial variation in population densities across a landscape is a feature of many ecological systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It occurs as a result of environmental variation in abiotic factors and/or biotic factors structuring the spatial distribution of populations. However the ways in which abiotic and biotic factors interact to determine the existence and nature of spatial patterns in population density remain poorly understood. Here we present a new approach to studying this question by analysing a predator–prey patch-model in a heterogenous landscape. We use analytical and numerical methods originally developed for studying nearest- neighbour (juxtacrine) signalling in epithelia to explore whether and under which conditions patterns emerge. We find that abiotic and biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex array of coexisting stable patterns, located within an enormous number of unstable patterns. Our simulation results indicate that many of the stable patterns have appreciable basins of attraction, making them significant in applications. We are able to identify mechanisms for these patterns based on the classical ideas of long-range inhibition and short-range activation, whereby landscape heterogeneity can modulate the spatial scales at which these processes operate to structure the populations

    Existence of Periodic Solutions for a Delayed Ratio-Dependent Three-Species Predator-Prey Diffusion System on Time Scales

    Get PDF
    This paper investigates the existence of periodic solutions of a ratio-dependent predator-prey diffusion system with Michaelis-Menten functional responses and time delays in a two-patch environment on time scales. By using a continuation theorem based on coincidence degree theory, we obtain suffcient criteria for the existence of periodic solutions for the system. Moreover, when the time scale 𝕋 is chosen as ℝ or ℤ, the existence of the periodic solutions of the corresponding continuous and discrete models follows. Therefore, the methods are unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations

    Partial Differential Equations in Ecology

    Get PDF
    Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots

    Efficient numerical methods to solve some reaction-diffusion problems arising in biology

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we solve some time-dependent partial differential equations, and systems of such equations, that governs reaction-diffusion models in biology. we design and implement some novel exponential time differencing schemes to integrate stiff systems of ordinary differential equations which arise from semi-discretization of the associated partial differential equations. We split the semi-linear PDE(s) into a linear, which contains the highly stiff part of the problem, and a nonlinear part, that is expected to vary more slowly than the linear part. Then we introduce higher-order finite difference approximations for the spatial discretization. Resulting systems of stiff ODEs are then solved by using exponential time differencing methods. We present stability properties of these methods along with extensive numerical simulations for a number of different reaction-diffusion models, including single and multi-species models. When the diffusivity is small many of the models considered in this work are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured by our proposed numerical schemes. Hence, the schemes that we have designed in this thesis are dynamically consistent. Finally, in many cases, we have compared our results with those obtained by other researchers

    Dispersal-induced instability in complex ecosystems

    Full text link
    In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of many natural ecosystems. The so-called stability-diversity debate ensued, and the discussion about the factors making an ecosystem stable or unstable continues to this day. We show in this work that dispersal can be a destabilising influence. To do this, we combine ideas from Alan Turing's work on pattern formation with May's random-matrix approach. We demonstrate how a stable equilibrium in a complex ecosystem with two trophic levels can become unstable with the introduction of dispersal in space. Conversely, we show that Turing instabilities can occur more easily in complex ecosystems with many species than in the case of only a few species. Our work shows that adding more details to the model of May gives rise to more ways in which an equilibrium can become unstable. Making May's simple model more realistic is therefore unlikely to remove the upper bound on complexity.Comment: 30 pages, 6+1 figure
    corecore