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Summary

The present thesis consists of a summary report, four research articles, one
technical report and one manuscript. The subject of the thesis is individual-
based stochastic models.

The summary report is composed of three parts and a brief history of some
basic models in population biology. This history is included in order to pro-
vide a reader that has no previous exposure to models in population biology
with a sufficient background to understand some of the biological models that
are mentioned in the thesis. The first part of the rest of the summary is a
description of the dramatic changes in the degree of aggregation of sprat or
herring in the Baltic during the day, with special focus on the dispersion of the
fish from schools at dusk. The next part is a brief introduction to Markovian
arrival processes, a type of stochastic processes with potential applications as
sub-models in population dynamical models. The last part introduces Markov
additive processes as a means of simplifying some individual-based models.

In the first part I present the background to article A and some extra material
that were not included in the final article. The basic observation is that fish
in schools migrate up toward the surface and disperse at dusk and aggregate in
schools close to the bottom at dawn. This creates a periodically varying prey
field to cod. Apart from humans, cod is the main predator of herring and sprat
in the Baltic. In order to evaluate the consequences to cod of this variability
it was necessary to describe this prey field. It was shown that the schools
follow lines of constant light intensity and that they disperse below a critical
light threshold. We propose that the dispersion is due to a random walk when
light levels become sub-critical and provide time-scales for the dispersion of this
type for different school geometries (random or on a regular square grid)—the
time-scales are of the same order as those observed on the echosounder.



ii Summary

The second part is an introduction to Markovian arrival processes (MAPs), this
is the background needed to understand papers C, B, E, and F, given some
previous exposure to Markov chains in continuous time (see e.g. Grimmett and
Stirzaker, 2001)). Markovian arrival processes are very general point processes
that are relatively easy to analyse. They have, so far, been largely unknown
to the ecological modelling community. The article C deals with a functional
response in a heterogeneous environment. The functional response is a model of
the mean ingestion rate of prey per predator as a function of prey and possibly
predator density that appears in most models for populations. A previously pro-
posed model for prey encounter in heterogeneous environments is reanalyzed, it
is a stochastic process that easily can be implemented as a MAP. In article C we
show that transferring a standard functional response to a heterogeneous envi-
ronment does not preserve the functional form, contrary to previous assertions.
In this simple case we provide a time-scale for when the heterogeneous environ-
ment can be assumed to be well-mixed, or close to a Poisson process, for the
predator. It is also shown that in some cases the variability may be more impor-
tant than the mean, thus the mean rate does not necessarily provide sufficient
information for the population dynamics. Article B provides the mathematical
apparatus for evaluating any moment of a MAP, and also the means for eval-
uating the conditional moments of a transient or terminating MAP. Transient
MAPs are suitable as modelling tools when an important property of the sys-
tem is that it can stop. This is the case for the young of many animals, where
most of a large clutch die rather quickly, and yet it is the survivors that are
interesting. The conditional moments can for instance be constructed such that
one can evaluate the mean or the variance of the ingestion rate given that the
animal did not die. Several different methods are used to obtain the formulas,
which is an interesting aspect since some of these methods may be more suitable
in situations where it is problematic to proceed using the standard formalism.

I provide material on how to model periodic MAPs in paper E. These are, or
could be, important since most animals live in a periodic environment and a pe-
riodic system generally have dynamics that are different from the correspond-
ing system with mean rates. The technical report F concerns how to model
Markovian stomachs. Both aspects can be used in more advanced functional or
numerical responses.

The third part concerns a larger class of Markov processes, to which the above
mentioned MAPs belong. These are the Markov additive processes, which are
bivariate Markov processes (Xt, Nt) where the transition probabilities depend
on the Xt process only. The Xt process is marginally a Markov process, and
the Nt process is a process with conditionally independent increments given the
state of the Xt process. This class is rich enough to provide substantial realism
into individual-based models yet it is so simple that it is not a great extra burden
to solve the partial differential equations (PDEs) that arise for the evaluation
of the moments. They are particularly useful in oceanographic contexts since
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here the apparatus for solving the PDEs is usually present due to the need of
solving fluid flow equations. The greatest benefit of the method is due to that it
circumvents the need for statistical evaluation of the individual-based models.

In all three parts further work has been proposed.
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Chapter 1

Introduction

Biology needs a new approach which takes the living entity as a
fundamental, starting unit. Only then will it be possible to have a
theoretical biology which will have relevance to the needs of biolo-
gists.

Niels Bohr
Atomic Physics and Human Knowledge, 1963, p. 9.

This thesis concerns stochastic models and sub-models aimed at being tractable
and applicable in fisheries models and population dynamical models and in par-
ticular individual-based population models. My aim in this theses is to use
stochastic models as far as possible since I believe that these are both more
fundamental and more appropriate in much of biological modelling than deter-
ministic models. Stochastic models are more fundamental since, even if I agree
with Bohr’s assertion, there are always things that are left out when a model is
made even if the model starts from the individual. These omissions may simply
be ignored or included in the sense that there is uncertainty or stochasticity in
the dynamics of the epiphenomenon, the population dynamics. These uncertain-
ties may be due to differences in dynamics of subprocesses such as the individual
hunting success, that individuals are different, that local conditions are differ-
ent and that external factors, such as weather are unspecified. Some think that
Lotka-Volterra models (a system of ODEs representing the time evolution of
densities of species, ignoring differences in age and state) are fundamental in
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biology, but I disagree. I think that multi-type birth-death processes are funda-
mental in population dynamical modelling on a similar level of abstraction as
the Lotka-Volterra models. Since individuals produce offspring, the number of
which is a positive integer, but the actual number is often random as is the time
of reproductions as well as time of death. The continuous densities of animals
used in Lotka-Volterra is a neat and often convenient abstraction, but some-
times it may be dangerous, e.g. the atto-fox phenomenon where concentrations
of foxes with rabies that are effectively zero cause a “false” secondary wave of
rabies invasion (see e.g. Mollison, 1991). Stochastic models are more appropriate
to use in practical situations for the same reason; there are many things which
the population dynamics depend upon which are either hard to specify, such as
how an individual in the population allocates energy to reproduction or growth,
or intrinsically stochastic such as food encounter. Their obvious drawback is
that they are more difficult to analyse in general than deterministic models.
Sometimes it is even necessary to analyse the model by simulations, which is
both tedious and less robust than analytical results.

The most important aspect of models is that we always create a theory or
model for our object of study. This will consciously and unconsciously shape
our thinking and influence what to measure and observe—our observations are
theory laden (Kuhn, 1970). Mathematical models are seemingly the best way
to formalize our thinking and to draw the conclusions of our assumptions; as
Haldane put it “...an ounce of analysis is worth a ton of verbal argument”
(Maynard Smith, 1965). Their drawback, as with any model, is that the analysis
in itself do not tell us when the assumptions are wrong and often one seek an
extremely simplified model in order to make it analysable. Nevertheless, even
these simple models may sometimes increase our understanding of a system
and allow us to make predictions or even to control the system. But it is
interesting to note that there is a feedback mechanism where the choice of
framework influences the conclusions; the deterministic Lotka-Volterra system
show neutrally stable oscillations whereas the stochastic counterpart will always
go extinct. Extinction was a great problem in the reverse engineering attempts
of Gause (1934) who tried to get stable oscillations in a predator-prey system in
the lab (see Renshaw, 1991, for more details). Many deterministic models are
formulated using probabilities (see e.g. de Roos, 1996) but often the final model
does not contain stochasticity. When the models are analysed one ignores that
the size of the system may not justify the assumption of a very large population
or that the limited abilities of predators e.g. to move between different areas
in the system makes it impossible to assume that all parts are equal. It is
important to note that I do not think that there are a single best model, but
that I think that a model that incorporates uncertainty is more robust, and that
models that can be tested empirically are more interesting than those that can
not. It is almost a truism, since the model approximates a system a model that
includes an error term that represents that approximation will be more true.
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Models of biological populations are important since they may help us to manage
resources such as fish stocks in a sustainable way. In my opinion, sustainable
means that the current exploitation of a resource does not significantly impair
the possibilities for future usage. These models can help us preserve diversity,
which is important since many of us think that this has a value in itself, and since
diverse systems may be more productive (Tilman et al., 2001). The economical
side of it is important since it is the short-term profits together with the large
uncertainties in these systems that cause us to sacrifice the long-term gains. This
greediness together with a small chance that things will mend themselves, e.g.
that the recruitment can be enormously successful which would save a declining
population make it difficult for an elected decision-maker to cut quotas (Walters
and Martell, 2004). The long-term consequences of bad management often lead
to expensive remedies which would have been unnecessary if we were to manage
our fish stocks in a better way (Baum et al., 2005).

Biological populations are demanding to model since not only do they inhabit
heterogeneous environments, but the individuals create heterogeneities on their
own; by their movements, by reproducing, and that they differ from each other.
The movements may be away from bad conditions towards good, so if the good
conditions are patchy so will often the population tend to be (if e.g. dispersal
between patches is a relatively slow process and patches exist for times longer
than the generation time of the colonizer). It is not necessary that the initial
conditions are patchy, they may be in a smooth gradient. This together with
peculiarities of animal motion will sometimes create patchiness (Rohani et al.,
1997). Organisms can move towards conspecifics in e.g. schools which also gen-
erates patchy distributions, or they can actively avoid the neighbourhood of
their relatives which generates regular distributions. Reproduction creates a
spatial dependency between offspring and parent since they are at the same
place when the offspring is born. Such dependencies are well known problems
in e.g. chemical reaction engineering (Epstein, 1995) and physics (Young et al.,
2001). Individuals are different due to different environmental conditions during
growth and different genetical compositions. The latter is very important since
fisheries act as a selective predator, which tend to remove the largest fishes first
(Ward and Myers, 2005). If there is differential mortality in a heritable trait,
such as length of first reproduction, this will lead to evolutionary change. Such
changes in natural populations of higher organisms has long been thought to be
slow, but has been shown to occur quickly in both laboratory systems, such as
Nicholson’s blowflies (Stokes et al., 1988) and rotifers (Yoshida et al., 2003) as
well as in the wild e.g. in Darwin’s finches (Grant and Grant, 1993) and in fish
(Reznick et al., 1997; Heath et al., 2003; Olsen et al., 2004; Shuter and Abrams,
2005). This is, in my opinion, the second most important task of population bi-
ology, maintaining sustainable populations, the first task, in such a way that we
do not select for e.g. smaller and smaller cod, such that we in the end threaten
the populations due to evolutionary change.
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Many of the early models of modern population dynamics are based on an
analogy with chemical reactions. The system is well-mixed and the reaction
rates are low, when an “atom” of the prey type collides with an “atom” of
the predator type the predator “atom” immediately annihilate the prey and
produce a new predator “atom” or a fraction thereof. This fraction should
be perhaps be interpreted as a probability of predator production since the
“atoms” are identical. In chemical systems this would not necessarily be a
problem since here 1023 is a relatively small number and the variations in the
“atomic” interactions may average out, but not in population biology. Even
in chemical engineering “well-mixing” is a Platonic ideal which is never met in
reactors, and the deviations from it may be of utmost importance (as shown in
e.g. Epstein, 1995).

My initial goal was to try create a population dynamical model where I would
like to incorporate the fact that organisms are not identical “atoms” fizzling
around and haphazardly bump into each other, but agents that sense and react
to both their environmental conditions and their internal state. The internal
state could be the energy reserves, hungry animals will try to find food more
actively and starving animals will perhaps try even harder or for instance hi-
bernate. The internal state could also be that the gonads are ripe, that the
animal has a nest, or nestlings (see Mangel and Clark, 1988; Houston and Mc-
Namara, 1999; Clark and Mangel, 2000, for more examples). The effect of adap-
tive predator-prey behaviour has been studied in deterministic models (Abrams,
2005), but these have ignored differences in state. I believe that there could be
interesting frequency dependent effects in an individual-based stochastic opti-
mization model due to the fact that the resident strategy may be or become
unstable or perhaps stabilising features due to the individual differences, there
will often be some animals that are in a worse condition than other conspecifics.
For instance suppose that prey can divert energy to defense at a cost in terms of
reproduction, and that predators are able to divert energy against this defense
with a reproductive cost. If the prey population is grazed down it will pay do
defend oneself but it may be so that at some point the predator numbers are low
enough to make the prey switch strategy. Then the remaining predators will
change their strategy. Moreover, the incorporation of stochastic population dy-
namics would be different from the Lotka-Volterra type of equations that appear
when the objective only is to maximize reproductive rate (Brown and Vincent,
1987; Abrams and Matsuda, 2004; Nowak and Sigmund, 2004) and between the
mean-field equations of adaptive dynamics (Dieckmann and Law, 1996). The
latter assume that the population dynamics are much faster than evolutionary
dynamics.

Closest to my intended approach is probably Shertzer and Ellner (2002a) and
Alonzo (2002). Shertzer and Ellner (2002a) studied the evolution of energy al-
location strategies in the rotifer Brachionus using deterministic equations, and
a genetic algorithm to find the optimum strategy. They found that no stan-
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dard proxy for evolutionary goal function could describe the optimal strategy.
Unfortunately, they did not study the evolutionary change in prey, which is
more commonly observed (Johnson and Agrawal, 2003). Alonzo (2002) studied
a Markov decision game between predators and prey. Here the predators and
prey could choose between placing themselves in a rich or a poor patch, with per-
fect information. There were no changes in the population numbers, which is an
interesting and relevant complication which I had hoped to be able to incorpo-
rate into my model. Moreover, the discrete dynamic games often have to include
a certain amount of decision error in order to attain a stable strategy, which
may not be necessary in the continuous time setting (cf. the logistic difference
equation with the logistic differential equation). Alonzo (2002) noted that there
has been a relatively clean cut between studies on the behavioural time-scale
e.g. optimal foraging theory, where the importance of state has been recognized
and that individual actions depend on other actors such as conspecifics and
predators, and the population time-scale where such effects have largely been
ignored, the main focus has been to describe the interaction between species.

I intended to base the model on data from the Baltic Sea, since the Baltic proper
is a relatively simple system with few species. The purpose of this link to reality
was to make it less probable to create a completely irrelevant model, e.g. simply
by restricting the parameter space. In the Baltic proper sprat and herring are
dominant planktivores and adult cod are top predators. The drawback with
the Baltic Sea is that it is strongly forced by environmental conditions since the
reproduction of the Baltic cod depends strongly on the inflow of fresh, aerated
saltwater. Inflow occurs when there are strong winds over the sill, conditions
which do not occur every year.

It would be natural to try to define a model where the food of the clupeids is
spatial and continuous in time. This would give a staggering state space if one
also would like to let the clupeids make their decision based on time of year and
their internal state. It would be necessary to limit the states e.g. the environment
could be defined on a course grid, with discrete states and transitions between
seasons, the location of the clupeids and cod could be close to bottom or up,
the internal states could perhaps be described by five internal states, yet this
would give rise to a extremely difficult model. Some difficulties could possibly be
solved using time-scale separation techniques, that it is possible to interpolate
the decisions between days. The state of the system as a whole would depend
on these individual daily decisions. This is problematic since the reproductive
output and timing ought to be dependent on the environmental conditions, or
as Charles Elton put it in 1930 (Hutchings, 2000): ”Changes in the population
of one animal are really changes in the habitat of other animals”, and perhaps
even more so since the change in the behaviour of one individual will change the
environment of its conspecifics too. Thus the reproductive behaviour will depend
on the behavioural interactions and the environment, which is periodic. When
should the individuals of a certain species spawn in order to maximize their
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reproductive value in some appropriately chosen future time? Cod has shifted
its time of reproduction in the Baltic, which suggest that time of reproduction
should be included as a decision variable (Hinrichsen et al., 2002).

As is common in many models of stochastic dynamic programming models there
will be an enormous number of parameters concerning both the dynamics and
the interactions at the behavioural and the reproductive time-scale—together
these would form a very difficult system to analyse or to estimate the parameters.
In optimal stochastic population dynamics this problem would be even worse
due to the feedback between individual decisions and the state of the system,
since this is a dynamic game. The great value of mechanistic models is, in
my opinion, that it easier to give parameter values a meaning to see if they
are reasonable or not. They provide functional relationships that provide basis
functions for statistical analysis of data and are useful as submodels. It should
be noted that this usefulness is not stronger than the assumptions, e.g. the
Holling II functional response may be useless in a heterogeneous environment
as shown in Article C. Nevertheless, mechanistically based models tend to be
more robust than black-box models (Hilborn and Mangel, 1997).

The present work is far from the ambitious, and somewhat vague goal of op-
timal stochastic population dynamics, which would have needed a theoretical
study on its own. (The goal is vague since it is uncertain what the goal function
should be if Shertzer and Ellner (2002a) are right, or even how to analyze such
a model with the ensuing large state-space if population numbers are allowed
to change). But there are small bits and pieces that fit in. The aim of the work
that preceded Article A was to describe the daily variations of the schooling
behaviour of clupeids in the Baltic. If this work can be supplied with data
of the pattern over the year and ancillary information on when, where and on
what cod feeds it would give a picture of the profitabilities of different strategies
during the day. This should be supplemented with data on with what success
cod attacks clupeids in different states, and when and what clupeids eat. A dif-
ficulty here is to value the alternative; how should one define the possible gains
and costs for a sprat which abandons its school and searches for food on its own
if that never happen? The goal of describing the aggregation and dispersion
of clupeids in the Baltic was far from reached. In Article A we described the
dispersion pattern for 3 days, and found that the assumption of dispersion by
means of Brownian motion could not be rejected. There was a link between
schooling behaviour and light, such that the schools followed the declining light
in a migration towards the surface or dispersed. The aggregation process re-
mains unstudied but perhaps it could be due to some aggregation-fragmentation
process (see e.g. Anderson, 1981; Niwa, 1998). It would be necessary for strong
conclusions on these matters to have information of how the individuals of a
dispersing school behave. Moreover, the relations between the internal state of
individual fish to these phenomena are even less known, but see the laboratory
studies of Krause et al. (1998) and Hensor et al. (2003).
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The Markovian arrival process can be used as a neat device to derive functional
and numerical responses. In particular this could come in handy when trying
to capture the essence of the predatory interaction between cod and herring.
Since schools form a rather extreme patchiness this could have large effects on
the decisions of a cod to forage or not. On the other hand a cod could possibly
follow a school during the day, attack when and if they are dispersed during
foraging bouts of the sprat, and focus on feeding during dusk and dawn, if this
is when clupeids are most active and easy to catch.

The daily shifts in light intensity provide a strong periodic variation that prob-
ably affects the profitability of feeding in cod. In order to explore these assump-
tions it was necessary to study periodic Markovian arrival processes (paper E)
to find out what the consequences are to the cod. It could be objected that
there is no decision in the Markovian arrival processes in general. But that
is relatively easy to include, when and if one is able to specify the transitions
between different states when different actions are choosen. A decision process
based on the MAP has been developed by Hordijk and Koole (1992), called the
Markovian decision arrival process (see also Altmann and Koole, 1993).

Mortality is an important factor in the life of many organisms, particularly the
young. Since the risk of death is vital in the choice between different actions in
the applications of Markov decision processes to ecological problems, we studied
the conditional moments of Markovian arrival processes, which forms the basis
of the article B. Here the derivations are done in full generality, but the aim is
to be able to provide model input of e.g. the average ingestion rate of a survivor
to another model on a longer time-scale.

It has been pointed out that the dynamics of the digestive apparatus constrain
the energy assimilation of many organisms (Jeschke et al., 2002). Thus this may
limit the value of different actions; it would be very costly to forage when the
stomach is full. In Paper F I made an attempt to apply new results on fluid
queues by Bekker et al. (2004) to the modelling of stochastic stomachs.

Finally, in Article D we take advantage of the Euler-Lagrange dichotomy in
physics, where it is possible to either follow the particle (Lagrange) or to describe
its probability distribution (Euler). Here we provide a framework for studying
the evolution of “marks”, a property that the organism accumulates or loses
during the path of the particle. This property could for instance be length,
energy reserves or number of eggs. This has direct consequences for much of
individual-based modelling, where the stochasticity inherent in a simulation is
overridden. The advantage of this framework is that one avoids the relatively
costly and imprecise simulation and instead works with probability distributions,
or moments of these probability distributions (for the marks). The even simpler
framework of Markovian IBMs could be useful in some epidemiological models
(e.g. Hufnagel et al., 2004).
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With further knowledge on branching processes and some measure of how strong
mixing is necessary to make pair-correlations between offspring and parent
sufficiently weak, which would enable reproduction to be included, this can
have strong impact on the individual-based modelling community. Moreover, it
would be interesting to study the relations between super-processes, or branch-
ing Brownian motions, and their Eulerian representation, to look for tools in
modelling situations were the are spatial dependencies are not weak.

These are small steps towards the goal of producing an individual-based popu-
lation model with optimal behaviour. But that may come some sunny day.

1.1 Contents of the thesis

The thesis is organized as follows:

Chapter 2 contains a brief account on the models and methods of population
biology based on the history of its development. The aim of this is to provide
the background to the “basic” models of population biology to readers who have
no previous experience of these. I have paid some extra attention to previous
work on stochastic processes due to their presumed importance (to me), but
also because it is interesting that e.g. Bartlett (1957) was so ahead of his time.

Chapter 3 provides an introduction to the temporally varying environment of
a cod, in particular the distributional changes at dusk of schools of sprat and
herring, the main food of large cod in the Baltic. These changes ought to be
important in the foraging success of the cod.

In chapter 4 there is a brief introduction to Markovian arrival processes, then
some example of their uses as tools to explore the ingestion and reproduction
processes. In particular Markovian arrival processes can be used as devices to
develop functional and numerical responses.

The Markov additive processes are a natural generalization of the Markovian
arrival process. The simplifications of the Eulerian analysis of individual based
models due to a Markov additive structure are presented in chapter 5 .

Chapter 7 contains a brief conclusion.

The last chapter of the summary is an afterword on what the implications are
for the modelling of biological populations or perhaps the human interaction
with biological populations.

Appendices A–F contain the papers that the thesis is based upon.



Chapter 2

An brief history of birth,
death and analysis

Death is a lonely business.

Ray Bradbury 1985.
(Births are not, which is a biologically important point.)

The purpose of this chapter is to provide a brief historical background to the
main notions and models in population biology.

Since taxation and prognoses thereof probably were one of the main tasks of
early mathmaticians there were almost certainly demographic studies and mod-
els from the early civilisations, but these are unknown to me. I include demog-
raphy in population biology since even if there typically are differences in the
amount of data that is available in human and non-human populations the task
is essentially the same; to describe the time trajectory of a population whose
components grow in age and size, move, produce offspring and die. Another
reason for incompleteness is Stiegler’s law of eponomy: “No law, theorem, or
discovery is named after its originator” (Grimmett and Stirzaker, 2001, p. 19),
which evidently is at work in this area too.

In 1202 Leonardo Pisano alias Fibonacci published a work on mathematics
(reprinted in Pisano, 2003), which appears to be a resumé of what he has learnt
from some Arabic masters which he had visited. Not only did he introduce
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the Arabic numbers to the ignorant part of Europe but he also presented a
population model on the growth of rabbits which shows geometric growth in an
asymptotic manner. Geometric growth is so simple and has been know for so
long that is has no name attached to it1, it is simply that the present population
size xt is proportional to the population size at the previous time xt−1. Thus
xt = axt−1, and if x0 is known then xt = atx0, whence it is seen that if a > 1
then the population will explode and if a < 1 it will die out. The structure of
Fibonacci’s model is such that the population is composed of adult and juvenile
pairs, there is no death and we start with one juvenile pair. Each adult pair get
exactly one juvenile pair each month. The juvenile pairs will become fertile or
adult the next month and contributes to the growth of the population. The total
number of pairs at time t + 1 is xt+1 = xt + xt−1 with initial conditions x0 = 1,
x1 = 1. This is a difference equation where the population asymptotically grows

geometrically xt+1 ∼ φxt when t → ∞ with rate φ =
√

5+1
2 ≈ 1.618 which is

the famous golden ratio. That xt+1

xt
→ φ as t → ∞ was a discovery of Kepler.

Interestingly, the Fibonacci sequence {xt}∞t=0 = 1, 1, 2, 3, 5, 8, . . . is encountered
in many places in Nature, e.g. in the arrangement of seeds in sunflowers, the
spirals of cones (which is called phyllotaxis, see Jean, 1994) and the shape of
the nautilus.

In 1760, Leonhard Euler made one of the first contributions to the growth of
age-structured peopulations and the stable age-distribution. If bx is the number
of offspring produced by an animal of age x and lx is the survival probability
to time x then the Euler-Lotka equation states that 1 =

∑
x e−rxlxbx where

r is the rate with which a population with stable age structure grows, under
the assumption that lx, bx are constant. Euler states that this may not be true
due to plague and war etc. thus recognizing some of the limits of deterministic
and time-homogenous growth. He also dealt with economical problems such as
the fair annual pay from a fund during the life-time of a person of age x who
have deposited an amount of money in the fund, similar considerations were
later used by Fisher to explain natural selection, and in particular reproductive
value. The same year Daniel Bernoulli presented his analysis on small-pox and
vaccination, but publication was delayed to 1766. Using the expected gain in
life expectancy and the number of infants saved Bernoulli argued in favour of
inoculation of small-pox. Bernoulli’s analysis was based on life-table data by
Edmund Halley, the astronomer.

Thomas Malthus proposed what has later been called the Malthusian law in
1798 where population growth is exponential. Surely exponential growth was
known to Euler and before him, Newton and Leibniz, but perhaps Malthus got

1But many riddles, such as the inventor of chess (or Krishna) and the king, where the King
thinks it is a low price for loosing a game of chess to put one rice corn on the first chess square
and then two on the next and so on until the last square; the total weight is approximately
4.6 · 1012 kg. Ambalappuzha Sri Krishna Temple in Kerala apparently serves a certain rice
dish to celebrate this.
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his name linked to the differential equation because of the conclusions drawn;
that unbounded population growth would be controlled by war, sickness and
famine. The ordinary differential equation for N(t) is the population density at
time t is

dN

dt
= r · N

and r is a constant. The solution is N(t) = N0e
r·(t−t0), where N0 is the initial

population at time t0 and it easily seen that if r > 0 then the population explodes
and if r < 0 then it will decay to zero. A funny thing is that the Malthusian
argument is that growth of populations is geometrical whereas growth of re-
sources is at most linear which will cause famine; the reasoning was made in
discrete time. The constant r is known as the rate of population growth or the
Malthusian parameter.

Verhulst (1838) introduces the logistic growth where the exponential growth is
dampened by the catastrophic factors in Malthus’ model or competitive inter-
actions. This is also within the differential equation framework:

dN

dt
= r · N

(
1 − N

K

)
.

The equation was more or less forgotten and was rediscovered by Pearl and Reed
(1920). It has an attractor for positive densities when r > 0 and K > 0; this
means that all positive initial populations will eventually end up in N = K.
There was a stupid paradox (see Gabriel et al., 2005), if r negative then positive
population growth occurs for initial populations that are larger than K. The
paradox comes from the fact that it is very useful mathematically to factor
the terms in the analysis of population models. The model says that there is
growth due to the numbers aN and less growth due to crowding −bN2 using
scaling, b = a

K . However the creators of the paradox seem to have forgotten
“the interalianable right to think while using any technique” (Segel and Slemrod,
1989). The Verhulst-Pearl model can be interpreted such that both the birth
rate and the death rate as a function of population size are quadratic functions
B(N) = bN + cN2, respectively D(N) = dN + eN2. The population dynamics
is, in the absence of immigration and emigration, controlled only by births and
deaths. Thus Ṅ = (b−d)N−(e−c)N2 and in order to have interesting dynamics
at low densities it is necessary that b > d and in order to have stabilization at
high densities that (e − c) > 0. Of course it is also biologically possible that
b ≤ d; the population dies out for all initial values. Were e < c in this latter
situation the model is ill-posed, there has to be higher order terms to correct
for it.

Allee (1931) noted that in many cases there is a minimum population density
needed for positive growth, and that the population will decrease when below
this density. This effect may be due to social interactions between individuals or
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e.g. that they are less able to defend themselves from predators at low densities.
Thus while logistic population growth has a growth rate with a single maximum,
the Allee effect creates growth rates that are negative in a range (0, Nmin) and
then positive for N ∈ (Nmin Nmax) and then negative again for N > Nmax.
That population growth is dampened by the population size has been called “the
logistic law”, but there are many functional relations that produce damping.
For instance, already (Feller, 1939b) noted that many S-shaped functions fit the
logistic data present at that time.

The origin of species was published in 1859. Although not very mathematical
this work marks the beginning of modern biology, and as Dobzhansky put it in
a famous essay in 1973: “Nothing in biology makes sense except in the light of
evolution”, which of course is an exaggeration, but a rather mild one.

Darwin’s half-cousin Francis Galton asked about the extinction probability of
family names in 1873 in the Educational Times. Watson provided an answer
and together they wrote a paper on branching processes or Galton-Watson pro-
cesses in 1874. Bienaymé had found these results earlier, and published them
in a relatively obscure journal in 1845. Thus these are sometimes denoted Bien-
aymé-Galton-Watson processes. Oddly enough Bienaymé dealt with the same
question as Galton-Watson; the extinctions of family names. The branching
process starts with an initial population N0, the present number of males in a
certain family in Galton’s example. Each male i in N0 produce a random number

of male offspring X
(i)
0 , independently of the others. Then N1 = X

(1)
0 +· · ·X(N0)

0 .
The process continues as long as Ni > 0. Branching processes has found appli-
cations in nuclear reactor engineering and in biological populations, primarily
in epidemiology. From an applied biological viewpoint it appears to me that
too much emphasis has been put on asymptotic properties, such as with prob-
ability 1 this population will go extinct or explode, but, using numerical meth-
ods, Markovian multi-type branching processes in continuous time (see Dorman
et al., 2004) seem to have much to offer to biology.

Alfred J. Lotka speculates on the possibility for oscillations in chemical reactions
in 1910. In 1920 he presents a pair of coupled ordinary differential equations
that are able to produce such oscillations. Interestingly, in 1921 Bley was able
to produce similar oscillations in a simple chemical system, but these results
were ignored since it was thought that these violated the second law of thermo-
dynamics (see Murray, 1993, p. 141). Vito Volterra (1926) attempts to explain
the fluctuations of fishes in the Adriatic. The system of ordinary differential
equations were for the density of prey, N , and predators, P . They are identical
to Lotka’s equations for chemical oscillations.

dN

dt
= aN − bPN

dP

dt
= cPN − dP,
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where a, b, c, d are positive constants. This set of equations exhibit neutrally
stable oscillations, which can be seen from the phase-portrait, i.e. solving for
N as a function of P , this provides a Lyapunov function (roughly a function
that represents a positive quantity, such as energy in mechanical systems, if the
time-change in this function is negative for all N , and P then energy is lost
and there is a stable equilibrium and the system comes to rest at the point
where the energy function is zero. In the Lotka-Volterra system the “energy”
is preserved which corresponds to closed orbits). Note that these equations
contain no spatial information, no age or stage-structure and that the interaction
is based on the law of mass action or the law of Guldberg-Waage; the reaction
rate is proportional to the product of the concentrations of P and N , this means
that prey immedeately turn into reproductive predators.

Lotka also made important contributions to age-structured populations. He de-
rived the Lotka-Euler equation in 1907 which is the Euler-Lotka equation in the
integral setting 1 =

∫∞
0 e−rxl(x)m(x)dx. He studied age-structured populations

(Sharpe and Lotka, 1911) using integral equations. Let B(t) be the number of
births at time t, b(a)da the (expected) reproductive output of an individual of
age [a a + da], and n(a, t) the number of individuals of age a at time t. Then

B(t) =

∫ ∞

0

n(a, t)b(a)da

Assume that the age-structure is stationary then n(a, t) are the surviving indi-
viduals born at t− a, B(t− a). Introduce the survival function, the probability
to survive to age a, l(a). Then, since n(a, t) are the surviving newborns at time
t − a,

B(t) =

∫ ∞

0

B(t − a)l(a)b(a)da. (2.1)

Lotka assumed that B(t) = Kert which gives the Lotka-Euler equation.

McKendrick (1926) and von Foerster (1959) provided an equivalent PDE for-
mulation. Define a mortality rate m(a) at age a. Then the number at age a
satisfies

∂n

∂t
+

∂n

∂a
= −µ(a, t)n(a, t)

with boundary condition n(0, t) =
∫∞
0 n(a, t)b(a)da. There were intense work

in the PDE formulation of general stage- and age-structured populations (see
Metz and Diekmann, 1986), but it was found that PDEs are more difficult
than the integral equations since the former have to deal with unbounded op-
erators if there are jumps in rates since the derivative of that rate is infinite.
Diekmann et al. (1998) formulated general linear physiologically structured pop-
ulation equations using the integral formalism, these lead to renewal equations,
i.e. equations of the same type as equation (2.1). Naturally, there are non-linear
interactions between the environment and the indivdual who is growing up, such
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as density dependence (Gurtin and MacCamy, 1974), predation and cannibal-
ism which lead to more difficult situations, which are dealt with in the single
species formulation by Diekmann et al. (2001).

Volterra (1931) also considered competition processes; for instance when there
are two species N1 and N2 which are goverened by the following system:

dN1

dt
= aN1 − bN2

1 − dN1N2

dN2

dt
= cN2 − dN2

2 − fN1N2,

where a, b, c, d, e, f are positive constants. Will only one species survive or can
they coexist? In a bold attempt of reverse engineering Gause (1934) tried to
create a model system which could reproduce the Lotka-Volterra predator-prey
equations. Gause had large difficulties in producing oscillations since the popu-
lations tended to go extinct rapidly. Even when there were refuges the predators
became extinct and then the prey emerged from shelter. Only by adding one
predator and one prey with regular intervals was he possible to obtain oscil-
lations without extinction. In this work Gause also studied competition and
logistic growth. The competition experiments lead to the conclusion that the
stronger competitor always wins. This is not true if the interspecific compe-
tition is small enough and b

a , d
c are about equal (see Murray, 1993, p. 78).

Park (1954) studied a system of two different species of flour beetles (Tribolium
spp.) which in certain circumstances had the interesting phenomenon that the
outcome of equal initial conditions were that either species was out-competed.
This lead to stochastic models by Leslie (1958) and Neyman and Scott (1959),
where the state of the population may be seen as a ball on a saddle, and stochas-
tic fluctuations will make it fall on one side or the other (see Renshaw, 1991,
for more details). In a beautiful field-work combined with simple deterministic
models Tilman (1994) showed that natural disturbances in the prairie lead to
the persistence of several species of grass, whereas undisturbed competition ex-
periments always led to monocultures of the stronger competitor. It was found
that competitive abilities where negatively correlated with colonizing abilities;
the least competitor was the best colonizer and the strongest was the worst.
This work shows on the importance of disturbances and space and, in particu-
lar, biological trade-offs. Moreover it shows that it is not always relevant to look
for the asymptotic outcomes of an unperturbed system if it always is perturbed
(Hastings, 2004). Thus, fluctuations may provide the opportunity for another
individual or species to survive.

Kermack and McKendrick (1927) created an important model class in epidemiol-
ogy the SIR-model. The populations is divided into three groups S, suceptible,
I, infected, and R, removed, i.e. dead or cured and not suceptible. Using a
simple ODE-system, they found a good fit to the Bombay plague epidemic in
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1905-1906. The system of equations is:

Ṡ = −rSI

İ = rSI − aI

Ṙ = aI

This class of models, SI, SIS, TSIR (T=time series), SIRS etc. are still fun-
damental in many epidemiological studies, where the stochastic (Bailey, 1964)
and spatial analogues are used, e.g. Grenfell et al. (2001) a TSIR on measles,
Hufnagel et al. (2004) on a global SARS epidemics and Stollenwerk et al. (2004)
on bacterial meningitis. Dietz and Heesterbeek (2002) showed that Daniel
Bernoulli’s work could be cast into an SR-model and that some obscure state-
ments by Bernoulli were absolutely right.

J. B. S. Haldane published an essay in 1928 “On Being the Right Size” (see
Haldane, 1985) where he notes that the most important property of an organism
is its size, a fact which he felt had been ignored. Here he argues that different
forces e.g. gravity and surface tension are important to different animals, that
oxygen supply by diffusion is sufficient for small organisms but not large, and
using dimensional analysis that there is a scale invariance in the height that an
animal can jump (ignoring air resistance, as Haldane did, Scholz et al. (2006)
show that smaller creatures are better in transforming energy to motion, thus
the conclusion does not hold strictly). To what extent other biologists have
been inspired by this essay is unclear, since it has very few citations, but it
contains many important points. How much bone that is needed for a leg not
to snap leads to optimization of animal shape (see Alexander, 1982), and from
there it is not far to go to the optimization of animal behaviour (Stephens and
Krebs, 1986). Scale invariance is a very hot topic, but to me scale invariance
is interesting only when the interval is specified, since almost always there are
limits to it. Scaling “laws” have been reported; these are very interesting when
it is possible to understand the mechanisms producing them, then they may be
useful and robust. They seem to be less useful when e.g. there is disagreement
on whether respiration rate should be proportional to body mass to the power of
2/3 or 3/4 even if this may be due to missuse of regression models (FARRELL-
GRAY and GOTELLI, 2005).

The importance of size-structured models for population dynamics is connected
with Haldane’s essay, e.g. a cod can increase its length with a factor of about
1000 if it is lucky. This means that the environment and its possibilities to
interact with its environment are very different during its life even if it were to
stay at the same geographical position during this time.

Nicholson and Bailey (1935) made a discrete model for insect parasitoid-prey
populations. They assumed random distribution of prey in an area A, and
that each predator search an area a during its life-time. The probability that a
given larva escapes a specific parasitoid is (1 − a

A ). If Pt denotes the predator
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population at time t and Ht the host population, then the fraction f of larvae
that escapes parasitism is f = (1 − a

A )Pt , which can be rewritten as f = e−αPt

where α = − ln(1 − a
A). They assumed that each host produce F eggs S of

which survive then the host population next year will be:

Ht+1 = (FSHt)f = κHte
−αPt ,

and they further assumed that each parasitized larva gives rise to a single adult
parasitoid,

Pt+1 = κHt(1 − f) = κHt(1 − e−αPt).

This system of difference equations have a single unstable positive equilibrium;
either both predator and prey goes extinct or the predator goes extinct and
the prey population explodes. Nicholson and Bailey assumed that the parasites
were host-limited; that the density of hosts were limiting the population growth.
Getz (1998) notes that Thompson had earlier, in 1924, presented a model where
the parasites were egg-limited, which gave f = exp(−α Pt

Nt
), but Thompson’s

work was ignored until the end of the 1970ies, when one began to study such
scenarios. Also the Nicholson-Bailey model gained renewed interest since it was
shown that host-parasitoid populations on a lattice could survive indefinitely
and that these interactions produced interesting spatial patterns (Hassell et al.,
1991). It is of course most likely that parasites in general are both egg and
host limited depending on densities (Gutierrez, 1996; Getz, 1998). These works
are important for their use of random search, that encounters were Poisson dis-
tributed at a fixed time and Thompson’s for using a ratio-dependent functional
response.

The magnificent statistician Sir Ronald A. Fisher explains evolution by means
of natural selection using genetical theory in 1930 (see Fisher, 1999). He states
that the Lotka-Euler equation can be understood in a monetary sense. If one
regards the birth of a child as a loan of life and the birth of this childs offspring
as a repayment, then r is the appropriate rent. The unit investment (the child)
has an expected return at [x, x + dx] of lxbxdx. And the present value of this
is e−rxlxbxdx, summing these gives 1 =

∫∞
0 e−rxlxbxdx. This analogy can be

taken further since one can ask for the future value of the reproductive output of
a person who is of age x. This is vx = erx

lx

∫∞
x

e−rtltbtdt. Fisher ignored effects
of inclusive fitness, that interrelated animals can benefit from helping their kin,
since he thought these were small and stated that this is the value that the direct
action of natural selection is proportional to. Together with J. B. S. Haldane
and Sewall Wright, Fisher is considered to have founded population genetics.
Fisher studied the spatial diffusion of a favourable gene 1937, this is called the
Fisher equation ut = ku(1 − u) + Duxx. The even greater Andrej Kolmogorov,
continued the study of similar equations the same year, ut = f(u)u + Duxx,
in particular the wave-like properties of the solution (Kolmogorov et al., 1937).
They found analytically that the asymptotic constant rate of spread is equal
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√

f(0)D. This is one of the starting points of reaction-diffusion equations
which are widely used in chemistry, epidemiology, morphology, and genetics,
although Murray (1993) states that Luther was first, in 1906, but forgotten.
McKean (1975a,b) was able to provide an alternative proof of the asymptotic
wave-speed for this equation using a branching Brownian motion. This work,
and other e.g. by Watanabe, have lead to the study of superprocesses, or Brow-
nian snakes (Dynkin, 2002). This analogy has been used in the analysis of
integrodifference equations (see e.g. Kot et al., 2004). In the contact process by
Mollison (1977) more general dispersal can be included, where the probability
for a certain dispersal length comes from a distribution.

Feller (1939a) presented early analyses of simple stochastic population models,
a pure death process, a pure birth process, a birth-death process, a diffusion
approximation of a birth-death process which reflects accumulated energy, and
a statement of Fokker-Planck equations for the the Lotka-Volterra two-species
model. Feller is often said to have created the birth-death process, the birth
process was introduced by Yule (1925) where he considered the evolution of new
species. Feller also dealt with stochastic versions of logistic growth. Interestingly
most logistic models have incorporated a decreasing reproduction rate in growth
by letting the reproduction rate at population size n, λn be a quadratic function
λn = αn − βn2, where α, β are non-negative. This makes the finiteness of the
habitat explicit, since no growth can occur at n > α

β . If one only had a death rate
which increases quadratically with population size then there is no upper level
defined. An interesting observation in Feller (1939a) is that the mean growth
rate in a logistic stochastic population is less than its deterministic analogue.

Leslie (1945) introduces the Leslie-matrix, a neat scheme for age-structured
populations with discrete state and in discrete time. In Leslie (1948) he shows
that it is possible to incorporate density dependence. The basic structure of
a general matix model is that that the population of m stages at time t is
characterized by a column vector ~n(t) = (n1(t), · · · , nm(t))T , and there is an
m × m matrix A, which may depend on the present or past values of ~n, time
and have random components. The population at next time ~n(t + 1) is

~n(t + 1) = A ~n(t). (2.2)

Leslie was not first with this framework, Caswell (1989) writes that Bernadelli
was first in 1941, with an article in the Journal of the Burma Research Society
titled “Population waves”. Bernadelli’s model stemmed from his interest in
fluctuations in the age-structure in the population in Burma. He came up with
a model that could produce sustained oscillations where the matrix A is equal
to 


0 0 6
1
2 0 0
0 1

3 0



 .
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Figure 2.1: The expected version of Bernadelli’s branching process (above) and
3 realisations of it. Note that one population (red) goes extinct.

This matrix should be interpreted such that the probability to survive the first
year (or time period) is 1

2 , and the probability to survive the second is 1
3 . The

three-year-old individuals produce (on average) 6 offspring then die, the offspring
are then the newborns next year. From this it is hopefully clear that the Leslie-
matrix is the expectation of a branching process, which in Bernadelli’s case
is critical. For an impression on the difference between stochastic outcomes
and the expected version see Figure 2.1. Keyfitz and Keyfitz (1997) notes that
Bernadelli was not first with this type of models either, in fact they originate
from Cannan in 1895!

This framework is easily extended to stage-structured populations, which was
realized in the 1960s. These are sometimes called the Lefkovitch-matrix models,
but it should not come as a surprise that Lefkovitch was not first.

Another example, let bi be the mean number of offspring produced by an animal
of age i, let pi−1 be the survival probability from age i − 1 to i. This means
that the survival probability to age x is equal to

∏x−1
i=0 pi = lx. The Leslie

matrix maps an initial population n(t) = {n0(t), n1(t), . . . } to n(t + 1). Clearly
the number of newborns next year will be n0(t + 1) =

∑
i≥0 ni(t)bi and for the

other groups only grow older ni+1(t + 1) = pini(t) for i ≥ 0. In matrix form
this can be put as:




b0 b1 b2 · · ·
p0 0 0 · · ·
0 p1 0 · · ·
...

...
. . .

...







n0(t)
n1(t)
n2(t)

...


 =




n0(t + 1)
n1(t + 1)
n2(t + 1)

...


 .
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A population with stable age distribution has the property that n(t+1) = an(t)
and writing a = er gives the Euler-Lotka equation. For finite state systems the
Perron-Frobenius theorem states that there is a largest eigenvalue a which is real
and positive. It is of course very important to know if a is greater than 1, which
means that the population grows geometrically. For infinite state systems the
Krein-Rutman theorem (see Zeidler, 1992, p. 290–291) generalise the Perron-
Frobenius theorem and guarantees the existence of a unique largest eigenvalue
if the operator is compact. An important matrix in age-structured branching
processes is the ML-matrix (Dorman et al., 2004) which determines much of the
behaviour of such a process, this is equivalent to a Leslie matrix.

The matrix formalism is essentially equivalent with the PDE or integral formu-
lation of physiologically structured populations, and these can be seen as the
expectation of a multi-type branching process (Diekmann et al., 1998), a prop-
erty which I feel is sometimes taken too far e.g. when very small populations
are studied using the deterministic models.

Another attempt to account for the fact that different stages have different
impact on population growth was Hutchinson (1948) who represented the fact
that only grown up individuals will contribute to interspecific competition. He
proposed a delayed-logistic growth model.

dN

dt
= (a − bN(t − τ))N(t).

Expanding N(t− τ) in a Taylor series N(t− τ) = N(t)− τN ′(t)+ τ2

2! N
′′(t)+ ...

it is clear that this equation corresponds to an infinite dimensional differential
equation. Cunningham (1954) solved this equation for small enough τ , (see
also Nisbet and Gurney, 1982). Time delays opens up for more complex dy-
namics than an ordinary first degree differential equation, in fact even chaotic
dynamics (see Mackey and Glass, 1977). Delays have also been incorporated
in Lotka-Volterra predation models (see Bartlett, 1957; Wangersky, 1978). An
important example of its applications is that Gurney et al. (1980) were able
to represent many characteristics of the time-series data set by Nicholson on
blowflies, (see pp. 285–308 in Nisbet and Gurney (1982), and pp. 114–119 in
Gutierrez (1996) for an alternative, meta-physiological, formulation). Introduc-
ing a weight function w(τ), where

∫∞
0

w(τ)dτ = 1 and a weighted memory of

past populations is Nw(t) =
∫∞
0

w(τ)N(t − τ)dτ , then the delay-differential
equation may be viewed as a special case of integrodifferential equations.

Maurice E. Solomon introduced the terms functional response and numerical
response in 1949 although these concepts had been used earlier (Holling, 1966).
A functional response is the mean rate of removal of prey per predator given
a certain prey and predator density. The numerical reponse is the average per
capita production rate of predators given a certain prey and predator density. In
discrete-time models the functional response is the mean number of consumed
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prey per predator and time unit and the numerical response is the average num-
ber of offspring per predator and time. Holling (1959) is the pioneer of mechani-
cally derived functional responses, he combined experiments with simple theory
in what has become Holling’s type II response. The Holling type II response
is equivalent to Michaelis-Menten kinetics in enzyme reactions. Borghans et al.
(1996) show that the functional response can arise from a singular perturba-
tion of the fast process of handling prey and provide criteria for when it the
approximation is good. The fast process is assumed to be in quasi-stationary
equilibrium and the rate of consumption of prey, or substrate in enzyme kinetics,
is the functional reponse times the prey concentration. It has been shown that
spatial heterogeneity and predator grouping may change the functional response
(e.g. Cosner et al., 1999). Similarly, Poggiale (1998) derived different functional
responses on the basis of fast movement of prey between shelter and a risky
but rewarding habitat. Jeschke et al. (2002) review and classify most functional
responses to that date. Numerical responses have, to my knowledge, a less solid
theoretical foundation, and the standard procedure is to put the reproductive
output as directly proportional to the functional response, which may be a good
approximation in some animals. The aim of dynamic energy budget models aim
to fix this broken link between ingestion and reproduction (see e.g. Shertzer and
Ellner, 2002b), they generally use scaling arguments between size and energy
needs and losses. For instance, the rate of ingestion may be proportional to sur-
face area if it is a filtrating moving organism whereas respiration is proportional
to volume.

Alan Turing showed that pattern formation is possible by reaction-diffusion
equations in 1952. Turing’s interest seem to have been spurred by phyllotaxis,
and in particular the appearance of Fibonacci sequences in Nature. This article
has lead to much interesting work, where one is able to reproduce the spots
of a jaguar, and the stripes of a zebra (see Murray, 1993). Although there
has been a large effort to find these diffusing morphogens to this date none
has been found. The mechanism of animal patterns seems to be more intricate
with gene regulation and cellular communication. Turing’s work is important
in population ecology too, since it shows that it is possible to have patterning
in an initially homogenous environment (e.g. Kareiva and Odell, 1987) and as a
means of including space in population dynamics (see Durrett and Levin, 1994,
for illuminating comparisons between different approaches)

Moran (1953a,b) analyzed a data set on the Canadian lynx that had been pub-
lished by Elton in 1942. Moran assumed that weather was an important factor
in the oscillations and fitted a second order auto-regressive model to the the
lynx series. He showed that correlated noise synchronized any two processes
with identical parameters, this is called the “Moran effect”. This effect has
been thoroughly studied in linear and non-linear models. Two other mecha-
nisms cause population synchronization, dispersal from high to low densities
and trophic interactions with other species that themselves are spatially syn-
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chronous (Leibhold et al., 2004). Renshaw (1991) notes that this data set has
genereted a fair amount of mathematical speculation and notes that Moran’s
explanation ignores the coupling to a fluctuating environment which could be
provided by the snowshoe hare which is almost the only food of Canadian lynxes.

The lack of inclusion of such an obvious and seemingly necessary coupling to
food is of course irritating to many people, including myself. Renshaw (1991)
has a funny quote by Seton who remarks on the Canadian lynx and its prey
the snowshoe hare: “It lives on Rabbits, thinks Rabbits, tastes like Rabbits,
increases with them, and on their failure dies of starvation in the unrabbited
wood”. A very neat study on the Canadian lynx and the snowshoe hare which
incorporates detailed biological knowledge, e.g. that reproduction is lower in the
hare when population is declining and that lynx forage more efficiently during
the decline is found in Stenseth et al. (1998). They are able to use a simple
self-exciting autoregressive model (SETAR), i.e. the dynamics are described by
one autoregressive time-series model when the state is below a treshold and an-
other when the state is over the treshold. This type of models belongs to a fairly
recent trend in population biology that tries to infer ecological processes from
time-series data, combined with what empirical knowledge there is (Royama,
1981; Turchin and Hanski, 2001; Kendall et al., 1999). Moran’s study is also
very important in the context of linking ecological processes to climate, in par-
ticular indices of weather such as the NAO (North Atlantic Oscillation—the
yearly average pressure difference between the Azorean high-pressure and the
low pressure over Iceland) and the (ENSO) El Niño Southern Oscillation (which
is the Pacific equivalent to the NAO). The ENSO has been particularily studied,
due to its drastic effects on fisheries in South America (Barber and Chavez, 1983;
Chavez et al., 2003). The NAO has been successful as a component in explaining
e.g. variation in recruits in Baltic herring (Axenrot and Hansson, 2003). Hallett
et al. (2004) show that the reason that these large-scale fluctuations tend to
predict population processes better than local weather is due to combinations
of different time-lags. They argue that the specific mechanism of how weather
influences populations is important since this may create an interaction between
density-dependence and weather which would be missed by a large-scale index
or inappropriate measures of local weather, such as mean monthly temperature.

Huffaker (1958) did not agree with Gause’s conclusion that populations were
self-annihilating without immigration. He realized that populations rarely mix
homogenously over the whole habitat, but develop within subsets of the habi-
tat. Huffaker included the spatial component in a system where he had placed
oranges regularly on a grid and he altered the available area of an orange and
the degree of dispersion between the oranges. This system was equipped with
two different species of mites as predators and prey. Huffaker was able to pro-
duce three cycles with 120 oranges and four with 252 oranges. In fact, Renshaw
(1991) shows that it is theoretically possible to have sustained oscillations in a
system with only ten sites. This work was important in the attempts to include
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spatial variations in population models. A very similar system was used to study
the mechanistic reasons to persistence by Ellner et al. (2001), and it was found
that isolation by distance was the essential cause of persistence in their system.

Another very important work in the area of spatial models is the metapopulation
model by Richard Levins (1969). He assumed that p is the probability that
a patch is occupied, and that empty patches are colonized with rate C and
occupied patches goes extinct with rate E. This leads to

dp

dt
= (1 − p)C − pE.

Assume that the extinction rate is constant E = e and that the colonization
rate increases linearly with the number of occupied patches n, C = cn. Let N
be the total number of patches and assume that this number is large enough to
let the probability that a patch is occupied be p = n

N . Then

dn

dt
= cn(N − n) − en.

The approximation that p = n
N can only be valid when N is large, thus this

model has also been studied in stochastic settings (see e.g. Etienne and Nagel-
kerke, 2002). The basic metapopulation model has been extended in many
different ways e.g. to include Allee effect, rescue effect i.e. that extinction is
less probable when more patches are occupied, detailed local dynamics, and
heterogenous habitats etc. (see Hanski and Gilpin, 1997).

The focus on spatial models have remained in later years, where techniques
from statistical mechanics (moment-closure, pair-correlations etc.) have been
used to simplify spatial models (see Dieckmann et al., 2000). But also advanced
statistical techniques have been increasingly popular in the analysis of data
such as Markov Chain Monte Carlo methods (de Valpine and Hastings, 2002;
de Valpine, 2003; Fujiwara et al., 2005) for non-linear models. The individual-
based modelling approach, where the individuals that make up the population
are modelled explicitly using computer simulations has been important (Grimm,
1999) for its conceptual appeal, and for the general message that individual dif-
ferences in state are important. This has to some extent been found by other
frameworks, e.g. the physiologically structured dynamics, which is related since
the idea is to formulate interaction laws at the individual level and then integrate
to the population level (Diekmann et al., 1998) and study deterministic popu-
lation phenomena. However the simulation-based individual-based models have
suffered from the inability to analyse the model at the population level which
requires a statistical analysis or the ability to transform the individual-level phe-
nomena to the population-level (Gómez-Mourelo, 2005). The mechanistically,
or semi-mechanistically based models where the parameters can be interpreted
have had large impact (Stenseth et al., 1997).
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2.1 Further reading

Hilborn and Mangel (1997) present an inspiring account of biological modelling.
Murray (1993) is a good source for mainly deterministic models in biology, with
extra stress on reaction-diffusion models (see also Okubo and Levin, 2001; Shige-
sada and Kawasaki, 1997). Nisbet and Gurney (1982) and Gurney and Nisbet
(1998) are very good general introductions to both stochastic (in the former)
and deterministic models (the latter emphasizes spatial models at the expense of
stochastic). The book by Renshaw (1991) is another treatise where the need for
both stochastic and deterministic models is lucidly illustrated. Caswell (2001)
provide a very broad introduction to much of structured population models but
primarily matrix models, where many topics that were not present in second
edition are included, such as the connection with branching processes. For more
information on different ways to model structured populations, see Tuljapurkar
and Caswell (1997).

Classical references for branching processes are Harris (1963) and Athreya and
Ney (1972), for biological problems, see Haccou et al. (2005); Kimmel and Ax-
elrod (2002).

For more examples on the practical side of modelling biological populations, this
see Turchin (2003), Caswell (2001), Nisbet and Gurney (1982) and Gurney and
Nisbet (1998).

Delay-differential equations and integro-differential equations in biology are cov-
ered by Cushing (1977).The modern (abstract) setting of delay-differential equa-
tions is functional differential equations (Diekmann et al., 1995).

Dynamic energy budgets are treated in Kooijman (2000), a meta-physiological
alternative is found in Gutierrez (1996).
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Chapter 3

The schooling behaviour of
clupeids in the Baltic at dawn

Fish don’t eat temperature.

Dr. Christian Möllmann on an explanation of why sprat are found
in certain areas at certain times in the Baltic.

3.1 Introduction

The goal of this work is to describe a part of the time varying prey field of Baltic
cod that are larger than 30 cm. Cod of this size feed primarily on sprat and on
small herring (Essington and Hansson, 2004). Herring and sprat belongs to the
family Clupeidae, hence they are sometimes called clupeids. They dominate the
fish biomass of the Baltic Proper and they are found in schools during well-lit
conditions. At the study site there were much more sprat than herring and since
sprat is the primary target of cod, the schooling species seen on echograms will
most of the time be called sprat or clupeids.

Almost 80 percent of the known species of fish aggregate in schools during some
part of their life-history and approximately 25 percent of these school as adults
(Shaw, 1978). Schools refer to a group of fish that are polarized and thus move in
a coordinated manner. Other social aggregations of fishes that are not polarized
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are called shoals (Pitcher and Parrish, 1993); these distinctions do not apply to
earlier work nor are they adopted by all researchers. Since herring and sprat are
known as obligate schooling fishes since they are always found in schools (during
well-light conditions). The aggregations seen on echograms will be called schools
even if it is possible that they are shoals.

One of the many interesting things with schools is that they change their shape
and size during the day. Most species disperse to a disordered state or at least
expand during dusk and then reform at dawn to compact schools. There are
indications that feeding is most intense in both herring and cod during twilight
conditions (Blaxter and Parrish, 1965; Adlerstein and Welleman, 2000). In the
Baltic this feeding pattern was found by Cardinale et al. (2003) for herring, but
not for sprat which fed during the day. Clupeids are known to be able to filter-
feed also during night (Batty et al., 1990), although with a lower efficiency than
during the day. In order to make a more precise description of prey encounter
for cod we needed a model for the spatio-temporal behaviour of their main prey.

There are many different reasons to gather in a school, since a school may serve
different purposes to its components, but the primary reason for most fishes
is probably to avoid predation (Pitcher and Parrish, 1993) since “many eyes”
will be better at detecting predators (Pitcher and Turner, 1986). However, it
is possible that they save energy (Weihs, 1973; Herskin and Steffensen, 1998)
and that fish in a school may find food faster (Peuhkuri et al., 1995; Grünbaum,
1998); some tunas form “soldier lines” to search an area efficiently (Cosner et al.,
1999). Fish aggregated in schools have lower encounter rates with predators and
are less likely to be consumed when attacked since the predator quickly becomes
satiated and the remaining prey can escape (Pitcher and Parrish, 1993). Social
interactions may also be an important cause, since it is easier to find a mate
in school. An example of strong social interactions in schools is that some
reef fishes form schools of entirely females and one male and when the male is
removed the largest female will change sex (Warner and Swearer, 1991). There
are of course costs to schooling such as increased intra-specific competition,
faster transmission of disease and sometimes other species may benefit from the
large local density of prey, such as whales, tunas (Brodie et al., 1978; Cosner
et al., 1999) and humans (Parrish, 1999).

Vision seems to be the primary sense to maintain a school (Partridge and
Pitcher, 1980) although the lateral line (Pitcher et al., 1976) is also impor-
tant and possibly chemical and olfactory cues (Krause, 1993). When light levels
decrease the schooling stops. The critical light levels are widely different be-
tween species (e.g. Shaw, 1961; Higgs and Fuiman, 1996) and between different
sizes of the same species (Miyazaki et al., 2000). The dispersion and aggrega-
tion of sprat phenomenon in the Baltic is concurrent with a vertical migration
which creates conspicuous shifts in echograms (see Figure 3.1). There may be
a continuous formation of schools as light levels increase during the day since it
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Figure 3.1: Schematic drawing of the daily shifts in echogram. A is during day
time B during dusk C during night and D the transitions at dawn.

appears, from my limited experience, as if school sizes are larger at noon than
in the late morning and in the afternoon. At dusk the schools have split into
smaller schools, most of these disperse close to the bottom but some rise toward
the surface before dispersion.

How do fish in a school disperse? We assume that the schools remain intact until
light levels go below a threshold. Then the sprat disperse into an uncorrelated
state by performing independent random walks. We built a model based on
these assumptions and checked if the predictions match our observations. Our
assumption are based on laboratory observations (Shaw, 1961; Batty et al., 1990;
Higgs and Fuiman, 1996).

In this work we show that schools stay intact above ca 0.01 lux and that a
diffusion model for the dispersion gives time-scales that are of the same order
as the time scales observed. The most revealing observation was that the light
levels 1, 0.1, 0.01 lux were choosen a priori based on literature data and that
the pattern of dispersal in the field seemed to follow the 0.01 lux isolume very
closely (see Figure A.3.
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Figure 3.2: Map and topography of the Bornholm Basin

3.2 Materials and Methods

Echograms were collected during a cruise with R/V Dana (12-14 March 2002),
on the north eastern slope of the Bornholm Basin (see figure 3.2). This position
was chosen since cod were present; they are rarely found in the central parts
during this time of the year. The echograms were stored electronically and
analyzed using EchoView software (SonarData, 2002). At the same time of
echogram registration we were trawling, mostly at the bottom but in the evening
of March 14 we made some pelagic tows to ascertain that the fish seen closer to
the surface on the echograms were indeed sprat and herring. We also registered
currents, salinity, temperature and light attenuation at regular intervals. These
light-depth profiles enabled us to calculate an approximate light level at the
centre of a school and the measurements of the currents were used so that we
could dispose of the catch downstream. The latter was unfortunately necessary
to do since the storage facilities on board were limited. This caused unfortunate
breaks in the otherwise continuous registration of events at the study site.

Schools were registered using the school-detection module of the EchoView pro-
gramme. The identification parameters were set heuristically, to be able to
discriminate between two schools but not identifying aggregations that may be
two fishes standing close to each other. The light meter on the ship had limited
sensitivity at the low light levels of dawn and dusk. It registered zero light levels
even when the light levels at the surface were quite sufficient for reading, thus
we had no accurate recording of the light levels at dusk. We used a programme
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Figure 3.3: Model of light, different lines corresponds to different assumptions
of cloud cover. Dots are the measurements from the light meter on Dana.

by Janiczek and De Young (1987) that allowed us to get an average value of
the light intensity at the surface. The program is perhaps crude, but the link
with actual light levels during periods of non-zero measurements on Dana was
surprisingly good (see fig. 3.3). It is assumed that the atmosphere is isothermal
and sea surface reflexions are not included which may have caused some of the
positive deviations.

The light intensity at depth d, I(d), was modelled using the Lambert–Beer’s
law log I(d) = log I0 −K · d, where the attenuation coefficient K was estimated
from regressions from the light profiles obtained by the light probe at the CTD.
However, since the surface layer (0–20 m) contained phytoplankton which cause
extra absorption of light we excluded this part of the light profile from the
estimation of the rate of attenuation of light and the light meter had problems at
log light levels lower than −2.7; the values below were excluded (see Figure 3.4).
During the early morning of March 14th the weather changed to a gale with
high waves and strong winds. This made the interpretation of the echograms
harder, in particular the school identification algorithm performed badly. Both
the echosounder and EchoView have bottom-detection algorithms but neither
performed very well. The bottom is useful since it allowed us to remove much
of the waviness of the echograms simply by applying a low-pass filter to the
bottom lines and then aligning the echoes.
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Figure 3.4: The logarithm of light profile (photosynthetically active radiation)
at five stations versus depth and fitted regressions to the stable interval between
20 m and measurements above −2.7.

In order to use the data we produced a program in Matlab to identify the bottom
and a C++ program to change the echograms such that the bottom was better
aligned. The former task was achieved using an identification of the bottom
within a narrow band since the depth range was known and a low pass filter
consisting of Gaussian weights. This improved the echograms enough to enable
the school identification algorithm to be run. We did not correct for bubbles
under the boat which cause the echosounder ”miss” a ping or two, but this was
a minor problem on the evening of March 14th since the wind had abated by
then.

The relation between light and school depth was modelled using linear regres-
sions. We modelled the light intensity at the centre of the ith school on day j,
Yij as a linear regression of Xij , the depth of the ith school on day j. It may
seem as if it should the other way around, that the depth should be a function
of light, but our formulation allows us to have a zero slope if the schools follow
the isolumes (lines of constant light intensity), which would not be the case in
the alternative formulation.

In the modelling of the dispersion of fish in schools we assumed that the number
of fish in a school is Poisson-distributed with mean N̄ , that the fish are all located
in a single point and the dispersion is in the horizontal plane. At time 0 the light
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levels go below a critical level and the fish in a school disperse by an unbiased
random walk. This means that the density of fish ρ(x, y, t) can be described by
a diffusion equation:

∂ρ(x, y, t)

∂t
=

σ2

2
∇2ρ(x, y, t),

where σ2

2 is the diffusivity. We evaluate the consequences of two different spatial
arrangements of schools; either the schools are arranged on a regular square
lattice with side length L or the schools themselves are Poisson distributed. In
the former case the density can be expressed by its Fourier expansion:

ρ(x, y, t) =
N̄

L2

∞∑

j=−∞

∞∑

k=−∞
e−

1
2σ2( 2π

L )
2
(k2+l2)tei2π( kx+ly

L ).

Here we compare two squares of size L
2 ×L

2 , one centred over a school and another
centred over the point at the maximum distance from neighbouring schools (see
Figure 3.5). Using the first Fourier modes, since these are dampened with the
slowest rate, and a normal approximation we get an approximate time scale. For
the randomly placed school centres we assume that the initial rate of increase of
entropy is constant which gives a ”mean” time until the schools have dispersed.
For the analysis of the regular grid one has to specify a parameter α which is
defined by the probability that there are more fish in the distant square than in
the centred square is 1

2 − α. Here we get a time-scale that also depends on the

number of fish in the school: T = − L2

2π2σ2 ln
(

π

4
√

2N̄
q
(

1
2 + α

))
where q(1

2 +α) is

the (1
2 + α)-quantile of the standard Normal distribution. The time scale does

not depend on the school size when schools are Poisson distributed at t = 0,

T = L2

2πeσ2 but the order of the time-scale of the dispersion is the same, i.e.

proportional to L2

σ2 times a constant which typically is less than one.

3.3 Results

The model for the relation of light-levels and schools was significantly better
at describing the data than Yij = αi—that the logarithm of the light level at
school centres were independent of depth. This means that the matching to
the equal light intensities was not perfect. The data could be described by a
model Yij = αi + βXij + εij where Yij is the log-light intensity at the centre
of the jth school at the ith day, Xij is the depth at which the jth school
was found and εij is an error term which has a normal distribution with zero
mean. The estimate of the slope is β = −0.0486 (log-light per meter). The
intercepts were α1 = −2.51, α2 = −3.07 and α3 = −2.28 but these are of minor
importance since they indicate the deviation of the actual light levels from that
of the model by Janiczek and De Young (1987). The model explained 38% of
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Figure 3.5: The model where schools (red) are located on a regular grid with
inter-node distance L. The densities in the square centred at (L, L) (blue) is
compared to the square centred at (3

2L, 3
2L) (green) in the derivation of the time

to random dispersal.



3.4 Discussion 33

the variation, which is low but not surprisingly low considering the frequently
reported variability of schooling behaviour.

Based on data from EchoView we estimated the number of fish per school and
the distance between schools. The estimate of numbers per school was obtained
from the assumption that schools are shaped as vertical cylinders (MacLennan
and Simmonds, 1992). We also assumed that the fish swim one body length per
second which is a common cruising speed among fish (Niwa, 1994; Huse and Ona,
1996) and that their approximate mean length was 10 cm. This gave dispersion
times that are in the range of 8 and 80 minutes, and the visual estimation of
the transition time is ca 30 minutes which is within this range.

3.4 Discussion

There may be a slower transition taking place where the sprat move up to-
ward the surface at a lower speed such that the transition between the phases
take approximately 4 hours (see Orlowski, 2001, based on Sv patterns per 30
minutes not school detection). It is possible that this phenomenon occurs in
our echograms too since there is a large initial concentration close to the bot-
tom while somewhere round mid-night my impression is that the mode of the
distribution has moved more toward the surface.

The fact that the slope, β, is negative seems a bit odd but perhaps it comes
naturally from the dissolution process; if schools follow the isolumes but the
ones that are on a higher light-level disperse faster this may have led to the
negative slope. This may also be due to another bias—there are more schools
at low depths and the fact that the density of fish is high at these points could
make the school identification software to identify close aggregations of fish that
are not schools. Nevertheless the slope is very small, in particular in the light
of the large variations seen around the regression line. In this context it is
appropriate to mention that the spawning season of sprat begins at this time in
the Baltic. Sprat spawn at the bottom which may be the reason that there are
so many schools that disperse close to the bottom, thus some aggregations that
were registered as schools may have been spawning fish. In a related study on
herring in the North Sea by Blaxter and Parrish (1965), there were no migration
at dusk in August when herring spawn, but this could also be due to the low
densities of herring observed at this point of the year in that study.

Weston and Andrews (1990) observed dispersion of schools on a horizontal sonar
in UK, but some schools did not disperse. However it is unknown whether this
was due to extreme light conditions, such as clear sky with moon-light or the
physiological status of the fish. In laboratory studies it has been observed that
swimming speed is reduced and nearest neighbour distance increase as light
levels go down, the schools expand, the variation in nearest neighbour distances



34 The schooling behaviour of clupeids in the Baltic at dawn

increases and polarization is lost (Higgs and Fuiman, 1996). Since we do not
observe the individual fish long enough we do not have information on whether
they are polarised nor if the spatial arrangement is random. What is in favour of
the latter hypothesis is that the point pattern on the echograms have a random
appearance although there seems to be a gradual increase in the intensity toward
the bottom. The pattern of points ought to be more regular in an expanded
scenario. Due to the depth bias of the echosounder and uncertainties regarding
the position of an object within a particular depth stratum we made no attempt
to study the point pattern using e.g. Ripley’s K-function (see Diggle, 1983) in
order to see if there were any discrepancies from a Poisson point pattern.

In order to make any general statements concerning the dispersal behaviour of
clupeids in the Baltic it is of course necessary to get much more data from the
whole year and detailed data on the individual level.

3.5 Contributions

In article A we have described some aspects of the dispersion with a statistical
model. The model for the light levels and school depth is to our knowledge the
first although there is a similar graphical model for herring in Blaxter (1985),
but here no dispersion occurs during the vertical migration phase. The figure
in that article refers to an article by Blaxter and Parrish (1965) but neither
data nor the figure is to be found. There is also a reference to Chortnoy who
allegedly have said that herring follow isolumes all day and to Zusser who did
not see this phenomenon. Appenzeller and Leggett (1995) studied the dynamics
of the vertical distribution of rainbow smelt in a Canadian lake. They noted
that the upper 5 percent of the distribution of biomass had a strong link to
light levels of rainbow smelt, whereas the lower 95 percentile had a weak link
and the distribution widened during the transition. However, they did no take
into account if the vertical distribution was composed of schools or not. They
also noted that several studies have shown a link between depth distribution
and isolumes but that the evidence is circumstantial since these studies did
not measure light levels in situ. Iida and Mukai (1995) studied the transition
between schools and dispersed individuals of kokanee, Onchorhynchus nerka in
a caldera lake in Japan using a bottom-mounted echo-sounder. This transition
takes ca 50 minutes, but unfortunately there is no information on school sizes
and school distances; data that would have enabled us to apply our dispersion
model to their situation.

The dispersion model in article A is new and quite simple, it can be used to get
rules of thumb measures of the time-scales. However it should be noted that
we do not present strong evidence on the detailed process since we lack data on
the individuals. It may well be that the fish disperse in a directed way from the
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school during the initial phase and that they actively avoid the neighbourhood
of other fishes during the whole process. It is also possible, although experimen-
tal data supports our assumption, that the schools remain polarized and what
we observed was that the nearest neighbour distances increased dramatically.
However that ought to have given more regular patterns on the echograms.

The smoothing of the echograms from the windy day is also new. This seems
to be a useful thing that should be elaborated, using time-series techniques
and perhaps using ancillary data on bottom topography to smooth the tracks
further. It should also be possible to reconstruct the pings that are missed
using filtering techniques, especially at low speeds when in general there is a
high probability of having repeated echoes from single targets.

3.6 Future work

It would be interesting to have a stationary transducer mounted on the bottom
in the Baltic to get a better description on what actually happens and not
disturbing the fish by the boat and the trawl. This combined with a sonar or
an array of transducers positioned at the bottom would be able to give us the
large picture if one were able to record data from all seasons of the year.

In the near future there will be echosounders that transmit a signal with a wider
frequency distribution; these will collect much more information of the targets
seen. It may well be that species identification can be possible with these broad-
band echo-sounders (Au and Benoit-Bird, 2003), a feature that would greatly
increase the utility of the echogram data. These new echo-sounders will give
rise to interesting statistical problems on how to discriminate between species
and how to cope with the large datasets that will be produced.

In order to answer the question why schools disperse I think that it will be
necessary to account for the internal state of the sprat and the value of the
alternative. This would require that one found schools that did not disperse
and detailed information of the state of the sprat in different schools, within
schools and how their environment changes such as the risk of being eaten by
a cod. This seems to be a difficult and time-consuming problem that perhaps
could be investigated using intensive stomach sampling of the sprat and the
spatial location of these or perhaps in a laboratory. Some experimental work
has been done in this area, e.g. Hensor et al. (2003) showed in laboratory studies
that food-deprived killifish showed a higher propensity to leave a school than
non-deprived.

How schools are formed is a very interesting question, perhaps this could be
modelled as a coagulation process (see e.g. Jackson, 2001). It could also be
important to study the daily cycle of the school sizes if it turns out e.g. that fish
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in larger schools are safer or that fisheries target larger schools. Anderson (1981)
has an approximate steady-state solution to a model of school size distributions,
this model could possibly be used to fit the school sizes observed and to get a
time-dependent solution when the forcing is periodic.

Higgs and Fuiman (1996) mention that the fish eye continues to grow and that it
may develop more rods. Does this mean that larger cod are better at detecting
prey than smaller cod? They show a nice graph that, when log-log-transformed
(see Miyazaki et al., 2000), gives an indication of a scaling relation between eye
size of different species and the light level at which they disperse. In relation
to this is it very interesting to know the position of an attacking cod relative
to a school; do they use the contrast against the surface and attack from below
or do they attack from the side (Janssen, 1981)? The former could be a reason
not to move up before the light levels go down in order to avoid predation.

Thus many issues remain, the most important for population oriented models
would be to be able to statistically describe the spatial dynamics of the schooling
fishes and their predators. A more complex but perhaps even more interesting
project would be to understand why these patterns come about.



Chapter 4

Markovian Arrival Processes
(MAPs) as tools in population

dynamics

’It’s perfectly intelligible,’
the Captain said, in an offended tone,
’to anyone that understand such things.’

Lewis Carroll 1885

Most encounters between an animal and its food has a random component.
This may be due to difficulties in localizing the prey or that prey flee, that
other foragers consumed the prey that the focal animal intended to eat etc. The
number of offspring that an animal produce depends to some extent on foraging
success, thus both consumption of food and production of new consumers will
have random components. This means that even if the mean density of prey
is lower than necessary some predators may have good luck and survive, and
conversely, even if the average conditions are sufficient that there are some
consumers with bad luck who die of starvation or fail to produce offspring.
This kind of stochasticity is called demographic stochasticity, and it is generally
assumed that it is negligible (e.g. Caswell, 2001). However, Chesson (1978)
showed that this is generally not true in spatially subdivided habitats.
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The Poisson process has been used as a model for random encounter since at least
1918 (Paloheimo, 1971) and it is still the most common model for such events
since it is mathematically tractable. The Markovian arrival process (MAP)
framework extends this tractability to more general point processes, where it
is possible to have general inter-event times and dependence between events.
This is useful in modelling more realistic situations such as prey encounter
in heterogenous environments or when the searching activity of the predator
depends on its internal state such as degree of satiation. The MAP can model
any increasing sequence, which could represent prey eaten or the number of
produced offspring. The structure of MAPs enables us to find the mean and the
variance of such processes quite easily which makes MAPs interesting as a tool
in ecology.

The stochastic property of many subprocesses makes it natural to use the MAP
for the derivation of functional and numerical responses, and to use the relevant
time-scales to see whether the mean rate is a good descriptor of the process
or not. In this chapter I give a brief introduction to the general framework of
MAPs, then I discuss functional and numerical responses and finally I present
some possible parameterisations of well-known functional responses.

4.1 An introduction to MAPs via the Poisson
process

The time-homogenous Poisson process is a basic stochastic process in continu-
ous time. It is a counting process which has the important property that the
expected number of events is directly proportional to the length of any interval.
That is, take an interval or a set of intervals I then the expected number of events
in this set is λ|I| where |I| is the length, or more precisely the Lebesgue measure,
of the set. The constant of proportionality λ is called the intensity or the rate
of the Poisson process. There is a dual representation of the Poisson process, let
N(t) be the number of events at time t where N(0) = 0 and let Ti be the times
between the arrivals of the events. Then P{N(t) ≤ n} = P{∑n

i=1 Ti > t}. Thus
the N(t) process can be characterised by the Tis—the inter-event times. The
Poisson process have exponentially distributed inter-event times with a mean 1

λ .
The exponential distribution has a memoryless property which means that the
residual waiting time for an event, an increase in N(t), is exponential with the
same parameter λ. The Poisson process is a Markov process, which means that
the evolution of the process is completely characterised by the current state.

The Poisson process starting with 0 counts at time 0 can be described by a
continuous time Markov Chain with states {0, 1, 2, . . .} representing the number
of events that has occurred and where the intial state is 0. The generator has
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Figure 4.1: The Poisson process as a directed graph. In the upper directed
graph the counting states are shown explicitly, in the lower they are implicit.

the following structure:

G =




−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

...
...

...
. . .


 , (4.1)

with −λ on the diagonal and λ on the supradiagonal. The Poisson process is skip
free; it can only increase its state by one. The generator can be interpreted as
the rate of change of the process. If we are in state j then with probability λ∆t+
o(∆t) we make a jump to state j +1 in time ∆t (small) and with probability 1−
λ∆t+o(∆t) we stay in j. The o(∆t) denotes an arbitrary function f(∆t) which

has the property that f(∆t)
∆t → 0 when ∆t → 0. For the Poisson process these

transition probabilities are independent of both time and state. The Poisson
process can be visualised as a directed graph (see Figure 4.1), these will become
more important when more complicated models are introduced.

Given an initial probability distribution π(0) the time evolution, π(t), of an
continous-time Markov chain is governed by the Chapman–Kolmogorov forward
equations π̇(t) = π(t)G, the solution is π(t) = π(0)eGt where eGt is the matrix
exponential. The matrix exponential for this generator is quite simple, it is

eGt =




e−λt λte−λt (λt)2

2! e−λt (λt)3

3! e−λt · · ·
0 e−λt λte−λt (λt)2

2! e−λt · · ·
0 0 e−λt λte−λt · · ·
...

...
...

...
. . .




.

The matrix eGt is called the transition matrix, often denoted P(t), of the process.
The jth element in the ith row (P(t))ij is the probability of being in state j
at time t if the process starts in i at time 0. Again, note the invariance of the
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chain: starting at 0 and obtaining i has the same probability as starting at j
and obtaining i + j and that the time in each state (P(t))ii is exponentially
distributed e−λt.

4.1.1 PH-distributions

An extension of the exponential distribution to more general distributions are
the Phase-type distributions or PH-distributions (see Latouche and Ramaswami,
1999). The PH-distributions are based on the method of stages, a technique
introduced by A. K. Erlang in the early 20th century that was generalised by
Marcel Neuts (Neuts, 1975).

A PH-distribution is the probability distribution of the time to be absorbed in
a transient finite continuous or discrete time Markov Chain. The exponential
distribution is of course a member of this class. Thus if we have a process with
states {0, 1} then the generator is

G =

[
0 0
λ −λ

]
.

If the process starts in state 1, i.e. with the initial vector [0 1], then the time
until absorption is P{Xt = 0|X0 = 1} = 1 − e−λt. More generally a continuous
time PH-distribution has a generator of the form

G =

[
0 0
t T

]
,

where T is an m × m matrix which is transient, i.e. the process is certain to
leave the set of states in T and eventually end up in state 0. Furthermore the
PH-distribution has an initial probability distribution α, which is represented
by an m dimensional row vector with the property that

∑m
i=1 αi = αe = 1,

where e is a m-column vector with ones. Strictly speaking there could be an
α0 i.e. an initial probability of being absorbed, but in the following it will be
assumed that α0 = 0. The probability that the chain has been absorbed before

time x is 1 − αeT·xe. The corresponding probability density is αeT·xt. The
pair (α,T) characterise a PH-distribution completely since t can be obtained
from the relation t = −Te. The characterisation is unfortunately not unique,
e.g. take α = [p 1 − p], where p ∈ (0, 1) and

G =




0 0 0
λ −λ 0
λ 0 −λ


 ,

which is another representation of the exponential distribution.
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An important question in conservation biology is the expected time to extinc-
tion. If one assumes that the process can be described by some, birth-death
process, which could be quite elaborate e.g. with several types of individuals
and catastrophic extinctions etc. Ecologists (should) know how to calculate
the mean time until extinction in a population (e.g. Mangel and Tier, 1994).
Diffusion approximations are often used but Nisbet and Gurney (1982) advice
against using them. In fact, Doering et al. (2005) have shown that the diffusion
approximation does not give the right time to extinction. An interesting feature
in this context, is that PH-distributions are well-suited for the calculation of
the extinction probabilities. Renshaw (1991) writes that there are few success
stories in terms of exact results, and then continues with simulations to derive
the numerical results for situations where there are no exact results. The PH-
distributions offers a viable alternative to simulations, in particular with the use
of uniformization (see Section 4.1.3.2).

4.1.2 PH-renewal processes

PH-distributions can also be used to construct a stochastic process where the
inter-event times are identically and independently distributed; a PH-renewal
process. This stochastic process starts in phase i with probability αi and im-
mediately after absorption from state j which happens with rate tj the process
restarts in state k with probability αk etc. The interesting thing about PH-
renewal processes is that many properties of the can be obtained using matrix
algebra instead of integral equations which is the standard tool for renewal pro-
cesses. This is similar to the relation of matrix population models and the
integral formulation of stage-structured populations (cf. Caswell, 1989). The
generator of a PH-renewal process has the following structure




T t ·α 0 0 · · ·
0 T t ·α 0 · · ·
0 0 T t ·α · · ·
...

...
...

...
. . .


 .

For the process to be well defined it is necessary that every state that is occupied
immedeately before absorption (∀j : tj 6= 0) can be reached from any initial state
(∀i : αi 6= 0), which is guaranteed if T + t ·α is irreducible.

The basic idea of a PH-renewal is quite simple. Suppose that we have a re-
alisation of a Poisson process with rate 2, if we remove every other arrival we
get a process that will have mean rate 1, but it will not be a Poisson process,
since the probability of having an arrival in ∆t given that we had one at t is ap-
proximately O(∆t2) 6= O(∆t), this process will be more regular than a Poisson
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Figure 4.2: The Poisson process where only every second arrival is counted;
upper graph shows explicit counting process and the lower graph the state rep-
resentation.

process with rate 1. Here

T =

[
−2 2
0 −2

]
and t ·α =

[
0 0
2 0

]
.

A more variable process can be obtained by having two Poisson processes one
with rate 1

2 and the other with rate 2, suppose that we choose the the inter-
event time from the fast process with probability 1

3 then we still have a mean
inter-event time of 1 but the variability is higher than for an exponential. In
this case

T =

[
− 1

2 0
0 −2

]
and t ·α =

[
1
3

1
6

4
3

2
3

]
.

An alternative view of this process it that after an event an exponential time with
rate 2 is chosen with probability 1/3 and with probability 2/3 an exponential
time with rate 1

2 is chosen. The process is illustrated in Figure 4.3.

To illustrate how different PH-renewals can be let us have 4 states, where it is
only allowed to have transition rates of 1 per time unit to any other state. Then
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Figure 4.3: The random mixture of two Poisson processes, one with rate 2, the
other with rate 1

2 represented as directed graphs.

a PH-renewal process could have

D0 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1


 and D1 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




This is an Erlang(4) process which is the most regular MAP possible with 4
states. The distribution of interarrival times can be seen in Figure 4.4. As a
contrast take the 4 state MMPP with matrices:

D0 =




−2 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


 and D1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




This will generate a process that is much more variable than a Poisson process;
the interarrival distribution is shown in Figure 4.4, for reference an exponential
distribution with the same mean as the two distributions above in included.
Note that the D matrix is the same for both the MMPP and the PH-renewal
process but the behaviour is quite different.
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Figure 4.4: The Erlang(4)-process is green and the MMPP is blue; while an
exponential variable with same mean is red. Note that the Erlang waiting time
is much more regular and has less variance than the exponential and that the
MMPP has a wider tail than the exponential distribution.

4.1.3 Markovian arrival processes

The Markovian arrival process (MAP) is another construction by Marcel Neuts
(1979) although similar constructions had appeared earlier. The MAP gener-
alise the PH-renewal process by removing the condition that the process should
restart after an arrival, with probabilites specified by α and t. One incentive
for devising the MAP was that it could model phenomena that are bursty; such
burstiness could have been modelled with time-dependent Poisson processes,
but these are more difficult to work with (Neuts, pers. comm.). The MAP is de-
scribed by the generator of a finite state continuous-time Markov Chain D where
some transitions are “marked”, these are collected in a matrix D1, the transi-
tions that do not generate marks are left in the matrix D0, and D = D0 + D1.
The jth element in the ith row (D1)ij denotes the transition rate from state i
to state j that produce a mark or event. Suppose that the number of states is
m then D, D0 and D1 are m × m matrices.

A MAP is a bivariate Markov process where there is a phase Xt and the number
of events Nt. A state of a MAP (Xt = i, Nt = n) can be represented by the
univariate Markov process (Yt = i + m · n), where m is the dimension of the
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phase process. Thus, the generator of a MAP is the generator of Yt




D0 D1 0 0 · · ·
0 D0 D1 0 · · ·
0 0 D0 D1 · · ·
...

...
...

...
. . .


 .

This generalisation allows for the construction of more general point processes
than PH-renewals, e.g. there can be dependence between arrivals. Some special
cases are the PH-renewal processes and the Markov modulated Poisson processes
(MMPPs). The latter are characterised by the fact that D1 has non-zero entries
on the diagonal only. The MMPPs are often used to produce sequences that are
“bursty”. This is a property that has been used in telecommunications (Blondia,
1992; Heffes and Lucantoni, 1986), atomic physics (Burzykowski et al., 2003)
and in the representation of heterogeneous encounter in marine larval ecology
(Beyer and Nielsen, 1996).

The transitions between states or phases is described by a matrix D = D0 +D1.
Here the information contained in the counting process is ignored, and if D is
irreducible, which we assume, then there exists a unique stationary distribution.
The chain will converge to this stationary distribution from all initial conditions
and this stationary distribution can be found as the row vector θ that solves
θD = 0 and θe = 1. Note that e, the column vector with a one in every row, is
a right-eigenvector to D, i.e. De = 0.

Given that the process starts in this time-stationary distribution then the mean
number of events will be E{Nt} = θD1et = λ∗t, thus the long term rate is
λ∗. This is of primary interest when functional and numerical responses are
produced and analysed. By dividing the entries of D0 and D1 with λ∗ the time
is scaled such that the rate of encounters is 1, which can be useful in some
situations.

The long-time probability of being in a certain state immediately before an
event, the event-stationary probability, is found from θD1

θD1e . The event-stationary
distribution can be used to derive the event-stationary mean rate of arrivals or
Palm density, which is the renewal density if the MAP is a PH-renewal (see e.g.
Asmussen, 2000). The event-stationary probability can be useful in complex
ecological models of individual encounter to find out what state the predator
will be most likely to be in when it is attacking.

4.1.3.1 Moments of MAPs

If we define a matrix function

M(t)ij = E{Nt1{Xt=j}|X0 = i, N0 = 0},
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where M(t)ij describes the expected number of counts at time t if the process
is in state j at this time and if it started in state i with no counts at time 0.
M(t) can be described by an ODE: Ṁ = MD + PD1 with initial condition
M(0) = 0 and where Ṗ = PD, P (0) = I is the time evolution of the probability
distribution of the states of the chain D. This matrix function is useful for
evaluating how different initial conditions will alter the accumulation of food.
It is clear that starting the foraging season in a very rich patch will give more
food initially than what the predator will get if it starts in a very bad patch.

The matrices of higher moments can be found as follows, define a matrix

Mn(t)ij = E{Nn
t 1{Xt=j}|X0 = i, N0 = 0}.

Then solve the ODE

Ṁn = MnD +

n−1∑

i=0

(
n

i

)
M iD1.

These matrices are useful for calculating the variance, and higher order central
moments if these are of interest. The asymptotic variance is an affine function
of t, (see Narayana and Neuts, 1992). Thus it is possible to speak about an
asymptotic rate of the variance. For renewals this rate can be found from the
quotient between the variance of the time between renewals and the mean of

the time cubed
σ2

t

µ3 (Cox, 1962) which for PH-renewals is

2α(−T)−2e− (α(−T)−1e)2

(α(−T)−1e)3
.

4.1.3.2 Uniformization

A tool that is very practical in the evaluation of transition and moment matrices
is the uniformization technique (Jensen, 1953). The basic idea is that in order
to calculate the transition probabilities P = eDt one has to evaluate a matrix

exponential eDt =
∑∞

i=0
(Dt)i

i! . There are many ways to calculate this and most
of them are numerically unstable (Moler and Van Loan, 2003). However, if the
original generator is replaced with a jump chain (in discrete time) based on the
fastest phase, i.e. find τ ≤ minDii and set K = 1

τ D + I then the continuous
Markov chain is equivalent to a Poisson process with rate τ that drives the jump
chain. This equivalence can be seen from the fact that the state in the jump
chain will filter which jump that is counted as a transition in the continuous
time Markov chain. The matrix exponential can be calculated as:

exp(Dt) =

∞∑

i=0

Ki

i!
e−τt.
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This has the advantage of only adding positive numbers, which greatly reduces
the accumulation of errors. It is also possible to use the Poisson distribution
to control errors. The uniformization method has been extended to the first
and second order factorial moments by Narayana and Neuts (1992) and to non-
central moments of any order in Article B.

The calculation of the distribution of the counts (such as number of prey items
eaten) at a certain time T given that the initial number is 0 and the initial
distribution is γ can be done as follows: It is good to know approximately how
many counts there will be λ∗T + 2

√
λ∗T will often do as a first guess. Let n be

the smallest integer larger than this number, then create an (n·m+1)×(n·m+1)
matrix

Q =




D0 D1 0 · · · 0 0
0 D0 D1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · D0 D1 · e
0 0 0 0 0 0




.

Multiplying the n ·m + 1-row vector [γ 0 · · · 0 0] (where γ, the initial distribu-
tion, is an m row vector) from the left on eQT will give the distribution. Note
that this is a PH-distribution, which is simple to evaluate using uniformization.
The additive property in the Markovian arrival process makes it easy to gener-
alise this to cases when there is an initial distribution of preys eaten, since the
prey distribution of a predator which has 1 prey initially, where the probability
of being in the states is γ is the above distribution shifted one step to the right
i.e. the initial vector is [0 γ · · · 0 0]. The uniformization technique also has the
advantage that it is possible to use recursion formulas such as eQT = eQ(T−b)eQb

where 0 ≤ b ≤ T .

4.1.3.3 Different types of MAPs

There are a number of different types of MAPs, all of which exist both in con-
tinuous time versions and as discrete time versions. A transient MAP (Latouche
et al., 2003) is a MAP where there is a possibility that the process terminates,
which in biological models could represent that the animal dies or that it enters
some specific state such as the first adult stage. This property may be important
in some models, for instance the mortality rates among fish larvae may be very
high, with survival rates of the order of one percent. An interesting measure
in this context is the mean ingestion rate of the survivors. This can be found
using results in Article B and it is only when the mortality rates are equal in all
states that the conditional ingestion rate will be the same as the unconditional
(see paper E). This has important consequences for larval ecology, inspecting
the survivors may lead to a bias of the ingested number of food items and it
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may just happen that the survivors were the ones that had the good fortune to
be out of the dangerous zones for most of the time.

Another type is the Batch MAP (Lucantoni, 1991), where it is possible that
several items arrives simultaneously. This is probably most easily understood
from the generator of a continuous time BMAP,




D0 D1 D2 D3 D4 · · ·
0 D0 D1 D2 D3 · · ·
0 0 D0 D1 D2 · · ·
...

...
...

...
...

. . .


 ,

where Di represents the rate arrival of a group of i items. The BMAP can be
useful in settings where one has a prey distribution that one wishes to fit and
to see the consequences of the the functional response. Since the BMAPs are
weakly dense in the class of real-valued point processes (Asmussen and Koole,
1993) this is a very general framework.

A third type of MAPs is the periodic MAP. This has not been studied much,
an exception is Breuer (2001) who provided ergodicity conditions and asymp-
totic distributions for the periodic BMAP(t)/PH/c-queue, and Paper E. Time-
dependent queues occur naturally both in telecommunications and in ecological
applications but they are much more difficult to analyse, and in general one has
to do numerical explorations. The periodic MAP have a property which makes
it possible to gain some general insight if only the behaviour of the MAP is
integrated over a period for any initial state. The same phenomenon applies
to the higher order moments. This is due to the Floquet-Lyapunov theory (see
e.g. Lukes, 1982) which states that the fundamental solution to Ṗ = PG(t)
where G(t) is periodic (G(t + T ) = G(t) ∀t) can be written as an exponential
matrix times a periodic matrix, i.e. P (t) = eRt · Θ(t), where Θ(t) is periodic
(Θ(t + T ) = Θ(t)). However, the result of Floquet and Lyapunov is not con-
structive; there is no general way of finding R and Θ(t) except from numerical
approximation. If the fundamental solution is known at T , then the transition
probabilities can be known at nT where n ∈ N. If one knows transition proba-
bilities of the MAP during the first period, then the phase of the periodic MAP
is known at all times. The same results apply for the moments (see paper E).
This suggests that when there is a periodicity on a fast time-scale then the dy-
namics on the slower time-scale may use the mean rates and variance of rates
per period as input, which may be convenient.

A fourth type is the Marked MAP where there are several types of BMAPs that
are governed by the same underlying chain (He and Neuts, 1998). These could
be used to model different prey types with different energy contents or different
types of offspring.
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4.2 Functional responses

A typical predator–prey population model has the form

L · F (t) = r(F (t))F (t) − f(F (t), C(t))C(t)

L · C(t) = g(F (t), C(t))C(t) − d(C(t))C(t),

where L either is a differential operator d
dt or a shift operator LF (t) = F (t+1).

The prey species F increase at a rate r(F ) when predators C are absent. Preda-
tors consume prey at a rate f(F, C) per predator, this is called the functional
response. In the absence of prey the predators die at a rate d(C) and when prey
are present they produce new predators at a per capita rate g(F, C). The latter
is called the numerical response and in many situations it is assumed that there
is a direct link between the prey consumption and predator production, such
that the numerical response is ǫf(F, C) where ǫ is a conversion efficiency, where
ǫ ≪ 1 if the units for F and C are the same.

Functional responses exist in many models of population dynamics, an impor-
tant exception is the Leslie matrix model. Functional responses are based on a
separation of time-scales, the consumption of prey is assumed to be a fast pro-
cess whereas production of new predators is a slow process. Moreover there is a
central limit type of assumption, that the number of prey items consumed are
so large that the variance in mean is negligible. This is of course not necessarily
the truth, since the consumption process may happen on a similar time-scale
as the reproduction such as in parasite-host models and there may be strong
non-linearities which make the approximation harder to justify. An important
problem is that it is uncertain whether the functional form is right, since hetero-
geneites and behaviour may change the form. This important since models with
different functional responses can have dramatic differences, which can change
conclusions about e.g. harvesting rates, (see Yodzis, 1994).

Here I will present some simple functional responses. Some other examples
which are modelled with Markovian queues but are simpler to analyse using
MAPs can be found in Sjöberg (1980) and Curry and DeMichele (1977).

4.2.1 The Holling functional responses

There are three “fundamental” functional responses due to Holling (1959), these
are called the Holling type I–III functional responses. The Holling type I is a
linear response, where ingestion rate is directly proportional to prey density.
This is thought to be applicable mostly to filtering organisms and sometimes
it is equipped with maximum ingestion rate for more realism. Sjöberg (1980)
have made a model of such a saturating Holling I functional response based on
a Markovian queue, where the organism has a stomach that saturates at higher
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densities of prey. This saturating type I response can easily be recast into the
MAP framework, but I will not show it here.

The basic idea of the Holling type II functional response is that the predators
has to divide its time between searching for prey and handling a caught item.
The handling time is the time spent per item before it can resume prey search
again. It is often assumed that the encounter rate with prey λ is proportional
to the prey density λ = VsF where Vs is the search volume. When a predator
encounters a prey item it will be blocked from further encounters for a, pos-
sibly random time, Th, the handling time. This gives a mean ingestion rate
f(F ) = VsF

1+VsFth
, where th is the mean handling time per prey item. The name

handling time is a bit unfourtunate, since it can refer to the physical handling
of a prey item, such as removing shell or other inedible parts, or digestion since
the predator will not be able to eat more prey when the stomach is full. These
two different processes may constrain the behaviour at different food densities,
e.g. it is possible that the physical handling that is time-limiting at low densities
because the predator is never satiatied, but at high densities the predator will
be satiated and it is the properties of the stomachs that are important. A way
out of this problem is to model the stomach explicitly, see (Jeschke et al., 2002)
and section 4.3 below.

A MAP formulation of the Holling II functional response, with exponential
search and handling times, described by rates λ and α = 1

th
respectively, is as

follows:

D0 =

[
−λ 0
α −α

]
and D1 =

[
0 λ
0 0

]
.

The stationary ingestion rate is λ∗ = θD1e = αλ
α+λ . Inserting λ = VsF one

gets a Holling type II response: I = VsFth

1+VsFth which is a hyperbolic curve (see
Figure 4.5). Here we have assumed that the handling time is exponential with
rate α = 1

th
where th is the mean handling time. It is of course doubtful whether

the actual handling time is exponential or not, but it turns out that the ingestion
rate is not sensitive to this assumption. However the variance of this process
is sensitive to the distribution of the handling time (see Figure 4.5). A more
regular handling time can be created by adding a phase to the handling time.

D0 =




−λ 0 0
0 −2α 2α
2α 0 2α



 and D1 =




0 λ 0
0 0 0
0 0 0



 .

This is an Erlang(2) distributed handling time, the mean is the same 1
α , but the

variance is 1
2α2 . Increasing the phases to n where each has mean residence time

1
nα gives a variance of 1

nα2 . When n goes to infinity the variance will go to zero
and in the limit the handling time is deterministic.

The Holling type III functional response is thought to be a consequence of active
switching between prey types (Oaten and Murdoch, 1977). The predator does
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Figure 4.5: The mean (blue curve) and the variance for a sequence of Holling
II models where the handling time is Erlang(n) distributed, here with n =
1, 2, 4, . . . , 128, and the variance from a model with deterministic handling time.
If n, the number of phases in the Erlang distribution, n → ∞ the variance will
be the same as with deterministic handling time.

not hunt actively for a the focal prey type when it is scarce, but when densities
increase the predator begins to search actively for it. This gives rise to a sigmoid
shape of the functional response.

Another way that a general type III response may occur is by observing that
the encounter rate λ may not be directly proportional to the prey density. If the
encounter rate is proportional to the power of the prey density λ = VsN

β where
β > 1 a type III functional response will follow (Getty and Pulliam, 1991)

4.2.2 The Michaelis-Menten derivation of functional re-
sponses

Michaelis and Menten (1913) studied the enzymatic degradation of sucrose.
Here a small amount of the enzyme, β-fructofuranosidase (known as invertase
at that time) transforms sucrose to glucose and fructose. In these reactions one
has an enzyme with concentration E a substrate S, these form a complex C
which dissociates either to E and S or into the product P and the free enzyme
E.

E + S
k1

⇋

k−1

C
k2

→ P + E
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Using the law of mass action these correspond to the following system of ODEs:

Ė = −k1ES + (k−1 + k2)C

Ṡ = −k1ES + k−1C

Ċ = k1ES − (k−1 + k2)C

Ṗ = k2C.

The initial conditions are that E(0) = E0, S(0) = S0, C(0) = P (0) = 0. The
enzyme only facilitates the reaction, this means that E(t) + C(t) = E0. The
equations can consequently be rewritten as:

Ṡ = −k1(E0 − C)S + k−1C

Ċ = k1(E0 − C)S − (k−1 + k2)C

Ṗ = k2C

Segel and Slemrod (1989) show that if the concentration of E0 is small in com-
parison to S then these equations can be solved approximately using singular
perturbations (see also Murray, 1993, for more details). The outer solution
(which was found by Michaelis and Menten) assumes that the concentration of C
is in a quasi-stationary equilibrium i.e. Ċ ≈ 0. Solving for C gives C∗ = E0S

Km+S ,

where Km = k−1+k2

k1
(Km is called the Michaelis-Menten constant, but this

form is actually due to Briggs and Haldane (1925)). Adding the equation for
Ċ to S give that k2C

∗ is the rate of consumption of S when the concentra-
tion of S is much larger than E0. This is essentially the same as the Holling
derivation, where prey concentrations are assumed to be constant. Segel and
Slemrod (1989) used scaling and comparisons between the outer and the inner
approximation to derive conditions for when this approximation is valid. Their
criterion is that E0

S+Km
≪ 1.

This derivation differs from Holling’s since it works with population entities,
but the result is essentially the same. The analogy with predator-prey systems
where the predators are assumed to reproduce at a much slower time-scale, thus
acting as enzymes consuming substrate is evident.

Borghans et al. (1996) extended the results of Segel and Slemrod (1989) to
situations where the initial concentration of E is not small in comparison to
S. Here they introduce a new variable S̄ = S(t) + C(t) and extend the quasi-
stationary approximation to a wider range of situations. Borghans et al. (1996)
use this technique to study a predator-prey system. Here they study the reaction

X + Y
k1

⇋

k−1

C
k2

→ (1 + b)Y

where X is the concentration of prey and Y the concentration of predators.
They change variables by introducing Ȳ ≡ C + Y and X̄ ≡ X + C and find the
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quasi-stationary equation for the complex C to be

0 =
dC

dt
= k1

(
(Ȳ − C)(X̄ − C) − Km

)

Then, they approximate this using a two point Padé approximation with C∗ =
X̄Ȳ

X̄+Ȳ +Km
, an approximation that is not overwhelmingly impressive (see Fig-

ure 4.9). This is a (special) Beddington-de Angelis functional response; through
the introduction of an intermediate reaction step Huisman and de Boer (1997)
were able to extend the result above to the general Beddington-de Angelis re-
sponse. They used the reaction

E + S
k1

⇋

k−1

C
k2

→ H
k3

→ (1 + c)P

An interesting feature here is that the predator dynamics are assumed to take
place on a time-scale that is faster than the population dynamics of prey. There
are of course numerous situations where this can be true, but often one would
be more interested in situations where the prey dynamics are faster than the
predator.

4.2.3 Functional responses in heterogeneous environments

An important question in ecology is how does the ubiquitous heterogeneity
influence vital functions of an animal as, for instance, ingestion.

The Interrupted Poisson process (IPP) is the simplest model for heterogeneous
encounter, i.e. an encounter process with prey that are more variable than the
Poisson process. This has been proposed as a model unit in Beyer and Nielsen
(1996), and has been used by Pitchford and Brindley (2001) and in Article C
to study the consequences of this higher variability. The basic structure of the
IPP is a MAP where the generator looks like:

D0 =

[
−ω01 ω01

ω10 −(ω10 + λ11)

]
and D1 =

[
0 0
0 λ11

]
.

A biological interpretation is that patches are encountered as a Poisson process
with rate ω01 and the residence time in the patch is exponential with mean
ω−1

10 . While in the patch the animal encounters food in a Poisson process with
rate λ11. The IPP is stochastically equivalent to the hyperexponential renewal
process (Kuczura, 1973), the latter has been used as a model for heterogeneous
functional responses by Rothschild (1991) and Ruxton and Gurney (1994).

In Article C these models are analysed using three different scenarios, with
exponential handling time for simplicity. It is also assumed that the mean
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Figure 4.6: The situation when the predator is certain to start foraging in a
patch after handling prey.

time between encounters in the heterogenous environment and the homogenous
environment is the same if only the search phase is considered. In the first the
predator is always able to start foraging in the patch after handling. This gives
a model with generator

D0 =




−ω01 ω01 0
ω10 −(ω10 + λ) λ
0 0 −α


 and D1 =




0 0 0
0 0 0
0 α 0


 .

This gives the same functional response as in the homogeneous environment i.e.
a Holling II functional response if λ = VsF , since the mean encounter rates are
equal and the predator is certain to resume the search phase in the patch.

Rothschild (1991) supposed that the predator continuously encounters prey, i.e.
the predator encounters prey also when it temporarily handles a prey item but
it cannot catch these extra encounters. The encounter rate with prey is the
same when it handles a prey and when it is searching. The structure of the
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Figure 4.7: The IPP when the forager continues to encounter and leave patches
when handling prey. O refers to out-of-patch, P that the predator is in a patch,
PH that the predator is in a patch handling prey, and OH that the predator is
out of the patch handling prey.

MAP of this model is:

D0 =




−ω01 ω01 0 0
ω10 −(ω10 + λ) 0 λ
0 0 −(ω01 + α) ω01

0 0 ω10 −(ω10 + α)




D1 =




0 0 0 0
0 0 0 0
α 0 0 0
0 α 0 0


 .

The predator in this scenario suffers from the heterogeneity since there is a
chance that it moves out of the patch while handling. This cost cannot not
occur in the homogeneous environment. The directed graph representation of
this scenario is shown in Figure 4.7.

The most important point in the latter model is that the ingestion rate depends
on two parameters e.g. ω01 and ω10 when the third parameter of the encounter
process, λ, is specified by the mean inter-encounter time. The challenge of this
model is to prescribe how ω01 and ω10 change as the prey density changes. There
is no given answer, since it not even certain that these should be functions of F
only. If and only if these are constant is it certain that the functional response
is a strict Holling II functional response, but then the maximum ingestion rate
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Figure 4.8: The directed graph of the switched Poisson process (SPP).

is lower than in the homogenous environment.

If ω01 and ω10 vary with prey density such that the coefficient of variation of the
inter-encounter times in the IPP is fixed then the functional response is similar to
the Holling II, but where the handling time distribution influences the similarity
and the initial slope is less steep. Many other parameterisations are possible,
most of these do not conserve the Holling II shape, not even approximately, as
claimed in Ruxton and Gurney (1994), see Article C.

The IPP is a crude generalisation, but it the simplest stochastic model for het-
erogeneous encounter. More advanced models for the encounter process could,
for instance, specify the encounter rates with prey in habitat i, λi and the transi-
tion rates between these habitats. A simple extension of the IPP is the switched
Poisson process (SPP), which has the property that there are prey encounters
also in the out-of-patch habitat. The generator of the phase and the counting
process are

D0 =

[
−(ω01 + λ00) ω01

ω10 −(ω10 + λ11)

]
and D1 =

[
λ00 0
0 λ11

]
.

The graphical representation of the SPP is shown in Figure 4.8. The SPP is not
a renewal process as it has some dependence between the inter-encounter times.
Both the IPP and the SPP are MMPPs (Markov modulated Poisson processes),
which has the property that the stationary distribution does not change if the
encounter rates are changed. The MMPPs subclass of MAPs has been more
studied than the subclass of MAPs that neither are PH-renewals nor MMPPs.
There are results on parameter estimations particular to this subclass (see e.g.
Rydén, 1996). Unfortunately models based on MMPPs will not be MMPPs
when the model is equipped with one or several states where the encountered
item is handled since the inclusion of handling means that a successful encounter
gives a jump from the encounter state to the handling state, i.e. a non-diagonal
entry in the D1 matrix.
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4.2.4 Predator dependent functional responses

In the simple functional responses above it is assumed that the predators behave
independently of each other and that the concentrations of prey and predators
are approximately constant. This is similar to the dilute gas approximation of
the Lotka-Volterra equations where the predators are so scarce that the likeli-
hood of any interaction between them is neglible. In many circumstances the
predator density is not sufficiently low to warrant this approximation and even
if densities were low enough there can be social interactions which invalidates
this approximation. When there are interactions between predators then the
functional response will be predator dependent. Such functional responses have
empirically been found to be better than pure prey dependent functional re-
sponses (see e.g. Jost and Ellner, 2000; Skalski and Gilliam, 2001). Borghans
et al. (1996) found that a predator dependent functional response emerges nat-
urally from a general quasi-steady-state assumption in a simple predator prey
model where predators interact directly only with prey. The apparent interac-
tion between predators is due to that the number of predators handling prey
depends on both the prey and the predator density.

The Beddington-de Angelis functional response was derived explicitly by Bed-
dington (1975) and propopsed heuristically by DeAngelis et al. (1975). In Bed-
dington’s version predators encounters prey with rate λN and other predators
with rate κP . A prey encounter leads to an handling time th = 1

α and a predator
encounter blocking tb = 1

β .

A possible MAP formulation the Beddington-de Angelis functional response
is: A predator encounters prey with rate proportional to density N and after
encounter it gets it and is able to resume foraging after an exponential handling
time with rate α. There are also direct interactions between predators where the
rate of encounter with other predators is proportional to their density. When a
predator encounters another predator then they form a complex which last for
an exponentially distributed time with mean 1

β . This MAP has

D0 =




−(λN + κ(P − 1)) λN κ(P − 1)

0 −α 0
β 0 −β



 and D1 =




0 0 0
α 0 0
0 0 0



 .

The mean ingestion rate is λ∗ = αβλN
αβ+βλN+ακ(P−1) = λN

1+thλN+tbκ(P−1) . This is

the stochastic analogue of the derivation in Beddington (1975) where the num-
ber prey is decreased by one since the predator cannot interfere with itself. The
assumptions are that there is no interaction between predators that handle prey
and predators that search for prey, and that only pair interactions are formed.
There is an implicit assumption that predators are scarce or that the interac-
tion is weak, due to the asymmetry in the derivation. The rate of encounter
with other predators ought to be proportional to the number of predators that
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are searching, which is approximately κPπ0! This gives a functional response

f(N, P ) = λN

(√
β2(α+λN)2+4κPα2β−β(α+λN)

4κPα

)
.

A formulation close to Borghans et al. (1996) is to work with the matrix




−λNP λNP 0 ··· 0

α −(λ(N−1)(P−1)+α) λ(N−1)(P−1) ··· 0

0 2α −(λ(N−2)(P−2)+2α) ··· 0

...
...

...
...

...
0 0 0 ··· λ(N−m+1)(P−m+1)

0 0 0 ··· −mα




,

where m = min({P, N}). Here one assumes that the N prey and P predators are
(quasi)-constant, and when a predator encounters a prey item it is blocked for an
exponentially distributed time with mean 1

α . Then a continuous approximation
of P and N is used to find the C such that λ(N − C)(P − C) − αC = 0
which amounts to finding the level where the uppward movement is equal to the
downward. This is simpler than finding the mean of the stationary distribution,
but it seems to be a good approximation, see Figure 4.9. Borghans et al. (1996)
then use a two-point Padé approximation at P and N equal to 0 respectively
∞. This gives C ≈ NP

N+P+ α
λ

which gives the Beddington response when C is

multiplied with α, since this is the rate with which C are left per time unit.
Thus f(N, P ) = λN

λ(N+P )th+1 . The Padé approximation used is quite rough as

can be seen in Figure 4.9. Huisman and de Boer (1997) adopts exactly the
same strategy as Borghans et al. (1996) but they include an extra state which
enables them to produce a Padé approximated functional response of the general
Beddington type, f(N, P ) = λN

λNth+λǫPth+1 , where 0 < ǫ < 1.

Another predator dependent functional response is the ratio-dependent func-
tional response. This has caused a lot of debate due to its “unnatural” be-
haviour at the origin (see Abrams and Ginzburg, 2000), it predicts positive
predator growth at very low prey densities if only predator densities are lower,
this gives extra stability of course. Suppose that the focal animal interacts with
P − 1 conspecifics in a contest of prey; it gets it with probability 1/P .

D0 =

[
−λN λN

α(P − 1) −αP

]
D1 =

[
0 0
α 0

]
.

Here the stationary distribution in the states is π = [λP αN ](λP + αN)−1 and
consequently the mean ingestion rate is λ∗ = λαN

αP+λN = λN
P+thλN . This derivation

is strange in a similar way to Beddington’s derivation since there is no symmetry
in the interaction i.e. the focal animal interacts with conspecifics when it has
caught a prey item, but it does not interact with other when they have caught
a prey. A model with symmetry gives a Holling II response. A possible model
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Figure 4.9: lower line (green) traditional Beddington-de Angelis functional re-
sponse, upper (blue) the true Borghans and (red) my approximation. P = 10
and τh = 2. Larger P make the traditional Beddington-de Angelis approxima-
tion even worse.

for this would be that the population hunts as one group, and the caught prey
item is shared in a scramble competition, this is similar assumptions to one
derivation of a ratio-dependent functional response in Cosner et al. (1999).

4.3 Stomach models

The MAP is suitable not only for modelling the external state of an animal but
also the internal or both. Here D would model the transitions between internal
states, where the internal states could be size or stomach contents. Jeschke
et al. (2002) argue that it is necessary to separate the handling time and the
digestion time, since most predators are digestion limited. Even an amoeba
search for food during only 17% of the time (Jeschke et al., 2002). The level
of satiation could be modelled with a Markovian arrival process, where prey
of different sizes increase the state with a suitable amount and in absence of
food the satiation decrease. Another possibility is to link the energy reserves to
growth, where food increases energy reserves, and when energy reserves reach
a critical level then the organism grows to next state. Interesting output could
be the amount of food needed reach the adult state given certain environmental
conditions or the time that it takes, which is a PH-distribution.

An advanced way to include satiation effects into functional responses is to
use an elaboration of stochastic dams. Stochastic dams are stochastic models
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where precipitation arrives instantaneously as a stochastic point process. Each
“rain” has a certain distribution (the amount of rain), which increases the dam
content. The dam empties with a deterministic rate. The elaboration is to
let the deterministic rate depend on the level in the dam (Bekker et al., 2004;
Thygesen et al., 2005) and to allow more general arrival processes than Poisson
(Bekker et al., 2004). Recent advances in Bekker et al. (2004) were used in a
search for analytic formulas for stationary stomach distributions in Paper F.
The stomach emptied with a rate that was proportional to the square-root of
the stomach contents, which is similar to how a barrel with a small hole in the
bottom filled empties (assuming Bernoulli flow). This rate has empirically been
found to be the best fit to stomachs of whiting (Andersen, 1998). The solution
to Poisson distributed prey was relatively simple and for Erlang-2 distributed
food an analytical solution was found which was relatively intractable.

In many applications it may be useful to discretize the stomach content and use
a MAP. A particular example where it is useful is a stomach where the emptying
rate is κ · x2, where x is the stomach content. The problem with this rate is
that the algebraic apparatus is much more difficult due to the fact that the dam
never empties, which results in a singular Volterra equation that is difficult to
solve (Bekker et al., 2004). However for a discretisation it is quite simple to get
the stationary distribution.

The work of Metz and van Batenburg (1985a,b) describes the detailed process
of hunting, which is subdivided into the tasks, encounter, stalking, strike, and
eating. The basis for this work is the detailed observations by Holling (1966)
on a mantid, Hierodula crassa, where it was shown that some of these activities
depend on the level of satiation. In particular the encounter rate could be de-
scribed as a function of satiation, g(S) times the prey density, x, i.e. λ = xg(S),
the eating time and strike success were constant. Metz and van Batenburg
(1985a) derive an integro-differential equation for a system of this kind based
on Markovian dynamics, then they derive various simplifications to it. This
important work has not been the source of much experimental work, which I
believe is due to the difficult formalism, and to some extent the lack of detail in
their exposition. This could easily be modelled as a MAP, where the stomach is
divided into n equal subunits, i.e. we have {S0, S∆s, . . . , Sn∆s = Smax}. There
is no difficulty, using a MAP, in having prey size distributions, which seems to
be somewhat problematic in the model of Metz and van Batenburg (1985a).

Interestingly, Taylor (1976) studies the value of clumping to prey and the evo-
lutionary response to ambush predators using a finite queue where the predator
encounters aggregated prey. He finds that during most conditions clumping is
valuable to prey, when the predator is an ambush predator that only can kill one
item per group. This could be similar to the conditions that a cod encounters
during the day, during dusk and dawn the prey would be dispersing and at night
fully dispersed. Cod stomachs often contain a group of equally sized sprats in
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similar states of digestion, which suggests that a cod can make multiple kills per
group encounter, during some conditions. Together with data on cod stomachs
and on the dispersal strategies of sprat and herring a stomach-based encounter
model could be one important component in devising optimal life strategies of
these species in the Baltic.

4.4 Numerical responses

The numerical response is the per capita production rate of offspring. This
is a first order approximation as is the functional response. It is often used
even if there is no separation of time-scales that justifies the approximation. In
Paper E it is shown that in some cases it may be a good approximation, when
there is plenty of food even if the functional response is varying wildly due to
heterogeneities. However this particular model of a numerical response will vary
much when food becomes scarce. Thus it will be a bad approximation during
those conditions. The numerical response is often assumed to be the functional
response times a small factor ε, the conversion efficiency. It intrigues me that
this assumption is so common, since there are a number of other things that a
predator can do that would decouple the processes, some of these are evident in
humans.

Another thing which can make the numerical response less appropriate is strong
non-linearities. For instance, in Article C we construct a hypothetical scenario
where the the number of recruits to next generation is a step function. This
makes a numerical response unsuitable in a model of this population since the
variability or more precisely the tail of the distribution will influence the out-
come.

The use of functional and numerical responses in situations where there repro-
duction and consumption of prey are on similar time-scales such as in lion-zebras,
epidemiological and parasitological models may be a rough approximation since
variations in encounter or contact rates will be important. Here I think it is
important to include stochasticity in the population models.

4.5 Discussion

The MAP is a very general framework for formulating and analysing functional
and numerical responses. A complication it is that there may be many rates
to specify. These may possibly be fitted if experiments are made using the
methods in Breuer (2002a) or Nielsen and Beyer (2006).An important aspect is
that it may be possible to equip animals with tags that record feeding events
(e.g. Block et al., 2002). This information together with spatial information of
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local prey densities may substantially increase our knowledge on how functional
responses look outside the laboratory.

The MAP may also indicate when a time-scale approximation is suitable with
and when it is not. The functional response approximation is a “law of large
numbers” approximation, perhaps would it be suitable to explore the conse-
quences of “functional central limit” approximations where the variance is in-
cluded. In a continuous approximation this gives stochastic differential equa-
tions, instead of the ordinary differential equation of e.g. Lotka and Volterra
type. There is a large literature on averaging methods in stochastically per-
turbed dynamical systems e.g. Freidlin and Wentzell (1998), and Berglund and
Gentz (2005), these contain some guidelines on how and when functions that
depend on a stochastic process may be approximated by the same function of
the mean of that process.

To my knowledge, apart from the previously cited work, there is only one article
that use MAPs in biology, although the model is not denoted as a MAP in the
article. It is the work by Recer and Caraco (1989) which contains a possible
explanation for the empirical deviations from the predictions of optimal foraging
theory. Standard optimal foraging theory produce result that state that the
predator should always or never eat a certain prey type. However, this is not how
the actual diets of real animals look like. The model of Recer and Caraco (1989)
is a environment with two types of patches and two types of prey. The predator
maximises the energy uptake, but there is a discrimination cost. For many
parameter values they find that the predator should eat a certain percentage of
the less profitable prey. Thus, MAPs have a potential for providing new views
on ecological processes.

4.6 Contributions

This chapter introduces the Markovian arrival process, a class of point pro-
cesses that has a large potential for ecological applications. In the Article C
which concerns functional responses in a heterogeneous environment it is shown
that previous analysis by Ruxton and Gurney (1994) was wrong; the functional
response is not of the Holling II type when the environment is heterogeneous.
The purpose of this article is also to introduce doubts about the validity of
functional and numerical responses in general and we show that variability may
be very important in these matters.

In Paper E it is shown that periodicities are an important complication, although
it lacks the experimental basis for fitting different functional forms for the rates.
The framework with periodicites can be embedded in a discrete time setting
where everything is analysable (using discrete-time BMAPs) which can be useful
on time-scales much longer than that of the period.
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The article on moments, Article B, contain important tools for calculating any
conditional moment, and a mathematical treatment of the inner workings of
the moments. We provide numerical methods for calculating the moments, an
extension of results in Narayana and Neuts (1992).

4.7 Future work

I would like to experimentally study the simplest possible predator-prey system
and explore the variances in e.g. offspring production. Is it so that at high
densities there is a large variation and at low there is less? It would also be
important for population biology to look at the death process of the predator
population when there is no food, since the commonly assumed exponential
decline obviously does not apply to many systems. It may be that the number of
deaths are well approximated by a Poisson process at high densities, if the total
death process is a superposition of independent processes. This approximation
will be less well suited at low densities, which are important in conservation
biology and perhaps in the population dynamics of subdivided habitats where
local extinctions may be common.

It would also be interesting to obtain data (e.g. by data storage tags or stomachs)
and try to fit more general MAPs as an extension of the estimation procedure
in Nielsen and Beyer (2005) or in Breuer (2002a). Could one determine how
many states there should be in the MAP, as a generalization of Rydén (1997)?

Another interesting question in relation to stomachs and stomach fullness is
what are the optimal prey choice consequences when these are considered? Is it
due to the κ

√
x emptying rate that one sees so many empty stomachs? This rate

favours full stomachs since the emptying rate is faster the more there are in the
stomach. Does this mean that large prey are more profitable, and if the stomach
is almost full why not eat something small? What constraints are active when
a predator is satiated; can they swim as usual or not? To find the meal size
distribution when the stomach size distribution is known using the methods in
paper F could be relevant, in particular in relation to the actual densities of
prey, and contribute to the parameterisation of multi-species models.

Finally, theoretical results on when a given Markovian arrival process is close
to another, or to a Markov additive process, would be needed to parallel the
simplifications in Metz and van Batenburg (1985a). This would probably make
the important models in Metz and van Batenburg (1985a) more accessible to
experimental work.
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Chapter 5

Markov additive processes can
simplify individual-based

models

An ounce of analysis is worth a ton of simulation

Lande et al. (2003) paraphrasing Haldane.
Monte Carlo is an extremely bad method; it should only only be
used when all alternative methods are worse.

Alan D. Sokal (1996a) before “embarking on 9 hours of lectures on
Monte Carlo methods”.1

5.1 Introduction

In this chapter I will present a structure that is useful for the analysis and sim-
plification of some individual-based models (IBMs). The framework is directly

1The same Sokal who wrote Transgressing the Boundaries: Towards a Transformative
Hemeneutics of Quantum Gravity Sokal (1996c) a non-sensical text that was written to
“...combat a currently fashionable postmodernist/poststructuralist/social-constructivist dis-
course – and more generally a penchant for subjectivism – which is, I believe, inimical to the
values and future of the Left.” (Sokal, 1996b).
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applicable to situations were the individuals change their state according to a
Markov process and there is some property of interest, such as energy reserves,
that decrease or increase depending only on what state the individual is in. This
is the essence of Markov additive processes which we will make precise below.
Moreover, many IBMs may be approximated by Markovian rules which makes
this type of models generally interesting to IBM-modellers. The advantage of
this framework is perhaps most evident in marine spatial IBMs where there is
a flow field that advects and disperses the organisms and this flow field is cal-
culated by a circulation model. Modern circulation models solves the partial
differential equations for the flow numerically and in many of these there is a
possibility to include additional partial differential equations to model e.g. the
distribution of a chemical. These equations are of the same type and dimension
as the ones governing the distribution of individuals, or the moments of the
property of interest. Thus, it is relatively easy and cheap to include the latter
type of models in a circulation-based IBM.

During the last decade there have been several such models where the effects
of circulation on larval growth, survival and subsequent recruitment have been
studied (see Heath and Gallego, 1997; Werner et al., 2001, for reviews). The
main motivation for these studies is to improve the understanding of variability
in recruitment and ultimately to make better models and predictions of the
recruitment of fishes. This is a weak spot in many fisheries models since the
number of succesful recruits will determine much of the future development of
the stock and the possibility to forecast would make control easier. Traditionally
the number of recruits have been studied with time-series methods or a stock-
recruitment relationsship, usually with low success.

Individual-based models have increased our understanding of the effects of vari-
ability, but they are difficult to evaluate for large numbers of individuals and
for long times, which may be of interest to the modeller. These issues are easier
to study with Eulerian models which follows the evolution of the population
densities relative to a fixed grid. The most obvious drawback with Eulerian
models is that these generally are partial differential equations (PDEs) or even
partial integro-differential equations (PIDEs). These are very computationally
demanding to solve if the state space is high-dimensional. We show in Article D
that if the models have a Markov additive structure then it is possible to ob-
tain the moments of the Eulerian density by solving PDEs on a smaller state
space. Possible extensions such as IBMs covering full population dynamics will
be discussed at the end of the chapter.

There are many different definitions of individual-based models e.g. DeAngelis
and Mooij (2005) include the physiologically structured models of Metz and
Diekmann (1986) in this class. Here I will refer to individual-based models only
in the sense that they model individuals, or possibly super-individuals, directly
i.e. these are followed explicitly in a simulation model. In this sense, Lagrangian
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or individual-based models are attractive since they take the individual in bi-
ology or, the atom or particle in physics as the starting point of the modelling
process. They define how different types of individuals change their state by
specifying how an individual of each type interacts with its environment. A
large number of particles are followed individually and higher order properties
of the system such as population density, carrying capacity or pressure and tem-
perature in physics emerge from these models; they are not defined from the
beginning. Since these properties in general are determined by the stochastic
evolution of the system is is only in the simplest systems that it is possible to
derive these higher order properties directly. In most other cases it is necessary
to analyse these higher order properties by simulation which will be called the
Lagrangian, or Monte Carlo method. Here it is important to note that each sim-
ulation is only one possible realisation of the system and that these simulations
may yield quite different outcomes.

The conceptual advantages of IBMs are clear since the modelling begins with
something that that the biologist can relate to or have data on. Individual–
based models can also be seen as tool to incorporate more variability than
traditional models (Grimm, 1999). The disadvantages are that most individual–
based models produce a realisation of a stochastic simulation, that they often
are very complex with many parameters, and they are not well suited for long
time-scales or for the study of extreme events. In order to analyse an IBM
it is necessary to perform statistical experiments using several simulations, al-
though this is not as frequently done as it should be. Hinckley et al. (2001) is
an exeption, where the different factors that could affect the successful recruit-
ment to the nursery grounds of walleye pollock in Alaska were studied using
contingency tables. The analysis of Lagrangian simulations may be very time
consuming since there is scant prior knowledge on what mechanisms are im-
portant at the population level and which are not. It is also possible that the
phenomena of interest are extreme events such as the survival of cod larvae.
Such rare events may be very difficult to capture in a simulation, which it prob-
ably why mortality is excluded in most marine IBMs (sic!). An alternative is
to use use super-individuals (Scheffer et al., 1995), here the simulated particle
represent a certain fixed number of individuals initially, say 106 individuals, this
number decreases when the individuals that make up the super-individual die.
When all are dead the super-individual have deceased. This allows mortality
to be included but it creates a strict dependence between the individuals that
constitute the superindividual. The interactions between individuals, perhaps
of different types such as in predator-prey interactions, or of similar type in
aggresive or cannibalistic interactions are typically difficult to model in IBMs
since this concerns the relative distances of individuals. There are computing
techniques such that it is not necessary to keep track of all the n − 1 possible
interacting particles in an n particle simulation. Interestingly, these techniques
have an Eulerian character since they keep track of the inter-particle distances
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within a fixed grid. The difficulties with interacting particles is particularly
large in marine systems due to the range of scales that are important from the
individual interactions at the metre scale to the transport phenomena above the
kilometre scale.

The Eulerian view is dual to the Lagrangian, here the particles are not followed
but instead the densities of particles within a fixed coordinate system are cal-
culated based on the Lagrangian properties. The disadvantages of the Eulerian
view are that the individual trajectory is lost, which may provide information to
the modeller, in general it is difficult to translate directly between the Eulerian
and the Lagrangian reference frame (e.g. Grünbaum (1994) use a linearisation to
convert a Lagrangian model to an Eulerian), and the Eulerian model typically
involves the solution of partial differential equations (PDEs), which may be of
high dimension: a four-dimensional PDE is demanding to solve numerically and
only very special cases can be solved analytically. Each extra dimension in a
PDE increases the number of computations with a multiplicative factor, which
is proportional to the number of discretization points in the new dimension.
Thus if the PDE is a function of t, x, y then a discretization with 1000 grid-cells
in each dimension requires a number of calculations in the order 109 operations,
adding an extra dimension z with 1000 cells will require 1012 operations and
take at least 1000 times longer to solve.

The advantages of an Eulerian model is that it not necessary to perform sta-
tistical experiments since the Eulerian view deals with the outcomes of the
statistical experiments that should be performed in the Lagrangian simulations
i.e. the distributions themselves. When the interaction between individuals may
be translated to an interaction between the densities or mean fields this it is
much simpler to do in an Eulerian model. In some cases the PDE formula-
tion allows for the use of a sophisticated mathematical machinery, e.g. to study
asymptotic or global properties of the solution (see e.g. Stevens, 2000, and refer-
ences therein). The properties of the solution at longer time–scales are easier to
evaluate in Eulerian models than in Lagrangian models. Extreme or rare events
are easier to handle too, such as the successful recruitment of a herring from a
batch of eggs, since such events require very large amounts of particles initially
to describe the rare event with some precision.

Thus, one of the major difficulties of Eulerian models is that they result in PDEs
of high dimension. However, when the temporal evolution of the phenomenon
that we are interested in, e.g. length of fish larvae, can be described by the mo-
ments of the additive component of a Markov additive process substantially less
computing power is needed, since PDEs of low dimension are solved. Another
important fact is that the translation between the Lagrangian to the Eulerian
framework is straightforward when the individuals behave independently of each
other.

It is important to note that the Lagrangean, simulation based, or Monte Carlo
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method is is one way to solve difficult problems, but they are stochastic, which
makes them expensive to use. As a simple example, suppose that we would
like to calculate the probability density of an exponentially distributed random
variable with rate 2 at a particular time, say 0.7. (We assume that we cannot
evaluate 2 exp(−2 · 0.7) directly). We could simulate 10000 times, count the
ones that are in the interval [0.65, 0.75] and then estimate 2 exp(−2 · 0.7) ≈∑

i 1Xi∈[0.65,0.75]

10000·0.1 . From the central limit theorem we will estimate this better and
better as the number of points increases. The Eulerian view, in this context is
to note that the pdf satisfies the ODE y′ = −2y with initial condition y(0) = 2.
Solving this using 10000 steps to arrive at x = 0.7 we find that the approximation
is .... The thing to note is that the Eulerian analysis give us an numerical
approximation if we can’t find the analytical solution, but the error is much
less than that of the Lagrangean. However the Eulerian analysis cannot give
us an impression of how it would look in the field (were we to observe 10000
epxonetially distributed times with rate 2). If we only are interested in the
probability distribution and possibly expectation of functions of the pdf then
the Eulerian alternative is to be preferred (except in high-dimensional problems
where such integrals become more cumbersome than simulating particles).

Perhaps a better alternative is the evaluation of the distribution of counts in
a system such as a MAP at a given time. Either one could simulate the sys-
tem, or one could use the pdf, which will have to be evaluated using e.g. the
uniformization method. Here it is possible to control the error, which is much
more difficult in the simulation (one knows that the error is approximately pro-
portional to n1/2). (Skall vara med?)

The problems in Article D are of this type where a number of parameters de-
fine the characteristics of the time-evolution of particles and their rewards. The
main purpose in this article is to show that the framework is able to represent
the same system that is realized from a Lagrangean simulation with an Eule-
rian analysis. It is less interesting in this respect to evaluate the sensitivity to
paramters values, since for the purposes of comparing the same system these
are exact. However, it is of course conceivable, and indeed usually the case
in practical situations, that these parameters are only known with a certain
amount of imprecision. This will increase the uncertainty in the model. In both
frameworks one would have to integrate out the uncertainty in the parameters,
which leads to a much more difficult problem, involving the determination of
the joint probability distribution of the parameters, and then obtaining the true
probability of being in a set of states as P{Xt ∈ A} =

∫
P{Xt ∈ A|θ}f(θ) dθ,

where f(θ) is the pdf of the parameters.
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5.2 Markov additive processes

A Markov additive process (see e.g. Breuer, 2002b; Asmussen, 2003) (MAdP)
is a bivariate Markov process Y = {Xt, St}t≥0 where the first component Xt

is a Markov process. The second component St is a process with conditionally
independent increments given the state of the first process in the sense that:

E{f(St+s − St)g(Xt+s)|Ft} = E{f(Ss)g(Xs)|Xt, St = 0}.
where Ft is the σ-algebra of the process Y up to time t (this represents the past
history of the process), f and g are arbitrary measurable functions. Thus there
is a translation invariance in the St process. The Xt process will be called the
state process.

Some examples of Markov additive processes are:

• The Markovian arrival process, i.e. a Markov chain in discrete or con-
tinuous time with integer valued rewards. The conditional formulas for
transient process derived in Article B are of extra importance in ecological
settings where mortality is important.

• Markov reward processes. Here the transitions between states is specified
by a Markov chain and a reward, positive or negative, which is accumu-
lated continuously, where the rate of accumulation depend on the state in
the Markov chain. These have been extended to have white noise in the
reward process by Horváth et al. (2004).

• A variation of the Markov reward model where there are rewards also in
transitions in state.

• Another variation of Markov reward models are Markov fluids. Rogers
(1994) showed that it is possible to analyse the behaviour of these using
Wiener-Hopf techniques on the corresponding (normal) Markov reward
process. A Markov fluid can be imagined as a bath tub of finite size which
has a number of pipes which can be open or closed, when open they fill
the tub with rate θ and there is a number of taps which also may be open
or closed. When a tap is open the flow out of it is ρ. Let Zt be the number
of open taps and Yt the number of open pipes then the content of the tub,
ξt obeys the differential equation

dξt

dt
= θYt − ρZt,

when 0 ≤ ξt ≤ a. When the tank is empty it remains empty until there
is some inflow, and when the tub is full it remains full until the outflow
is larger than the inflow. The dynamics of Yt and Zt are governed by
a Markov Chain. These could be interesting to use in models for e.g.
stomachs.
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• Diffusions with continuous rewards, for an example see Article D. In this
article the reward denotes length and the individual particle moves in
two-dimensional turbulent flow.

• Diffusions with diffusive rewards or even more generally with rewards
that are jump-diffusions which are diffusions that have sudden jump-
discontinuities whose size have a certain distribution.

By direct products of state spaces it is possible to combine diffusions with
Markov chains, which makes it possible to have state-dependent models of very
high complexity.

In Article D we show how the Markov additive framework is applied to larvae
that grow and die in a two-dimensional flow. Furthermore, we derive the moment
formulas for this case and how the covariances can be calculated when there are
two continuous rewards.

5.2.1 Marked Poisson and Markov Additive Processes

The beauty of the Markovian framework is most easily explained when both the
state space, X , of the Markov process and the reward space, Σ, are discrete.

Suppose that the initial distribution of individuals is such that there number
of individuals in each state i and each initial reward j is Poisson distributed
with parameter λij for i ∈ X and j ∈ Σ. Then the total number of particles
is also Poisson distributed with parameter Λ =

∑
i,j λij . This is an example of

a marked Poisson process on a discrete state space, and the initial distribution
represents a measure, which can be formed into a probability measure for the
individual particle, i.e. the probability that a randomly picked particle belongs
to state i and has reward j is

λij

Λ . If the particles act independently of each other
and change their state from state i and reward j at time 0 to state k and reward
l at time t with probability p(k, l, t|i, j, 0), the transition probabilities of the
Markov (additive) process, then the number of individuals in state m and reward
n at time t are Poisson distributed with λmn(t) =

∑
i,j λijp(m, n, t|i, j, 0). This

follows from the fact that superposition of independent Poisson processes are still
a Poisson process and that independent random thinning of Poisson processes
are still Poisson (e.g. Grimmett and Stirzaker, 2001, p. 255).

Thus, the Markov (additive) process maps marked Poisson processes to marked
Poisson processes. From the formula above, and the fact that the process is
additive, it follows that e.g. the mean reward in state m at time t is equal to
the weighted sum of the mean initial reward in each state i at time 0 plus a
contribution from the change of state during this time. This latter contribution
is simply the mean number of particles times the mean change in state of a
particle that starts in state i at time 0 and ends up in m at time t times the
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probability that a particle is i initially, summed over all states i. The weights
in the initial mean reward is the transition probability of an i state particle at
time 0 ends up in m at time t. Or equivalently,

E{St1{Xt=j}|X0 = i} = E{S0|X0 = i}p(i, 0|j, t)
+ E{St1{X0=j}|X0 = i, S0 = 0}

where p(i, 0|m, t) is the transition probability from state i at time 0 to state m
at time t and p(i, 0) is the probability of being in state i at time 0. Thus, for
the calculation of the mean it is not necessary to know the distribution of the
marks on the reward space, we only need to know the initial mean, the marginal
density p(i, 0) which specifies the probability of being in state i at time 0 and
the mean change in reward from all initial states! This type of formula for
moments are generic in Markov additive processes, thus the moment formulas
are very similar for different additive processes, and their dimension are equal
to the dimension of the state space X .

These properties are also true on more general state and reward spaces, the
difference is that one has to introduce a slightly more complicated measure for
the marked Poisson process.

An example of the benefits of the Eulerian framework can be seen in a pre-
liminary model to Article D which models the growth of larvae that diffuse in
one dimension. Here 1000 particles were released at the origin, a convergent-
divergent flow accumulate these in areas around ±π

2 (2n + 1), n ∈ Z, and they
grow and die with different rates depending on spatial position. In Figure 5.1
the individual lengths are shown as red dots, the mean of the particle length in
each computational cell is shown as a blue line and the Eulerian mean is shown
as a solid black line.

From the figure it is obvious that the Lagrangian mean is only well-defined in
cells with many particles. The flow profile is such that the determination of the
mean in the areas where there are few particles would require very large amounts
of initial particles. In addition, the Eulerian framework provides information on
the distribution, see Figure 5.2.

A possible application would be to determine the different nursery grounds, and
status (length) of settled larvae during different flow regimes when the spawning
ground is known. This is a typical problem for marine IBMs (see e.g. Ådlandsvik
et al., 2004; Skogen et al., 2003).

5.3 The backward equations

We present the forward equations in Article D, these describe how the prob-
ability distribution of the state space or the moment of the additive property
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Figure 5.1: The solid black line shows the mean calculated using the Eulerian
approach in a one-dimensional divergent flow. The blue lines show the cell
means in of the length of the simulated particles, which are indicated by red
dots. Approximate 95-percent confidence limits are indicated with black dashed
lines. Based on an 1000 particles initially, 377 were alive at this time.
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Figure 5.2: A histogram of the length of all particles in the area 1.1 ≤ x ≤ 2
at time 10. The sample mean is 731.3 and the mean from the Eulerian scheme
is 731.9 (middle red vertical line), the standard deviation is 51.02 resp 51.63.
Based on a simulation with 10122 particles initially, where 1194 are in the region
at the terminal time.
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evolves forward in time, i.e. given the state at time s, what is the probability
that the individual is in the set of states A at some future time t > s or what
is the expected reward at time t in states A given the initial state and mean
reward at time s?

The converse questions are possible where the probability asked for is: “What
is the likelihood that the individual in state x at time t were in some set of
phases A at time s < t?” These evolution of these probabilities are governed by
the backward Kolmogorov equations and the Eulerian framework applies with
some minor changes in the governing equations to these situations too. The
backward equations are interesting to use when one observes an individual and
would like to say something on its past state. Some difficulties will arise since
the hydrodynamical equations are solved in forward time; concurrent solutions
are not possible. However the method in Hermann et al. (2001) where low-pass
filtered time-series of the flow are stored could be used in this context.

In marine larval ecology these could help to infer the possible spawning grounds
of larvae that arrive to nursery areas, which seems to be a common problem
(see e.g. Allain et al., 2003; Marinone et al., 2004). Possibly the information
in otoliths could be used to increase accuracy in the backwards equations. The
otoliths or ear-stones are bones in the ear of fish which aid them to keep their
balance. These stones grow continuously with daily increments, similar to the
rings of trees. The isotopic composition of different metals in the ambient water
is thought to be mirrored in the deposits in the ear.

It would be very interesting to apply this framework to real situations. There are
interesting statistical difficulties with this, but possibly the ancillary information
of length and age plus the isotopic profiles in the otoliths could make inference
possible. An interesting case would be to compare this method with the method
of Schmidt (1922) where contour charts with the minimum length of eel larvae
(leptocephali) was used to place the spawning location of European eel in the
Sargasso Sea. The size of this area in the Sargasso Sea is so large that the
actual spawning location of eel is still quite uncertain; the size is approximately
106 km2, twice the size of Spain.

Another application of the backwards equations would be to try to find the loca-
tion which is most suitable for the reintroduction of an organism with planktonic
dispersal in an archipelago.

5.4 Discussion

The Eulerian perspective in Markov additive processes can contribute to many
individual-based models. The framework can be used to obtain answers to
questions that are difficult in the Lagrangian view, such as the extreme events.
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Since it is possible to let the state to depend on a Markov chain it is very flexible
and will often be computationally efficient for phenomena of interest in marine
situations. It is possible to include interactions with nutrient, and prey fields
such as the nutrient, phytoplankton, and zooplankton-fields in Hermann et al.
(2001).

The real difficulty with IBMs is to capture the biology to a sufficient degree (but
not to much), since most information on the behaviour will come from laboratory
experiments which are non-trivial to extrapolate to the field and in most cases
the assumed field behaviour is an educated guess. Many organisms, even as small
as bacteria, react on their environment and change their movement patterns
such that the probability of being in a favourable place increases. When the
cue is external such as food density this is easy to add to the movement pattern
of a particle. It can be difficult when the cue is produced by the organisms
themselves, which would pose a problem e.g. to modelling schools of fish with
such techniques.

Reproduction is not included in most marine IBMs, possibly due to the enour-
mous uncertainties that develop. A crude way of incorporating reproduction
would be change the sign of the mortality in some states and associate this
type of transitions with a birth of an individual in the Lagrangian simulation,
and possibly link this with a jump to another developmental state if such are
included. A disadvantage of this is that whereas death occurs to single individ-
uals, reproduction creates a spatial dependence between offspring and parent,
thus there is a pair-correlation that is important and the Poisson framework is
no longer exact (Young et al., 2001). However, if the time-scales are different
between reproduction and movement a Poisson approximation ought to be good.

If reproduction is included in this way, spawning can be turned on and off at
suitable times. This option should be used with caution since e.g. Baltic cod
seem to have shifted their spawining season due to the decline of the food of cod
larvae (Pseudocalanus) in the Bornholm Basin (Hinrichsen et al., 2002). More
realistic models would have to include an energetic reserve that can be emptied
at suitable spawning times. Here the important question arises: “How do cod
come to spawn at a certain time?”. As we show in Article D it is possible to
have the rate of accumulation of rewards to depend linearly on the reward itself.
This increases the possibility for complex biological applications dramatically,
since it is possible to introduce a linear feed-back in the reward.

5.5 Contributions

The current framework offers a possibility to get both the Lagrangian and the
Eulerian information in models that can be quite elaborate. The Eulerian frame-
work based on Markov additive processes is directly applicable to many of the
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models that are used in marine larval IMBs.

There are many possible extensions, but the most important work is to show
that the framework can provide much of the information that is sought and that
the Lagrangian simulations are random which means that replication is needed
to analyse their behaviour, whereas the Eulerian framework removes this need.

5.6 Future work

The most important thing is to apply the models to real data, then their value
will be evident but also what elaborations are needed. The analysis of spawning
grounds using otoliths would be both a statistically challenging and biologically
relevant question.

The inclusion of reproduction could be modelled using branching Brownian
motions; there is an equivalence between the expectation of these and some
PDEs (Dynkin, 2002). Nowadays even interacting branching Brownian motions
have been studied. It would be fantastic if it were possible to represent the in-
ternal dynamics of an individual using a Markov Chain, and to be able to have
the particles annihilate other particles, reproduce, and to be able to describe
the probability densities of their spatial distributions.

A difficulty is the interaction with other particles, here possibly the recent frame-
work in economics with heterogeneous Markovian interacting agents (e.g. Aoki,
2002) could be of interest, or the Fokker-Plank formulation of living fluids by
Willander et al. (2004), which is formulated in very general terms. Agent based
models have been used to reproduce macroeconomic characteristics in e.g. stock
prize fluctuations from micro-behaivour. Willander et al. (2004) states that
fluids where some components are alive cannot be modelled using standard sta-
tistical mechanics, hence they have developped a new framework to include such
fluids. But they do not provide any examples on how this can be done.

A simpler possibility that deserves mentioning is to combine Markov chains
with diffusions which has not been explored in any IBM to my knowledge and
to derive the Eulerian equations of for the probability of being in a certain sate
and position. This is simpler than the additive framework but also powerful. For
instance, Hufnagel et al. (2004) analysed the global spread of SARS (severe acute
respiratory syndrome) using diffusion approximations of SIR-dynamics within
countries and a continuous Markov chain that modelled the rate of movement of
people by airlines between countries. The spatial spread of the epidemic starting
with an infected individual in Hong Kong was analysed using 1000 realisations
of the stochastic model2, then they computed the mean number of infected
individuals at each node. This could easily have been done using the Eulerian

2The second IBM to my knowledge that use replicates
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framework for Markov processes.



78 Markov additive processes can simplify individual-based models



Chapter 6

Postscript

And perhaps worst of all, there is now quite a large community of sci-
entists who are willing to sell modeling to managers as an alternative
to hard, expensive experimentation, and this is too often an easy sell.

Walters and Martell (2004).

In this thesis we present a number of different tools that are or could be useful
to the applied population biologist. The Markovian arrival process can be used
as a simple tool to include the effects of stochasticity in encounter and foraging
success of the individual dynamics which enables the modeller to investigate how
this will affects the food source and the reproduction process of the individual.
These models can be used to link the effects of internal states, such as energy
reserves or stomach fullness, to the propensity to feed or ability to reproduce.

More work need to be done for the Markov chain with discrete or continuous
reward structure to be practically useful. First, it is necessary to be able to
estimate the rates in the transitions, here some work has been done (Nielsen
and Beyer, 2005; Breuer, 2002a) but more has to be done both regarding the
procedures but also on making it known in biology. Second, there is a need
to know how to reduce the state space, to make model reduction, similar to
the reductions used by Metz and van Batenburg (1985a) in a continuous-state
Markov process. Third, a practical case study is needed to show how this could
be done to make it applicable.
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In general I think there is a need for more work on how to incorporate sub-model
stochasticity into population models. When are the law of large numbers argu-
ments (which underlies the use of functional and numerical responses) appropri-
ate, and when should these be replaced by functional central limit arguments,
which would give a first order noise structure, be used and when is in necessary
to have higher order moments?

Regarding the Markov additive processes of ensembles I believe they are al-
ready useful in answering the type of questions that currently are investigated
in marine larval ecology. They provide modellers with the opportunity to get
the whole picture in cases where the simulation based view only provides bits
and pieces. Accompanied with particle trajectories from Lagrangian simula-
tions they will further our understanding of variability in larval fish recruit-
ment. Markov additive processes would also benefit from being applied to new
situations were some property needs to be investigated. An obvious, and both
biologically and statistically interesting question is given that we catch a larva
at position x what is the most likely spawning ground? Using the ancillary infor-
mation in otoliths such as age, concentrations of different isotopes and perhaps
growth patterns this could perhaps be found with some precision.

It would be worth investigating how to include reproduction and how to could
cope with the spatial dependencies that this and other behaviours, such as
schooling, generates. How close would these be to the marked Poisson process
framework? Can one use Poisson approximations, there are results on this stem-
ming from the work by Barbour, Chen and Stein (see Grimmett and Stirzaker,
2001), but will they provide error bounds? Reinert (2001) is able to provide
error bounds for an epidemic process using Stein’s method. Poisson approxima-
tion used in many other situations using moment-closures (e.g. Keeling et al.,
2000) and the Durrett-Levin transform of Cantrell and Cosner (2004) without
any error bounds. Could other frameworks that could provide alternative ways
of deriving an Eulerian formulation the situations when Poisson approxima-
tions are not good, Brownian branching processes, the agent-based framework
in economics, or the living-fluid formulation of statistical mechanics?

Regarding the issue of sustainability I think it necessary that we do not fool
ourselves. There will almost certainly be sufficient amounts of uncertainties
present in any relevant future model of fish populations that enable, or force, the
decision-makers not to manage the “unmanaged commons” (cf. Hardin, 1968),
i.e. to preserve and rebuild fish stocks. Empirical support for this claim can e.g.
be found in the management of the Baltic cod. Here the total allowable catch
(TAC) for cod was set to 39 000 tonnes in 2005. The International Council for
the Exploration of the Seas recommended that the quotas should be reduced to
14 000 tonnes in 2006 to keep this threatened stock within safe limits. Yet the
negotiations within the European Union lead to an increase in TAC for 2006 to
45 000 tonnes, and only one country objected to this!
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Optimal dynamics of stochastic populations can come later.
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Chapter 7

Conclusion

It has been shown that the dispersion process of schools of sprat and herring in
the Baltic can be described by a process where the schools follow lines of equal
light intensity, and that they disperse below this light intensity. We were able
to approximate the dispersion process with a model with uncorrelated random
walkers and the time-scales for dispersion found in these models were of the
same order as those seen on echograms.

The Markovian arrival process is used for biological applications, notably to
model functional and numerical reponses. We clarify some obscurities concern-
ing a simple functional response in a heterogeneous environment, and provide
moment formulas for survivors, along with numerical approximation schemes.
The MAP in periodic environment is shown to be embeddable in discrete time
with possible applications where time-scales are well separated. This is impor-
tant since most systems are periodic, and their properties cannot be derived
from the mean rates.

A fluid dam model is used for the modelling of stochastic stomachs, here an
analytical formula is found for exponentially distributed meal sizes, and also a
recursion formula for Erlang-2 distributed meal sizes, the latter is quite difficult
to normalize (analytically).

Markov additive processes can be used as a tool to avoid the tedious statistical
evaluations of individual-based models. We show that the moments can be
obtained with a relatively small effort. These tools will probably be of great
value, in particular to larval biology in marine environments.



84 Conclusion



Appendix A

Vertical migration and
dispersion of sprat (Sprattus

sprattus) and herring (Clupea
harengus) schools at dusk in

the Baltic Sea

Published in Aquatic Living Resources 2003. 16:317-324.



86

Vertical migration and dispersion of sprat (Sprattus sprattus) and
herring (Clupea harengus) schools at dusk in the Baltic Sea.

L.A. Fredrik Nilssona,∗, Uffe Høgsbro Thygesenb, Bo Lundgrenc, Bo Friis Nielsena,
J. Rasmus Nielsenb, Jan E. Beyerb

a Informatics and Mathematical Modelling, Technical University of Den-
mark, Building 321, 2800 Kgs. Lyngby, Denmark.

b Department for Marine Fisheries Research, Danish Institute for Fisheries
Research, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

c Department for Marine Fisheries Research, Danish Institute for Fisheries
Research, North Sea Centre, 9850 Hirtshals, Denmark

* Corresponding author. E-mail address: afn@imm.dtu.dk (L.A.F. Nilsson).

Abstract

In populations of herring (Clupea harengus) or sprat (Sprattus sprattus), one
typically observes a pattern of schools forming at dawn and dispersing at dusk,
usually combined with vertical migration. This behaviour influences interac-
tions with other species; hence a better understanding of the processes could
contribute to deeper insight into ecosystem dynamics. This paper reports field
measurements of the dispersal at dusk and examines two hypotheses through
statistical modelling: that the vertical migration and the dissolution of schools
is determined by decrease in light intensity, and that the dissolution of schools
can be modelled by diffusion, i.e. active repulsion is not required. The field mea-
surements were obtained during 3 days in March at one location in the Baltic
Sea and included continuous hydroacoustical monitoring, trawl samples, and
hydrographical CTD data. Echogram patterns were analysed using the school
detection module in Echoview R© and local light intensities were calculated using
a model for surface illuminance. The data and the analysis support that schools
migrate upwards during dusk, possibly trying to remain aggregated by keeping
the local light intensities above a critical threshold, that schools initiate their
dissolution when ambient light intensity drops below this critical threshold, and
that fish subsequently swim in an uncorrelated random walk pattern.

Keywords: Random walk; Dispersion of schools; Light; Clupeids; Baltic
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A.1 Introduction

When collecting hydroacoustic data in the Baltic, one commonly sees a fast
change in the echogram structure at dawn and dusk. The day situation is often
characterized by aggregations of clupeids close to the bottom, whereas there are
disperse targets in the whole water column during the night. The pattern is
similar to that of herring in the North Sea (Blaxter and Parrish, 1965; Blaxter,
1985), however, in the Baltic, a large proportion of the schools do not migrate
vertically—they disperse in the initial phase of the transition close to the bot-
tom. It is possible that most of the predator-prey interactions take place during
the twilight period (Major, 1977; Clark and Levy, 1988); the swift changes seen
on the echograms may be an indication of this. There are indications that both
herring and sprat, and their main predator, cod, are feeding during dusk and
dawn (Blaxter and Parrish, 1965; Adlerstein and Welleman, 2000) and conse-
quently these periods could be very important for the population dynamics. This
motivates an investigation of the spatial structure and how it changes during
dusk and dawn.

The dominant species of fish in the Baltic Proper are sprat (Sprattus sprattus),
herring (Clupea harengus), cod (Gadus morhua), and flounder (Platichtys fle-
sus). Due to the relative scarcity of species, especially among schooling fishes,
the Baltic is a well-suited study area for the transition between schooling and
dispersed state in clupeids, since it is relatively easy to know what species one is
studying and since the possible number of interactions between different species
is few.

While there is some consistency as to where and when schools can be found,
it remains much less clear why and how the transitions occur. One specific
question is if schooling fish actively spread out at dusk, or if schools simply
diffuse as their members cease to maintain the structure. This article approaches
this question by estimating the time constant of dissolution, assuming passive
diffusion, and comparing with observed transition times. Another open question
is how directly the dispersal is related to the decrease in light. We examine this
issue by estimating the local light intensity at the position of observed schools.

A.2 Materials and methods

A.2.1 Data sampling and analysis

Data were collected during a survey with R/V Dana 12-14 March 2002. Two
Simrad EY500 split-beam echosounders were continuously recording at 38 and
120 kHz, respectively. The hydroacoustical data were stored electronically. The
transducers were hull mounted, and the echosounders were calibrated using stan-
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dard procedures (Foote et al., 1986). Fish were collected using a TV3-trawl; it
was used as a bottom trawl except for night hauls on March 14, when it was used
for pelagic hauls. Hydrographical data were collected several times a day with
a Seabird SBE911PLUS CTD equipped with a light sensor (Biospherical/Licor)
that measures the photosynthetically active radiation (PAR). The collection of
fish was performed during both day and night on approximately the same site.

The location at approximately 16◦ 20′ E, 55◦ 45′ N was chosen to be represen-
tative of the Bornholm basin with respect to species composition and depth
range; the depth at this location was 55-65 m. The fish caught were minced and
afterwards discarded into the sea at a dumping site 5 nmi away downstream in
order to avoid disturbances to the study site. Steaming speed to and from the
dumping site was 12 knots, otherwise the ship was operated at approximately 3
knots in order to make the acoustical data independent of whether the ship was
trawling or not. The current direction was registered using an acoustic Doppler
current profiler. The hydroacoustical data were analysed using the Echoview
software, version 2.20. The lower threshold for acceptance of volume backscat-
tering values, Sv was set to -60 dB for echo-integration and school-detection
procedures. The school detection parameters were set heuristically and the dis-
tances were based on GPS positions. The settings for the 38 kHz sounder were
(120 kHz settings within parentheses): minimum school length 2 (1.20) m, mini-
mum school height 2 (1.20) m, minimum connected height 1.5 (0.6) m, maximal
vertical linking distance 3 (2) m, maximal horizontal linking distance 3 (7) m.

Both the EY500 and the Echoview software have algorithms for detecting the
bottom. However, due to bad weather with high swell on March 14, the bottom
identification did not perform well. Improved bottom values for pings were iden-
tified using a Matlab program searching for the maximum increase of echo level
between samples near the expected depth obtained from nearby pings. Further-
more, to compensate for ship movements due to the swell, a C++ program was
used to produce new raw data files in which data in relevant telegrams were
shifted up or down in order to get bottom points aligned with a smoothed bot-
tom line obtained by a moving average with Gaussian weights. The end result
was a smoother bottom (see Fig. A.1) and echogram patterns more comparable
with the days with calm weather. We did not correct for bubbles under the
ship. Regions that evidently were affected by this phenomenon were excluded
from the analysis. Data from 0.5 m above bottom to 15 m below surface were
included in the echo-integration and school-detection procedures. The upper
limit was chosen since observed fish densities were very low above this depth
and in order to exclude bubble noise on March 14.

The ship is equipped with a Licor PAR light sensor placed on the top of the ship,
but its sensitivity was insufficient for measuring light intensities at dawn and
dusk. Instead the light variations for twilight were estimated using a model by
Janiczek and De Young (1987), which gives surface illuminance given time, date,



A.2 Materials and methods 89

Figure A.1: Detail of echogram from March 14. Bottom is unsmoothed in the
left panel, smoothed in the right.

geographical position and cloudiness. The cloudiness is given as four factors,
corresponding to:

a Average clear sky, less than 70% of the sky covered by (scattered) clouds;
the direct rays of the Sun or Moon are unobstructed relative to the location
of interest.

b The Sun or Moon is easily visible but direct rays are obstructed by thin
clouds.

c The direct rays of the Sun or Moon are obstructed by average clouds.

d Dark stratus clouds cover the entire sky (rare).

In the computer program, these conditions a-d correspond to dividing the cal-
culated illuminance with a factor 1, 2, 3, 10, respectively. The model is quite
crude (see Fig. A.2). Since the sky was clear for most of the time, we have
chosen to use the factor 1 or condition a.

The attenuation of light by water was estimated from the Seabird PAR data
using a linear regression of the logarithm of light intensity on depth:

ln I(z) = ln I(0) − K · z (A.1)

where I(z), I(0) are the light intensities at z and 0 m depth, respectively,
and K is the attenuation coefficient. K was found to vary between 0.131 and
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0.167 m−1. We chose to proceed with a value of 0.16 m−1, which is higher
than the average value for the layer of interest, arguing that the rays of light
during dusk come from a more or less horizontal light source. The attenuation
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Figure A.2: Plot of logarithmic light intensities ln(µmol quanta · s−1 · m−2).
The dots are the measurements from the quantum light meter on R/V Dana.
The black lines correspond to the four different cloud situations in the model
for illumination (uppermost—clear, lowest—sky covered with stratus clouds).
Horizontal scale is hours.

is somewhat higher in the layer 0–10 m but we do not take this into account,
since the relative effect of this is the same for all days and since only data below
15 m were analysed. The surface illuminance from the model is given in lux,
but the attenuation constant is based on PAR. We choose to use the factor
0.01953 µmol quanta · s−1 ·m−2 · lux−1 (Brock, 1981) to convert illuminance to
surface PAR irradiance, assuming a standard daylight spectral distribution.

A.2.2 Migration process in relation to light levels

For every ping, the depth at which the local light intensities would correspond
to 0.01, 0.1, 1 lux, respectively, were calculated using the daylight model and
the attenuation coefficient. These light levels were chosen a priori since it has
been reported that schooling ceased in this interval (Blaxter and Parrish, 1965;
Iida and Mukai, 1996). The data were then displayed in the echograms as lines
of equal irradiance. The schools followed the lines (see Fig. A.3). With the
Echoview school-detection module, we obtained the mean depth of a school and
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Figure A.3: The vertical migration of schools and dissolution at dusk on March
13. The three green parallel lines that rise from left to right are lines of equal
light intensity. The step in the lines (left, top) is due to sunset. Distance
between horizontal lines are 10 m and 0.5 nmi between vertical lines.

the time at which the school was recorded. In the same way as above, time was
used to calculate the light intensity at the mean depth of the school. For data
well within the transition period (17.25–18 UMT), we tested the model:

Yij = αi + βiXij + ǫij (A.2)

where Yij is the natural logarithm of the light intensity at the depth of the centre
of the jth school at the ith day, αi, βi are constants for day i, and Xij is the depth
of the jth school on day i, and ǫij are independent and identically distributed
normal variables with zero mean and variance σ2. The logtransformation was
necessary to meet the standard assumptions for linear regression.

A.2.3 Modelling the dissolution of schools by diffusion

This section constructs a model of the diffusion of schools and proposes three
different time constants describing the duration of the process. With all three
approaches, the number of fish in a typical school is Poisson distributed with
mean N̄ and the sizes of different schools are stochastically independent. At the
starting point (dusk), all fish in the school are positioned at a single point in the
plane. Then, instantly, all social forces are removed and each fish performs an
independent random walk. The difference between the models is in how schools
are placed at the starting point, and which criterion is used for the schools to
have dissolved.
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A.2.4 Dispersion from regularly spaced schools

At time t = 0 (dusk), a school is located at each node in a regular two-
dimensional grid with grid length L. At times t > 0, each individual fish
performs a random walk in two dimensions with intensity σ2. The expected
time until an individual fish has displaced itself a distance ∆x from its starting
point is (e.g. Berg, 1992).

∆x2

2σ2
. (A.3)

If we insert L/2 for ∆x, then we obtain roughly the time until the individual
is halfway between two school centres; hence we cannot determine from which
school the individual originated. Based on this argument, we would find that
the time to dissolution of the schools is

1

8

L2

σ2
. (A.4)

Although this argument is somewhat sketchy, we shall see below that more
elaborate modelling leads to similar answers.

A.2.4.1 Statistical detection of school structure

Using the same model as above, the individual fish constitute a Poisson point
process (Stoyan et al., 1995) which is fully specified by its density ρ(x, y, t). This
density satisfies the partial differential equation (e.g. Berg, 1992):

∂ρ(x, y, t)

∂t
=

1

2
σ2∇2ρ(x, y, t) (A.5)

and can be expressed in terms of its Fourier series (Farlow, 1983):

ρ(x, y, t) =
∞∑

k=−∞

∞∑

l=−∞
Akl(t) exp

(
i2π

kx + ly

L

)
. (A.6)

Here, the coefficients Akl(t) are determined by the initial conditions, and are
equal to:

Akl(t) =
N̄

L2
exp

(
−1

2
σ2

(
2π

L

)2 (
k2 + l2

)
t

)
. (A.7)

The shape of the solution is quickly dominated by the smallest non-zero eigen-
value, −1/2σ2(2πL)2, obtained with wave numbers k2 + l2 = 1.

At time T , we hypothetically sample two square regions, each of area L2/4. One
area, A, is centred around (x, y) = (0, 0) so that the initial position of the school
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is in the dead centre. The other, B, is centred at (x, y) = (L/2, L/2) i.e. the
point in space furthest away from the schools.

The number of fish found in region A, NA, is then Poisson distributed with
mean ENA:

ENA =

∫

A

ρ(T ) dx dy =
∑

k,l

Akl(T )HA(k, l) (A.8)

where

HA(k, l) =

∫

A

exp

(
2πi

kx + ly

L

)
dx dy = f(k)f(l) (A.9)

and

f(k) =

∫ L/4

−L/4

exp

(
2πi

kx

L

)
dx. (A.10)

We have that f(k) is equal to L/2 when k is zero, otherwise it is L
2πik

(
exp

(
π
2 ik
)
−

exp
(
−π

2 ik
))

The latter expression is equal to 0 when k is even and non-zero.
When k is odd, we have f(k) = L/(πk), if k = ...,−11,−7,−3, 1, 5, 9, ..., and
f(k) = −L/(πk), if k = ...,−9,−5,−1, 3, 7, 11, ... . Now, focusing on the long-
term behaviour, we consider only the lowest eigenvalue obtained with k2+l2 = 1.
Then

ENA ≈ L2

4
A0,0(T ) +

L2

2π
(A0,1(T ) + A1,0(T ) + A0,−1(T )

+A−1,0(T )) =
N̄

4
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π
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)2
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)
. (A.11)

Correspondingly,

ENB ≈ L2

4
A0,0(T ) − L2

2π
(A0,1(T ) + A1,0(T ) + A0,−1(T )

+ A−1,0(T )) =
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− 2N̄
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)
. (A.12)

The criterion for the schools to have dissolved is that the NB > NA with a
certain probability P = 1/2−α. Approximating the Poisson distributions with
Gaussians, we find

NB − NA ∼ N(
4N̄

π
e−

σ2

2 ( 2pi
L

)2T ,
N̄

2
). (A.13)

And P is the probability of NB − NA > 0 which can then be approximated as

P =
1

2
− α = Φ

(
−4

√
2N̄

π
e−

σ2

2 ( 2π
L

)2T

)
(A.14)
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where Φ is the standard Gaussian distribution function. Equivalently,

T = − L2

2π2σ2
ln

(
π

4
√

2N̄
q

(
1

2
+ α

))
(A.15)

where q(1/2+α) is the (1/2+α)-quantile of the standard Gaussian distribution.

According to this expression for T , the natural time scale of the dissolution
process is L2/σ2. In this time unit, we may plot T as a function of α for
different values of N . This is done in Fig. A.4. The most striking feature of
the plot is the plateau, implying a fairly rapid transition from high levels of
aggregation (α ≈ 0.4) to low levels of aggregation (α ≈ 0.1). This is comforting
since it implies that the estimated transition time is not very sensitive to the
exact choice of α, i.e. the critical level of aggregation. With this approach, the
dependence on lnN is also quite natural; more fish in the school makes it easier
to detect differences when they exist.

A.2.4.2 Dispersion from randomly placed schools

This model is a Poisson cluster model, using the terminology of stochastic geom-
etry (Stoyan et al., 1995): schools are placed randomly in the plane according
to a Poisson point process in 2D with intensity λs. To obtain the same density
as in the previous model, we must have λsL

2 = 1. As before, school sizes are
independent and identically Poisson distributed with mean N̄ , all fish within a
school are co-located at the school centre at time t = 0, and for time t > 0, each
individual performs an independent Brownian motion with intensity σ2.

At some later time t, the stochastic geometry becomes a Cox process, i.e. a
conditional Poisson point process. To be specific, given the school centres, the
density of the fish originating from the particular school is a Gauss bell, and the
total density is the superposition of all these Gauss bells. For a Poisson process,
we can define the entropy as

I = −E ln ρ(x, y) (A.16)

i.e. minus the logarithmic density at a “typical point”.

If only one school is present at position (x,y) = (0,0), then at time t, individual
fish will be distributed according to a Poisson process with density

ρ(x, y, t) =
N̄

2πσ2t
e−

1
2

x2+y2

σ2t (A.17)

leading to an entropy

I = 1 + ln 2π + lnσ2t − ln N̄ (A.18)
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Figure A.4: Time against level of aggregation.

where σ2t is the variance in the 2D Gauss bell at time t. For low values of t, the
schools do not interact and the same expression holds for the Poisson cluster
model. As t grows, the entropy will gradually approach its limit in which the
density is constant

ρ∞ = N̄λs (A.19)

which leads to an entropy of − ln N̄λs. One way of assessing the time duration
of the transition is to assume that the initial growth of entropy continues and
then report the time where this entropy reaches the steady-state value. We find:

1 + ln 2π + lnσ2t − ln N̄ = − lnλs − ln N̄ (A.20)

Table A.1: The weight and percentage of the species caught in the bottom hauls
Species Common name Fraction in bottom hauls Fraction in

bottom hauls pelagic hauls

Sprattus sprattus Sprat 0.636 0.798
Clupea harengus Herring 0.094 0.177
Platichtys flesus Flounder 0.011 0
Gadus morhua Cod 0.257 0.025

Other species 0.002 ≤ 0.001

Total weight (kg) 4387 914
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or

t =
1

2πeλsσ2
. (A.21)

A.2.5 Estimation of parameters

The inter-school distance was obtained with Echoview’s school-detection mod-
ule. Mean target strength was calculated from the TS relation (Foote, 1987)
for clupeids and the length-distribution of caught herring and sprat. This was
used to calculate the number of fish per school, assuming that schools could
be described as vertical cylinders. The mean school area is (MacLennan and
Simmonds, 1992) Ā = 3π

8 L̄2
0, where L̄2

0 is the mean of squared length of schools.

A.3 Results

For the bottom and pelagic hauls, the catch consisted of more than 70% and
97% of clupeids, respectively (see Table A.1). The size distributions were the
same for bottom and pelagic hauls for sprat and herring (Fig. A.5); the schools
on the echograms are most likely sprat and herring.

The model for the relation between depth of school centres and local light con-
ditions was significantly better at describing data than Yij = αi, i.e. that the
logarithm of the light was independent of depth (P < 0.002). The model could
be reduced to a model with a common slope; all βi are equal (see Fig. A.6).
The model could not be reduced more, e.g. to zero slope or a common intercept.
The residual plots did not indicate that the model was inappropriate. Since the
error variance was high, the part of the variation that could be explained by the
model was rather low, 0.22.

The distance between schools was found to be 70–200 m, the number of clupeids
per school was 400–900, and the mean area was in the range 120–220 m2.

Comparing the three suggested time constants of the transition, only the second
time constant is based on statistical identification of school structures and hence
grows with the number of fish in a typical school. Except for this difference, the
time constants scale identically. Furthermore, for a school size between 10 and
10 000 fish, the estimated time constants are all of the same order of magnitude,
i.e. between 0.05 and 0.3, measured in the time unit L2/σ2. In summary, a useful
time constant of the dissolution process is about 0.1 L2/σ2 and after 0.3 L2/σ2,
it is fair to say that the process has ceased.

To estimate L2, we note that the average distance between schools during the
daytime is 70–200 m. Since the width of the transect at the bottom is 7–8 m
(7◦ beam width), this implies a school density of maximum one school per 490
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Figure A.5: The total numbers caught ’—’ in 20 hauls within a certain length-
class of the dominant species sprat, herring, flounder and cod (top left, top
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m2 and minimum one school per 1600 m2.

To obtain a rough estimate of the diffusivity, we assume a swimming speed of one
body length per second and a body length of 0.1 m, and a relaxation time (time
between turns) of the swimming direction of 10 s. This yields σ2 = 0.1m2s−1

(Berg, 1992). The fraction L2

σ2 is then in the interval between 4900 and 16,000
s. Multiplying the former with 0.1 and the latter with 0.3, we obtain that the
time for schools to dissolve is in the range between 8 and 80 min.

These models all assume that the fish in a school at time t = 0 are located at
the same point. In reality, the size of a school is measurable compared to the
typical distance between schools and thus the time constants should be seen as
upper bounds.

A.4 Discussion

Some authors (Weston and Andrews, 1990; Fréon et al., 1996) have proposed
that the dissolution, or expansion of schools may be due to a diffusion process,
but not specified the underlying mechanism. In this paper, a simple model for
the dissolution of schools is proposed, where the fish in a school disperse as
uncorrelated random walkers. The models presented are based on few parame-
ters and should be easy to use to compare with data in different regions. The
estimated transition times are comparable to those observed, indicating that
active dispersal is not required to explain the observed change in the pattern.
Iida and Mukai (1995) obtained similar values for the dispersion of Kokkanee
schools, 50 min; whereas Fréon et al. (1996) showed that, in Senegalese waters,
the transition took several hours, but the expected values depend on the local
conditions.

The results given by Orlowski (2001) suggest that there is a slower transition in
the Baltic at dusk for herring and sprat that takes approximately 4 h; however
that result is based on Sv per 30 min, not school identification. The slower
transition could be explained with planktonic prey emerging from the bottom
at dusk and that the fish dispersing close to the bottom are hungry enough
to risk feeding and dispersing where the predation risk probably is very high
since cod are close to the bottom. If the planktonic prey are rising slowly,
then may be the dispersed fish close to the bottom followtheir prey toward the
surface, which would give rise to a slower transition phenomenon. This leads
to an anisotropy that may give different time scales depending on whether the
solution is determined in the horizontal or in the vertical plane. In a similar
approach to Orlowski (2001), Giannoulaki et al. (1999) obtained a transition
for sardines in the northern Aegean Sea that took several hours; it may be that
the averaging done using Sv and the modelling of the vertical migration with
relatively low order trigonometric polynomials give longer dispersion times.
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Schools follow roughly the lines of equal light intensity, but with high variation.
The fact that the schools rise faster than the lines of equal irradiance (i.e. β < 0)
is difficult to explain. However, it should be noted that the differences between
the light intensities at the end points of the fitted lines are very small and
perhaps the estimated slope β is an artefact of the methodology. In any case,
the slope β being significantly different from 0 in the statistical sense should not
overshadow the observation that schools appear to remain at similar light levels.
It is encouraging that the models catch this feature despite the simplicity in their
assumptions and the uncertainty on the parameters. The log-transformation of
the light data makes biological sense, since the response of eyes is approximately
logarithmic.

The fact that the model could not be reduced to a common intercept may be
due to real differences between days or that the cloudiness factor in the model
for the light illuminance is the same for the different days, while the light levels
seem to differ between days (see Fig. A.2).

The high variation in the results is partly due to few measurements. However,
diurnal vertical migration is highly variable (e.g. Blaxter and Parrish, 1965; Ap-
penzeller and Legget, 1995); it can vary over season, and is probably dependent
on tides, the physiological status of the fish as well as predators (Blaxter and
Parrish, 1965).

Appenzeller and Leggett (1995) showed that the modus and the upper 95 per-
centile of the biomass distribution of rainbow smelt (Osmerus mordax ) closely
follow the lines of constant local light intensities, whereas the lower 95 percentile
did so to a lesser extent. The range of the vertical distribution was narrower
during day than night. They also noted that the smelt formed dense schools
during day, which dispersed during night. Based on our results, it is possible
that the widening of the distribution is due to schools dissolving, and that the
upper parts that followed light levels more closely were schools rising.

Future work should be aimed at describing the internal and external state of
the schooling fish in the Baltic. Is the crepuscular period the time at which the
clupeids are eating, being eaten, neither or both? Stomach data of both clupeids
and cod with high temporal resolution could help to answer that question. If
the dispersion pattern of a school were studied with sonar, this could possibly
give the local swimming speeds of the fish, and a better overview of the process.
In addition, it would be interesting to follow the individual fish during the
dispersal of schools in laboratory tanks, such as was done by Blaxter and Parrish
(1965). With modern tracking techniques, it should be able to obtain more
information about the behaviour and motion of the individual fishes, and it
might be important and informative to incorporate the predatory behaviour of
cod in relation to clupeids, since predation is not a static risk but a dynamic
process dependent on prey behaviour (Lima, 2002).
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A.5 Conclusion

Schools of herring and sprat tend to follow lines of equal light intensity when
they migrate towards the surface at dusk in the Baltic, whereas this is not the
case for the dispersing fish. In contrast to other studies showing the phenomenon
that migrating fish follow lines of equal light intensity, we have found that a large
part of the schooling fish dispersed close to the bottom. This causes a widening
of the depth distribution, which may be attributed to differences in hunger or
some other internal factor. Three different measures for the time until schools
are dispersed are presented, these agree quite well with the time-scales viewed
on the echograms. The times depend on few parameters and should be useful
in comparisons.
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Abstract

We consider the number of arrivals in a Batch Markovian Arrival Process (BMAP)
and derive matrix analytic expressions for its moments of arbitrary order. These
expressions consist of decomposition formulas connected to the semigroup struc-
ture of the moments, forward and backward differential equations, and recursive
as well as direct integral formulas. This extends earlier work by Narayana and
Neuts on the first two factorial moment matrices. We next turn to the termi-
nating BMAP, i.e. a BMAP with an absorbing state in which no arrivals occur.
We consider the asymptotic behavior of the moments conditional on the process
not yet having terminated. We show that the conditional mean and variance
possess affine asymptotics and derive the coefficients explicitly. Finally we dis-
cuss how parts of our work also applies to the more general class of Rational
Arrival Processes (RAPs).
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B.1 Introduction

The Markovian Arrival Process (MAP), a point process associated with transi-
tions in a finite Markov chain (Lucantoni, 1993; Neuts, 1979), is a highly ver-
satile construction. The MAP extends the analytic and numeric virtues of the
Poisson process to non-exponential waiting time distributions and non-trivial
dependence structures.

There exists an extensive literature on the MAP, in particular in a queuing
context. Neuts 1979 presented a thorough discussion of the MAP which was used
by Ramaswami 1980 in his detailed analysis of a single server queue with MAP
input. The modern parameterization of the MAP was introduced by Lucantoni
et al. in 1990; see also Lucantoni (1991, 1993). In an essential reference for our
work, Narayana and Neuts 1992 derived properties of the first and second order
moment matrices. Pacheco and Prabhu 1995 studied the properties of Markov
additive processes of arrivals, which are more general processes with BMAPs as
a subset. Breuer 2002b generalized this work further to Markov-additive jump
processes on general phase spaces and with arrivals in a general (real) vector
space. Asmussen and Koole 1993 showed that any marked point process can be
approximated in the weak convergence sense by the slightly more general class
of Markovian Arrival Streams. It follows that the BMAPs with an appropriate
scaling are dense in the class of stationary point processes with positive real
marks. The versatility of the MAP has been used for sensitivity analysis and
for characterization of point processes (Andersen and Nielsen, 2000; Andersen
et al., 2004).

The MAP literature has primarily focused on continuous time although discrete
time MAPs have been applied to packet based transmission systems such as the
Asynchronous Transmission Mode protocol (ATM) (Blondia and Casals, 1992)
and Integrated Services Digital Networks (ISDN) (Blondia, 1992).

In this work we generalize well known first and second order moment formulas
for the Batch MAP (BMAP) to moments of arbitrary order. It also allows for a
unified treatment of non-central and factorial moments, and of the continuous-
time and the discrete-time case. These results are given in section B.3. Based
on these results we present a numerical algorithm for the calculation of moments
of arbitrary order generalizing results by Narayana and Neuts (1992) and Neuts
and Li (1995).

While earlier approaches in this direction employ generating functions, we present
alternative derivations based on elementary probabilistics, the semigroup struc-
ture of the transition probabilities, and the stochastic geometry of the point
process. In section B.3 we compare the approaches. Most importantly, the
semigroup-based approach has the advantage of indicating generalizations to
wider classes of processes, but at the expense of considerable abstraction rela-
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tive to the elementary probabilistic reasoning. In addition, we find it elucidating
to have the different approaches in parallel, in particular so because they connect
to different bodies of literature within the theory of stochastic processes.

The original motivation behind this paper was an application to ecology where
points in the MAP correspond to a particular foraging individual ingesting a
prey item. This application calls for terminating MAPs, i.e. processes that
eventually enter an absorbing state where no arrivals occur, corresponding to
death. Such terminating MAPs have recently been considered in Latouche et al.
(2003). Moreover, in this ecological application the fate of the survivors were of
main interest. This lead us to investigate the conditional moments of the number
of arrivals occurring in a long time interval. Here the conditioning is on the
process not having terminated, which in the ecological application corresponds
to averaging over survivors only. This situation is analyzed in section B.4. The
asymptotic behavior of the conditional mean and variance turns out to be affine
in time and we find explicit formulas for the linear asymptotes.

Finally we show, in section B.5, that our results carry over verbatim to the more
general class of rational arrival processes (RAPs), introduced in Asmussen and
Bladt (1999). This is hardly surprising because the RAPs still employ a matrix
machinery, although without an underlying Markov Chain.

B.2 The Batch Markovian Arrival Process

A Batch Markovian Arrival Process (BMAP) in continuous time is a Markov pro-
cess (N, J) with two components: a phase process J = {J(t) ∈ {1, . . . , m} : t ≥
0}, and a non-decreasing and additive counting process N = {N(t) ∈ N0 : t ≥ 0}.
We may represent the BMAP as the univariate Markov process X = {X(t) =
m · N(t) + J(t) : t ≥ 0}; the generator of X is an infinite matrix

G =




D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 . . .
...

...
...

...


 . (B.1)

Here the m-by-m matrices Dn, n ∈ N0, parameterize the BMAP. It is required
that D =

∑∞
n=0 Dn is finite and a generator; in fact D is the generator of the

phase process J which is in itself Markov. The matrix Dn specifies the rates of
transitions in J occurring simultaneously with a batch of n events occurring in
the point process.

By restricting the parameters of Dn one obtains sub-classes of special interest:
The Markov Modulated Poisson Processes (e.g. Fischer and Meier-Hellstern,
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1992) has D1 diagonal and Dk = 0 for k ≥ 2; the two-state case is termed a
Switched Poisson Process (van Hoorn and Seelen, 1983), and when only one of
the two diagonal elements in D1 is positive one obtains the Interrupted Poisson
Process (Kuczura, 1973) which is perhaps the simplest MAP, save the Poisson
process itself.

As a note on nomenclature, the literature is slightly inconsistent regarding the
terms MAP and BMAP. Here, we shall reserve the term MAP for a BMAP
with individual arrivals only, i.e., Dk = 0 for k > 1. We will derive results
in the general BMAP setting, but whenever there is a significant and useful
simplification in the MAP case we will state this result explicitly.

In our analysis of non-central moments of N(t) it becomes convenient to intro-
duce

D∗
n =

∞∑

i=0

inDi and Df
n =

∞∑

i=0

i[n]Di .

Here, i[n] is the factorial power i · (i−1) · · · (i−n+1), and we take 00 = 0[0] = 1
so that

D∗
0 = Df

0 =

∞∑

i=0

Dn = D .

Note that Df
1 = D∗

1, and that these expressions for the MAP simplify to

D∗
0 = Df

0 = D0 + D1 , D∗
n = D1 , for n ≥ 1, Df

n = 0 for n ≥ 2 .

Throughout, when we make use of D∗
n or Df

n we assume they are finite.

B.3 Formulas for moment matrices

This section considers the non-central moment matrices Ψn(t), which are given
by their (i, j)-elements, for t ≥ 0, p ∈ N0

[Ψp(t)]ij = E
i {Np(t)1(J(t) = j)} , (B.2)

as well as factorial moment matrices, Mp(t), for which the corresponding (i, j)-
element is

[Mp(t)]ij = E
i
{
N [p](t) · 1(J(t) = j)

}
.

Here, 1(A) denotes the indicator variable of the event A while E
i denotes expec-

tation w.r.t. P
i, the law of the BMAP with initial condition J(0) = i, N(0) = 0.
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We shall use the notation P
i,k and E

i,k when the counting process N starts in
state N(0) = k.

The factorial moment matrices were studied thoroughly by Narayana and Neuts
(1992), who obtained explicit matrix expressions for first and second order using
generating function techniques. In this section we generalize their results to
arbitrary order.

B.3.1 A decomposition formula

Theorem B.1 The non-central moment matrices Ψp(t) satisfy

Ψp(t1 + t2) =

p∑

i=0

(
p
i

)
Ψi(t1)Ψp−i(t2) ; p ∈ N . (B.3)

The same holds for the factorial moment matrices Mp(t)

Mp(t1 + t2) =

p∑

i=0

(
p
i

)
Mi(t1)Mp−i(t2) ; p ∈ N .

Proof: The result follows from the observation that the restrictions of the
arrival process to the intervals (0, t1] and (t1, t1 + t2] are independent, when
conditioning on the phase J(t1) at time t1. For notational brevity we introduce
N(t1, t2) = N(t1 + t2) − N(t1).

Then

[Ψp(t1 + t2)]ij = E
i { Np(t1 + t2)1(J(t1 + t2) = j)}

= E
i { (N(t1) + N(t1, t2))

p1(J(t1 + t2) = j)}

=

p∑

l=0

(
p
l

)
E

i
{
N(t1)

lN(t1, t2)
p−l1(J(t1 + t2) = j)

}
.

We continue the manipulation of each term in this sum to obtain

E
i
{

N(t1)
lN(t1, t2)

p−l1(J(t1 + t2) = j)
}

= E
i
{

E
i
{{

N(t1)
lN(t1, t2)

p−l1(J(t1 + t2) = j) | J(t1), N(t1)
}}}

= E
i
{

N(t1)
l
}

E
i
{
N(t1, t2)

p−l1(J(t1 + t2) = j) | J(t1), N(t1)
}

= E
i

{
N(t1)

l
m∑

k=1

1(J(t1) = k)

}
[Ψp−l(t2)]kj

=

m∑

k=1

[Ψl(t1)]ik[Ψp−l(t2)]kj .
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Combining these we obtain

[Ψp(t1 + t2)]ij =

p∑

l=0

(
p
l

) m∑

k=1

[Ψl(t1)]ik[Ψp−l(t2)]kj ,

which is the element-wise version of the stated matrix equation.

To see that the results also hold for the factorial moment matrices, note that
all computations in the proof of the theorem remain valid when replacing the
powers np with factorial powers n[p]. In particular we use the result

(a + b)[p] =

p∑

i=0

(
p
i

)
a[i]b[p−i] ,

which is known as the Chu-Vandermonde identity (Weisstein, 2003).

2

Corollary 1 The matrices Ψp(t) satisfy the forward and backward differential
equations

Ψ′
p(t) =

p∑

i=0

(
p
i

)
Ψi(t)D

∗
p−i , Ψ′

p(t) =

p∑

i=0

(
p
i

)
D∗

i Ψp−i(t) .

Similarly, Mp(t) satisfy

M′
p(t) =

p∑

i=0

(
p
i

)
Mi(t)D

f
p−i , M′

p(t) =

p∑

i=0

(
p
i

)
Df

i Mp−i(t) . (B.4)

2

Proof: The forward equation for Ψp(t) is proved by choosing (t1, t2) = (t, dt)
in Theorem B.1 and letting dt ց 0.

We find

Ψp(t + dt) − Ψp(t) =
p−1∑

i=0

(
p
i

)
Ψi(t)(D

∗
p−idt + o(dt)) + Ψp(t)(I + D∗

0dt + o(dt)) − Ψp(t)

reducing to the forward equation as dt ց 0. Here and in the following o(·) is
Landau’s o, in this case associated with the limit t ց 0. The estimates

Ψ0(t) = I + D∗
0dt + o(dt) and Ψp(t) = D∗

pdt + o(dt) (p ∈ N)
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as dt ց 0 are standard and come directly from the generator (B.1).

The backward equation can be proved correspondingly by choosing (t1, t2) =
(dt, t), and the equations for the factorial moment matrices follow analogously.

2

Corollary 2 The non-central moment matrices satisfy the recursive integral
equation

Ψp(t) =

∫ t

0

p−1∑

i=0

(
p
i

)
Ψi(u)D∗

p−ie
D(t−u) du

for t ≥ 0, p ∈ N. For the factorial moment matrices Mp(t) the corresponding
equations are

Mp(t) =

∫ t

0

p−1∑

i=0

(
p
i

)
Mi(u)Df

p−ie
D(t−u) du .

2

Proof: This result was derived by Narayana and Neuts for the first two
factorial moments, and their method applies verbatim in our case:

The solution to the forward equation in Ψp(t) is found by convolving the driving

function
∑p−1

i=0

(
p
i

)
Ψi(u)D∗

p−i with the impulse response, exp(Du) (R̊ade and

Westergren, 2004).

Similar recursive integral expression may be derived from the backwards equa-
tions. Note that in the case of the MAP, the recursive formula for the factorial
moment simplifies to

Mp(t) = p ·
∫ t

0

Mp−1(u)D1e
D(t−u) du .

B.3.2 An alternative derivation based on the semigroup
structure

We now reconsider Theorem B.1 taking the semigroup structure of the transition
probabilities into account. At the end of this section we discuss the benefits of
this approach. Let x denote a state (n, j) in the univariate representation X of
(N, J) and let f : x 7→ f(x) denote a function on state space. Now, recall from
standard Markov theory that the transition probabilities {P(t) : t ≥ 0} form a
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continuous semigroup of linear operators, which each map an initial distribution
π of X(0) to the terminal distribution πP(t) of X(t). Dually, P(t) maps the
function f to its expectation

[P(t)f ](x) = E
x {f(X(t))} ,

which is a function of the initial condition X(0) = x, whenever the expectation
exists. We note that f can be represented as an infinite vector of function values
and that one can represent the operation of P(t) on f directly as a matrix vector
product. We will generally interpret P(t)f in the general, more abstract, sense.
In the following we will use f(n, j) for f(x) to avoid the somewhat cumbersome
expressions that extract j and n from x.

Let V be a linear space of such functions f with the property that V is invariant
under the semigroup, i.e. ∀t ≥ 0 : P(t)V ⊂ V . Then, trivially, the restrictions
PV(t) of the operators P(t) to V also form a semigroup, i.e. we may write

PV(t + s) = PV(t) ⋆ PV(s) .

Here ⋆ indicates operator concatenation, (P ⋆ Q)(f) = P (Q(f)). If V is finite
dimensional, then PV(t) admits a finite matrix representation and thus the
composition rule ⋆ involves only matrix algebra.

We now show that Theorem B.1 is exactly the algebraic representation of the
composition rule ⋆ for a suitable function space V . In fact, let V be the linear
space of functions f of the form

f(n, j) =

p∑

i=0

αij ni ,

for some coefficients αij ∈ R, i = 0, . . . , p, j ∈ 1, . . . , m. Thus, for fixed phase
j, the function f(·, j) is a polynomial of order no greater than p. This space V
has dimension m(p + 1).

Proposition B.2 The space V thus defined is invariant under P(t), for any
t ≥ 0.

Proof: The claim follows from the additive structure of the BMAP:

E
j,n {f(N(t), J(t))} = E

j,0 {f(n + N(t), J(t))} ,

which holds for any f whenever the expectation exists. Now, let f ∈ V and let
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αij be the corresponding coefficients. We then obtain:

(P(t)f)(j, n) = E
j,n {f(N(t), J(t))}

= E
j,0

{
p∑

i=0

αiJ(t)(N(t) + n)i

}

=

p∑

i=0

E
j,0

{
αiJ(t)

i∑

l=0

(
i
l

)
N i−l(t)nl

}

=

p∑

l=0

[
p∑

i=l

(
i
l

)
E

j,0
{
αiJ(t)N

i−l(t)
}
]

nl =

p∑

l=0

βljn
l ,(B.5)

with the obvious definition of βlj . We now have a polynomial in n of order no
greater than p, for fixed phase j, and thus an element in V .

2

We collect the coefficients αij , that uniquely identifies f ∈ V , in (p + 1) column
vectors αl, l = 0, . . . , p each of dimension m. The p + 1 tuple of the αl’s is
denoted by αp. We are now ready to give the algebraic representation of PV (t).

Proposition B.3 Let f ∈ V be represented by αp = (α0, . . . ,αp) and let t ≥ 0.
Define g = P (t)f and let g be represented by the p + 1 tuple of column vectors
βp =

(
β0, . . . ,βp

)
, i.e.

g(j, n) =

p∑

i=0

βijn
i .

Then

βl =

p∑

i=l

(
i
l

)
Ψi−l(t)αi (B.6)

holds for l = 0, . . . , p.

Proof: The result follows immediately from Equation (B.5) in Proposition B.2.
Since

E
j,0
{
αiJ(t)N

i−l(t)
}

=

m∑

k=1

αikE
j,0
{
1(J(t) = k)N i−l(t)

}
=

m∑

k=1

[Ψi−l(t)]jkαik

we obtain the element-wise version of (B.6).

2
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The restriction PV(t) may thus be represented by the p + 1-tuple Ψp(t) =
(Ψ0(t), . . . , Ψp(t)), and we may write

βp = Ψp(t) ◦αp

where the rule ◦ is defined by (B.6) for l = 0, . . . , p.

Finally, we must give the algebraic representation of operator concatenation ⋆.
By the semigroup property we immediately have

Ψp(t + s) ◦αp = (Ψp(t) ⋆ Ψp(s)) ◦αp = Ψp(t) ◦ (Ψp(s) ◦αp) .

Writing out the first and last term using (B.6) and comparing terms we obtain

Zp = Xp ⋆ Yp ⇔ Zn =

n∑

i=0

(
n
i

)
XiYn−i ,

where Zp = (Z0, . . . , Zp) is a p + 1-tuple of m-by-m matrices and similarly for
Xp and Yp. With this definition of ⋆, Theorem B.1 is simply the semigroup
property

Ψp(t + s) = Ψp(t) ⋆ Ψp(s) .

Alternatively, the composition rule can be represented as matrix multiplication,
but less compact. Introduce the block matrix Ψp with (p + 1) × (p + 1) blocks

each of size m×m, where the (i, j)th block entry is [Ψp]ij =

(
j − 1
i − 1

)
Ψj−i for

j ≥ i and 0 for i > j. If we re-interpret the p + 1 tuples βp and αp as column
vectors, then βp = Ψpαp and Ψp(t + s) = Ψp(t)Ψp(s).

We have now established theorem B.1, and may turn to some consequences
of the result which follow easily from this approach. First, the infinitesimal
generator of the semigroup Ψp(·) is

lim
tց0

1

t
(Ψp(t) − Ψp(0)) = (D∗

0 , . . . , D∗
p)

and since a continuous semigroup of operators is characterized by its generator,
we immediately obtain the following:

Theorem B.4 The matrix family Ψi(t) for i = 0, . . . , p and t ≥ 0 is uniquely
specified by the decomposition rule (B.3) and the behavior near t = 0

Ψ0(t) = I + D∗
0t + o(t) and Ψp(t) = D∗

pt + o(t) ; p ∈ N .

Similarly, we immediately recognize the equations of corollary 1 as the standard
differential equations of semigroups

d

dt
Ψp

0(t) = (D∗
0 , . . . , D∗

p) ⋆ Ψp
0(t) = Ψp

0(t) ⋆ (D∗
0 , . . . , D∗

p) .
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Also the similar statements for the factorial moments are, from this perspective,
immediate. This is because the sub-space of polynomials of order no greater
than p is also the sub-space of factorial moments of order no greater than p;
the difference merely amounts to choosing a different basis when performing the
calculations. In this case the behavior near t = 0 is such that

M0(t) = I + Df
0 t + o(t) and Mp(t) = Df

p t + o(t) ; p ∈ N ,

and thus the generator of the semigroup Mp
0 (·) = (M0(·), . . . , Mp(·)) is (Df

0 , . . . , Df
p ).

Finally, we remark that we could have taken the dual point of view, i.e. instead
of considering functions f on state space we could have argued in terms of
probability distributions π on state space. In appendix B.5 we pursue this
thread.

It is now fair to compare the approach of this section with the original proof
of Theorem B.1. The original proof has the advantage of relying solely on
elementary probability theory while the alternative argumentation in this section
is more abstract. However, it is appealing that this abstraction allows us to
conceptualize Theorem 1, after which it becomes simply a matter of filling in
the specific details to obtain the exact form of the decomposition rule. This also
lets us anticipate similar results in a more general setting, allowing us e.g. to
replace the Markov Chain J(t) with a diffusion process. The computational tool
will then be partial differential equations rather than matrix algebra. Finally,
the semigroup perspective seems to provide the easiest proof of the uniqueness
result of theorem B.4, without which one could imagine some confusion from
the fact that Ψp(t) and Mp(t) satisfy the same decomposition rule.

B.3.3 Product densities and integral formulas for moments

We now turn to the stochastic geometry of point processes as presented in Stoyan
et al. (1995b). Recall from this framework that a key descriptor of a point
process is the product density, from which the factorial moments are obtained
by integration. Here, we first establish such product densities for the MAP, and
state the corresponding integral formulas for the factorial moments.

The motivation for the material in this section is twofold. First, the numerical
evaluation presented in section B.3.4 are the discretized or uniformized version of
the product densities. Second, the material is natural to include when discussing
moment properties of point processes.

To this end, we first need a product density which takes into account the phase
process. This is the pth order product density matrix

R1,...,1(t1, . . . , tp; t) ,
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an m-by-m matrix, the (i, j) element of which is given by

[R1,...,1(t1, . . . , tp; t)]ij ·dt1 · · ·dtp = E
i

{
p∏

k=1

N(tk, tk + dtk) · 1(J(t) = j)

}
+o(dt1·· · · dtp) .

The subscripts in R1,...,1, the number one repeated p times, are motivated by the
generalization to the BMAP below. The (i, j) element of this product density
matrix specifies the probability, when starting in phase J(0) = i, of having an
arrival near each point of time t1, . . . , tp, and ending in phase J(t) = j.

It is then a result from the theory of point processes (Stoyan et al., 1995b) that
the pth order factorial moment of N(t), partitioned according to the phase J(t),
is obtained as

E
i
{
N [p](t)1(J(t) = j)

}
=

∫ t

0

· · ·
∫ t

0

[R1,...,1(t1, . . . , tp; t)]ij dtp · · ·dt1 .

Lemma B.5 Consider the MAP. Let p ∈ N and 0 < t1 < · · · < tp < t, then

R1,...,1(t1, . . . , tp; t) =

(
p∏

i=1

eD(ti−ti−1)D1

)
eD(t−tp) ,

where we take t0 = 0.

The lemma is easy to prove by first verifying the case p = 1, and then using the
Markovian structure of the process (J(t), N(t)) to perform induction on p, by
conditioning on the phase at some time s so that tp−1 < s < tp.

Since the product density matrix is invariant under permutations of the times
t1, . . . , tp, the lemma specifies the product density matrix for (t1, . . . , tp) ∈ [0, t]p,
except on a set of measure zero where two or more arguments ti and tj coincide.
Since there are p! such permutations, we obtain:

Corollary B.6 For the MAP

Mp(t) = p!

∫

0<t1<···<tp<t

(
p∏

i=1

eD(ti−ti−1)D1

)
eD(t−tp) dt1 · · · dtp .

We now generalize these results to the BMAP. Let us first note that N [p](t)
equals the number of p-tuples which can be constructed from the set of arrivals
{1, . . . , N(t)} such that each element occurs at most once. Let us agree to call
such a p-tuple valid, and compute its expected number by partitioning according
to which batches the arrivals are part of. Throughout, we let the BMAP start
in phase J(0) = i and count only realizations for which J(t) = j. First, the
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expected number of valid p-tuples for which all arrivals stem from the same
batch, is the (i, j)-element of

∫ t

0

eDt1Df
peD(t−t1) dt1 .

Next, the expected number of valid p-tuples which first contain p1 ∈ {1, . . . , p − 1}
arrivals from one batch and next p2 = p − p1 arrivals from a later batch, is the
(i, j)-element of

∫ t

0

∫ t

t1

eDt1Df
p1

eD(t2−t1)Df
p2

eD(t−t2) dt2 dt1 .

Each such tuple can, in turn, be shuffled to form a total of p!/(p1!p2!) valid
p-tuples.

In general, for any n natural numbers (p1, p2, . . . , pn) which sum to p, the ex-
pected number of valid p-tuples where the first p1 arrivals stem from one batch,
the next p2 from a later batch, etc, is the (i, j)-element of

∫ t

0

∫ t

t1

· · ·
∫ t

tn

(
n∏

i=1

eD(ti−ti−1)Df
pi

)
eD(t−tn)dtn · · · dt2 dt1 .

Since each such tuple can be rearranged in p!/(p1! · · · pn!) different ways, we
obtain:

Theorem B.7 Let p ∈ N, then

Mp(t) =

p∑

n=1

∑
∑n

r=1 pr = p
pr ≥ 1

p!

p1! · · · pn!

∫

0<t1<···<tn<t

Rf
p1,...,pn

(t1, . . . , tn; t) dtn · · · dt1 ,

(B.7)
where, for 0 = t0 < t1 < · · · < tn < t,

Rf
p1,p2,...,pn

(t1, . . . , tn; t) =

(
n∏

i=1

eD(ti−ti−1)Df
pi

)
eD(t−tn) .

We note that Theorem B.7 could be proved alternatively by verifying that the
expression in (B.7) satisfies the forward equation (B.4) of Corollary 1.

This result has an immediate analogy for non-central moments. Since the deriva-
tion is completely parallel to the one just given, we simply state the result



B.3 Formulas for moment matrices 117

without proof:

Ψp(t) =

p∑

n=1

∑
∑n

r=1 pr = p
pr ≥ 1

p!

p1! · · · pn!

∫

0<t1<···<tn<t

R∗
p1,...,pn

(t1, . . . , tn; t)dtn · · · dt1 ,

for p ∈ N, where

R∗
p1,...,pn

(t1, . . . , tn; t) =

(
n∏

i=1

eD(ti−ti−1)D∗
pi

)
· eD(t−tn) .

B.3.4 Numerical evaluation

We now turn to the numerical evaluation of the non-central moments matrices
Ψi(t) for i ∈ N and t > 0. First, it should be noted that since the tuple
(Ψ0(t), . . . , Ψp(t)) satisfies a homogeneous linear time-invariant system, it can be
computed numerically by evaluating the matrix exponential to a square matrix
of side length (p + 1) · m. Although this straightforward approach is sufficient
when the side length is moderate, more efficient algorithms are soon required.

Narayana and Neuts demonstrated how to calculate the first and second order
moment matrices efficiently using information for small values of t and then
applying equation (B.3) recursively. We now generalize their results for non-
central moment matrices of arbitrary order.

The calculation of the matrix exponential by uniformization is now standard
(Neuts and Li, 1995)

eDt = e−λt
∞∑

k=0

(λt)k

k!
Kk ,

where

K = I +
1

λ
D and λ ≥ max

i
(−Dii) .

The extension of this method to the first order moment matrix was given
in Narayana and Neuts (1992):

Ψ1(t) = e−λt
∞∑

k=0

(λt)k+1

(k + 1)!
E1(k) ,

where

K∗
j =

1

λ
D∗

j and Ei(k + 1) = Ei(k)K + Kk+1K∗
i .

The generalization to arbitrary moment order matrices is:
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Corollary 3 The matrices Ψp (p ≥ 1) are given by

Ψp(t) = e−λt

p∑

n=1

∑
∑n

r=1 pr = p
pr ≥ 1

∞∑

k=0

p!

p1! · · · pn!

(λt)k+n

(k + n)!
Ep1,...,pn

(k) , (B.8)

with

E∅(k) = Kk Ep1,...,pn
(0) =

n∏

r=1

K∗
pr

Ep1,...,pn
(k + 1) = Ep1,...,pn

(k)K + Ep1,...,pn−1(k + 1)K∗
pn

.

2

Proof: We prove the result by induction. The formula is obviously true for
p = 1. We assume it holds for all i ≤ p, and apply corollary 2 for Ψp+1 to find

Ψp+1 =

∫ t

0

e−λu
∞∑

k1=0

(λu)k1

k1!
KkλK∗

p+1

∞∑

k2=0

e−λ(t−u) (λ(t − u))k2

k2!
Kk2du +

∫ t

0

p∑

i=1

(
p + 1

i

)
e−λu

i∑

n=1

∑
∑n

r=1 pr = i
pr ≥ 1

·

∞∑

k1=0

i!

p1! · · · pn!

(λt)k1+n

(k1 + n)!
Ep1,...,pn

(k1)λK∗
p+1−i ·

∞∑

k2=0

e−λ(t−u) (λ(t − u))k2

k2!
Kk2du .

Using the Beta integral formula

∫ t

0

(λu)k1

k1!
λ

(λ(t − u))k2

k2!
du =

(λt)k1+k2+1

(k1 + k2 + 1)!
,



B.3 Formulas for moment matrices 119

we get

e−λt
∞∑

k1=0

∞∑

k2=0

(λt)k1+k2+1

(k1 + k2 + 1)!
Kk1K∗

p+1K
k2+

e−λt

p∑

i=1

(
p + 1

i

) i∑

n=1

∑
∑n

r=1 pr = i
pr ≥ 1

i!

p1! · · · pn!
·

∞∑

k1=0

∞∑

k2=0

(λt)k1+k2+l+1

(k1 + k2 + n + 1)!
Ep1,...,pn

(k1)K
∗
p+1−iK

k2 .

Now the first term equals

e−λt
∞∑

k=0

(λt)k+1

(k + 1)!

k∑

r=0

KrK∗
p+1K

k−r = e−λt
∞∑

k=0

(λt)k+1

(k + 1)!
Ep+1(k) ,

corresponding to the first term in the sum of (B.8) (n = 1). For the second term
we get

e−λt

p∑

n=1

p∑

i=n

∑
∑n

r=1 pr = i
pr ≥ 1

(p + 1)!

(p + 1 − i)!i!

i!∏n
r=1 pr!

·

∞∑

k=0

(λt)k+n+1

(k + n + 1)!

k∑

s=0

Ep1,...,pn
(s)K∗

p+1−iK
k−s

= e−λt

p+1∑

n=2

p∑

i=n−1

∑

∑n−1
r=1 pr = i
pr ≥ 1

(p + 1)!
∏n−1

r=1 pr! · (p + 1 − i)!

∞∑

k=0

(λt)k+n

(k + n)!
Ep1,...,pn−1,p+1−i(k)

=

p+1∑

n=2

∑
∑n

r=1 pr = p + 1
pr ≥ 1

(p + 1)!∏n
r=1 pr!

∞∑

k=0

(λt)k+n

(k + n)!
Ep1,...,pn

(k),

where the last equality can be verified by straightforward calculations.

B.3.5 Results for discrete time processes

For the discrete BMAP the matrix D =
∑∞

n=0 Dn is stochastic. The decom-
position rule of Theorem B.1 applies for t1 and t2 integer. Special cases are
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Ψi(1) = D∗
i , Ψn(2) =

n∑

i=0

(
n
i

)
D∗

i D
∗
n−i ,

and the forward and backward difference equations

Ψn(t + 1) =

n∑

i=0

(
n
i

)
Ψi(t)D

∗
n−i =

n∑

i=0

(
n
i

)
D∗

i Ψn−i(t) .

Also for the discrete time case, we may solve these difference equations using the
unit pulse response and the transfer function technique (R̊ade and Westergren,
2004), thus establishing recursive equations analogous to those of Corollary 2

Ψn(t) =

t∑

j=1

n−1∑

i=0

(
n
i

)
Ψi(j − 1)D∗

n−iD
t−j , n ≥ 1, t ≥ 1 . (B.9)

B.4 Asymptotic behavior of low order moments

of the BMAP and the tBMAP

We now consider a BMAP of dimension m + 1, m ∈ N, for which the m + 1’st
state is an absorbing state in which no arrivals occur. We will denote this
process a terminating BMAP (tBMAP) Latouche et al. (2003). We aim to
analyze the behavior of the process, under the condition that the process has
not terminated, in the limit t → ∞.

B.4.1 Asymptotics in the continuous time case

For such a continuous tBMAP, the parameter matrices Dn can be partitioned
as

Dn =

[
Cn c0

n

0 0

]
,

where Cn is m × m. This block structure of the process applies also to the
moment matrices: Let Ψp(t) be the m × m-matrix with (i, j)’th-element

E
i {N(t)p 1(J(t) = j)} .

Then the matrix functions Ψp(t) depend on the blocks Ci for i = 0, . . . , p, and
are independent of the blocks c0

n. The usefulness of this observation is that
it allows a unified treatment of the terminating case where C =

∑∞
i=0 Ci is a

sub-generator, and the persistent case where C is a generator. In the persistent
case the partitioning of Dn is irrelevant. Thus, in the persistent case it is most
natural to think of Cn as Dn.
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In both cases, the analysis assumes that C is irreducible, implying that there is
a unique eigenvalue λ1 of maximum real part (Seneta, 1981). Then C admits
the block diagonalization

C =
[

v1 V2

] [ λ1 ·
· Λ2

] [
u1

U2

]
.

Here the dominant eigenvalue λ1 is 0 in the persistent case and negative in the
transient case. We require that

[
u1

U2

] [
v1 V2

]
= I .

Let λ2 be a bound on the spectrum of Λ2, i.e. a negative number with λ2 < λ1

such that Λ2 − λ2I is asymptotically stable.

Theorem B.8 If C is irreducible, then

Ψ1(t) = teλ1tv1ρu1 + eλ1t(ΠC∗
1v1u1 + v1u1C

∗
1Π) + o(eλ2t) (B.10)

and

Ψ2(t) =
1

2
t2eλ1t · Ξ2

2 + teλ1t · Ξ1
2 + eλ1t · Ξ0

2 + o(eλ2t) , (B.11)

where o(eλ2t)
eλ2t → 0 as t → ∞. Here

ρ = u1C
∗
1v1

is the fundamental rate of the dominant mode,

Π = V2(λ1I − Λ2)
−1U2 = (v1u1 + λ1I − C)−1 − v1u1

is a pseudo-inverse of λ1I − C, and

Ξ2
2 = 2v1ρ

2u1

Ξ1
2 = v1u1C

∗
2v1u1

+2 (v1u1C
∗
1v1u1C

∗
1Π + v1u1C

∗
1ΠC∗

1v1u1 + ΠC∗
1v1u1C

∗
1v1u1)

Ξ0
2 = (ΠC∗

2v1u1 + v1u1C
∗
2Π) +

2 (ΠC∗
1ΠC∗

1v1u1 + ΠC∗
1v1u1C

∗
1Π + v1u1C

∗
1ΠC∗

1Π)

−2 (ΠΠC∗
1v1u1C

∗
1v1u1 + v1u1C

∗
1ΠΠC∗

1v1u1 + v1u1C
∗
1v1u1C

∗
1ΠΠ) .

Proof: The matrix functions Ψp(t) solve backward equations similar to those
in corollary 1, but with D∗

i replaced by C∗
i . In Laplace domain, the system may

be written

sΨ̃p(s) − I · 1(p = 0) =

p∑

i=0

(
p
i

)
C∗

i Ψ̃p−i(s) . (B.12)
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Here Ψ̃p(s) denotes the usual Laplace transform of Ψp(t). For a given p the
solution is readily found using the tridiagonal structure of the system. The first
three elements are

Ψ̃0(s) = (sI − C)−1 ,

Ψ̃1(s) = (sI − C)−1C∗
1(sI − C)−1 , and

Ψ̃2(s) = (sI − C)−1C∗
2(sI − C)−1 + 2(sI − C)−1C∗

1(sI − C)−1C∗
1(sI − C)−1 .(B.13)

We now obtain from the block diagonalization that

Ψ̃0(s) =
1

s − λ1
v1u1 + V2(sI − Λ2)

−1U2 ,

which in time domain implies the well known result

Ψ0(t) = v1u1e
λ1t + o(eλ2t) as t → ∞ .

Substituting this into the expression for Ψ̃1, multiplying out and using

1

s − λ1
(sI − Λ2)

−1 =
1

s − λ1
(λ1I − Λ2)

−1 − (λ1I − Λ2)
−1(sI − Λ2)

−1

to reduce, we obtain

Ψ̃1(s) =
1

(s − λ1)2
v1u1C

∗
1v1u1

+
1

s − λ1
(ΠC∗

1v1u1 + v1u1C
∗
1Π)

−V2(sI − Λ2)
−1U2ΠC∗

1v1u1

−v1u1C
∗
1ΠV2(sI − Λ2)

−1U2

+V2(sI − Λ2)
−1U2C

∗
1V2(sI − Λ2)

−1U2 .

Note that the last three terms in Ψ̃1(s) are analytic for ℜs > λ2. In time domain
this implies (B.10).

For p = 2 we repeat the exercise. Using Ω(·) to denote a function which is
analytic in the open right half plane, we obtain

Ψ̃2(s) =
1

(s − λ1)3
Ξ2

2 +
1

(s − λ1)2
Ξ1

2 +
1

(s − λ1)1
Ξ0

2 + Ω(s − λ2) ,

where Ξ0
2, Ξ1

2, and Ξ2
2 are as in the theorem. In time domain, this implies (B.11).

2
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Using Π = (v1u1 + λ1I − C)−1 − v1u1 for the first moment of the BMAP we
get the expression stated in Narayana and Neuts (1992). Using the expansion
method of that paper for the integral formulas we obtained (B.11). We find the
proposed method somewhat more transparent and slightly less cumbersome.
In addition this method elegantly unifies the derivations for the continuous,
discrete, and transient cases.

We now turn to the conditional moments for the tBMAP

E
π {Np(t) | J(t) ∈ B} ,

for p = 1, 2. Here B ⊂ {1, . . . , m} is a non-empty set of transient states such
that u1eB 6= 0, where eB is the indicator vector corresponding to B. The
expectation is w.r.t. the law of the tBMAP starting with N(0) = 0 and with
J(0) distributed on {1, . . . , m} according to m-vector π. These conditional
moments are obtained as

E
π {Np(t) | J(t) ∈ B} =

πΨp(t)eB

πΨ0(t)eB
.

Corollary 4 As t → ∞, the conditional expectation admits an affine asymptote
given by

E
π {N(t) | J(t) ∈ B} = ρ · t +

πΠC∗
1v1

πv1
+

u1C
∗
1ΠeB

u1eB
+ o(e(λ1−λ2)t) .

Furthermore, the conditional mean-square has the parabolic asymptote

E
π {N2(t) | J(t) ∈ B

}
= t2ρ2 + t

πΞ1
2eB

πv1u1eB
+

πΞ0
2eB

πv1u1eB
+ o(e(λ1−λ2)t) .

Thus the variance has the affine asymptote

V
π {N(t) | J(t) ∈ B} = t · (u1C

∗
2v1 + 2u1C

∗
1ΠC∗

1v1) + Φ + o(e(λ1−λ2)t) ,

where we have used the shorthand

Φ =
πΠC∗

2v1

πv1
+

u1C
∗
2ΠeB

u1eB

+2
πΠC∗

1ΠC∗
1v1

πv1
+ 2

u1C
∗
1ΠC∗

1ΠeB

u1eB

−2
πΠΠC∗

1v1u1C
∗
1v1

πv1
− 2u1C

∗
1ΠΠC∗

1v1 − 2
u1C

∗
1v1u1C

∗
1ΠΠeB

u1eB

−
(
πΠC∗

1v1

πv1

)2

−
(

u1C
∗
1ΠeB

u1eB

)2

. (B.14)

2

Note that the intercept for the conditional expectation contains two terms; one
depending on the target set B, and one depending on the initial distribution
and vanishing when π = u1, i.e., when the process is quasi-stationary.
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B.4.2 Asymptotics in the discrete time case

The derivations of this section carry over virtually unchanged to the discrete
time case and we get the slightly surprising result that the asymptotic expansions
are almost identical in continuous and discrete time.

For the discrete time case, we assume that C is a stochastic or sub-stochastic
matrix. The dominant eigenvalue λ1 is in the interval [0, 1], taking the value
1 in the persistent case and a value less than 1 in the transient case. That λ1

(and λ2) dominate Λ2 now means that all eigenvalues of Λ2 are within the open
disk with radius λ1 (λ2).

To proceed, introduce the z-transform

Ψ̃D
n (z) =

∞∑

ν=0

z−νΨD
n (ν)

The superscript D indicates discrete time. We have

Ψ̃D
0 (z) = z(zI − C)−1 .

while for n ∈ N equation (B.9) implies

Ψ̃D
n (z) =

n−1∑

i=0

(
n
i

)
Ψ̃D

i (z)C∗
n−i(zI − C)−1 .

Thus in general
Ψ̃D

n (z) = zΨ̃n(z) ,

where Ψ̃n(·) are the matrix algebraic expressions for the Laplace transforms of
equations (B.12) and (B.13). The spectral decomposition is therefore identical
in discrete and continuous time. We obtain

Ψ̃D
1 (z) =

z

(z − λ1)2
v1ρu1 +

z

z − λ1
(ΠC∗

1v1u1 + v1u1C
∗
1Π) + Ω

(
z

λ2

)

and

Ψ̃D
2 (z) =

z

(z − λ1)3
Ξ2

2 +
z

(z − λ1)2
Ξ1

2 +
z

z − λ1
Ξ0

2 + Ω

(
z

λ2

)
.

Here, Ω(·) indicates a function which is analytic outside the unit disk.

In the time domain, this implies

ΨD
1 (ν) = νλν−1

1 v1ρu1 + λν
1(ΠC∗

1v1u1 + v1u1C
∗
1Π) + o(λν

2)
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and

ΨD
2 (ν) = Ξ0

2λ
ν
1 + Ξ1

2νλν−1
1 + Ξ2

2(
1

2
ν2λν−2

1 − 1

2
νλν−2

1 + o(λν
2) ,

where λ1 = 1 in the persistent case.

The affine asymptotes therefore become

E {Nν |Jν ∈ B} = ν · ρ

λ1
+
πΠC∗

1v1

πv1
+

u1C
∗
1ΠeB

u1eB
+ o((λ2/λ1)

ν)

and

V {Nν |Jν ∈ B} = ν ·
[
u1C

∗
2v1

λ1
−
(

ρ

λ1

)2

+ 2
u1C

∗
1ΠC∗

1v1

λ1

]
+Φ+o((λ2/λ1)

ν) ,

where Φ is as in (B.14).

B.5 Higher order moments of RAPs (BRAPs)

Rational Arrival Processes (RAPs) are a class of point processes introduced by
Asmussen and Bladt in 1999; see also Bladt and Neuts (2003) for interpretations
and applications. Letting φ = {ti : i ∈ N} denote the random set of arrival
times, the defining property of a RAP is the existence of a finite-dimensional
space V , the linear span of laws of point processes, such that the conditional law
of the future arrival times {ti − t : ti ∈ φ, ti > t}, given the past process φ∩[0, t],
takes value in V for all t and all realizations. Thus, the information obtained by
observing the point process on [0, t] can be summarized by a finite-dimensional
statistic, which is sufficient for prediction. See Asmussen and Bladt (1999) for
an in-depth treatment.

This property clearly holds for the MAP, where the past is summarized in the
conditional probabilities P {J(t) = j | Ft} for j = 1, . . . , m. Here, Ft is the
information σ(φ ∩ [0, t]), and we take as basis for V the m laws of the MAP
when starting in phase J(0) = j, for j = 1, . . . , m. Thus, RAPs generalize
MAPs. The relationship between the two classes is similar to the relationship
between Matrix Exponential (ME) distributions and Phase Type distributions.
Thus, in general analytical expressions are identical for RAPs and MAPs. One
example, apart from those in Asmussen and Bladt (1999), is the quasi-birth-
and-death-process with RAP components Bean and Nielsen (2005). A simple
example of a RAP is the renewal process where inter-arrival times have density
2e−t(1 − cos(t)). This cannot be a MAP because the density vanishes for some
t > 0. See Mitchell (2001) for such cascaded Matrix Exponential distributions.

With this background, we proceed to show that also our Theorem B.1 holds in
the RAP setting. To this end, let m be the dimension of the space V in the
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definition of the RAP, choose a basis for this space consisting of m laws, and
let A(t) = (A1(t), . . . , Am(t)) be the coordinates of the conditional law of the
future arrival times w.r.t. this basis.

Define m-by-m matrices

[Ψp(t)]ij = E
i { Np(t)Aj(t)} ,

where E
i is expectation w.r.t. the law of the RAP starting with A(0) = ei, an

m-vector with a 1 at position i and zeros elsewhere. Note that for the MAP, this
definition of Ψp is consistent with (B.2) since in this case the initial condition
A(0) = ei implies J(0) = i w.p. 1, and

E
i { Np(t)Aj(t)} = E

i
{

Np(t)Ei {1(J(t) = j)|Ft}
}

= E
i
{

E
i {Np(t)1(J(t) = j)|Ft}

}

= E
i { Np(t)1(J(t) = j)} .

We then obtain

[Ψp(t + s)]ij = E
i
{

E
i {[N(t) + N(t, t + s)]

p · Aj(t + s) | Ft}
}

=

p∑

k=0

(
p
k

)
E

i
{

E
i
{
Nk(t)Np−k(t, t + s)Aj(t + s) | Ft

}}

=

p∑

k=0

(
p
k

)
E

i

{
Nk(t)

m∑

l=1

Al(t)[Ψp−k(s)]lj

}

=

p∑

k=0

(
p
k

) m∑

l=1

[Ψk(t)]il[Ψp−k(s)]lj .

This is the element-wise version of the matrix equation

Ψp(t + s) =

p∑

k=0

(
p
k

)
Ψk(t)Ψp−k(s)

i.e. also for the RAP the semigroup structure of theorem B.1 holds. It is
immediately clear that also forward and backward equations of corollary 1 apply
to the RAP as well, as do the corresponding results for the factorial moments,
i.e. the matrix functions Mp(t).
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Appendix A. Duality in the semigroup approach

In section B.3.2 we derived theorem B.1 from the semigroup perspective, con-
sidering the transition probabilities P(t) operating on functions on the state
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space. We noted in passing that it was possible to adopt the dual point of view
where P(t) operate on probability distributions. For the sake of completeness,
this appendix outlines this dual point of view.

The duality between functions on the state space and distributions on the state
space is a standard construction where one takes distributions to represent linear
operators: applying a distribution to a function amounts to taking expectation
of the function w.r.t. this distribution.

In section B.3.2 we established invariance under P(t) of the space V of pth order
polynomials in n, and we now pursue the dual of this result. The dual space V∗

contains finite-valued linear operators on V . Clearly, a probability distribution
π is a finite-valued linear operator on V if and only if it has finite pth order
moments, i.e.

E
π {Np1(J = j)} < ∞ ,

for all j = 1, . . . , m. Here E
π denotes expectation w.r.t. the distribution π.

Moreover, any linear operator on V can be obtained as a linear combination of
such probability distributions. Thus, V∗ is spanned by probability distributions
on the state space with finite pth order moments.

However, two probability distributions π and ψ define the same linear opera-
tor on V if all their moments up to order p coincide, i.e. E

π {N i1(J = j)
}

=

E
ψ
{
N i1(J = j)

}
holds for any j ∈ {1, . . . , m} and any i ∈ {0, . . . , p}. In this

case we say that that π and ψ are equivalent, π ∼ ψ.

Let π be a fixed but arbitrary element in V∗. To characterize π as an operator
on V , it suffices to know the image under π of the basis functions in V , which
are the functions gij(n, k) = ni1(k = j) for i = 0, . . . , p and j = 1, . . . , m. We
therefore define

βij = 〈π, gij〉
and note that when π is a probability distribution, this amounts to specifying
the moments up to order p and restricted to each phase j. For a fixed but
arbitrary element g in V ,

g =

p∑

i=0

m∑

j=1

αijgij ,

we then obtain

〈π, g〉 =

p∑

i=0

m∑

j=1

αijβij .

As P(t) operates on V , we introduce the dual operators P∗(t) which operate on
V∗; defined as usual by 〈π,P(t)g〉 = 〈P∗(t)π, g〉 whenever t > 0, π ∈ V∗, g ∈ V .
A convenient notation is obtained by taking distributions in V∗ to be infinite
row vectors. With this appeal to matrix notation, we shall write (P∗(t))(π) as
simply πP(t).
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We can now state the dual of proposition B.2:

Proposition B.9 Give t ≥ 0. The equivalence relation ∼ is invariant under
P∗(t), i.e. if π ∼ ψ then πP(t) ∼ ψP(t). Furthermore, V∗ is invariant under
P∗(t).

The invariance of the equivalence relation simply says that the statistics E
{
N i(0)1(J(0) = j)

}

for all (i, j) ∈ {0, . . . , p}×{1, . . . , m} are sufficient to determine the pth moment
of N(t) - given these, other statistics of the initial distribution are irrelevant.
Next, that V∗ is invariant under P∗(t) says that if the initial distribution has
finite pth order moments, then so has the distribution at time t.

The proof of the proposition can now follow that of proposition B.2; however
we shall take the latter for granted and employ duality. As before, let g be a
fixed but arbitrary element in V . First, since V is invariant under P(t) we have
P(t)g ∈ V ; thus 〈π,P(t)g〉 is well defined. This implies that 〈πP(t), g〉 is well
defined. Since g ∈ V is arbitrary this implies that πP(t) ∈ V∗ and thus V∗ is
invariant under P∗(t). Next, assume π ∼ ψ, then 〈π − ψ,P(t)g〉 = 0 which
implies 〈πP(t) − ψP(t), g〉 = 0. Again, since g is arbitrary this implies that
πP ∼ ψP.

To finally obtain the algebraic representations, organize the moments βij in p+1
row-vectors (β0, . . . ,βp), each corresponding to the same order moments and
with m elements, one for each phase. We then have, using (B.6):

〈π,P(t)g〉 =

p∑

l=0

βl

p∑

i=l

(
i
l

)
Ψi−l(t)αi =

p∑

i=0

[
i∑

l=0

(
i
l

)
βlΨi−l(t)

]
αi .

The term in the brackets is the algebraic representation of P∗(t): Given the
moments of the initial distribution, this specifies the moments at time t.

We can now obtain theorem B.1 by operator concatenation as in B.3.2; the
derivation would be entirely analogous.
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Abstract

We use a stochastic model with an appealing geometric interpretation to demon-
strate how heterogeneity may change the functional response. In our model food
is encountered as a Poisson process in non-depletable patches. We express the
three free parameters of the model as functions of the mean density of prey. This
formulation enables us to show that the functional response is, in general, not
of Holling type II form. We present some special cases with Holling type II re-
sponses and other examples that do not belong to the type II class of functional
responses.

Even if the mean ingestion rate of prey, i.e. the functional response, is equal in
heterogeneous and homogeneous environments the variance in the heterogeneous
environment will be larger. This higher variance is primarily determined by the
rates of encountering and leaving patches. We present a critical time-scale for
this phenomenon and demonstrate that in some cases the functional response
can be an inadequate and insufficient descriptor of the encounter process.

Our work is motivated by earlier work by Rothschild [J. Plankton Res., 1991.
13: 1123–1135] and Ruxton and Gurney [Am. Nat., 1994. 144: 537–541]. Our
approach is linked to a geometric formulation that allow biologically relevant
interpretation and an extension of the Poisson process to heterogeneous envi-
ronments.

keywords

Functional response, patchiness, stochastic encounter, interrupted Poisson pro-
cess, renewal process, Markovian arrival process.
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C.1 Introduction

All predator-prey systems exhibit spatial and temporal heterogeneity. This
has profound effects on the behaviour of these systems (e.g. Tilman, 1994).
However, heterogeneous systems are more difficult to analyse than homogeneous,
therefore one often assumes homogeneity at one or several levels in a model.
This assumption may be that the spatial distribution is homogeneous at certain
spatial scales or that all individuals of a certain type, such as juveniles, are equal.
Such simplifying assumptions are vital to arrive at models that are analytically
tractable, and to remove sub-processes that are of little importance to the overall
dynamical behaviour.

A common micro-level descriptor that is used in many models of population
dynamics is the functional response or the mean rate of ingestion of prey per
predator in continuous time models. Here one assumes that the process of catch-
ing and consuming prey is fast compared to reproduction. This fast process is
assumed to be in a quasi-stationary equilibrium (Segel and Slemrod, 1989; Pog-
giale, 1998) and so intense that it can be approximated with a deterministic
flow. Then the mean rate of the fast process is sufficient to describe what hap-
pens at the slower time-scale. The functional response contains a wealth of
biological information and its shape is important for properties of models of
population dynamics, such as stability (Oaten and Murdoch, 1975) and sensi-
tivity to harvesting (Yodzis, 1994). Since encounters between predator and prey
are inherently random it is reasonable that the analysis of these types of inter-
actions should be based on stochastic models. This has long been recognized,
e.g. Paloheimo (1971) mentions several works of the first half of the 20th cen-
tury where prey were encountered according to random sampling of a randomly
distributed population. This leads to prey encounters described by a Poisson
process. Thus, the essentially deterministic derivation of Holling (1959) of the
type II response has been redone using queues (Curry and DeMichele, 1977;
Sjöberg, 1980) and renewal theory (Hassell, 1978; Mangel and Clark, 1988).

Our analysis is based on a description of a functional response in a heteroge-
neous environment by Rothschild (1991), also analysed by Ruxton and Gurney
(1994). Here the Poisson process that governs encounter in a homogeneous
environment was replaced with a more variable encounter process, the hyperex-
ponential renewal process, to account for spatial variability. The assumptions
were that there are no depletion effects of the prey, and that a predator that did
not interfere with prey would encounter the prey with the same mean rate as
in a homogeneous environment. Furthermore it is assumed that the predators
do not interfere directly with each other and that the predator density is low
enough to avoid predator dependence in the functional response. Predator de-
pendence will arise from non-interacting predators when predator densities are
high because a searching predator will not encounter the true quasi-stationary
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density of prey since a fraction of the prey-population will be handled by other
predators (Borghans et al., 1996). We replace the hyperexponential renewal
process with an equivalent formulation which relates the encounter to a model
of geometrical patchiness. Using the assumption that the heterogeneity of the
prey can be described by the mean density of prey we show that the ability
to resume foraging in a patch will be critical for the shape of the functional
response. Similarly to the derivations in Rothschild (1991) and Ruxton and
Gurney (1994) we assume that there are no interactions between predators, and
that patches are not

A fundamental problem in deriving functional responses from a model for stochas-
tic encounter in a heterogeneous environment is the difficulty in parametrising
how the spatial distribution of prey items changes with the total density of
prey. Not only is it necessary to specify how the mean time between encounters
changes as the prey density changes but also how the patchiness changes as the
prey density changes. Furthermore, the behaviour of the predator while it is
handling prey also has to be specified. Is it able to stay in the patch during the
handling time, does it continue to encounter patches while handling prey or is
it certain that it starts the search phase of a new foraging session outside the
patch? The inability to always resume foraging in a patch may be due to limited
sensory apparatus of a predator, that prey flee from the patch after an attack,
or that the predator is disturbed by other factors while handling prey in the
patch which cause it to leave the patch. Another possibility is that the predator
consumes its prey outside of the patch and have difficulties in relocating a patch
when it has finished handling the current prey item.

In Section C.2 we present the encounter process and three scenarios that rep-
resent different behaviour of the predator. We then show how the ability to
start in a patch at the beginning of a search cycle will influence the functional
response, and that changes in patchiness as the mean density changes can alter
the shape of the functional response in Section C.3. Finally, we discuss the
findings and their implications in Section C.4.

C.2 The models

In the classical Holling type II response the predator is thought to alternate
between a phase where it searches for food and a phase where it handles food.
These two phases form a search cycle. In a stochastic version of the Holling
type II response the total length of a search cycle is a random time which is
independently and identically distributed for all cycles. However, within a cycle
it is possible that the length of one phase depends on the other. Under these
assumptions the ingestion process is a renewal process (Cox, 1962).

The functional response is the mean ingestion rate which can be defined as
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I = limt→ E{Nt/t}, where Nt is the number of prey a predator has caught
during time t. For renewal processes this mean ingestion rate can be found
from the renewal reward theorem (cf. Wolff, 1989), where the reward is one
prey per cycle, as

I =
1

E{Tc}
,

where E{Tc} is the mean of Tc, the time to complete a search cycle. This result
applies both for populations and individuals provided that the process can be
observed for a long time period and that the densities of prey and predators are
constant during this time. In classical functional responses the random time Tc

is decomposed into two mutually exclusive phases. A search phase, Ts, and a
handling phase, Th of random lengths. We have that E{Tc} = E{Ts + Th} =
τs + τh where E{Ts} = τs and E{Th} = τh.

If the environment is homogeneously random from the viewpoint of the predator
when searching, then the encounter process is a homogeneous Poisson process
(also known as random search, see Rogers, 1972). For a homogeneous encounter
process, let Vs be the volume searched per time unit and F the prey density,
then the encounter rate is VsF . Now the ingestion rate will be 1

1
VsF

+τh
which

can be rewritten as:

I =
VsF

1 + VsFτh
or I =

ImaxF

F0 + F
.

This is the Holling respectively the Michaelis-Menten form, where F0 = 1
Vsτs

and Imax = 1
τh

. It should be noted that if the encounter rate is proportional to
VsF

α, where α > 1; then a sigmoid, or type III, functional response will follow.
For instance, (Getty and Pulliam, 1991) stated that a predator that move to
a point in the plane, search for the nearest prey item, then move to a new
random position in the plane will have an encounter rate that is proportional to
F 3/2 if the encounter rate with prey while searching is proportional to the angle
subtended on the retina. This angle is approximately proportional to the inverse
distance cubed and the average nearest neighbour distance to the nearest prey
is proportional to F−1/2 for Poisson distributed prey.

In our model we assume that the environment consists of patches containing
prey and empty space between patches. Here, a forager encounters patches as
a Poisson process with rate ω01. The residence time in a patch is exponentially
distributed with mean residence time 1

ω10
. This time is independent of the

number of prey items caught i.e. there are no satiation effects. While in the
patch the forager encounters prey according to a Poisson process with rate λ.
This encounter process is called an Interrupted Poisson Process (IPP) (Kuczura,
1973). Beyer and Nielsen (1996) introduced the IPP as the simplest way to
extend the random encounter of a homogeneous environment to a more variable,
heterogeneous environment. An important difference between the IPP and a
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Poisson process is that the time between encounters in the IPP has a coefficient

of variation, CV =

√
V{Ts}

E{Ts} , that is larger than one, whereas it is equal to one in

the Poisson process. The IPP has a clear, biologically meaningful interpretation
since it refers to being in a patch or not, moreover it is stochastically equivalent
to the hyperexponential renewal process (Kuczura, 1973).

The hyperexponential renewal process is generated by independent hyperex-
ponentially distributed inter-encounter times. Such inter-encounter times are
produced by choosing an exponentially distributed time with mean 1

γ1
with

probability p, and with 1 − p an exponentially distributed time with mean 1
γ2

.
Thus the expected time to the next encounter is

τs =
p

γ1
+

1 − p

γ2
.

A weakness of the hyperexponential renewal process is that it is difficult to
relate the paremeters (p, γ1, γ2) to actual patchiness (see Beyer and Nielsen,
1996). But it is always possible to convert these to the three parameters of
the IPP (ω01, ω10, λ) and vice versa (see e.g. Kuczura, 1973; Beyer and Nielsen,
1996). Rothschild (1991) used hyperexponentially distributed search times to
model that the time between encounters in a heterogeneous environment is more
variable than in a homogeneous environment. This model concerned a swimming
organism that encounters prey continuously but is unable to catch new prey
while it is busy handling. In this scenario, called “continuous encounter” below,
the predator suffers from the heterogeneous environment since it may catch
the first item in a cluster, then it is blocked for some time and it is quite
probable that it resumes foraging in the space between clusters. Clearly, a
cruising predator in a homogeneous environment would not encounter this kind
of problem.

Ruxton and Gurney (1994) analysed this model for deterministic handling times,
and found that the functional response is Holling type II. Their result requires
a particular scaling of (p, γ1, γ2). In the analysis below, we repeat the analysis
without these particular assumptions and find that the response is in general
not Holling type II.

We will base our analysis on the IPP noting that there is always an equivalent
hyperexponential formulation. In the following we will assume that the predator
does not have the capability to aggregate in patches of prey. This makes the
comparison with the homogeneous situation easier since an inclusion of this,
quite natural, possibility would introduce at least one more parameter. Our
analysis will be based on three scenarios that illustrate different assumptions
concerning the ability to restart the search phase in a patch.

In the first scenario the predator is always able to start foraging in a patch when
the handling phase is completed. This behaviour may apply to a fast predator



C.2 The models 137

pursuing slow prey. One example would be a whelk feeding on barnacles that
are located in large patches. To simplify the reading we will call this scenario
for “total control”.

In the second scenario the forager is continuously encountering prey from a
patchy process but the predator is unable to catch all prey since it is blocked
by handling. This could apply to a cruising predator with limited ability to
control its movement, e.g. in a turbulent environment as originally proposed by
Rothschild (1991). Another appropriate biological scenario would be patchily
distributed prey that sweep by a sessile predator such as a sea anemone. This
scenario will be called “continuous encounter”.

A forager in the third scenario will always start its search for prey outside a
patch. This could apply to situations where the prey move with similar speed
as the predator. Another example would be an ambush predator that attacks
schools or herds. After an attack the ambush predator will handle the prey and
then resume search outside of the patch. In the forthcoming this scenario will
be called “ambush”.

Given a certain food density, F , the encounter rate in the homogeneous scenario
depends on only one parameter, Vs. We assume that the mean time between
encounters of a predator that did not interfere with prey would be equal to that
of a predator in a homogeneous environment, i.e. τS(F ) = 1

VsF .

There are many ways to choose the two free parameters of the IPP. Here we
choose to define the encounter rate with prey in the patch, λ = λ(F ), and the
squared coefficient of variation minus one, CV 2 − 1 = ρ(F ), of the search times
as some functions of the mean density, F , that will be specified later. The
encounter rate with patches ω01 and the rate with which patches are left ω10

are functions of τS , λ(F ) and ρ(F ),

ω01(F ) =
2VsF (λ(F ) − VsF )

ρ(F )λ(F )
and ω10(F ) =

2(λ(F ) − VsF )2

ρ(F )λ(F )
, (C.1)

which are found using formulas in Beyer and Nielsen (1996). We have λ(F ) >
VsF and ρ(F ) > 0, since ω01 and ω10 are greater than zero.

A major difference between deterministic and stochastic models for functional
responses is that in the latter there are fluctuations in the number of ingested
items. For large t the mean number of ingested prey of a predator will be ap-
proximately It, where I is the mean ingestion rate. The variance in this number
will approach an affine asymptote; let σ2

a denote its slope. Thus the variance

in the observed ingestion rate will be approximately
σ2

a

t . For the population
the mean per capita ingestion rate will asymptotically be I and its variance is

asymptotically
σ2

a

P 2t , where P is the number of predators in the population which
encounters the same environment. This means that the time t has to be large
in relation to the encounter and handling process, such that the mean rate is
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well-defined, but short in relation to the time-scales of appreciable change in
prey and predator population densities and that the population should be large.
If σ2

a is large then the ingestion rate will be less well approximated by the mean
(for a fixed t) or longer times are needed to obtain the same precision in the
mean rate approximation. For renewal processes the asymptotic slope of the
variance σ2

a, which we call the variance rate, is equal to the ratio of the variance
in time between captures σ2

T with the mean time between encounters cubed µ3
T

(Cox, 1962).

The Holling type II functional response is one of several responses in the class
of type II functional responses, sometimes referred to as hyperbolic (Jeschke
et al., 2002). These have ingestion rates that are increasing for increasing prey
densities I ′(F ) > 0, an asymptotic maximum ingestion rate I(F ) → Imax when
F → ∞, and the increase in ingestion rate will be lower for higher prey densities,
i.e. I ′′(F ) < 0 for all prey densities.

C.3 Results

In this section we derive functional responses based on the IPP encounter model
and present the differences between the three scenarios that models the effect of
the position of the predator when it restarts the search phase. We first examine
the effect of the three scenarios on the functional response. Then we discuss an
interpretation of the hyperexponential renewal process proposed in Ruxton and
Gurney (1994). Finally, we show that even if the mean rates are equal in the
homogeneous case and in the total control, the variance may be much larger in
the latter. The potential effect of this is shown in a simple example.

C.3.1 Results for the three scenarios

We now turn to the three scenarios: First, the ”total control” scenario, where
the predator resumes searching within a patch, having completed handling of
a prey item. Next, the ”continuous encounter”, where the predator leaves and
enters patches during handling, according to the same rules as when searching.
Finally, the ”ambush” scenario, where the predator resumes searching outside
patches.

C.3.1.1 Total control

When the predator is certain to begin its search for food in the patch the
mean time to catch a new prey is τs—the mean time between encounters in
the IPP. Thus the ingestion rate I will be 1

τs+τh
which is the same rate as in
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Figure C.1: The functional response from a homogeneous environment and the
total control scenario in a heterogeneous environment (solid line) are equal. The
asymptotic slope of the variance of the number of prey items for the homoge-
neous (dotted) respectively the heterogeneous situation (dashed) is shown for
Vs = 1, ω01 = 4

9 , ω10 = 8
9 and exponentially distributed handling time with

mean 1
2 .

the homogeneous situation. The variance of the number of encountered items
may be much larger in this scenario than in the homogeneous situation; see
Figure C.1. The variance rate in the homogeneous situation with exponentially
distributed handling times is (τ2

s + τ2
h)/(τs + τh)3 whereas the corresponding

variance rate in the heterogeneous situation will be (τ2
s (1+ρ(F ))+τ2

h)/(τs+τh)3.
Thus if ρ(F ) < F 2 the asymptote of the variance rate will be equal for the
heterogeneous and the homogeneous situation, but even if this is true (as in
Figure C.1) it is possible to have large differences at intermediate prey densities.
The importance of this phenomenon will be shown in Section C.3.3 using a
discrete time model, where the effects are most obvious.
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C.3.1.2 The continuous encounter

For the predator that continues to encounter prey during the handling phase
the probability of being out of the patch if the handling time was th is p10(th) =

ω10

ω01+ω10
(1 − e−(ω10+ω01)th) (see e.g. Cox and Miller, 1965, p. 172). Thus condi-

tional expectation of X , the time between encounters, given a certain handling
time, th, is

E{X |Th = th} = th + τs(1 − p10(th)) +

(
τs +

1

ω01

)
p10(th),

where the second term is the expected time to next encounter if the predator
resumes searching in the patch and the third is if it begins out of the patch.
Taking expectation with respect to Th gives

E{X} = τh + τs +
1

ω01

ω10

ω01 + ω10
(1 − F ∗

h (ω10 + ω01)), (C.2)

where F ∗
h (s) = E{e−sTh} is the Laplace transform of the probability distribution

of the handling time. For small enough ω01 + ω10

E{X} = τh + τs +
ω10

ω01

(
τh − (σ2

h + τ2
h)(ω01 + ω10)

1

2
+ O((ω01 + ω10)

2)

)
,

where σ2
h is the variance of the handling time. Thus when ω01 + ω10 is small it

is always beneficial with a more variable handling time distribution given that
the mean can be kept constant.

With CV 2 = 2λω10

(ω10+ω01)2 +1 and τs = ω01+ω10

λω01
one can rewrite the mean ingestion

rate as

I =
1

τh + τs(1 + 1
2 (CV 2 − 1)(1 − F ∗

h (ω01 + ω10)))
.

This result was obtained, for deterministic handling times, by Ruxton and Gur-
ney (1994) for the hyperexponential encounter process using a different ap-
proach. They rewrote the mean ingestion as

I =
Imax · F
F̃0 + F

=
1
τh

· F
1

τhVs
(1 + 1

2 (CV 2 − 1)(1 − F ∗
h (ω01 + ω10))) + F

, (C.3)

and interpreted this as a Holling type II functional response similar to the
homogeneous situation. The only difference would be that the half-saturation
constant is larger, i.e. the initial slope is less steep.

For Equation (C.3) to be a Holling II functional response, Imax and F̃0 must
be constant when F is changed, and this restricts the way the size, number
and richness of patches change as the mean density changes. First CV 2 − 1, or
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equivalently ρ(F ), must be constant. Second ω01 +ω10 must be constant. Using
the ρ(F ), λ(F ) formulation

ω01 + ω10 =
2(λ(F ) − VsF )

ρ(F )
.

This means that it is necessary for the rate of encounter with prey in the patch,
λ(F ), to have the form VsF + c1, where c1 is a positive constant. Note that
this result is not structurally stable since a small perturbation of λ(F ) such
that λ(F ) = (1 + ξ)VsF + c1 where ξ > 0 will not give a strict Holling type
II response; there will be a factor that decreases to zero as the food density
increases, but the rate with which it does so will depend on the handling time
distribution. When ξ > 0 the functional response will still be type II, but if
ξ < 0 the functional response is not necessarily type II and will only be defined
for prey densities F < c1

−ξVs
.

To further investigate how patchiness changes with mean density we explore
the effects of keeping two of the three parameters ω01, ω10 and λ constant.
This leads to different explicit assumptions about the habitat. To assume that
both ω01 and ω10 are constant corresponds to an environment where the size
and number of the patches are fixed and increasing the food level increases the
density within these fixed patches. From Equation (C.2) it is clear that there
will be a constant which adds to the handling time. Then both Imax and F0

will be lower than in the homogeneous environment. In Michaelis-Menten form:

I =

1

τh + ω10

ω01(ω01+ω10) (1 − F ∗
h (ω01 + ω10))

· F

1

Vs(τh + ω10

ω01(ω01+ω10)
(1 − F ∗

h (ω01 + ω10)))
+ F

.

If either λ and ω01, or λ and ω01 are assumed to be constant one does not get
a Holling type II functional response see Figure C.2. The models are only valid
for mean prey densities below λ

Vs
. Both are very close to having linear increase

(type I) for high densities respectively for low densities (see Appendix C.4 for
formulas when the handling time is exponentially distributed). In general the
functional response is not Holling type II when the predator is not certain to
resume search in a patch, not even type II. An immense variety of functional
responses are possible. For instance, let λ(F ) be equal to VsF + ρ(F ) and
ρ(F ) = eκF − 1 with κ > 0. This is a pathological scenario for F → ∞, but
suppose that this parametrisation is applicable for the densities encountered in
nature. This gives a functional response of the form:

I =
VsF

1 + (eκF − 1)(1 − F ∗
h (2)) + VsFτh

,

which is decreasing at high prey densities as can be seen in Figure C.2. This
type of functional response is not entirely unrealistic, since there are situations
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where prey become increasingly difficult to catch when prey densities increase
due to e.g. schooling behaviour (Sandin and Pacala, 2005) (see also Jeschke
et al., 2002, Note 16 in Table 1).

The Laplace transform of the handling-time probability distribution appears in
the functional response of continuous encounter. Numerical investigations on the
maximum difference between the ingestion rate of a predator with exponentially
distributed handling time and one with a deterministic handling time, show that
a deterministic handling time gives a constant reduction of 12.2 percent in the
domain τh × τs ∈ [0.001, 1000] × [0.001, 1000]. Thus the distribution of the
handling time can make a sizable difference. Although it seems unlikely that a
forager can choose between handling time distributions while keeping the mean
handling time constant this is an important complication of the description of
the process.

C.3.1.3 Ambush

The ingestion rate for the ambush scenario is always less than for the continuous
encounter since the predator is certain to resume its search outside a patch. This
means that the considerations of patch formulation will apply to this scenario
but only through the dependence of ω01 on prey densities F . Here the ingestion
rate will depend only on the mean of the handling time not on its distribution

I =
1

τs + τh + 1
ω01

.

This scenario forms the lower limit of the severity of the effect of patchiness.

C.3.2 On the interpretation of the hyperexponential re-
newal process

Some confusion has been generated by different interpretations of the hyperexpo-
nential renewal process, see Beyer and Nielsen (1996) for a discussion. Ruxton
and Gurney (1994) suggest a model with a fraction p1 of patches with food
density γ1 and a fraction p2 = 1 − p1 of patches with food density γ2. The
predator forages in patch of either type for a fixed time T . Upon completion it
resumes foraging in a patch of type i, i = 1, 2 with probability pi. One can derive
the marginal distribution of time between encounters by allowing the foraging
times to be exponentially distributed rather than constant, see Appendix C.4 for
the derivations. We call this approximation the approximate Ruxton-Gurney
scheme (ARGS) and the original scheme for RGS. The marginal density of this
process, which is a switched Poisson process (SPP) is then

FSPP (t) = 1 − p̃e−γ̃1t − (1 − p̃)e−γ̃2t,
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Figure C.2: The functional response for the different assumptions on parameters
in continuous encounter. For reference the corresponding ingestion rate for total
control is included (line a). The other line (marked with b) is when ω01 = 4

9
and λ = 11, The dash-dotted line is when ω10 = 8

9 and λ = 11 (c), and the line
with points (d) is the ingestion rate when both ω01 and ω10 are constants (4

9
resp. 8

9 ). The dotted line (e) is when ρ(F ) = eF − 1 and λ(F ) = ρ(F ) + VsF .
An exponentially distributed handling time was used with mean τh = 1

2 , and
Vs = 1 in all scenarios.
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Figure C.3: The cumulative density function (cdf) of a hyperexponential distri-
bution with parameters p = 8

11 , γ1 = 4, γ2 = 1
3 (dashed). The empirical cdf of

1000 inter-encounter times generated by the Ruxton-Gurney scheme (RGS) with
time T in a particular habitat equal to 10 (dots) and the corresponding marginal
cdf of the SPP/ARGS (line). The main difference between RGS and the original
hyperexponential distribution is that the latter have longer inter-arrival times.

thus hyperexponential as stated by Ruxton and Gurney (1994) but not with
parameters (p1, γ1, γ2) as one might assume at a first glance. Figure C.3 illus-
trates the difference. Clearly, the times between encounters are not independent
which means that this is not a renewal process. Functional responses where the
inter-encounter times are dependent can often be modelled using Markovian ar-
rival processes (see Nilsson, 2006), a class of stochastic processes that contains
both the SPP and the IPP.
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C.3.3 The importance of the variability and its critical
time–scale

There are many situations where the value of functional or numerical responses
would be doubtful. This is particularly clear in discrete time models. To illus-
trate this, we follow the female population of an annual species. Females are
born in the beginning of the year, are juveniles for 2 months and then become
adult. We assume that the fecundity of a female is so large that if one female
survives the year there will be enough eggs to maintain the population. Further-
more, density dependence affects the juveniles such that if there are eggs then
a Poisson distributed number of females with mean 500 will have the potential
to reproduce if they find sufficient amount of food. If an adult female eats at
least 70 prey items in 10 months she will be able to reproduce. Suppose that
the expected number of prey encountered during this time is 50.

Here we compare three possibilities, the deterministic situation, the stochastic
situation either in a homogeneous environment or in a heterogeneous environ-
ment, and in all scenarios the initial population is a Poisson distributed number
of females with mean 500. In the deterministic situation all adult females will
get 50 prey items and the population goes extinct in 1 year.

The stochastic scenarios are constructed such that if the initial population N1

produce at least one adult female then there will be N2 females in the next
generation. These will also be Poisson distributed with mean 500. The expected
number of encountered prey is the same as in the deterministic situation, and
in the heterogeneous environment the predator has total control. We assume
that the handling time distribution is exponentially distributed with mean 0.01
month.

The probability of obtaining less than 70 food items is found numerically (see
Nilsson, 2006). Denote the probability that an individual female obtained less
than 70 prey items during the foraging season with pd, then the probability of

extinction in the nth time step given N1, . . . Nn is (1− pN1

d ) · · · (1− p
Nn−1

d )pNn

d .
Taking the expectation with respect to the Poisson distributions and using the
independence between years one finds that the probability of extinction in the
nth year is (1 − e−500(1−pd))n−1e−500(1−pd). Thus the time to extinction is a
geometric random variable with mean e500(1−pd).

In the homogeneous environment the pd ≈ 0.9972 and we find that the expected
time to extinction is approximately 5.1 years. Assume that the heterogeneous
habitat is such that half is patch with twice the density of the homogeneous
environment and half of the habitat is empty. The rate of encounter is equal to
the rate with which patches are left, here it is set to 1month−1. The females are
randomly distributed at the start of each season, i.e. the probability of being in
patch in the beginning of the season is 1

2 . One finds that pd ≈ 0.8789 and that
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Figure C.4: A comparison between the distribution of prey in a homogeneous
environment (dashed line) and in a heterogeneous (solid line), when the handling
time is exponentially distributed with mean 0.01. The rings and the dots refer
to the probability of getting a certain number when starting in respectively out
of a patch, where the latter has the mode to the left of the mean.

the expected time to extinction is 1.9 · 1026 years!

Here stochastic encounter combined with a non-differentiable nonlinearity means
that the average clearly is not a sufficient descriptor of the system and the vari-
ance in the heterogeneous population is much larger than in the homogeneous,
which greatly enhances the probability of survival of the population. The distri-
butions are seen in Figure C.4. In the heterogeneous model the rate of leaving
and entering patches was not very large and this is a key to the result. Suppose
that the residence time in a patch is very short and that the time to find a new
patch also is very short. Then the switching between patches is so fast that
the predator will experience essentially the same environment as in the homoge-
neous Poisson scenario and thus heterogeneity does not have significant effects.
Conversely, suppose that the residence times in or out of patches are comparable
to the life time of an individual, then this effectively creates a metapopulation
model and the variance in encountered prey items is very large.
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This suggests that a critical time scale exists, such that environmental hetero-
geneity at faster scales can safely be ignored. To identify this time scale, we
keep the fraction of patches, π1 in the habitat constant, the prey encounter rate,
λ, and the exponentially distributed prey handling rate α constant. Then the
rate of patch encounter can be expressed as a function of the rate of leaving,
ω01 = π1

1−π1
ω10 for total control.

The variance of the number of prey items eaten at time t, Nt will be asymptot-
ically be linear in t. The slope can be found as the ratio of the variance in time
between capture σ2

T with the mean time between encounters cubed µ3
T (Cox,

1962).

This gives

lim
t→∞

(V{Nt}/t) =

(
σ2

T

µ3
T

)
=

1

µ3
T

2λα2(1 − π1)
2 1

ω10
+ ((α + λπ1)

2 + λ2π2
1))

π2
1λ2α2

.

The numerator (2λα2(1− π1)
2 1

ω10
+((α +λπ1)

2 + λ2π2
1)) is approximately con-

stant when ω10 is large and proportional to 1
ω10

when ω10 is small. The pivot
point marking the transition between these two scalings, is:

ω∗
10 =

2λα2(1 − π1)
2

(α + λπ1)2 + λ2π2
1

,

as is illustrated in Figure C.5. The critical rate of leaving the patch is found to
be approximately 4.7 for the example above. Thus for rates that is much higher
than this the variance is close to that of the homogeneous ingestion process and
for much lower rates the variance will be substantially higher. Although this is
an asymptotic result it is still valid for the example (since the foraging season T
is much longer than the mean residence time in the patch 1

ω∗
10

) where time was

finite as can be seen in Figure C.5. Another break-point at 1
T occurs for the

variance in finite time (see Figure C.5) which shows the metapopulation effect.

For general handling times with mean µH and variance σ2
H the frequency below

which the variance becomes important is

ω∗
10 =

2λ(1 − π1)
2

(1 + λπ1µH)2 + λ2π2
1σ2

H

or equivalently when the residence time in the patch is longer than 1
ω∗

10
. Here

µT = ω10+ω01

λω01
+ µH and σ2

T = 2 ω10

λω2
01

+ µ2
T + σ2

H .
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Figure C.5: The pivot-point at 4.7 both for the asymptotic result (solid line)
and for the log(V{Nt}/t) of the example (dashed) with t = 10. Note the other
break–point for finite time at ω10 = 1

T = 0.1. π1 = 1
2 , α = 0.01 and λ = 100.
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C.4 Discussion

We show in the present work how important the location may be for the shape
of the functional response when a predator with a limited behavioural reper-
toire starts its search phase in a heterogeneous environment. It is not new that
behaviour may change the functional response, Abrams (1982) showed that op-
timal behaviour may change the shape of the functional response. Using another
approach Cosner et al. (1999) showed that the spatial grouping of predators and
prey changes the functional response (see also Poggiale, 1998). In this article
we have assumed that there is a functional relationship between average food
density and patchiness and shown that this dependency is vital to the functional
forms that emerge. This assumption is a reasonable starting point, however in
real systems there may be a certain amount of memory in the system such that
the patchiness may be different at the same mean prey density depending on
e.g. whether the prey population is receding or recovering.

Another assumption is that the handling time is independent of prey density
and search time. It may well be that more refined functional responses should
be used where there is a separation of prey handling and prey digestion as
Jeschke et al. (2002) suggest. This is not possible using the renewal formalism,
but easily done using e.g. Markovian arrival processes (Neuts, 1979; Nilsson,
2006) which are well suited for the derivation of more advanced stochastic func-
tional responses (Nilsson, 2006). It is also possible to let the patch residence
time depend on the number of prey items encountered using Markovian arrival
processes.

An important point is that given a certain average density it is impossible to
increase the mean ingestion rate in the heterogeneous situation. If patchiness
increases the mean ingestion rate above the rate of the homogeneous situation
this must be due to patch accumulation abilities of individuals, such that these
will encounter a higher than average ration, provided that the mortality rates
are equal in patch and out-of-patch. Mortality is not included in our models,
but may produce a bias in the survivors if the difference between patch and
non-patch is large (Nilsson, 2006).

The IPP is arguably simplistic, but it is much more versatile than the Pois-
son process. Interestingly, Currie et al. (1998) showed that a towed plankton
recorder observed patches but within patches the prey distribution was not sig-
nificantly different from the Poisson distribution. The IPP has the nice property
that when the time between encounters of patches and time in patches is small
relative to the time between encounters in the patch then the IPP is very close
to be a Poisson process. It is important to recognize that if the level of “mixing”
is reduced in the system the Poisson process may rapidly loose its applicabil-
ity. This may be particularly important for threatened populations living in
an increasingly fragmented habitat. The use of a functional response in some
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parasitoid models, where only one or a few host encounters are needed for the
reproduction, seems questionable since here one would expect stochastic effects
to be important at the population level. Also when there are non-differentiable
non-linearities, as in the population example, the mean field approximation
will encounter severe difficulties. To some extent such non-linearities are to be
expected in models of population dynamics since there is a minimum invest-
ment in offspring to make it viable. Since renewal reward processes will be well
approximated by a normal distribution when time is large, some of these diffi-
culties could possibly avoided using second order approximations, i.e. stochastic
differential equations, instead of ordinary differential equations.

This article has demonstrated that a heterogeneous encounter process can de-
stroy the type II form of the functional response if the predator is unable to
restart its search for food in a patch. We have advocated the use of the IPP as
a model for heterogeneity; this process is flexible, tractable and has parameters
which can be estimated from data (see e.g. Nielsen and Beyer, 2006). Such data
could come from archival devices that are fitted to individual predators and
would be very informative on the type of heterogeneity that a predator experi-
ences in the field. For instance, the more than 400-fold reduction in maximal
ingestion rate found in the comparison of laboratory experiments with field es-
timates by Aljetlawi et al. (2004) could be due to habitat heterogeneity with
e.g. fixed ω01, ω10 and the ambush scenario. Although other factors such as pre-
dation risk of the predator could be equally important for this result, we have
shown that in many circumstances it is necessary to consider the heterogeneous
and stochastic nature of encounter.
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Sjöberg, S., 1980. Zooplankton feeding and queueing theory. Ecological Mod-
elling 10, 215–225.

Tilman, D., 1994. Competition and biodiversity in spatially structured habitats.
Ecology 75, 2–16.

Wolff, R. W., 1989. Stochastic modeling and the theory of queues. Prentice
Hall, Englewood Cliffs.

Yodzis, P., 1994. Predator-prey theory and management of multispecies fish-
eries. Ecological Applications 4 (1), 51–58.

Appendix A. Functional responses for continuous
encounter

If λ and ω01 are are assumed to be constant which can be interpreted as the
number of patches and the prey density within the patches are fixed, only the
size of the patches vary. The model is valid only for prey densities below λ

Vs
.

The rate of leaving the patch is ω10 = ω01(λ−VsF )
VsF . For exponentially distributed
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handling times one finds that:

I =
VsF (VsF + ω01τhλ)

(1 + VsFτh)(ω01λτh + VsF ) + (λ − VsF )VsFτh
,

which is not Holling type II.

Suppose instead that λ and ω10 are constant. Here the environment has a
fixed density within patches and a fixed size; increasing the mean density of
prey increases the number of patches. We have that ω01 = VsFω10

λ−VsF . As in the
previous example this only applies for λ > VsF . Here the functional response
will be:

I =
VsF (λ − VsF )(λ(1 + τh) − VsF )

(λ(1 + τh) − VsF ) − VsF (λ − VsF ) + τhVsF (λ − VsF )(λ(1 + τh) − VsF )

for exponentially distributed handling times.

Appendix B. The calculations for ARGS

Our approximation of the Ruxton and Gurney (1994) procedure is that the
predator can be in 2 patches, in patch 1 prey are found with rate γ1 and in
patch 2 they are found with rate γ2. The rate of switching between patch 1 to
patch 2 is q

T and the rate of switching from patch 2 to patch 1 is p
T . The above

procedure is based on the similarity between a geometrically distributed and an
exponentially distributed random variable. The “continuous approximation”
will be good when T > max{ 1

γ1
, 1

γ2
} and when the simulation time Tsim ≫ T .

The state of a process of this type at time t will be described by (Xt, Nt) where
Xt is the type of patch the forager is in and Nt is the number of prey eaten.
Then system can be described by a Markovian arrival process (Neuts, 1979;
Nilsson, 2006), i.e. a continuous time Markov Chain where transitions between
states that do not increase Nt is described by D0 and transitions between states
that do generate an increase in Nt described by D1. We have:

D0 =

[
−( q

T + γ1)
q
T

p
T −( p

T + γ2)

]
and D1 =

[
γ1 0
0 γ2

]
.

The stationary probabilities of being in a state can be found from the row vector
θ that solves θ · (D0 + D1) = 0, and the stationary probability of being in a
state before an arrival is θarr = θD1 normalized to sum to one.

θ = [p, q], θarr = [pγ1, qγ2](pγ1 + qγ2)
−1

and the SPP1 cdf is
Fs1(t) = 1 − θarre

D0te.
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The eigenvalues of D0 are

λ1,2 =
−(γ1 + 1/T + γ2)

2
±

√(
γ1 + (q − p)/T − γ2

2

)2

− pq

T 2
.

This gives that

Fs1 (t) = 1 − eλ1t

2
√

ζ(pγ1 + qγ2)

(
pγ1

(√
ζ +

1/T + γ2 − γ1

2

)
+ qγ2

(√
ζ − 1/T + γ1 − γ2

2

))

+
eλ2t

2
√

ζ(pγ1 + qγ2)

(
pγ1

(√
ζ − 1/T + γ2 − γ1

2

)
+ qγ2

(√
ζ +

1/T + γ1 − γ2

2

))

= 1 − p̃e−λ1t − (1 − p̃)e−λ2t

where p̃ = 1
2 + pγ1(1/T+γ2−γ1)−qγ2(1/T+γ1−γ2)

4
√

ζ(pγ1−qγ2)
and

√
ζ = λ1−λ2

2 . That is the

distribution of times is marginally hyperexponential.

The event-stationary number of counts is:

θarrM1(t)e = (pγ1 + qγ2)t +
Tpq(γ2

1 + γ2
2)

pγ1 + qγ2
(1 − et/T )

whereas in the hyperexponential model one has (the renewal function):

H(t) =
γ1γ2

qγ1 + pγ2
t +

(γ1 − γ2)
2pq

(qγ1 + pγ2)2
(1 − e(qγ1+pγ2)t).

The rates of these can only be (asymptotically or time-stationary) equal if and
only if it is a Poisson process we study.
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Abstract

Individual-based models appeal to marine ecologists because of the emphasis on
the individual as the fundamental ecological unit, but their analysis often in-
cludes computationally demanding statistical analysis of stochastic Lagrangian
simulations. This paper shows that certain individual based models, those based
on Markov additive processes, lend themselves to a simplified Eulerian analysis
where low order statistics can be computed exactly with relatively modest effort.
We illustrate the framework with a hypothetical example from larval transport
and growth, where the approach leads to partial differential equations for the
mean and variance of larval length, as a function of position and time. We dis-
cuss the general applicability of the framework, and the merits of an Eulerian
analysis versus individual-based simulation.

Keywords: Marine ecology, Individual-based models, Dispersion, Growth, Survival,
Eulerian analysis

PACS: 92.20.Sg, 92.10.Lq, 92.20.jm, 92.10.Lq, 92.20.jp

1991 MSC: 82C70, 82C31, 65C20

D.1 Introduction

Individual-based models (IBM’s) are popular within the fields of biological
oceanography and fisheries science, as well as in many other fields. Typical
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applications of IBM’s in a marine context is the analysis of transport, growth
and survival of fish larvae (see e.g. Ådlandsvik et al., 2004; Bartsch et al., 2004;
Hinrichsen et al., 2002; Werner et al., 2001).

The appeal of an individual-based model is that the mathematical description
targets the individual, rather than the population or other more abstract objects
to which it is more difficult to relate. Furthermore, IBM’s capture variability
among individuals, which is an essential feature in much of marine ecology.
Despite this, it is not always favourable to analyse individual-based models by
means of extensive numerical simulations, where each individual is represented
explicitly in the simulation program as an object. This is because a successful
interpretation of the output requires large amounts of data as well as sufficient
statistical techniques in both planning and analysis of the experiments. When
simple population properties are the aim of the study, simulation of IBM’s may
not be the most effective approach.

An alternative to individual-based simulation is an Eulerian analysis of the
model. That is, rather than explicitly following individuals over time as they
move in space, we follow the density of animals or other continuous fields as they
evolve over time. In principle, the Eulerian approach holds the advantage that
the statistical part of the study is eliminated, because the object of analysis is
in itself the statistics we are after, but the downside is that the Eulerian anal-
ysis typically involves solving partial differential equations. In oceanographic
applications this may not in itself be a great extra burden, because the biology
is already embedded in a physical environment which is governed by partial
differential equations. However, when many biological state variables are in-
cluded, the Eulerian analysis targets the joint probability density function of
a high-dimensional variable, leading to partial differential equations with many
independent variables.

The objective of this paper is to direct attention to a particular mathemati-
cal structure, that of individuals governed by independent and identically dis-
tributed Markov additive processes. The word “additive” indicates that some
quantity, e.g. length, is cumulated along the trajectory but does not affect the
trajectory. The class of Markov additive processes is well known within the
theory of stochastic processes; here we take the small extra step of considering
ensembles, or populations, where each individual is governed by such a process.
It is interesting to note that the simplest example of an additive component is
age, in that the age of every individual increases with constant rate 1. Thus the
framework generalises the notion of water age, which has been the subject of
study in recent years within physical and biological oceanography (Deleersnijder
et al., 2001; Bendtsen et al., 2006).

The advantage of processes with additive components is that we can explicitly
pose partial differential equations for the statistics of the processes, as functions
of space and time. The aim of this paper is to present these equations as well
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Parameter Description Example
H Water depth 20 m
z0 Bottom roughness 10−4 m

u Flow profile ux =
Uf

κ log(z/z0 + 1) , uz = 0

κ von Kármán constant 0.41
Uf Friction velocity 0.0168 m/s
D Eddy diffusivity Dxx = Dxz = 0, Dzz = Ufκz(1 − z/H)

µ Mortality 2
3 (z/H + 1/2) hour−1

r Local hatching rate 0
kL∞ Growth rate 17 cm/year · (1 + 2z/H)

Table D.1: The parameters in the general model, and their specific form in the
example.

as a minimal example, which illustrates the potential of the framework in the
context of biological oceanography. To this end, section D.2 presents the exam-
ple of larval dispersal and growth, starting with the Eulerian and Lagrangian
formulations of transport, and next including individual length as an additive
component. The objective of the analysis is to pose Eulerian partial differential
equations for the mean and variance of the length of a larvae caught at a given
point in time and space. Section D.3 offers a discussion of generalisations and
applicability of the framework.

D.2 A Markov additive process modelling larval
transport and growth

In this section we develop the application of Markov additive processes to larval
transport and growth. We do this in generality, but at the same time we will
illustrate with a particular, simple example.

Consider fish larvae which move in space while growing. The larvae are mainly
planktonic, i.e. passive drifters, but also subject to some diffusion, which ac-
counts for turbulent mixing and the motility of the larvae. Finally, the larvae
are subject to a mortality which varies in space and time.

In our specific example, we consider a two-dimensional space with one horizontal
coordinate x and one vertical, z. We let the velocity, diffusivity and mortality
depend on depth only and thus be independent of horizontal position and time,
as in figure D.1.
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Figure D.1: The velocity field, diffusion rate, mortality rate, and growth rate.
The flow regime is that of open channel flow, see table D.1. The growth and
mortality profiles are chosen as simple as possible while having the feature that
high growth rates coincide in space with high mortalities.
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D.2.1 Eulerian and Lagrangian analysis of motion

Combining the model in the previous, and adopting the Eulerian view, the
population of larvae is described by its density C(x, t) as a function of position
x and time t, and this density satisfies the partial differential equation (PDE)

Ċ = −∇ · (uC − D∇C) − µC + r . (D.1)

Here x is the vector position (x, z), u(x, t) is the mean flow while D(x, t) is the
diffusivity or dispersion, which can be a scalar (when the diffusion is isotropic)
or a tensor. In our example we ignore the horizontal diffusivity Dxx, since
horizontal dispersal is presumably dominated by longitudinal diffusion (Taylor,
1954), i.e. the combined effect of a velocity gradient and vertical mixing. The
mortality rate is µ(x, t) while r(x, t) is the local production rate of larvae, e.g.
due to hatching of eggs. The PDE is completed with spatial boundary condi-
tions. In our example we take the no-flux condition that uC−D∇C vanishes at
the boundary of the domain. Finally, we prescribe an initial condition C(·, 0).
In our example we start with a batch of larvae located at a single point in space.
Contour lines of the solution are seen in figure D.2.

The corresponding Lagrangian approach is to simulate the random movements
of an ensemble of larvae. Initially, individuals are placed randomly in space so
that their density is C(·, 0), for example according to a spatial Poisson process
(Stoyan et al., 1995a). During the simulation, the position of each larva is
updated according to some stochastic recursion, a prototype of which is (Visser,
1997)

X
(j)
t+h = X

(j)
t + ũ(X

(j)
t , t)h +

√
2D(X

(j)
t )(B

(j)
t+h − B

(j)
t ) . (D.2)

Here X
(j)
t is the (vector) position in space of larva j at time t. B

(j)
t+h −B

(j)
t is a

multivariate random variable, with the same number of elements as X(j), each
element following a Gaussian distribution with mean 0 and variance h. When
the diffusivity is anisotropic, the square root is to be understood in the matrix
sense. The drift field ũ is the advection field corrected for heterogeneity in the
diffusivity (see Visser, 1997):

ũ(x, t) = u(x, t) + ∇D(x, t) .

In addition each larva is removed from the ensemble with probability µ(X
(j)
t , t)h

in each time interval. The movement scheme must be completed with a bound-
ary behaviour which matches the boundary condition (Gard, 1988). In our ex-
ample the no-flux boundary condition at the surface and bottom corresponds to
reflection of particles at the boundary (Wilson and Flesch, 1993); we circumvent
the associated difficulties by using the technique in Thygesen and Ådlandsvik
(2006).
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Figure D.2: Upper panel: Ensemble of surviving larvae in the IBM simulation,
at times 400, 1200, 2000, 2800 and 3600 seconds. Overlaid are contour levels
for the density, as computed by solving (D.1). The contour lines are chosen so
the expected number of individuals between lines are 200. Lower panel: Mean
length-at-position of larvae, at 3600 seconds.
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Finally, as the simulation progresses new larvae are introduced to the ensemble
and placed randomly in space: In each (short) time interval [t, t + h] new larvae
are placed randomly so that they have density r(·, t) · h, for example according
to a spatial Poisson process.

The movement scheme ensures that the position of a larva is a Markov process
(Gardiner, 1985). The defining property of Markov processes can be loosely
be stated as “Given the present state, the future state is independent of past
states”; so the position of a larva being Markov means that the instantaneous
velocity is not needed to compute the future position. More specifically, the
scheme (D.2) is the Euler scheme Kloeden and Platen (1995) for discretising

the continuous-time diffusion process X
(j)
t , which is the solution to the (Itô)

stochastic differential equation (Øksendal, 1995; Gardiner, 1985)

dX
(j)
t = ũ(X

(j)
t , t) dt +

√
2D(X

(j)
t , t)dB

(j)
t ,

with killing rate µ. This connection provides us with an arsenal of more so-
phisticated numerical algorithms, in situations where the simple recursion (D.2)
leads to problems (Kloeden and Platen, 1995). In turn, the transport terms in
the Eulerian model (D.1) agree with the Fokker-Planck equation (also known
as the forward Kolmogorov equation), governing the transition probabilities of

the process X
(j)
t .

With this Lagrangian model, the ensemble of larvae will at each time t constitute
a spatial point process with intensity C(·, t), disregarding the effect of finite time
steps. This is seen in figure D.2 (top panel), which combines a scatter plot from
the IBM simulation with the densities computed with the Eulerian model. If the
initial point pattern of larvae is Poissonian, and new larvae are also added to the
ensemble according to a Poisson process at each time step, then the ensemble
remains Poissonian.

D.2.2 Including growth

Now, we turn to the internal state of each larvae, viz. its length L
(j)
t . To keep

things simple, we assume that all larvae have length L0 at the time of hatching,
and that the length thereafter follows the growth model

dL
(j)
t

dt
= L∞ · k(X

(j)
t , t) .

Thus the growth rate depends on local conditions e.g. temperature, food avail-
ability, but given these, the growth rate is independent on the present length.
This corresponds to the initial phase of von Bertalanffy growth. In an individual-
based or Lagrangian simulation model, it is a matter of adding a few lines of
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code to keep track of the length L
(j)
t of each larvae. A snap-shot of such a

simulation run would display a collection of points in space, indicating the posi-
tion of the larvae, where each point is equipped with a mark, viz. the length of
the particular larvae. In the terminology of stochastic geometry (Stoyan et al.,
1995a), such a snap-shot is a realization of a marked point process.

Alternatively, to adopt an Eulerian setting, we would need the joint density

φ(x, l, t) of position X
(j)
t and internal state L

(j)
t : What is the expected number

of larvae in a given region in space, at a given time, which has a length in a
specified range? This density satisfies the “forward”, “Boltzmann”, or “Master”,
equation (Fennel and Neuman, 2004)

φ̇ = − ∂

∂x
(φũ − D

∂

∂x
φ) − ∂

∂l
(φL∞k) − µφ + rδ(l − L0) . (D.3)

Note the term − ∂
∂l (φL∞k): Growth of individuals correspond to a flow along

the “length” axis, and the local accumulation is minus the divergence of the ad-
vective flux. The last term, rδ(l−L0) where δ is the Dirac delta, corresponds to
the local production of larvae, which all have length L0. From a computational
point of view, the extra dimension introduced by the internal state of the larva
increases the burden enormously. In a 3-D environment, or with more than
one attribute to the state, numerical resolution of a full Eulerian description is
prohibitively expensive.

The key to making progress is to note that (X
(j)
t , L

(j)
t ) is an example of a

Markov additive process (Asmussen, 2003, chapter 11), where L
(j)
t is the additive

component. We can recognise this by noticing that none of the coefficients in

(D.3) depend on l. Loosely, this means that the position X
(j)
t evolves according

to its own dynamics, while L
(j)
t is simply cumulated along the trajectory. More

precisely, (X
(j)
t , L

(j)
t ) is Markov, and the transition probability from (x, l) to

(x′, l′) is the same as the transition probability from (x, 0) to (x′, l′ − l). See
also Breuer (2002b) for a comparison of these characteristics with the more
abstract definitions used in the specialised literature.

It follows that we are able to write up explicitly partial differential equations
which govern the moments (i.e., mean, variance, etc.) of the length of a fish
larva at a given position. This technique is standard within the field of Markov
additive process; in appendix D.4 we present the result with the minor extension
of considering not just one larva, but an ensemble of larvae, and allowing for
multiple states with linear dynamics. The end result is that to determine the
mean and variance of the length of a randomly selected larvae at a given position
and time, we must first solve the system of equations

ρ̇i = −∇ · (uρi − D∇ρi) − µρi + iL∞kρi−1 + Li
0r (D.4)

where the subscript i = 0, 1, 2, . . . corresponds to the order of the moment we
are considering. Thus ρ0(x, t) corresponds to the density of larvae at position
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x and time t, and the governing equation agrees with equation (D.1). Next, ρ1

corresponds to density of larval length. To be precise, if we let S
(1)
B (t) be the

total length, summed over all larvae present in a region B at time t, then the

expected value of S
(1)
B (t) is

ES
(1)
B (t) =

∫

B

ρ1(x, t) dx . (D.5)

From ρ0 and ρ1 we can form the mean length of a larva as a function of position
and time (see appendix D.4):

ρ1(x, t)

ρ0(x, t)
.

To analyse the model, we therefore solve equations (D.4) numerically. Figure
D.2 (lower panel) shows the conditional mean length as a function of position,
colour coded. Note that the mean length varies quite strongly along the x-
axis, but little along the z-axis. This is because individuals which have moved
far must have been exposed to fast flow, which in turn coincides with high
growth rates (compare figure D.1), so these individuals must have grown much.
Note also that the Eulerian model determines accurately also the mean length
of larvae in regions of space where very few larvae are present. This feature is
particularly important in recruitment studies, where the length of the survivors,
which constitute a small fraction of the initial ensemble, is of interest.

Similarly, ρ2 corresponds to density of larval length squared, and from ρ2 we
may form the variance of the length of a larva sampled at position x and time
t:

ρ2(x, t)

ρ0(x, t)
−
(

ρ1(x, t)

ρ0(x, t)

)2

.

Thus, solving also for ρ2 provides us with approximate confidence limits to the
mean length. In figure D.3 we show the mean length as a function of horizontal
position, with confidence limits, as well as the distribution of the horizontal
position.

D.2.3 Interpretation of the governing equations

The equation (D.4) for the density ρ1 of length may be interpreted as follows:
length is a quantity which is being transported and lost with its carrier, i.e. the
fish larvae, hence the terms −∇· (uρ1 −D∇ρ1)−µρ1 in its governing equation.
In addition, length is being produced by two processes: The growth, which gives
a local production of length which is the local density of fish larvae, ρ0, times
the growth rate of each larvae L∞k. Secondly, length is being produced by new
larvae hatching with rate r, each contributing with the initial length L0 to the
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Figure D.3: Top panel: Scatter plot of length L
(j)
t versus horizontal displace-

ment X
(j)
t . Included are the mean length, and upper and lower limits in 95 %

confidence intervals from the Eulerian model. Lower panel: Histogram of X
(j)
t

(bars). Included is the probability density function of X
(j)
t , as computed with

the Eulerian model.
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local length density. The combined effect of transport, mortality loss, growth,
and production, is the governing equation (D.4) with i = 1.

The dynamic equation for ρ2 is analogous: length squared is a quantity which is
transported and lost with its carrier, the fish larvae. Furthermore length squared
is introduced by new hatchlings with rate L2

0r and finally the local production
of length squared is 2L∞kρ1. Re-writing this production rate as

2L∞k
ρ1

ρ0
ρ0 ,

we see that it is the local density of larval length times the average rate of
increase of length squared at that position, using the chain rule

d(L
(j)
t )2

dt
= 2L

(j)
t L∞k .

These interpretations should illuminate the structure of the evolution equations
(D.4). The reasoning can be extended to cover higher order moments as well,
but this is probably of less practical interest.

D.2.4 Multiple additive components

There will be situations where we are interested in more than one internal state
of the individuals. As a simple example, we may be interested in somatic growth
and otolith growth, and in particular the correlation between the two. This
section states the Eulerian equations for the mean, variance, and covariance of
several additive components.

Rather than introducing new features into the model, however, we may simply
re-inspect the governing equations (D.3) for our simple example and see that
the coefficients neither depend on x nor on l, because the fields u, D, K, µ only

varies with the vertical position. Therefore the vertical position Z
(j)
t is in itself

Markov, and both X
(j)
t and L

(j)
t are additive components. It follows that we

can write up a partial differential equation for the vertical distribution of larvae
φ00(z, t), and next for the joint statistics of horizontal displacement and length,
as a function of vertical position. We end up with the system of equations

∂tφαβ = ∂z(D∂zφαβ) − µφαβ + αuφ(α−1)β + βgφα(β−1) .

Here the subscripts α, β correspond to the order of the moments of horizontal
position and length. The mean horizontal position is determined from φ10,
the mean length is determined from φ01, and variance-covariance statistics are
determined from φ02, φ11, and φ20. We give the exact formulae in table D.2. The
table also contains formulae for the unconditional moments, i.e. disregarding or
averaging over the vertical position.
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Statistic Symbol Formula
Vertical distribution φ00(z, t)

Mean x at z m̄X|Z(z, t) φ10(z,t)
φ00(z,t)

Mean l at z m̄L|Z(z, t) φ01(z,t)
φ00(z,t)

Variance of x at z VX|Z(z, t) φ20(z,t)
φ00(z,t) − (m̄X|Z(z, t))2

Variance of l at z VL|Z(z, t) φ02(z,t)
φ00(z,t) − (m̄L|Z(z, t))2

Covariance between x and l at z COVXL|Z(z, t) φ11(z,t)
φ00(z,t) − m̄X|Z(z, t)m̄L|Z(z, t)

Mean x m̄X(t)
∫

φ10(z,t) dz∫
φ00(z,t) dz

Mean l m̄L(t)
∫

φ01(z,t) dz∫
φ00(z,t) dz

Variance of x VX(t)
∫

φ20(z,t) dz∫
φ00(z,t) dz

− (m̄X(t))2

Variance of l VL(t)
∫

φ02(z,t) dz∫
φ00(z,t) dz

− (m̄L(t))2

Covariance of x and l COVXL(t)
∫

φ11(z,t) dz∫
φ00(z,t) dz

− m̄X(t)m̄L(t)

Table D.2: Formulae for the statistics, computed with the fields φαβ . For
brevity, we write x, z and l for “horizontal position”, “vertical position”, and
“length”.

These low-order statistics may be computed with very little effort. For our
simple example, where the Markov component Zt is one-dimensional and the
governing equations are time-invariant, we may discretise the vertical dimension
into n layers. The coupled system for φαβ with 0 ≤ α + β ≤ 2 is thus approx-
imated by 6n coupled linear time-invariant differential equations, so that the
solution for any particular time may be obtained by evaluating the exponential
to a matrix of dimension 6n × 6n.

Clearly, just having information of up to second order does not describe all fea-
tures of the distributions. If we take the usual approach and consider Gaussians
with the same statistics, then we would approximate the density and histogram
in figure D.3 (lower panel) with a Gauss bell, which is reasonable, but we would
also approximate the conditional mean length as a function of x in the upper
panel with a straight line, which is less reasonable. To discover that conditional
mean length is an accelerating function of x, we would need third order informa-
tion. Whether this feature is critical and justifies the extra computation, or the
covariance information is sufficient, depends on the application at hand. Note
that as time progresses, these approximations become more and more accurate;
a Central Limit Theorem applies to these processes.
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D.3 Discussion

In this paper, we have stated Eulerian equations for the mean and variance
structure in a population of individuals which each is characterised by its po-
sition as well as some internal state, which is cumulated along the trajectory.
We have illustrated with a minimalistic example for maximum clarity, but we
stress that the framework is applicable in much greater generality; a point we
shall elaborate on below.

Our aim has been to show that an Eulerian analysis of individual-based models
is possible, also from a practical point of view. We believe that many practical
problems with individual-based models can be avoided by adopting the Eulerian
view. One particular such problem is statistical and regards the number of par-
ticles required for a reliable analysis, especially with large mortality; numerical
issues regarding implementations of random-walk schemes is another example.
A benefit of Eulerian models in this respect is that a large toolbox is available
and already well-known within the oceanographic scientific community. This
holds for “ecosystem” modules for the reaction kinetics of multiple biological
fields which are subject to (active or passive) transport. But also analytical
techniques are available, which may assist in making coarse first estimates with-
out solving the actual equations. One set of techniques which should be very
useful is model reduction based on time scale separation in the model, either
using adiabatic elimination of fast variables or averaging of periodicities (Gar-
diner, 1985; Murdock, 1999). In our example, with sufficiently large time scales
of interest, the vertical mixing could be considered a fast process so that verti-
cal position is eliminated adiabatically, resulting in a simple advection-diffusion
model for growth and horizontal transport.

When simulating individual-based models it is easy to add arbitrarily complex
internal state dynamics, whereas an Eulerian analysis requires a simpler model
structure. This can be a limitation, but can also serve as a reminder to maintain
focus during modelling. In larval drift studies, for example, a prominent source
of uncertainty is our inability to parameterise the mortality and the way it
varies with internal states and external environmental factors. In this situation,
adding complexity to other parts of the model is not likely to increase the overall
fidelity of the model predictions.

We do not claim that Eulerian analysis is always superior to individual-based
simulation, but merely that it is an advantage to be able to choose the better
approach for the problem at hand. Individual-based simulation are likely to
be computationally superior when few particles would suffice, but the Eulerian
model would have to resolve a large space. Also, individual-based models yield
actual trajectories of individuals, which can be a great help in understanding the
life history of animals. Another limitation is that the methods we have presented
for additive processes yield only moments, whereas other information about the
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distribution, e.g. tail characteristics, would require a full Eulerian analysis, or
an individual-based simulation. Finally, non-linear dynamics cannot be solved
exactly with this approach. Reparameterisations in terms of cumulated expo-
sure, or moment closure techniques, are possible, but have to be specific for the
problem at hand.

In our analysis we have concentrated on the forward equations, which govern
how probability densities evolve from a given initial condition. In the theory of
stochastic processes there is a well established duality, so that we could equally
well have concentrated on equations evolving backwards in time. This could
e.g. govern the expected length of a larva when it reaches a nursery ground, as
a function of spawning time and position, and averaged only over those larvae
which actually reach the nursery ground.

Regarding the generality of the framework, we should emphasise that our results
do not hinge on the particularities of the example. For instance, the dynamics

of the vertical position Z
(j)
t may include vertical preferences or migrations, and

the entire system may be time-varying. Neither is it critical that the additive

component, here L
(j)
t , grows continuously and deterministically given the posi-

tion. It may contain a diffusive component, and it may display random jumps,
as will be the case if the additive component measures encounters with prey or
cumulated feeding intake.

The dynamics of the additive component may also contain a linear term in the
additive component itself. This can extend our simple example to cover the full
von Bertalanffy growth model, and can lead to general matrix dynamics for the
internal state vector when multiple internal states are considered.

One particular problem with individual-based models is the representation of
interactions among the individuals in the model. In simulation models, realistic
interactions require realistic densities of individual, which leads to overwhelming
computational burdens when studying larvae. In an Eulerian analysis of larval
growth, a reasonable heuristic is to let the local growth and mortality depend on
the local density, thus adding non-linear terms to the equations (D.4). However,
it is not trivial to determine which non-linear terms in the Eulerian model
corresponds to which individual interactions in a simulation.

The common feature of Eulerian analysis of individual-based models is that
we need “ecosystem” modules on top of circulation models, which can resolve
the transport, both passive and active, and production of multiple scalar fields.
Driven by applications to food-web models, such modules are becoming standard
extensions to common circulation models and their performance and flexibility
are rapidly increasing. These modules may be used to use to gain a deeper
knowledge about the fate of marine organisms, than what is obtained by merely
keeping track of numbers or biomass, by including also non-mass state variables.
In this respect, additive processes provide a framework which is both general
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and tractable, and is particular well suited for non-mass state variables such
as length, age, and cumulated exposure to environmental cues. Most impor-
tantly, the framework is an evidence to the fact that individual variability can
be captured also in Eulerian models.
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D.4 Appendix A. Ensembles of Markov Addi-
tive Processes

A Markov Additive Process is a stochastic processes with two components, say
Xt ∈ X and Lt ∈ L, so that the combined process (Xt, Lt) is Markov, and so
that the transition probabilities are invariant under shifts in Lt. Formally, let
p(s, t, (xs, ls), A × B) be the probability that the process satisfies Xt ∈ A and
Lt ∈ B, given that it starts in (xs, ls) at time s, then

p(s, t, (xs, ls), A × B) = p(s, t, (xs, 0), A × (B − ls))

must hold for every initial state (xs, ls), every target sets A and B, and every
initial and terminal times s and t.

Consider the particular Markov additive process of a fish moving in space while

growing, as in section D.2.2. Let φ(x, l, t) be the joint density of (X
(j)
t , L

(j)
t ),

which then satisfies the forward Kolmogorov equation (compare e.g. Øksendal,
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1995; Gardiner, 1985; Kloeden and Platen, 1995; Fennel and Neuman, 2004)

∂φ

∂t
= [−∂x(uφ − D∂xφ)] + {−∂l(L∞kφ)} ∆

= Aφ . (D.6)

Here we have decomposed the equation in two terms: The first, in square brack-

ets, corresponds to redistribution of X
(j)
t , which does not involve l, while the

second term in curly brackets corresponds to redistribution of L
(j)
t , and is shift

invariant in l.

We proceed to consider an ensemble of individuals, which each evolve according
to independent realisations of this Markov additive process. If the ensemble
a time 0 constitutes a Poisson process in state space, and if no individuals are
added to or removed from the ensemble, then the ensemble will remain a Poisson
process with a density in state space which is governed by the same equation
(D.6). If individuals are added to the ensemble according to a Poisson process
in state space and time with density r(x, l, t), and if each individual is removed
from the ensemble with probability µ(x, t), then the equation governing the
density of the ensemble in state space becomes

∂tφ = Aφ − µφ + r . (D.7)

A Poisson process in state space X × L can be thought of as a marked Poisson
process in X, where L is the mark space (Stoyan et al., 1995a). The density of
this process in X at time t is ρ0(·, t) where

ρ0(x, t) =

∫

L

φ(x, l, t) dl ,

while the mark distribution, giving the probability density of the mark (i.e., the
length) of a “typical” fish larvae sampled at location x, is

φ(x, l, t)

ρ0(x, t)
.

It follows that the ith moment of the length of a typical fish sampled at position
x is ∫ ∞

0

li
φ(x, l, t)

ρ0(x, t)
dl =

ρi(x, t)

ρ0(x, t)
,

where ρi(x, t) =
∫
L

liφ(x, l, t) dl. To derive dynamic equations for ρi, differen-
tiate this expression with respect to time and insert (D.6) to find, for i ≥ 1:

ρ̇i = − ∂

∂x
(ρiũ) +

∂2

∂x2
(Dρi) + L∞kiρi−1 − µρi +

∫

L

lir(x, t, l) dl . (D.8)

The last term corresponds gives the production rate of the ith moment due to
introduction of new individuals to the ensemble. For comparison with (D.4),
take r(x, l, t) := r(x, t)δ(l − L0).
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To obtain the result (D.8) from (D.7), use partial integration to evaluate the
term ∫ ∞

0

li
∂

∂l
(φL∞k) dl =

[
liφL∞k

]∞
0

−
∫ ∞

0

ili−1φL∞k dl

and the observation that liφL∞k must vanish both at l = 0 (since i ≥ 1) and in

the limit l → ∞ (for ρi to be finite). Note that if the Markov process (X
(j)
t , L

(j)
t )

did not have the additive structure, these equations would involve higher order
moments, i.e. the dynamic equations for the low-order moments would not be
closed.

The result is easily extended to the case of several additive components: For

example, if we have two additive components, L
(j)
t ∈ L and M

(j)
t ∈ M, then

we establish the Master equation for the joint density in X × L × M, multiply
with lαmβ and integrate over L×M, to obtain dynamic equations for the joint
moments.

Note that it is not essential that the Markov state X
(j)
t is a advection-diffusion

process; it could be any Markov state, for example including discrete behavioural

or physiological states. Also, the additive component L
(j)
t may evolve according

to more general dynamics than growing with a rate L∞k(x, t), of which we now
list a few:

Diffusive components: If the increment in L
(j)
t over a small time interval has

a small random component, this will appear in the Master equation as a term
E∂llφ. This will not affect the mean growth, i.e. ρ1, but it will increase the
variance through an additional production term 2Eρ0 appearing in the dynamic
equation for ρ2.

Discrete jumps: These may appear if L
(j)
t models weight, stomach contents, or

encounters, rather than length. Jumps will give rise to a convolution term in
the Master equation. In the equation for ρ1 a term λ∆L will appear; here λ is
the jump rate while ∆L is the mean jump height.

Linear relaxation: For example, we may replace the growth rate kL∞ with the

full von Bertalanffy model k(L∞ − L
(j)
t ). This will give rise to an additional

term ∂l(φkl) in the Master equation, and thus the additional term −kρ1 in the
equation for ρ1, and the additional term −2kρ2 in the equation for ρ2. When
multiple internal states are included, this can give rise to quite sophisticated
models.
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Abstract

Markovian Arrival Processes are very general point processes where the gener-
ation of points is controlled by an underlying finite state Markov chain. This
dependence makes it possible to approximate inter-arrival times from all posi-
tive distributions and to include correlations between events. One of the biggest
advantages of MAPs is that it is often possible to obtain analytical or algorith-
mically tractable results i.e. key properties of the stochastic process can be
acquired without simulating it.

In this article we will present transient Markovian Arrival Processes with pe-
riodic rates that we believe can be used as a tool to understand the effects of
stochasticity at the individual level e.g. on the number of food items acquired
during a time period, or the offspring produced. We use transient models since
the risk of death is a very important factor in at least parts of the life of most
organisms. Moreover, in order to study and describe situations with periodic-
ities our models are equipped with periodic rates since temporal variations in
prey, light, temperature etc. are vital to how biological systems work.

We present the asymptotics of conditional moments in order to characterise the
long-term survivors and propose that these moments can be used in time-scale
separation techniques. We will also present a sequence of examples where the
transient MAPs can be seen as logical and plausible extensions of a Poisson
process, in order to account for heterogeneities or regularities in nature. It will
also be shown that even if food intake is highly variable, another process such
as offspring production which depends on feeding success can underdispersed
relative to a Poisson process.
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E.1 Introduction

Most ecosystems have periodic or almost periodic external forcing; evident ex-
amples are daily and annual variations in light and temperature. Most or-
ganisms respond to these external periodicities and behave periodically due to
adaptations to different profitabilities or availabilities of prey, or probabilities
of encountering predators or a partner during a period. This is an effect that
often is ignored. If the aim is to build mechanistically derived models then it
is important to include these variations since they may have large effects. For
instance, periodical variations in time make it, at least theoretically, feasible for
some organisms to exist in a system where it would have been impossible to
survive without periodicities (see e.g. Ebenhöh, 1988).

Periodicity is a fundamental property of the environment of many organisms, but
even if the cause of the periodicity is deterministic its effects on the individual
may not be so. A periodic variation may give an organism the opportunity to
exploit an otherwise inaccessible resource; Clark and Levy (1988) showed that
the daily variations in light enables small fish to search for food at dusk and
dawn with relatively low risk since the light levels are low enough to hamper
the foraging success of their predators but high enough to not impede their own
foraging. The actual outcome of such phenomena, such as foraging, is typically
stochastic and in many cases depend on the state of the organism, since for
instance, it is not possible to ingest food if the stomach is full. Periodicity is
a regular temporal variation, but spatial variability is often important too, e.g.
spatial variability in resources can lead to persistence of populations over several
generations even if the average, or homogeneous, situation leads to extinction in
much less time. A splendid illustration of this is Brodie et al. (1978) who noted
that the average densities of euphasiids estimated via nets and acoustics were
insufficient to feed fin whales in an area off the coast of Nova Scotia; the whales
would need to swim at speeds of 900 km · h−1 to fill their stomachs in 8 hours.

Since variation in resources and in encounters with prey are important to the
fitness of an organism we believe that it is important to construct and analyze
stochastic models even if they in general are more cumbersome to deal with
than their deterministic counterpart.

The Markovian Arrival Process (MAP) offers a possible starting point for study-
ing the effect of stochasticity at the individual level; it is a very general stochastic
point process and yet, due to the Markov property, it is possible to analyze mod-
els without having to use simulation. For a MAP the rate of generation of points
depends on a finite state Markov chain. MAPs has found many applications in
queueing theory (see e.g. Heffes and Lucantoni, 1986), but it has not been widely
used in biology. The two-state Markov chain with arrivals of points in one state
only, the interrupted Poisson process is a MAP. It has been used as a simple
model-unit to describe that in many instances patchiness makes the number of
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prey encountered more variable than the Poisson distribution, see Beyer and
Nielsen (1996) for a thorough introduction and Pitchford and Brindley (2001)
for applications to fish larvae.

We assume that the behaviour of an organism can be described as being in a
finite number of states, called phases, and that the transitions between phases
can be described by a finite Markov chain. Certain transitions in the Markov
chain generate counts, these represent some discrete quantity of interest such
as captured prey, offspring produced. Since the risk of mortality probably is
the most important aspect of life for many organisms, in particular for the
juvenile stages, we explore the dynamics of transient processes where death is the
absorbing state. An absorbing state has the property that once entered it cannot
be left. Other states with a non-zero probability of an eventual transition to the
absorbing state are called transient—it is certain that they are left. Our models
are constructed with only one absorbing state where no counts are generated
after death. Moreover it is assumed that the models are constructed such that
the transient states are communicating; the probability of transition from any
state to any other state is non-zero given that the process did not terminate. In
order to characterise the number of points of the survivors or the dead in the
long run we are interested in finding the asymptotic moments for the number of
counts given that the organism is in a certain state or set of states—these are
the conditional moments for the MAP.

In this article we will first present MAPs briefly in Section E.2, then we will
present the conditional mean and variance of counts for transient MAPs with
periodic rates in Section E.3. Finally, in Section E.4 we will produce some
scenarios on a vertically migrating planktonic organism that will illustrate the
flexibility of the MAP and show that it is possible to have different counting
processes, the effect of including death on the survivors, and possibilities for
time-scale separation. It will be shown that the framework of Markovian Arrival
Processes will enable us to analyse situations were under- and over-dispersing
mechanisms compete.

Notation

In the following vectors are denoted with a bold lower case letter, such as a,
these are always assumed to be column vectors; row vectors will appear as
transposed column vectors (aT is a row vector). There are some special vectors
e = [1, . . . , 1]T , ex is a vector with a 1 in position x and zeros in all other
positions, and if C is a set of states that the organism can be in, then eC

is a vector with 1 in positions corresponding to phases in C, the rest of the
positions are equal to zero. Matrices will appear as uppercase bold letters such
as M and the scalar positioned in the jth column of the ith row of the matrix
will be denoted (M)ij . Special matrices are I, the identity matrix, and 0, the



E.2 Key results on Markovian Arrival Processes 179

zero matrix, where the dimension depends on the context. We will denote the
indicator function with 1{x ∈ A} which is equal to 1 if x belongs to A and 0 if
not. Let E

x,n,t[·] and V
x,n,t[·] denote the expectation respectively the variance

with respect to the law of the Markovian Arrival Process Xt, Nt starting at
(x, n) at time t.

E.2 Key results on Markovian Arrival Processes

Marcel Neuts introduced the versatile Markovian process in 1979. The versa-
tile Markovian process was later redescribed as the Markovian arrival process
(MAP) by Lucantoni et al. (1990) which is the commonly used term. Here we
will present the basic structure of MAPs such that a reader with some knowl-
edge of continuous-time Markov chains will be able to follow the subsequent the-
ory. For a more complete presentation of MAPs we refer to the afore-mentioned
works and to Neuts (1989). A sufficient background for continuous-time Markov
chains can be found in Grimmett and Stirzaker (2001).

A Markovian arrival process is a stochastic point process where the generation
of counts depend on a finite state Markov chain. The MAP owes much of
its flexibility to this dependence since this makes it possible to approximate
interarrival times from almost any positive distribution (Asmussen and Koole,
1993).

The MAP is the counting process {Nt} generated by a two-dimensional Markov
process {Xt, Nt} for t > 0 where Xt denotes the phase, i.e. the state in the
finite Markov chain, at time t and Nt the counts accumulated to that time.
Let the number of phases be m, then the behaviour of the MAP for t > 0 is
fully described by (φ,D0,D1, n0), where φ is the probability of being in phase
i at t = 0, D1 and D0 are two m × m matrices, and n0 is the initial number
of counts. Without loss of generality we will assume that n0 is equal to zero,
hence the state space is {(i, n) : i ∈ {1, 2, . . . , m}, n ∈ N}.
When the rates of the MAP are independent of time then the matrices D0 and
D1 are constant; D0 has non-negative off-diagonal elements and the matrix D1

has non-negative elements. The jth off-diagonal element in the ith row of D0,
(D0)ij determines the instantaneous rate out of state (i, n) into (j, n) without
generating a point. The jth element in the ith row of the matrix D1, (D1)ij ,
determine the rate out of state (i, n) into state (j, n+1) – transitions from phase
i to j that generate a point. Note that transitions from (i, n) to (i, n + 1) are
allowed, then (D1)ii is positive.

In order to preserve probability, the rate by which state (i, n) is left has to be
balanced by the rate by which other states are entered from this state, this
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means that

(D0)ii = −



∑

1≤k≤m

k 6=i

(D0)ik +
m∑

k=1

(D1)ik


 .

The general structure of a MAP can be seen from the infinite-dimensional tran-
sition matrix Q, where the m first rows correspond to being in some of the m
phases and having 0 counts, the next m rows to having 1 count etc., where

Q =




D0 D1 0 0 · · ·
0 D0 D1 0 · · ·
0 0 D0 D0

. . .
...

...
. . .

. . .
. . .




.

Ignoring the counts the rate of one-step transitions between phases is described
by the matrix D ≡ D0 + D1. If D is irreducible, and time-independent, then
the stationary probability distribution can be found as the column vector θ that
solves:

θTD = 0T and θT e = 1,

where e is a column vector with all ones and 0 is a vector of zeros.

The first two moment-matrices of the counting process of a MAP are described
in Narayana and Neuts (1992) together with a discussion on algebraic and al-
gorithmic properties of these. The moment-matrix describes the first two frac-
tional moments of counts at time t given that the present state is j and that
the initial state was i, where the nth fractional moment of a random variable
X is E{X(X − 1)(X − 2) · · · (X − n + 1)}.
Latouche et al. (2003) describe fundamental results for transient MAPs with
time-invariant rates. Transient MAPs occur when there are catastrophic events
which cause the process to stop. In biological models transient chains could e.g.
be used to represent the death of an animal. In Nielsen et al. (2007) the results of
Narayana and Neuts (1992) were generalized to any moment for transient MAPs
with rates that are independent of time; these can be used to derive formulas for
the conditional mean, variance and higher order central conditional moments.

E.2.1 Some basic building blocks of MAPs

The PH-renewal process and the Markov-modulated Poisson Process (MMPP)
are often used in MAP constructions. Let (α,T) be the irreducible represen-
tation of a phase-type distribution—a phase-type distribution is defined as the
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time to absorbtion in a finite Markov chain with one absorbing state (see Neuts,
1989). Then a PH-renewal process has the matrices:

D0 = T D1 = toα,

where to = −Te. An MMPP has the rate matrices:

D0 = D − Λ D1 = Λ,

where Λ is a diagonal matrix. The MMPPs have the nice property that it is
possible to multiply the generation of counts without altering the probability
distribution of the phases. For instance, if the rate matrix is multiplied with a
scalar α the the expected counts will be increased with this factor.

To illustrate this let us have 4 states, where it is only allowed to have transition
rates of 1 per time unit to other states. An example of a PH-renewal process is
a MAP with

D0 =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1


 and D1 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 .

This is an Erlang(4) process which is the most regular MAP possible with 4
states. The distribution of interarrival times can be seen in Figure E.1. As a
contrast take the 4 state MMPP (it is also a PH-renewal) with matrices:

D0 =




−2 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


 D1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




This will generate a process that is much more variable than a Poisson process;
the interarrival distribution is shown in Figure E.1, for reference an exponential
distribution with the same mean as the two distributions above in included.
Note that the D matrix is the same for both the MMPP and the PH-renewal
process but the behaviour is quite different.

E.3 Transient Markovian Arrival Processes with
periodic rates

Here we present terminating MAPs where the rates are varying periodically with
minimal period T , and results for the asymptotics of their conditional mean and
variance. For convenience phase 0 is the absorbing state where no counts are
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Figure E.1: The Erlang(4)-process is green and the MMPP is blue; while an
exponential variable with same mean is red. Note that the Erlang waiting time
is much more regular and has less variance than the exponential and that the
MMPP has a wider tail than the exponential distribution.

generated. All the other m phases are transient and communicating in the
absence of death. The (m + 1) × (m + 1) rate matrixes for one-step transitions
with and without producing a count are

D1(t) =




0 · · · 0
h1,0(t) · · · h1,m(t)

...
. . .

...
hm,0(t) · · · hm,m(t)


 , D0(t) =




0 · · · 0
g1,0(t) · · · g1,m(t)

...
. . .

...
gm,0(t) · · · gm,m(t)




respectively. We assume that the functions hi,j(t) are non-negative as well as
the off-diagonal functions in D0. The diagonal functions in D0 are defined as

gi,i(t) = −



∑

0≤j≤m

j 6=i

gi,j(t) +
m∑

j=0

hi,j(t)




for i = 1, . . . , m. We assume that the functions gi,j(t) and hi,j(t) are sufficiently
well-behaved to assure existence and uniqueness for the solutions; piece-wise
continuous functions are examples of such (see p. 107 in Lukes, 1982, for exact
criteria). The periodicity in the rates implies that D1(t + T ) = D1(t) and
D0(t + T ) = D0(t) for all t. Consequently the time-dependent rate of one-step
transitions between phases is D(t) is also periodic.
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In order to be able to answer questions such as: “What is the expected number
of prey eaten given that the predator is alive now (time t+ts) and that it started
in phase i with nothing at some previous time ts?”, we will need to compute
the following matrices P(ts, t + ts),M1(ts, t + ts), and M2(ts, t + ts). Their
interpretation is that the jth element in row i of P(ts, t + ts), (P(ts, t + ts))i,j ,
is the probability of being in phase j at time t+ ts given that the process was in
phase i t time units before. The corresponding entry on the ith row in the jth
column of M1(ts, t+ ts) (or M2(ts, t+ ts)) are the expectation of the number of
counts (or squared counts) and that the present phase is j given that the initial
state was (i, 0) t time units before at time ts.

These can be found (see Article B from the solutions to the following system of
ordinary differential equations:

− d

dτ




P
M1

M2


 =




D(τ) 0 0
D1(τ) D(τ) 0
D1(τ) 2D1(τ) D(τ)






P
M1

M2


 (E.1)

with initial conditions P(0) = I,M1(0) = M2(0) = 0 for τ < 0. These are
the backward Kolmogorov equations which fix the end time and state, the time
is usually set to 0, which means that the initial time will be negative. The
interpretation for the moments is actually: “Given that we start in state i at time
0 what is the expected number of lost prey when running things backwards?”
This slightly akward point of view can be taken care of by changing the time
to t → −τ . In what follows the boundary value will be taken at time 0, since
it is always possible to translate the time t′ → t− ts. For simplicity the matrix
P(τ, 0) (in the original time scale) will be denoted P(t) except where distinctions
are necessary.

In the forward Kolmogorov equations the starting time is fixed (usually to t = 0)
and the question to be answered is: “Given that the intial phase is i (and no
rewards) what is the probability (or expected number of counts) given that the
phase at time t positive is j?” The difference is slight and the solutions are
equal at each period. However the backward Kolmogorov has some properties
that makes it more suitable in our calculations since the system to be integrated
can be reduced by multiplying from the right with eB, whereas in the forward
setting reductions can be made with the given initial distribution.

The conditional mean can be found as

E
x,0,τ [N0|X0 ∈ C] =

eT
x M1(τ)eC

eT
x P(τ)eC

,

and the conditional variance as

V
x,0,τ [N0|X0 ∈ C] =

eT
x M2(τ)eC

eT
x P(τ)eC

−
(

eT
x M1(τ)eC

eT
x P(τ)eC

)2
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for τ < 0 as was shown in Article B.

Due to the fact that the matrices D0(t), D1(t), and D(t) are time-dependent
an analytical solution cannot be found, but the periodicity provides structure;
the system can be integrated numerically over a period T and then recursive
equations can be used. These recursions can be used to calculate the state of
the system for t + T . This is due to the fact that if f(t) is a solution such
that f(t0) = x0 for the n-dimensional ODE system d

dtx(t) = A(t)x(t) where
A(t) is a T -periodic matrix then the solution starting from x0 at time t0 + T
is f(t − T ). This means that if the solutions to n linearly independent starting
conditions are known over a period, then any initial condition can be written
as a combination of these and this solution will form a vector at the end of the
period, which can be written as a linear combination of the n vectors and so to
proceed as the initial condition in the next period. The periodic system can be
embedded into a discrete time-invariant system.

This is illustrated in Figure E.2 where there is only one periodic state (it is
actually the solution P1,1(t) from Example 1). Using periodicity the following
equations are derived (see appendix E.9):

P(t + T ) = P(t)P(T ) (E.2)

M1(t + T ) = M1(t)P(T ) + P(t)M1(T ) (E.3)

M2(t + T ) = M2(t)P(T ) + 2M1(t)M1(T ) + P(t)M2(T ) (E.4)

If we denote P as M0 then these equations can be generalised for the nth
moment:

Mn(t + T ) =

n∑

i=0

(
n

i

)
Mn−i(t)Mi(T )

(see Article B for the time-invariant case). These recursions make it possible to
calculate the development of the system if only the solutions are known during
the first period for P(t),M1(t), and M2(t). Note that in general P(0, s + t) =
P(0, s)P(s, s+ t) 6= P(0, s)P(0, t). The above recursions use the T -translational
invariance, P(T, t + T ) = P(0, t). The essence of the recursions is natural; let
the expected number of counts at time nT be nnT and the expected number of
squared counts be mnT . Then it is easy to see that:

mnT+T = mnT + 2nnT (nnT+T − nnT ) + (nnT+T − nnT )2

which essentially is the relation in Equation (E.4) where care has been taken
to sum over all possible intermediate states at time nT and the probability of
arrival is included.

The asymptotic analysis is based on sampling the system every period and
solving the recurrence equations for P(T ), M1(T ), and M2(T ) that are obtained
by putting t = nT in Equations (E.2, E.3, E.4). The matrices P(T ), M1(T ), and



E.3 Transient Markovian Arrival Processes with periodic rates 185

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
x

0

λ
1
 ⋅ x

0

λ
1
2 ⋅ x

0

λ
1
3 ⋅ x

0

λ
1
4 ⋅ x

0

λ
1
5 ⋅ x

0

λ
1
3 ⋅ x

0

λ
1
4 ⋅ x

0

time (h)

P
(1

,1
)(

t)

Figure E.2: An illustration that the solution to a periodic ODE can be written
as a x(t) = eµtp(t), where p(t + T ) = p(t). This introduces a mapping of the
solution at periodic times; no need for the actual shape of the periodic function
p(t) is needed if system is inspected at periodic times. Starting at λ3

1x0 at any
period, the solution will be λ4

1x0 one period after.

M2(T ) are found through numerical integration of the system (E.1) with initial
conditions P(0) = I, M1(0) = 0, and M2(0) = 0. The asymptotic behaviour
of the system is determined by the stationary phase if the target set C contains
phase 0. The stationary phase has a left eigenvector eT

0 and a right eigenvector
e. If the target set does not contain phase 0, then the asymptotic behaviour
is determined by the quasi-stationary distribution uT

1 and its right eigenvector
v1 and the eigenvalue λ1. We write the P(T ) matrix according to its Jordan
decomposition (see Gantmacher, 1959) as:

P(T ) = eeT
0 + v1λ1u

T
1 + V2Λ2U2,

where it turns out that V2, U2, and Λ2 are not necessary to compute (see
Appendix E.7 for details).

If the set of phases C contains the absorbing state it is shown in appendix
E.6 that the conditional expectation and conditional variance have constants as
asymptotes. These are:

E
x,0,0[NnT |XnT ∈ C] = eT

x (I − P(T ) + eeT
0 )−1M1(T )e

+ O(nλn−1
1 )

(E.5)
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and:

V
x,0,0[NnT |XnT ∈ C] = eT

x (I − P(T ) + eeT
0 )−1M2(T )e

+ eT
x (I − P(T ) + eeT

0 )−1M1(T )(I− P(T ) + eeT
0 )−1M1(T )e

− (eT
x (I − P(T ) + eeT

0 )−1M1(T )e)2 + O(nλn−1
1 )

(E.6)

respectively, where O(nλn−1) denotes some function f(n) which is such that
f(n)

nλn−1 bounded by some constant when n goes to infinity.

When the set C does not contain the absorbing state, the asymptotes of the
conditional mean and variance are linearly increasing each period:

E
x,0,0[NnT |XnT ∈ C] = uT

1 M1(T )v1nλ−1
1 + O(1) (E.7)

and
V

x,0,0[NnT |XnT ∈ C] = uT
1 M2(T )v1

n
λ1

+ 2v1M1(T )V2(λ1I− Λ2)
−1U2M1(T )v1

n
λ1

− (u1M1(T )v1)
2 n

λ2
1

+ O(1)
(E.8)

respectively.

E.4 Example 1: A planktonic organism and diel
vertical migration

In many aquatic environments there is a diel vertical movement of planktonic
and nektonic organisms. In the “normal” migrational pattern the organisms
are deeper during the day and closer to the surface during the night. There
is also a “reverse” pattern where an organism is down in the deep during the
night and more close to the surface during the day. The commonly held view is
that diel vertical migration (DVM) is a response of daily fluctuations in risk of
predation and possibility of feeding (see Clark and Levy, 1988; Pearre, 2003).
It is clear that daily fluctuations in light intensity are an integral part of the
process, which can be seen from phenomena at solar eclipses (e.g. Backus et al.,
1965).

Pearre (2003) reviews the many factors that influence the strength and type
of DVM, but he claims that a central problem in the understanding of vertical
migration by plankton is that few data exist on individuals, evidence is indirect
where e.g. the timing of presence of food in guts of animals in layers where this
type of food is absent indicates DVM. We believe that the same is true for fish
and that electronic archival devices could be used to solve this problem. The
data from these devices could be fitted to MAP models (Nielsen and Beyer,
2006).

In the following we will present a series of examples on a planktonic organism
such as a copepod or a cladoceran that will illustrate some of the flexibility in
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transient MAPs. The examples should only be seen as an illustration of how
the periodicities that naturally occur in the environment of an organism could
be incorporated in different models with increasing levels of complexity.

E.4.1 A herbivore that follows isolumes

Our simplest example is of a herbivorous zooplankter that follows an isolume,
in many taxa it appears as if the vertical migration is closely tied to isolumes
Pearre (2003). Here, we assume that the water column is vertically stratified,
with homogenous food in the upper part of the water column and no food
below this upper stratum. The food of the plankter is assumed to be equally
sized, and equally profitable prey which is encountered as a Poisson process
when in the upper layer. When the organism follows an isolume the rate of
predation is assumed to be constant, which may a reasonable approximation
if most predators are visual and the hydrodynamical signal when migrating is
sufficiently weak. Hence, if the light levels were higher, i.e. a higher isolume
were chosen then the mortality rates would be higher. It may well be that other
migrating organisms arrive later in the night which could create a change in
the predation rate during this period, however we have chosen to ignore this
possibility.

The animal can be in two states; alive (1), or dead (0). When the migrating
organism enters the food rich stratum it will start to feed, eventually it will leave
the isolume, stay on approximately the same depth until it encounters higher
light levels which will make it follow the corresponding isolume downwards.
We assume that the depth at which it abandons the isolume is constant. The
generator will be

D0(τ) =

[
0 0

δ(τ) −(δ(τ) + φ(τ))

]
D1(τ) =

[
0 0
0 φ(τ)

]

where φ(τ) is the feeding rate, and δ(τ) is the mortality rate. A graphical
representation is seen in Figure E.3. Possible functional forms for these are
given in Figure E.4.

It is interesting to note that due to its simplicity, this system is explicitly solv-
able, and the conditional feeding rate is equal to that of a model where no death
is included. In more elaborate models the system will in most circumstances
lack the structure currently known that makes it explicitly solvable (see Lukes,
1982). Given that ∆(τ) =

∫ τ

0
δ(ξ)dξ, and Φ(τ) =

∫ τ

0
φ(ξ)dξ, the backwards

solution for τ < 0 for P(τ) and M1(τ) will be

P(τ) =

[
1 0

1 − e∆(τ) e∆(τ)

]
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Figure E.3: The transient periodic Poisson process. Phase 0 represents that the
organism is dead, phase 1 that it is alive. While alive it feeds with rate φ(t),
which is indicated with a bold arrows since this generates a mark and it dies
with rate δ(t).

M1(τ) =

[
0 0

e∆(τ)(Φ(τ) −
∫ τ

0 φ(ξ)e−∆(ξ)dξ) −e∆(τ)Φ(τ)

]

The model is a periodic transient Poisson process, since it is a Poisson process
with parameter |Φ(τ)| conditional on not being absorbed.

In our particular example Φ(T ) is simple; let ξ be the time where φ(τ) is non-
zero during the period then Φ(T ) = 10ξ. In this case it is 110, the ODE-solver
give a slightly higher value 110.26 (or 110.22 from the variance).

Ignoring the periodicity, this is about as simple as one can do a stochastic en-
counter model and it is often the level at which most encounter models are made
if they are stochastic (see Hassell, 1978; Mangel and Clark, 1988). However, it is
clear that many organisms are not randomly distributed in their habitat, nor do
they move in such manners as to encounter prey with exponential waiting times.
In some cases heterogeneity may give more variable encounters (e.g. Beyer and
Nielsen, 1996), but in other cases it makes it possible to exploit a resource that
would not be possible to use were it random—such as fishing for schooling fish
or perhaps the situation for the fin whales off Nova Scotia.

The MAP framework allows us to produce models that can be analysed and to
include e.g. spatial heterogeneity. The next example will show on a case where
patchiness increases the variability in prey encounter, whereas the third example
will show how the internal structure may decrease the effects of this variability
on another process, egg production.
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Figure E.4: Upper panel shows the depth that a planktonic organism is assumed
to follow. Middle panel shows the mortality rate δ(t), and the lowest graph shows
feeding rate φ(t).

E.4.2 Example 2: Inclusion of spatial variability

Suppose that the plankter is following an isolume as before but that the food
is heterogenous in distribution in the upper stratum. Now we assume that the
animal can be in 3 states; (1) alive not in food patch, (2) alive in food patch,
and (0) dead. The patches are entered with rate α(t) and left with rate β(t).
This process could be called the periodic transient interrupted Poisson process.
Even if this is a rather simple system it is analytically intractable in general.

Being in a food-patch is often more dangerous (see e.g. Lima, 1998); patches
may be more easy to locate for a predator and the higher feeding rate in the
patch may give stronger hydrodynamic signals and less time to avoid predators
in. In order to study the effect of different predation rates in different states on
the asymptotic feeding rate we assume that the predation in state (1) is ξ · δ(t)
and (1 − ξ) · δ(t) in state (2) where ξ ∈ [0, 1]. Here and in the following we will
assume that the mortality rate, δ(t), is twice the mortality rate in Example 1
such that the mortality rate will be δ(t) in each state when ξ = 1

2 . We let the
feeding rate φ(t) is the same as in Example 1.

When the light is increasing the organism is forced to leave the feeding zone; it
cannot be in a patch. The easiest solution to this is only to change the mortality
rate when the isolume exits the feeding zone, but then some animals will stay
in a patch during the night and so commence to feed immediately next day
without having to locate a patch. We have chosen a seemingly more consistent
model, where the meaning of the states is fixed, where a deterministic switch is
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Figure E.5: A plot over the state-flow when the food is patchily distributed,
state 0 corresponds to being dead, state 1 to alive but not in patch, and state
2 to alive and feeding in patch. Food items are found with rate φ(t), patches
of food are entered with rate α(t) and left with rate β(t). The mortality rate is
(1 − ξ)δ(t) and ξδ(t) in respectively out of the patches.

used at the time of exit from the photic zone, where all individuals will be in
the out-of-patch phase immediately after exit (see appendix E.8 for details).

However introducing a switch changes the autocorrelation structure such that
the number of eaten food-items during a day will be an i.i.d. stochastic variable
and it introduce “well-mixing” such that the process can be viewed as a discrete
renewal reward process.

For more motile organisms such as fish or whales it may be that the patches are
followed even if the prey organisms are out of the patch during some period of
the day; the patches may be the food of the prey and more easily detected. Here
the α(t) and β(t) will probably be on a much lower level. Changin ξ changes the
asymptotic ingestion rate although the effect is rather slight when the mortality
rates are moderate. When ξ is low i.e. it is more dangerous in the patch, then
the asymptotic ingestion rate will be lower than when ξ is high. This effect is
caused by being a patch during a long time will increase the risk of being dead.
Consequently the survivors will have spent lesser time there than the dead and
there will be a reduction in the conditional rate of feeding.

A process with non-zero elements on the diagonal of D1 only is called a Markov
Modulated Poisson Process (see e.g. Latouche et al., 2003). These have among
other things the nice property that the eigenstructure of P(T ) is invariant to
scaling of the rates in D1. This means that multiplying D1with a factor α will
increase the rate linearly with α (and the variance as a second degree polyno-
mial). Thus with a knowledge of the conditional mean for the living states with
the same φ(t) as in Example 1 (75.9) it is easy to find out that a feeding rate
of 1.5 φ(t) is needed to yield the same rate of ingestion as in Example 1.
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E.4.3 Example 3: Including egg production

Suppose that we study the planktonic organism from Example 2 where the food
is found only in patches, but now we are interested in the egg production. We
assume that the egg production is dependent on some internal reserves which
are reversibly allocated to egg production. When the reserves are high enough
an egg or a batch of eggs is produced and the internal energy reserves decrease
to a low level. The reserves are used to cover energetic needs irrespective of
whether food was caught. If the energy level reach a critical lower level then
the animal dies from starvation. Here we assume that the other energetic needs
consume one energy unit with a constant rate m independent on which phase
the organism is in. We assume that there are 10 energy levels; we order the
states from 0 to 20 where state 0 means that the organism is dead, state 2k − 1
is when the organism has energy reserves k but are not in a food-patch, and
it has the same reserves and is in a patch when it is in state 2k. After egg
production the organism returns to energy level 1 (state 2). The rate of energy
requirements, m, is set to 0.1, and ξ, the parameter controlling the difference in
mortality between patch and non-patch, is set to 0.1.

The generators will have the following structure

D0 =




0 0 0 0 · · · · · · 0

k + Me S F 0 · · · · · ·
...

k M S F
. . .

...
...

k 0 M S
. . .

. . .
...

...
...
. . .

. . .
. . .

. . .
. . .

...
k 0 0 0 · · · M S




, D1 =




0 0 0 · · · 0
...

...
...

. . .
...

0 F 0 · · · 0




where

k =

[
ξδ(t)

(1 − ξ)δ(t)

]
, M =

[
m 0
0 m

]
, F =

[
0 0
0 φ(t)

]
,

and

S =

[
−(ξδ(t) + m + α(t)) α(t)

β(t) −((1 − ξ)δ(t) + m + β(t) + φ(t))

]
.

Here the k is the rate by which the animal dies from some external factor which
does not depend on the energetic state only on whether the organism is in a
foraging patch or not. The Me vector is death from starvation, this occurs
only in states 1 and 2. The M matrix is determined by the rate by which the
energetic state is reduced by one, and the F matrix the corresponding increase
in energetic state, except for when the proces is in the highest phase, then it
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denotes a reproductive event. The matrix S controls the rates by which the
animal enters and exits patches of food. The feeding rate φ(t), the mortality
rate δ(t), and the rates of entering and leaving patches α(t) respectively β(t)
are the same as in example 2.

The asymptotic rate of egg production given that the organism is alive is 6.94
and the asymptotic variance is 4.15. Had 100 internal energy levels been used the
rate would have been 0.692 and the asymptotic variance 0.0416. This example
shows how important the phases are; even if the subsystem of finding food is
highly variable compared to a Poisson process, the system as a whole generates
eggs with a rate that is much less variable than a Poisson process.

E.5 Discussion

The previous examples have shown that given a detailed knowledge of an organ-
ism in a periodic environment it is possible to construct transient Markovian
arrival processes that are able to model some of the vital elements of this be-
haviour.

The periodic MAP can not be replaced by its average. Ohter than that, there
is nothing really that comes as a fundamental property of being periodic. The
tMAPs are state-dependent models, which can be used to model a wide range of
animal behaviour. These models do not include optimality, it is assumed that
they describe what animals do.

The tMAP as presented here has only one arrival at a time. There are various
extensions to this; the batch Markovian arrival process (BMAP) can include
arrivals of several items at a time. This could be used to model for instance
birth of batches where the batches have certain probabilities, or when there are
more or less distinct types of prey that have different value to the animal.

It is also possible to use Marked Markovian Arrival Processes (MMAP) (He and
Neuts, 1998), these are a generalization of the MAP and the BMAP, were it is
possible to include several different types of arrivals. Thus, in a MMAP it is
possible to both keep track on food and egg production. In chains where there
are different types of mortalities, such as Example 3 where the organism can
die both of predation and by energy deficit it is possible to put a new type of
marks on e.g. death by predation, which enables the modeller to distinguish
between the two probabilities. It is also possible that some events that lead to
absorbtion are in fact not death of the organism but that it enters a new state
with different properties. Putting yet a new type of marks on these transitions
will make it possible to find out the probabilities of the occurence of such an
event.

The transient IPP can be seen as a model-unit describing the fact that many
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organisms have the possibility of staying (relatively safe) or feeding at the ex-
pense of increased risk. Due to the dependence on the underlying state space
it is possible to model encounter rates from many different distributions which
would make it possible to go one step further than the standard assumption of
Poisson encounters. The influence on the variability in survival using a stom-
ach model and non-Poissonian food arrivals is an interesting issue; especially in
fisheries where the recruitment of fish is a difficult and important issue.

The ongoing development and use of archival devices that register activities
of tagged animals is a promising development. There are already ambitious
tagging programmes (see e.g. Block et al., 2002) were marine mammals, large
fish and marine reptiles are studied. The tMAPs can be used on such data to
give a detailed description of an organism which is managable. This description
can then be used on other time-scales to produce e.g. functional and numerical
responses, perhaps diffusion approximations will also be useful. It is also pos-
sible to fit and discriminate between different models of behaviour when data
from archival tags are available. These models could then be used as inputs to
population-level models.

In order to derive population level properties from a system that is composed
of individuals that are described by tMAPs then it is necessary to connect the
individual tMAPs but it is not easy to see how this could be done since the MAPs
are linear. The introduction of feedbacks, e.g. that the encounter rate with prey
is decreased as the predator population grows in numbers would introduce non-
linearities that makes the analysis much more difficult.Were one to consider the
direct product of individual state-spaces for the population model it would in
most cases be a staggering construction. A possibility could be if the individual
tMAPs were dependent on the distribution of other tMAPs.
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E.6 Appendix A. Asymptotic analysis

The conditional mean and variance are found by first solving the system:

− d

dξ




P
M1

M2


 =




D(ξ) 0 0
D1(ξ) D(ξ) 0
D1(ξ) 2D1(ξ) D(ξ)






P
M1

M2




with P(0) = I and M1(0) = M2(0) = 0, for −T < ξ < 0 (see Article B). A
change of variables t = −ξ enables us to get rid of the negative sign on the left
side and to solve the equations for positive time.

d

dt




P
M1

M2



 =




D(−t) 0 0
D1(−t) D(−t) 0
D1(−t) 2D1(−t) D(−t)








P
M1

M2





Integrating this numerically over [0, T ] gives P(T ), M1(T ), and M2(T ) after
which the recursion equations can be solved. If necessary the rows in P(T )
are adjusted such that they sum to 1. The correspondning entries in M1(T )
and M2(T ) should probably be weighted according to the adjustments in P(T ).
Another option is to do a direct Eulerian ODE solution since this would retain
the Markovian nature of the problem.
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The solutions to the recursions are:

P(nT ) = P(T )n,

M1(nT ) =
n∑

i=1

P(T )i−1M1(T )P(T )n−i and

M2(nT ) =

n∑

i=1

P(T )i−1M2(T )P(T )n−i

+2

n−1∑

i=1

P(T )i−1M1(T )

n−i∑

j=1

P(T )j−1M1(T )P(T )n−i−j .

In the analysis of the asymptotic behaviour the following assumptions are made:

1. P(T ) can be written as

[e v1 V2]




1 0 0
0 λ1 0
0 0 Λ2








eT
0

uT
1

U2



 ,

where e is a column-vector with ones, eT
0 a row-vector with a one in

the absorbing state, v1 the right eigenvector corresponding to the quasi-
stationary state and V2 a matrix of all the other right eigenvectors V2 =
[v2| · · · |vn]. Correspondingly, uT

1 is the left quasi-stationary eigenvector
and U2 a matrix with the rest of the left eigenvectors. The vectors are
ortho-normalized such that:




eT
0

uT
1

U2


 [e v1 V2] = I

2. The subdominant, or quasi-stationary, eigenvalue λ1 is unique, real and
less than 1. This will be guaranteed if the transient states are communi-
cating. Since there is only one quasi-stationary state the modulus of any
eigenvalue in Λ2 is less than λ1.

3. In steady state no marks are generated; eT
0 M1(T ) = 0, consequently are

there no squared marks; eT
0 M2(T ) = 0.

4. The target set C is observed in the dominant or subdominant mode;
eT
0 eC 6= 0 or uT

1 eC 6= 0.

5. The initial state x excites the subdominant mode eT
x v1 6= 0.
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In the asymptotic analysis we use, for notational convenience, the following
symbols; O(niλn) which denotes a class of functions such that a function f(n)
is a member of this class if f(n) = niλnH(n) where H(n) is bounded when
n → ∞. Similarily let o(niλn) denote a class of functions where a member of
the class, g(n), is such that

lim
n→∞

g(n)

niλn
→ 0.

It should be noted that if |λ1| > |λ2|, then any function which is O(niλn
2 ) is also

ω(λ1), for any i. Moreover, we use the following facts:

1. If eT
0 A = 0 for some matrix A then:
(
v1

1

1 − λ1
uT

1 + V2(I − Λ2)
−1U2

)
A = (I − P(T ) + αeeT

0 )−1A

for any non-zero α ∈ R (see Article B. Where P(T ) = ee0 + v1λ1u1 +
V2Λ2U2 as above.

2. For any square matrix B where 1 is not an eigenvalue:

n∑

i=0

Bi = (I − Bn+1)(I − B)−1 = (I − B)−1(I − Bn+1).

3. For any square matrix B where 1 is not an eigenvalue:

n∑

i=1

iBi = (I − Bn+1)(I − B)−2 − nBn(I − B)−1.

From the Jordan decomposition it follows that

P(nT ) = eeT
0 + v1λ

n
1uT

1 + V2Λ
n
2U2.

Case i) eT
0 eC 6= 0:

When eT
0 eC 6= 0 we expand all terms in e and eT

0 . Then

M1(nT ) = (I − P(T ) + eeT
0 )−1M1(T )eeT

0 + O(nλn−1
1 ),

where the O(nλn−1
1 ) term comes from the term that only contains v1 and u1

which is natural since the quasi-stationary mode is the one that vanish with the
slowest rate. Similarily,

M2(nT ) = (I − P(T ) + eeT
0 )−1M2(T )eeT

0

+ 2(I − P(T ) + eeT
0 )−1M1(T )(I − P(T ) + eeT

0 )−1M1(T )eeT
0

+ O(n2λn−2).
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Given that the initial state is (x, 0) at time t = 0 the conditional mean is

E
x,0,nT [N0|X0 ∈ C] = eT

x (I − P(T ) + eeT
0 )−1M1(T )e + O(nλn−1

1 ).

The conditional variance is found to be

V
x,0,nT [N0|X0 ∈ C] = eT

x ((I − P(T ) + eeT
0 )−1M2(T ))e

+ 2eT
x (I − P(T ) + eeT

0 )−1M1(T )(I − P(T ) + eeT
0 )−1M1(T )e

− (eT
x (I − P(T ) + eeT

0 )−1M1(T )e)2 + O(nλn−1
1 ).

Case ii) U0 ~eB = 0: Expanding terms with v1 and u1 gives

M1(nT ) = v1u
T
1 M1(T )v1u

T
1 nλn−1

1 + v1u
T
1 M1(T )V2(λ1I− Λ2)

−1U2λ
n
1

+ V2(λ1I − Λ2)
−1U2M1(T )v1u

T
1 λn

1 + o(λ1)

We find that as t → ∞:

E
x,0,t[N0|X0 ∈ C] = (uT

1 M1(T )v1) nλ−1
1 + O(1).

And the conditional variance is:

V
x,0,t[N0|X0 ∈ C] = (uT

1 M2(T )v1)
n

λ1

+ 2uT
1 M1(T )V2(λ1I− Λ2)

−1U2M1(T )v1
n

λ1

− (uT
1 M1(T )v1)

2 n

λ2
1

+ O(1).

E.7 Appendix B. Numerical implementation

When λ1,v1 and u1 are identified it may useful to note that:

V2(λ1I − Λ2)
−1U2 = (λ1I − P(T ) + αv1u

T
1 )−1(I − v1u

T
1 ) − e

1

λ1 − 1
eT
0

for any non-zero α, which does not require a knowledge of the rest of the eigen-
structure.

For very large systems for instance ARPACK (Lehoucq et al., 1998) could be
used to identify some of the largest eigenvalues. To avoid numerical noise it
may be useful to identify the eigenvalues of P(T ) − eeT

0 since the numerical
identification of λ0 will introduce some numerical noise which may give rise to a
very small complex part on the eigenstructure of λ1 which is unnecessary since
we know the stationary state.

It is also advised to adjust the rows in P(T ) so that they sum to 1.
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E.8 Appendix C. Introducing a switch

Suppose that we have a fixed time τ0 < 0 at which there is a deterministic (or
probabilistic) instantaneous reshuffling of the process. For instance, we could
perhaps like to set the probability of being in a certain set of states to 0 after
some time τ0.

It is clear that:

P(0, t + ξ) = P(t, t + ξ)P(0, t)

M1(0, t + ξ) = P(t, t + ξ)M1(0, t) + M1(t, t + ξ)P(0, t)

M2(0, t + ξ) = P(t, t + ξ)M2(0, t) + 2M1(t, t + ξ)M1(0, t) + M2(t, t + ξ)P(0, t)

Let A be the transition matrix for P(τ+, τ−). Then, since this is such a short
time step, where no counts are generated, we find that:

P(0, τ−) = AP(0, τ+)

M1(0, τ−) = AM1(0, τ+)

M2(0, τ−) = AM2(0, τ+)

If the reshuffling is deterministic then the matrix A have only one entry per
row which is 1, this corresponds to P(Xτ+ = i|Xτ− = j) = δx,j(i); there is a
deterministic change from state j to state x. It is of course possible to assign
probabilites for the transition to different states.

E.9 Appendix D. Generation of T-translated so-

lutions

We have that P(t + T ) = P(t)P(T ).

Let P(t) be the solution to Ṗ(t) = D(t)P(t) where D(t + T ) = D(t) for all t,
with initial condition P(0) = I.

Then P(t) = e
∫

t

0
D(τ)dτ . Using the fact that D(t + T ) = D(t) we see that:

P(T + t) = e
∫

T

0
D(τ)dτ+

∫
T+t

T
D(τ)dτ = e

∫
T

0
D(τ)dτ+

∫
t

0
D(ξ+T )dξ

= e
∫

t

0
D(ξ)dξe

∫
T

0
D(τ)dτ = P(t)P(T )

Note. One could be lead to the erroneous conclusion that P(t+T ) = P(T )P(t)

that is not true since
∫ t

0
D(ξ)dξ and

∫ T

0
D(τ)dτ do not commute (if AB 6= BA

for two quadratic matrices A and B then eA+B = eAeB 6= eBeA = eA+B).
This could perhaps be more easily seen by solving Ṗ(t) = D(t)P(t) subject to

the initial condition P(T ). Then P(t + T ) = e
∫

T+t

T
D(τ)dτP(T ) = P(t)P(T ).
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We have that M1(t + T ) = M1(t)P(T ) + P(t)M1(T ).

Let M1(t) be the solution to Ṁ1(t) = D(t)M1(t)+D1(t)P(t) where D(t+T ) =
D(t) and D1(t + T ) = D1(t) for all t, with initial condition M1(0) = 0.

Then M1(t) = e
∫

t

0
D(τ)dτ

∫ t

0 e−
∫

ξ

0
D(τ)dτD1(ξ)e

∫
ξ

0
D(τ)dτdξ. Solving the differen-

tial equation from T gives:

M1(T + t) = e
∫

T+t

T
D(τ)dτM1(T )

+ e
∫

T+t

T
D(τ)dτ

∫ T+t

T

e−
∫

ξ

T
D(τ)dτD1(ξ)e

∫
ξ

T
D(τ)dτP(T )dξ

= P(t)M1(T )

+ e
∫

t

0
D(τ)dτ

∫ t

0

e−
∫

ζ+T

T
D(τ)dτD1(ζ + T )e

∫
ζ+T

T
D(τ)dτdζP(T )

= P(t)M1(T ) + M1(t)P(T ).

We have that M2(t + T ) = M2(t)P(T ) + 2M1(t)M1(T ) + P(t)M2(T ).

Let M2(t) be the solution to Ṁ2(t) = D(t)M2(t) + 2D1(t)M1(t) + D1(t)P(t),
where D(t + T ) = D(t) and D1(t + T ) = D1(t) for all t, with initial condition
M2(0) = 0.

Then M2(t) = e
∫

t

0
D(τ)dτ

∫ t

0
e−

∫
ξ

0
D(τ)dτ (2D1(ξ)M1(ξ) + D1(ξ)P(ξ)) dξ. Solv-

ing the differential equation from T gives:

M2(T + t) = P(t)M2(T )

+ e
∫

T+t

T
D(τ)dτ

∫ T+t

T

e−
∫

ξ

T
D(τ)dτ (2D1(τ)M1(ξ) + D1(ξ)P(ξ)) dξ

= P(t)M2(T )

+ e
∫

t

0
D(τ)dτ

∫ t

0

e−
∫

ζ+T

T
D(τ)dτ (2D1(ζ + T )M1(ζ + T )

+ D1(ζ + T )P(ζ + T ))dζ

= P(t)M2(T ) + 2M1(t)M1(T ) + M2(t)P(T ).

E.10 Appendix E. Solutions to recursions by in-

duction

We have P(nT + T ) = P(nT )P(T ) for n ≥ 1, where P(T ) is given. Then
P(2T ) = P(T )P(T ) = P(T )2.

Assume that P(nT ) = P(T )n.
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Then P(nT + T ) = P(nT )P(T ) = P(T )nP(T ) = P(T )n+1. Hence

P(nT ) = P(T )n ∀n ≥ 1

We have that M1(nT +T ) = M1(nT )P(T )+P(nT )M1(T ) for n ≥ 1 and M1(T )
given. Then

M1(2T ) = M1(T )P(T ) + P(T )M1(T ) =

2∑

i=1

P(T )i−1M1(T )P(T )2−i

Assume that M1(nT ) =
∑n

i=1 P(T )i−1M1(T )P(T )n−i.

Then

M1(nT + T ) = M1(nT )P(T ) + P(nT )M1(T )

=
n∑

i=1

P(T )i−1M1(T )P(T )n+1−i + P(T )nM1(T )

=
n+1∑

i=1

P(T )i−1M1(T )P(T )n+1−i

Thus,

M1(nT ) =
n∑

i=1

P(T )i−1M1(T )P(T )n−i ∀n ≥ 1

Lemma. For matrices A and B and integers n greater than one we have:

n∑

i=1

Ai−1B
n+1−i∑

j=1

Aj−1BAn+1−i−j =

n−1∑

i=1

Ai−1B

n−i∑

j=1

Aj−1BAn+1−i−j +

n∑

i=1

Ai−1BAn−iB

Proof.

n∑

i=1

Ai−1B

n+1−i∑

j=1

Aj−1BAn+1−i−j =

n−1∑

i=1

Ai−1B

n+1−i∑

j=1

Aj−1BAn+1−i−j(1{j=n+1−i} + 1{j<n+1−i}) + An−1BB

=

n−1∑

i=1

Ai−1B

n−i∑

j=1

Aj−1BAn+1−i−j +

n∑

i=1

Ai−1BAn−iB
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QED.

We have that M2(nT + T ) = M2(nT )P(T ) + P(nT )M2(T ) + 2M1(nT )M1(T )
for n ≥ 1 and M2(T ) given. Then

M2(2T ) = M2(T )P(T ) + P(T )M2(T ) + 2M1(T )M1(T )

=

2∑

i=1

P(T )i−1M2(T )P(T )2−i

+ 2

1∑

i=1

P(T )i−1M1(T )

2−i∑

j=1

P(T )j−1M1(T )P(T )2−i−j

Assume that

M2(nT ) =

n∑

i=1

P(T )i−1M2(T )P(T )n−i

+ 2

n−1∑

i=1

P(T )i−1M1(T )

n−i∑

j=1

P(T )j−1M1(T )P(T )n−i−j

Then

M2(nT + T ) = M2(nT )P(T ) + P(nT )M2(T ) + 2M1(nT )M1(T )

=
n+1∑

i=1

P(T )i−1M2(T )P(T )n+1−i

+ 2
n+1∑

i=1

P(T )i−1M1(T )P(T )n+1−iM1(T )

+ 2
n∑

i=1

P(T )i−1M1(T )
n−i∑

j=1

P(T )j−1M1(T )P(T )n+1−i−j

=

n+1∑

i=1

P(T )i−1M2(T )P(T )n+1−i

+ 2

n∑

i=1

P(T )i−1M1(T )

n+1−i∑

j=1

P(T )j−1M1(T )P(T )n+1−i−j .

where the lemma is used to get the last equality. Consequently the expression
for M2(nT ) is true for all n greater than zero.

Note. The interpretation of the expressions for M1(nT ) and M2(T ) are quite
simple. M1(nT ) is the sum of the n different sequences of length n that have
one occurence of M1(T ) and the rest are P(T )s. M2(nT ) have one part which
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is exactly corresponding to the M1(nT ); which are the n different sequences
with exactly one M2(T ) and the rest are P(T )s. The other part are the

(
n
2

)

sequences whith exactly two M1(T ) occurences and all the n − 2 positions are
filled with P(T )s.

This makes the proof for the formula for M2(nT + T ) easy to understand. The
sum containing the M1(T ) terms are just the sequences of length n with exactly
two occurences of M1(T ) with a P(T ) padded on the right PLUS the sequences
of length n with exactly one occurence of M1(T ) with a M1(T ) padded on the
right; this generates all the different sequences with exactly two occurences of
M1(T ) of length n + 1.
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Abstract

In many, and in particular marine, ecosystems it is difficult to observe the
interaction of organisms with their prey. Stomach analysis is often the only
information available on what prey they eat, their consumption rate and to
some extent the periodicities of feeding and the feeding preferences. These
types of information are vital for the performance of multi-species population
assessments, and to human exploitation of fish. Thus, good models for stomachs
are needed in order to maximize the information obtained by extensive stomach
sampling.

This technical report concerns the modelling of stomachs as a stochastic dam.
The work is based on a recent article by Bekker et al. (2004) where new results on
the stationary behaviour of stochastic dams are presented and another where the
stomach contents of whiting is described by an infinite stochastic dam Thygesen
et al. (2005).

The report contains a brief review of different types of stomach models, then
a presentation of developments of Bekker et al. (2004) and Thygesen et al.
(2005). The analytical solution to a stationary infinite dam i.e. a dam with no
upper limit on food contents with exponentially distributed meal sizes and a
release rate that depends on the square-root of the total contents is presented.
Then a relatively intractable solution to the same dam with Erlang-2 distributed
meal sizes is shown and attempts to solve for stomachs with fixed meal sizes
analytically. The reason for these endeavours is that there were some hope that
if either of these results were available one could obtain results for the class of
Erlang-n, n ∈ N, distributed meal sizes. In the end there are some comments on
numerical issues and a brief discussion on the inverse problem: given a stomach
size distribution what is the meal size distribution?

F.1 Introduction

Animal guts are interesting since they provide information on what and how
much the specific animal is eating. A good model and the state of the ingested
meal makes it possible to obtain information on when the food was caught.
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Using sampling programmes it is possible to describe how the diet varies over
some time period in relation to the “available” food. Basic facts, such as the
evacuation rate of the gut and the speed of deterioration of an individual prey
item must be obtained by controlled experiments. With ancillary data one could
use stomachs as archival devices that tell us when, what, how often and how
much a certain animal eat. Beyer (1998) presents the historical background
on stomach sampling programmes in fisheries science and states that with the
introduction of multispecies models the need for this type of data have increased.

There are many ways to model stomachs. In a review Yearsley et al. (2001)
states that in animal science the idea of ’eating to requirements’ have been very
successful for intensive farming of domestic animals. The assumption underlying
this model that the food intake is determined by an animal’s protein deposition
requirements when food is unlimiting. It is very uncertain if it this model is
applicable in the wild. For ecological systems, Yearsley et al. (2001) state that
digestion part have been modelled using compartment models or gut-reactor
models. While equivalent in principle the compartment models are more empir-
ical whereas gut-reactor models are based on biologically detailed description.

It is common with large variations in gut contents, probably due to the stochastic
nature of encounter and other factors. This variation makes it necessary to
model the contents as a stochastic process. There are many different approaches
to this; e.g. Magnússon and Aspelund (1997) modelled the intake rate and meal
size of capellin using a compound Poisson process, Beyer (1998) modelled the
stomach content of whiting using a renewal reward process. Hall et al. (1995)
modelled a finite stomach without satiation effects in a stochastic dam approach
with linear evacuation rate.

The focus in present work is on the modelling of stomachs in a way that is
equivalent to the stochastic modelling of dams. Let the gut contents at time t be
denoted by Vt then, given that there is something in the stomach, the contents
is evacuated deterministically with a rate r(Vt) in the absence of new food
arriving. New food arrives with a rate λ(t, Vt) i.e. the arrival rate can depend
both on time and gut contents. The latter enables us to model satiation effects.
This type of model have been used in the modelling of dams (see references in
Bekker et al., 2004). To my knowledge Hall et al. (1995) initiated the work on
stochastic dam–stomachs using a linear evacuation rate and a finite stomach;
they estimated the parameters of the model for a data set by visual fitting.

In a recent article Thygesen et al. (2005) provide a time-dependent solution to
a stomach–dam with periodically varying arrival rates and a rate of evacuation
that depends on the square-root of the stomach contents. They estimate the
parameters of the periodic arrival rate, a satiation parameter, and the meal-size
distribution, which is assumed to be log-normal, based on a real data set. Their
dam is not finite, but they include satiation effects in the arrival rate and all
results are obtained numerically.
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Bekker et al. (2004) study the stationary behaviour of queues, or dams, with
workload dependent arrival and service rates. They provide criteria for when
there is an atom in 0, and prove congruence properties of two independent queues
where the quotients between release rates and arrival rates of the respective
queue are equal; this make it possible to prove results for classes of queues.
They also provide results for general and independent arrival processes. Using
Palm theory they are able to link the results from the time-stationary queue
to the event-stationary queue and to reprove some results obtained from the
queues with state-dependent Poisson arrivals.

This report has the purpose of presenting the results for the square-root stomach
with a Poisson arrival process, and to present some ideas on numerical issues.
The inverse problem will also be treated briefly and some further developments
discussed.

F.2 Model formulation

Here I present some background to the modelling of stomachs in fish, where
particularly good information exists on whiting, a close relative to cod. Then
these considerations are put into a stochastic dam model of stomachs of fishes
not to dissimilar to whiting.

F.2.1 Evacuation rates

There is no consensus on how to choose the deterministic evacuation rates for
fish. The main choices are linear, square-root, exponential, or surface dependent.
There are evidence in favour for each of them, but the detailed study of Andersen
(1998) indicated that the square-root should be chosen for whiting. Thus, in
the absence of new food arriving the dynamics of the total stomach contents
can be written as:

V̇t = −RLp
√

Vt,

where L is the length of the whiting, while R and p are parameters. Thygesen
et al. (2005) use a normalized stomach content such that Ṽt = Vt

L2p which removes
the need for length.

Generally, the evacuation rate r(x) has to be a strictly positive function (right
continuous with left limits) for x > 0, have a strictly positive limit, and r(0) = 0
(Bekker et al., 2004).

The models that are studied here will have an evacuation rate, with r(x) = κ
√

x,
where κ is constant.
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F.2.2 The arrival rate

Thygesen et al. (2005) model the arrival rate λ(x, t) as the product of a periodic
function and an exponential damping due to satiation.

Bekker et al. (2004) allow the arrival rate to depend on stomach contents, but
their analysis is stationary, independent on t.

In this report the arrival rate is assumed to be constant, since analytical formulas
for the stationary problem is the main focus and the major difficulty introduced
is to have other meal size distributions than exponentially distributed meals.

F.2.3 The meal size distribution

Let B(x, t) be the probability of obtaining a meal of less than or equal to x
at time t, let the corresponding density be b(x, t) and its mean β. Typical
choices are meal sizes from a log-normal distribution or a gamma distribution.
Sometimes these are truncated at some maximum stomach size, which is a crude
way to incorporate satiation effects.

F.2.4 The dynamical model

Bekker et al. (2004) derive the steady–state equation for the stomach using
level-crossing arguments under the assumption that the queue is ergodic and a
stationary distribution exists. To prevent drift to infinity they provide a criterion
which has to be fulfilled; the mean meal size β, the encounter rate λ(x) and the

evacuation rate r(x) have to satisfy that the lim supx→∞
βλ(x)
r(x) < 1.

Let F (x, t|v) = P{Vt ≤ x|V0 = v} then the PASTA (Poisson Arrivals See Time
Averages (see e.g. Wolff, 1989)) property of Markovian queues is used to arrive at
the following partial-integrodifferential equation which is a minor generalization
of (Gaver and Miller, 1962):

∂

∂t
F (x, t) = r(x, t)

∂

∂x
F (x, t) −

∫ x

0

λ(y, t)(1 − B(x − y, t)) dyF (y, t), (F.1)

where dyF (y, t) denotes a Lebesgue-Stieltjes integration; if there is a jump in the
cdf this will correspond to a point measure. The stationary workload satisfies:

r(x)
∂

∂x
F (x) =

∫ x

0

λ(y, t)(1 − B(x − y, t)) dyF (y). (F.2)

Thygesen et al. (2005) arrive at the essentially the same equation, the difference
is that they work with pdfs instead of cdfs, where they use that the square-root
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model has an atom in 0. The corresponding equation for the densities f(x, t) is
then

∂f

∂t
(0, t) = lim

x→0+
(κ
√

xf(x, t)) − λ(0, t) · f(0, t)

∂f

∂t
(x, t) =

∂

∂x
(κ
√

xf(x, t)) − λ(x, t) · f(x, t)

+

∫ x

0+

λ(v, t)b(x − v)f(v, t)dv

+ λ(0, t)b(x)f(0, t) for x > 0.

F.3 Solution for the stationary distribution for

a square-root model

It is convenient to have analytical solutions to check if the numerical schemes
work well. Here I present one analytical solution to the square-root stomach
with exponential meal sizes, and attempts to solve for Erlang-2 or deterministic
meal sizes, since then it could have been possible to use results from Asmussen
et al. (2002) to get the stationary distribution for all Erlang distributions.

Bekker et al. (2004) provide a result for when there is an atom in 0. They define

R(x, z) :=

∫ x

z

1

r(y)
dy, 0 ≤ z < x < ∞,

to represent the time to move from state x to z in the absence of arrivals.
Particularly interesting is R(x, 0) := R(x) the time to drain the workload x if
no arrivals. A related quantity is

R̃(x, z) :=

∫ x

z

λ(y)

r(y)
dy, 0 ≤ z < x < ∞.

In particular R̃(x) := R̃(x, 0) determines whether or not the workload has an
atom at 0. If R̃(x) < ∞ for all 0 < x < ∞ then there is an atom in 0, otherwise
0 cannot be reached by the workload process. If there is an atom in zero the
cumulative density function can be written

F (x) =

{
F0 if x = 0
F0 +

∫ x

0+
f(ξ) dξ for x > 0

The stomach is positive recurrent if and only if

a :=

∫ ∞

0

f(x) dx < ∞.
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If F (0) = 0 then the pdf f(x) is normalized by multiplication with α−1, other-
wise if F (0) > 0 then

lim
x→0+

r(x)f(x) = λF (0).

For the square-root stomach with constant arrival rate and a finite meal size we
have that lim supx→∞

λ
βκ

√
x

= 0, and that R̃(x) < ∞ for all x : 0 < x < ∞; we

have an atom at 0.

F.3.1 Exponentially distributed meal sizes

We assume an exponential distribution of the workload with mean 1
µ . Here we

have from Equation F.2 that

r(x)f(x) = λF (0)e−µx +

∫ x

0+

λf(y)e−µ(x−y) dy.

Writing g(x) := r(x)f(x)eµx we get:

g(x) = λF (0) +

∫ x

0+

λ

r(y)
g(y) dy.

This is a Volterra equation of the second kind and can be solved using a Neu-
mann kernel. But it is so simple that it can be solved by differentiation. Solving
the ensuing ODE gives; g(x) = Ce

2λ
κ

√
x. Thus f(x) = C

κ
√

x
e−µx+ 2λ

κ

√
x. From

the conditions above it is clear that there is an atom in 0 and the dam is positive
recurrent; one finds that:

f(x) =
λF (0)

κ
√

x
e−µx+ 2λ

κ

√
x.

Then

F (0) =
1

1 +
∫∞
0

f(x)
F (0) dx

=
1

1 +
√

π
µ

2λ
κ e

λ2

µκ2 Φ(λ
κ

√
2
µ )

,

where Φ(x) is the cdf for a standard normal variable and the solution is complete.
For an illustration of the probability density function see Figure F.1.

F.3.2 A solution for the Erlang-2 distribution

Here we have B(x) = 1 − e−µx − µxe−µx. Iterating to find a solution, which is
what the Neumann kernel does infinitely many times starting with g0(x) = 0,
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workload density for λ =1, κ =2, and µ=10.

Figure F.1: The stationary distribution of stomach contents for a square-root
stomach model with κ = 2, λ = 1 and exponentially distributed meal-size with
mean µ−1 = 10−1.

using the recursion gi(x) = λF (0)Bc(x) +
∫ x

0+
λ

r(y)B
c(x − y)gi−1(y) dy to find

g∞(x) = λF (0)(1 + µx)e−µx +
∫ x

0+
λ

r(y)(1 + µ(x − y))e−µ(x−y)g∞(y) dy gives:

g0(x) = 0;

g1(x) = λV0(1 + µx)e−µx

g2(x) = λV0e
−µx(1 +

2λ

κ
x1/2 + µx +

2λ

κ
µx3/2 +

2λ

κ

2

15
µ2x5/2)

g3(x) = λV0e
−µx(1 +

2λ

κ
x1/2 + (µ +

2λ2

κ2
)x +

2λ

κ
µx3/2 +

2λ2

κ2
µx2

+
4λ

15κ
µ2x5/2 +

19λ2

45κ2
µ2x3 +

λ2

45κ2
µ3x4)

g4(x) = λV0e
−µx(1 +

2λ

κ
x1/2 + (µ +

2λ2

κ2
)x + (

2µλ

κ
+

4λ3

3κ3
)x3/2

+
2µλ2

κ2
x2 + (

4µ2λ

15κ
+

4µλ3

3κ3
)x5/2 +

22λ3µ2

63κ3
x7/2

+
19λ2µ2

45κ2
x4 +

2λ3µ2

63κ3
x9/2 +

4λ3µ4

4455κ3
x11/2)

There is no obvious structure in this, but some will emerge in what follows.

Differentiating the integral equation twice gives a second order ODE:

d2g

dx2
− λ

κ
√

x

dg

dx
+

1
2x − µ

κ
√

x
λg(x) = 0,
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where g(x) = r(x)f(x)eµx as above and the initial conditions g(0) = λF0

and limx→0+ sqrtx d
dx (g′(x)

√
x) = λ2F0

κ + λF0µ. This solution was found us-
ing Maple, when the initial conditions were included the solution covers several
pages. Maple was not able to solve the ODE for f(x).

g(x) = e
λ
√

x

κ · (C1((λ
2 + 8µκλ

√
x + 16µ2κ2x) 0F1(·,

5

3
, ξ) + 8κ2µ 0F1(·,

2

3
, ξ))

+ C2((
λ3

64
+

3µ
√

xκλ2

16
+

3µ2κ2λx

4
+ µ3κ3x3/2)λ 0F1(·,

7

3
, ξ)

+
κ2µ

3
(
λ2

4
+ µκλ

√
x + 4κ2µ) 0F1(·,

4

3
, ξ))),

where ξ = λ(λ+4µκ
√

x)3

144µ2κ4 . The 0F1(·, a, x) is called the confluent hypergeometric
limit function, it can be expressed as:

0F1(·, a, x) =

∞∑

n=0

1

(a)nn!
xn,

where (a)n = a · (a + 1) . . . (a + n− 1). It can be expressed as a Bessel function
(see e.g. Petkovsek et al., 1996, p. 38):

Jn(x) =
(1
2x)n

n!
0F1(·, n + 1,−1

4
x2)

but this does not simplify the expression for g(x). One would rather like to see
the function that is related to 0F1(·, n + 1,− 1

4x3) and there does not seem to
be such a (known) function.

The constants C1 and C2 are determined from the initial conditions

g(0) = λF (0) and lim
x→0+

√
x

d

dx
(2g′(x)

√
x) =

λ3F (0)

κ2
+ λµF (0).

However, in order to evaluate F (0) one has to integrate this ugly expression
from 0+ to infinity!

F.3.2.1 Another attempt

We have the equation

g(x) = λV0(1 + µx) +

∫ x

0+

λ

κ
√

y
(1 + µ(x − y)) g(y) dy
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where g(x) := κ
√

xf(x)eµx. Using the ansatz g(x) =
∑∞

i=0 bix
i/2 and that

λ
κ

∫ x

0
y

n−1
2 dy = λ

κ
2

n+1x
n+1

2 and λµ
κ

∫ x

0
(x−y)y

n−1
2 dy = 4λµ

κ
1

(n+1)(n+3)x
n+3

2 gives:

b0 + b1x
1
2 + b2x

2 · · · + bnx
n
2 · · · =

λF0(1 + µx) +
2λ

κ

(
b0x

1
2 +

1

2
b1x +

1

3
b2x

3
2 · · · + 1

n
bn−1x

n
2 . . .

)

+
4λµ

κ

(
1

3
b0x

3
2 +

1

4 · 2b1x
2 + . . .

1

n · (n − 2)
bn−3x

n
2 . . .

)

Identifying coefficients of equal powers gives:

b0 = λF0

b1 =
2λ

κ
b0

b2 =
2λ

2κ
b1 + λF0µ

b3 =
2λ

3κ
b2 +

4λµ

κ

1

3
b0

... =
...

bn =
2λ

nκ
bn−1 +

4λµ

κ

1

n · (n − 2)
bn−3

This is a neat recursion formula but it is not easily solved analytically. If µ were
0 there is obviously an exp 2λ

κ

√
x term. The solution from Maple with hyperex-

ponential formulas gives an exp λ
κ

√
x term times a sum of four hyperexponential

functions. The ansatz g(x) := e
λ
κ

√
x
∑

bix
i
2 gives awkward recursions.

Trying generating functions, B(z) :=
∑∞

i=0 biz
i gives a differential equation:

1

z
B′′(z) −

(
κ + 2λz

κz2

)
B′(z) +

(
1 − 2µz2

) 2λ

κz2
B(z) = 0

with initial conditions from above. (Interestingly b1 = 2λ
κ b0 is redundant). The

general solution is (surprise):

B (z) = C1

((
1

4
λ + µ zκ

)2

0F1

(
,
5

3
,
λ (λ + 4 µ zκ)

3

µ2κ4144

)

+
1

2
0F1

(
,
2

3
,
λ (λ + 4 µ zκ)

3

µ2κ4144

)
µ κ2

)
e

λ z
κ

+ C2 e
λ z
κ

((
1

4
λ + µ zκ

)3

λ 0F1

(
,
7

3
,
λ (λ + 4 µ zκ)

3

144µ2κ4

)

+0F1

(
,
4

3
,
λ (λ + 4 µ zκ)3

144µ2κ4

)
κ2

(
1

4
λ2 + λµ zκ + µ κ2

)
µ

)
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This is the same solution obtained before, where g(z) = B(
√

z). Which is rather
obvious with hindsight, since this is just to make the variable change

√
z → z in

a very cumbersome way. The solution is terrifying when the initial conditions
are included; it covers several pages.

Since d
dx0F1(·, a, x) = 0F1(·, a + 1, x), obviously there is some structure in the

pair of hypergeometric functions for each constant.

The problem remains to be tough, to say the least, since it is necessary to

calculate F0 from F0 +
∫∞
0

B(
√

z)
κ
√

z
e−µz dz = 1 .

An approximate way of moving forward is to write

f0(x) = b0κ
−1x−1/2e−µx

and to continue with

fi(x) = (

i−1∑

k=0

bix
i/2)κ−1x−1/2e−µx

which would give quite simple formulas for the normalization of F0! Since∫∞
0

xn/2e−µx dx = µ−(1+n/2)Γ(n/2+1) and using the standard formulas for the
Gamma-function.

F.3.3 Deterministic meal size

Another possibility to get through would be to find the solution for the deter-
ministic meal size. Using the Picard iteration one finds that:

g0(x) = 0

g1(x) = λV0(1 − Θ(x − xs))

g2(2) = λV0(1 +
2λ

κ

√
x)(1 − Θ(x − xs))

+
2λ2V0

κ
(
√

xs −
√

x − xs)(Θ(x − xs) − Θ(x − 2xs))

g3(x) = λV0(1 +
2λ

κ

√
x +

2λ2

κ2
x)(1 − Θ(x − xs))

+
2λ2V0

κ
(
√

xs −
√

x − xs +
λ

κ
(2xs − x))(Θ(x − xs) − Θ(x − 2xs))

g4(x) = λV0(1 +
2λ

κ

√
x +

2λ2

κ2
x +

4λ3

3κ3
x3/2)(1 − Θ(x − xs))

If one tries to differentiate the integral equation one finds that:

d

dx
f(x) = −λV0δ(x − xs) +

λ

r(x)
f(x) − λ

r(x − xs)
f(x − xs)
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A delay-differential equation; these are more tricky to solve than ODEs, but this
one has a structure that f(x) = 0 when x < 0. It is easy to solve for 0 ≤ x ≤ xs

but then in the next period one finds an integral
∫ x

x−
s

λ
κ
√

y−xs
e

2λ
κ

(
√

y−xs−
√

y) dy

which seems to be analytically unsolvable.

The solution for the first period is λV0e
2λ
κ

√
x which has the series expansion seen

in the Picard iteration above.

The attempt to solve:

r′(x)v(x) + r(x)v′(x) = −λV0δ(x − xs) + λv(x) − λv(x − xs)

gave the solution v(x) = λV0

κ x− 1
2 e

2λ
κ

√
x for 0 ≤ x ≤ xs. But in the next step

one gets the same type of integral to solve as in the f(x) formulation.

F.3.4 New version

Using the ansatz g(x) = λV0e
2λ

√
x

κ (1−Θ(x−xs)+
∑∞

i=0 aix
i(Θ(x−xs)+Θ(x−

2xs) + b(x)(Θ(x − 2xs) − Θ(x − 3xs)) + . . . gives for xs ≤ x < 2xs that

a(x) = λV0(e
2λ
κ

√
x−e

2λ
√

x−xs
κ )+a0 ·(

√
x−

√
x − xs)+a1(x

3/2−(x−xs)
3/2)+ . . .

which does not conform to the basis (easily, could perhaps do some matching

with Taylor expansions, but looks intractable). Using the basis a(x) =
∑

i aix
i
2

gives arcsinh functions. Thus does not seem to be an alternative since the basis
is not closed. The only value of this attempt is that it shows that the solution

at x+
s is λV0

(
e

2λ
√

xs
κ − 1

)
.

F.4 Numerical issues

F.4.1 The time-dependent problem

Thygesen et al. (2005) used a regular (in squared coordinates to remove the weak
singularity at 0 (see Press et al., 1992)) finite-volume discretization in stomach
content, and then a “method of lines”-solution; a time-dependent problem only
ṗ(t) = A(t)p(t), where p(t) is a vector of probabilities of being in a node and A(t)
a updating matrix, which corresponded to a Markov model in their first approx-
imation. They reported problems with numerical accuracy and stiffness. The
order of the numerical scheme was estimated using refined meshes. They solved
the problems using higher order approximations (non-Markovian) in stomach
content, solving the time-dependent problem with a Runge-Kutta integrator
until a periodic solution was obtained (since the encounter rate with prey was
periodic).
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In a review Shaw and Whiteman (1997) advocated the use of adaptive Galerkin
methods for classes of similar partial integro-differential equations. Galerkin
methods have the benefit of being able to provide a priori error estimates that
tells us wether the present grid-size is sufficient for the solution to meet our
requirements. Sometimes it is possible to obtain a posteriori error estimates,
which tells us how close the numerical approximation is to the true solution.
The latter can be used for adaptive mesh generation, using the equidistribution
property of error, i.e. the mesh is refined at those points where the error is
largest (see Johnson).

There are a number of developments (for more advanced IDEs) that could be
useful in the optimization of numerical solution schemes. In some cases us-
ing Richardson interpolation it is possible to obtain super-convergence to the
solution even for Galerkin methods (Lin et al., 2000).

There is a lot of additional structure, in particular to the cdf-formulation of
the finite stomach problem that one could benefit from. Since one knows that
the F (x, t) ≤ 1 for all t and x. Since there is only a finite stomach there is
an xmax which limits the x domain. Furthermore, F (x, t) is non-decreasing,
and one knows from the stationary analysis of (Bekker et al., 2004) when to
expect an atom at 0. Choudhury et al. (1994) solved the time-dependent work-
load evolution for the M/G/1 queue using Laplace transforms; these techniques
could possibly be used in this context too.

A probabilistic equivalent to the adaptive grid problem would be to distribute
the grid points such that the probability of being in any such point would be
equal, except for the grid-point that denotes the atom. The equidistribution of
error would in this case be equidistribution of probability mass.

F.4.2 The time-stationary problem

For this class of problems there is both the standard Volterra integral technique
in the case of an atom in zero where the solution can be found using Picard
iteration techniques, i.e. one starts with v0(x) = 0. Then v1 = λ(x)V0G(x),
then inserting one finds v2(x) = λV0G(x) +

∫ x

0 λ(y)G(x − y)v1(y) dy.1. I tried
a numerical variation of this, an example is shown for the deterministic meal
size times the evacuation rate f(x)r(x) with a comparison of the exact second
Picard iteration in red see fig(F.2). Another possibility is to use ODE-solvers
that include options for Volterra IE (Press et al., 1992). A third option is to
solve an approximate Markov chain for the stationary distribution see fig(F.3)
for the deterministic case.

For time-stationary problems that do not have an atom in 0, singular Volterra

1A Maple script for solving the Volterra IE of the second kind written by Thomas Schramm
is available at http://www.adeptscience.co.uk/maplearticles/f298.html
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Figure F.2: The stationary distribution of stomach contents times evacuation
rate for a stomach model with deterministic meal size with mean 1.5 and κ = 2,
λ = 1. The analytic solution to the second Picard iteration and the exact
solution for the interval [0, xs] are shown in yellow respectively red. Based on
20 iterations and continuous linear basis functions.
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Figure F.3: The stationary cumulative distribution of stomach contents times
evacuation rate for a stomach model with deterministic meal size with mean 1.5
and κ = 2, λ = 1.
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Figure F.4: The stationary distribution of stomach contents for a stomach model
with r(x) = 2x, λ = 0.7 and Exp(1) distributed meals; the solutions are for
20, 40, 80, 160, 320, 640 grid-points, but the probabilities are lumped for com-
parison.

equations may occur, these are much more difficult to solve (see Bekker et al.,
2004). But from a queueing perspective this should not be too difficult, it is
just to simulate and estimate the stationary distribution here the domain is
(0, xmax]. For instance the infinite dam with constant arrival rate and a release
rate, r(x) that is κx is not solvable using the Neumann kernel. Using a non-
transformed uniform grid the solution seems to converge, see fig(F.4). Using the
simple discretization scheme in Thygesen et al. (2005) is is possible to verify the
solution for the square-root queue (using a non-transformed coordinate system;
transforming will probably improve solutions since a uniform grid in transformed
system will give more weight to positions close to 0), see Figure F.5.

F.4.3 The inverse problem

Given that we know the stomach size-distribution f(x) what can we say about
the meal size distribution?

For a simple example where the answer is known: Suppose that the emptying
rate was constant with rate 1 and that the workload density where v(x) =
(1 − ρ)δ(t) + ρ(µ − λ)e−(µ−λ)x, where ρ = λ

µ < 1. Then we would like to find
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Figure F.5: The stationary cumulative probability distribution of stomach con-
tents for a square-root-stomach model with exponential meal size with mean 1
and arrival rate of 0.7, κ is equal to 2. Red is the true distribution and blue is
numerical; 100 grid points were used. Note the initial discrepancy, the Markov
chain estimate of empty queue is 0.578 whereas the true value is 0.508.

the meal size distribution. We have for x > 0:

v(x) = λV0G(x) + λ

∫ x

0+

G(x − y)v(y) dy (F.3)

Denote the Laplace transform for v(x) : x > 0 with V +(s). Laplace transforming
Equation F.3 gives

V +(s) = λ(1 − ρ)G(s) + λG(s)V +(s)

µ − λ

s + µ − λ
= λ

(
(1 − ρ) + ρ

µ − λ

s + µ − λ

)
G(s)

Solving for G(s) gives G(s) = 1
s+µ which correspond to an exponential G(x) =

e−µx in the time-domain. This is natural this is the survival function of an
exponential distribution; it is the M/M/1-queue.

F.4.3.1 The square-root problem

Taking the Laplace transforms we find that:

R(s) ∗ F+(s) = λF (0)G(s) + λG(s)F+(s)
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in principle it should be possible to invert G(s) = R∗F+

λ(F (0)+F+) using the tech-

niques reviewed in Abate et al. (1999). Here R ∗ F+(s) = 1
2π

∫∞
−∞ R(ζ)F+(s −

ζ) dζ is the convolution in the Laplace plane. When the stomach distribution is
estimated it may be a much more difficult problem. Interestingly, the technique
of Choudhury et al. (1994) may work for the time-dependent problem too, since
they were able to solve the time-dependent behaviour of a M/G/1 queue.

F.5 Discussion

It may be necessary to distinguish between digestion and gut evacuation. For
instance, Thygesen et al. (2005) assume that the stomach fullness determines the
satiation. The subsequent fate of the food in the lower digestive tract may have
an effect on satiation. This would be quite easy to include with the addition
another dam in sequence. Jeschke et al. (2002) have argued, based on empirical
evidence, that most animals are digestion limited. Hence their functional re-
sponse includes a rudimentary stomach model as a controlling process. Clearly
satiation or digestion is important in shaping the predator-prey interaction.

In Rindorf and Lewy (2004) it is stated (with reference to Andersen (2001)) that
the energy contents of prey determine how fast they are evacuated. Fat fish are
evacuated more slowly than lean fish, crabs are slower than other invertebrates
(non-shelled presumably). These considerations are of course important and
it would be interesting to study a fluid-queue or dam that includes different
types of food. Also, if there are interactions between food types such that a
cod that have eaten a particular prey type, such as crabs, will tend to continue
to eat crab due to physiological constraints or not. The physiological processes
that determine this could be the lack of specific nutrients, activation of enzyme
systems or that the presence of shell in the digestive apparatus will make pursuit
of fish impossible for long.

Possible developments could be to include patchiness in food encounter which
would increase the variability. If the encounter process were an IPP instead of
a Poisson process, it would be quite simple to formulate this as a dam. The
sampling programmes may have to be very extensive in order to ensure the
identifiability of the parameters. The details of enzyme excretion are also worth
to mention as a complication. If a whiting contains a herring that has digested
for some time and it consumes yet another herring then the former herring will
digest faster than the square-root model and the later will digest slower that the
square-root model (Beyer, pers. comm.). But the digestion rate of food matter
in the stomach will follow the square-root model. Thus it is more difficult than
expected to back-calculate the food ingestion time on the level of food items.
From an optimal perspective it is also interesting to know the cost of enzyme
production and its mechanisms. Could one understand the distribution of empty
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stomachs using optimal foraging theory?

This article assumes that there are no satiation effects. In practice this may not
be a problem, since it is possible to include a cut-off in the encounter rate as a
function of stomach contents. Another possibility is to use a finite dam. Finite
dams of water have long been modelled. Here, the event of a too big rain will
just lead to overflow of excess water. This is probably not a good model for
fish—if there is no room in the stomach then the chewing apparatus may not be
able to just ingest what fills the stomach. Hall et al. (1995) have an interesting
solution, they specify the arrival process as the arrival rate of items of a certain
size. Could one make this work in a backwards sense to estimate the arrival
rate of the prey spectrum this would be very interesting biologically to compare
with the expected encounter rate based on the estimated densities of prey and
some model for their movement speed.
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Gómez-Mourelo, P., 2005. From individual-based models to partial differential
equations: An application to the upstream movement of elvers. Ecological
Modelling 188, 93–111.

Grant, B. R., Grant, P. R., 1993. Evolution of Darwin’s finches caused by a rare
climatic event. Proc. R. Soc. Lond. B 251, 111–117.

Grenfell, B. T., Bjørnstad, O. N., Kappey, J., 2001. Travelling waves and spatial
hierarchies in measles epidemics. Nature 414 (13 December), 716–723.

Grimm, V., 1999. Ten years of individual-based modelling in ecology: what have
we learned and what could we learn in the future? Ecological Modelling 115,
129–148.

Grimmett, G. R., Stirzaker, D. R., 2001. Probability and random processes, 3rd
Edition. Oxford University Press, Oxford.
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problème biologique. Moscow University Bull Math 1, 1–25.

Kooijman, S. A. L. M., 2000. Dynamic energy and mass budgets in biological
systems, 2nd Edition. Cambridge University Press.

Kot, M., Medlock, J., Reluga, T., Walton, D. B., 2004. Stochasticity, invasions,
and branching random walks. Theoretical Population Biology 66, 175–184.

Krause, J., 1993. The effect of schreckstoff on the shoaling behaviour of the
minnow—a test of Hamiltons selfish herd theory. Animal Behaviour 45, 1019–
1024.

Krause, J., Reeves, P., Hoare, D., 1998. Positioning behaviour in roach shoals:
the role of body length and nutritional state. Behaviour 135, 1031–1039.



238 BIBLIOGRAPHY

Kuczura, A., 1973. The interrupted poisson process as an owerflow process. The
Bell System Technical Journal 52 (3), 437–448.

Kuhn, T. S., 1970. The Structure of Scientific Revolutions, 2nd Edition. Uni-
versity of Chicago Press, Chicago.

Lande, R., Engen, S., Sæther, B.-E., 2003. Stochastic population dynamics
in ecology and conservation. Oxford series in ecology and evolution. Oxford
University Press, Oxford, UK.

Latouche, G., Ramaswami, V., 1999. Introduction to Matrix Analytic Methods
in Stochastic Modelling. ASA–SIAM Series on Statistics and Applied Proba-
bility. ASA–SIAM.

Latouche, G., Remiche, M.-A., Taylor, P., 2003. Transient Markov arrival pro-
cesses. Annals of Applied Probability 13, 628–640.

Lehoucq, R. B., Sorensen, D. C., Yang, C., 1998. ARPACK Users’ Guide: So-
lution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods. SIAM Publications, Philadelphia.

Leibhold, A., Koenig, W. D., Bjørnstad, O. N., 2004. Spatial synchrony in
population dynamics. Annual Review of Ecology, Evolution and Systematics
35, 467–490.

Leslie, P. H., 1945. On the use of matrices in certain populatin mathematics.
Biometrika 33, 213–245.

Leslie, P. H., 1948. Some further properties on the use of matrices in population
mathematics. Biometrika 35, 213–245.

Leslie, P. H., 1958. A stochastic model for studying the properties of certain
biological systems by numerical methods. Biometrika 45, 16–31.

Levins, R., 1969. Some demographic and genetic consequences of environmental
heterogeneity for biological control. Bulletin of the Entomological Society of
America 15, 237–240.

Lima, S. L., 1998. Stress and decision making under the risk or predation: Re-
cent developments from behavioral, reproductive, and ecological perspectives.
Advances in the Study of Behavior 27, 215–290.

Lin, T., Lin, Y., Rao, M., Zhang, S., 2000. Petrov–Galerkin methods for linear
Volterra integro-differential equations. SIAM Journal on Numerical Analysis
38, 937–963.

Lotka, A. J., 1910. Contribution to the theory of periodic reactions. Journal of
Physical Chemistry 14, 271–274.



BIBLIOGRAPHY 239

Lotka, A. J., 1920. Undamped oscillations derived from the law of mass action.
Journal of the American Chemical Society 42, 1595–1599.

Lucantoni, D. M., 1991. New results on the single server queue with a batch
Markovian arrival process. Stochastic Models 7, 1–46.

Lucantoni, D. M., 1993. The BMAP/G/1 queue: A Tutorial. In: Donatiello,
L., Nelson, R. (Eds.), Performance Evaluation of Computer and Communi-
cation Systems: Joint Tutorial Papers of Performance ’93 and Sigmetrics ’93.
Springer-Verlag, Berlin & New York, pp. 330–358.

Lucantoni, D. M., Meier-Hallstern, K. S., Neuts, M. F., 1990. A single-server
queue with server vacations and a class of non-renewal arrival processes. Ad-
vances in Applied Probability .

Lukes, D. L., 1982. Differential Equations: Classical to Controlled. Academic
Press.

Mackey, M. C., Glass, L., 1977. Oscillation and chaos in physiological control
systems. Science 197, 287–289.

MacLennan, D. N., Simmonds, E. J., 1992. Fisheries Acoustics. Chapman and
Hall, London, UK.
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