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Abstract1

Spatial variation in population densities across a landscape is a feature of many ecological2

systems, from self-organised patterns on mussel beds to spatially restricted insect outbreaks. It3

occurs as a result of environmental variation in abiotic factors and / or biotic factors structuring4

the spatial distribution of populations. However the ways in which abiotic and biotic factors5

interact to determine the existence and nature of spatial patterns in population density remain6

poorly understood. Here we present a new approach to studying this question by analysing7

a predator-prey patch-model in a heterogenous landscape. We use analytical and numerical8

methods originally developed for studying nearest-neighbour (juxtacrine) signalling in epithelia9

to explore whether and under which conditions patterns emerge. We find that abiotic and10

biotic factors interact to promote pattern formation. In fact, we find a rich and highly complex11

array of coexisting stable patterns, located within an enormous number of unstable patterns.12

Our simulation results indicate that many of the stable patterns have appreciable basins of13

attraction, making them significant in applications. We are able to identify mechanisms for these14

patterns based on the classical ideas of long-range inhibition and short-range activation, whereby15

landscape heterogeneity can modulate the spatial scales at which these processes operate to16

structure the populations.17

Key words18

Diffusion-driven instability, heterogeneous landscape, patch model, pattern formation,19

predator-prey.20
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1 Introduction21

One of the great challenges in ecology is to uncover and explain the mechanisms that lead to22

observed spatial patterns of species distributions. For many species, abundance varies spatially23

as individuals track environmental variation, such as abiotic factors or resources, across a land-24

scape (Leroux et al., 2013; Ergon et al., 2001). Alternatively, spatial distribution patterns can25

arise in the absence of external forces, due to the pattern-formation mechanism of short-range26

activation and long-range inhibition (Zelnik et al., in press; Rietkerk et al., 2002; Wang et al.,27

2010b), or due to density-dependent dispersal leading to phase separation (Liu et al., 2013).28

These two mechanisms typically create stationary patterns, although moving patterns occur in29

the presence of advection (Siero et al., 2015; Perumpanani et al., 1995; Sato and Iwasa, 1993).30

Temporally varying patterns may also arise from asynchronous cycling caused by invasions or31

obstacles (Sherratt et al., 1995; Petrovskii and Malchow, 2001; Sherratt et al., 2002). The32

best-studied of these processes is the Turing mechanism, and ecologists have recently identified33

appropriate long-range inhibition in a number of natural ecosystems and documented corre-34

sponding patterns (Rietkerk and van de Koppel, 2008; Deblauwe et al., 2008; Meron, 2012).35

Our work is concerned with the interplay between extrinsic and intrinsic generation of tem-36

porally constant spatial patterns. We develop a theoretical framework and illustrate it with37

some examples of how environmental variation and intrinsic interaction can combine to create38

patterns at various spatial scales.39

Spatial variation in environmental conditions occurs at various (landscape) scales both nat-40

urally, e.g. altitude variation within mountainous regions, and through human intervention,41

e.g. networks of marine reserves, managed forests, or agricultural systems. Spatial scales of42

population patterns arising from species interactions (Turing scale) depend on the range of43

activation and inhibition, i.e. the strength of these interactions and the relative movement of44

individuals. On one extreme, if the landscape scale is much smaller than the Turing scale, then45

one can expect to observe intrinsically generated patterns that extend over large regions in space,46

potentially with small variations to reflect local conditions. Conversely if the landscape scale47

is large compared to the Turing scale of species interaction, one expects intrinsically generated48

patterns that change on the long spatial scale of environmental variation (Voroney et al., 1996).49

Several authors have studied Turing pattern formation in heterogeneous landscapes. Benson50

et al. (1993b) investigated pattern formation with constant kinetic parameters and spatially51

varying diffusion coefficients, see also (Benson et al., 1993a, 1998). Voroney et al. (1996) studied52

the interplay of Turing patterns and cyclic dynamics that result from a chemical reaction with53

an additional immobile but spatially heterogeneous complexing agent. Page et al. (2003) consid-54

ered the generation of patterns near an interface where kinetic parameters change their values55

abruptly. Subsequent work included smoothly varying monotone and periodic changes in kinetic56

parameters (Page et al., 2005), see also Garzón-Alvarado et al. (2012) for more intensive numer-57

ical simulations in patchy, 2-dimensional domains. Recently Sheffer et al. (2013) and Yizhaq58

et al. (2014) investigated the interplay between environmental templates and self-organisation in59

the formation of patterned vegetation in semi-arid regions. Using both theoretical and empirical60

approaches, they showed that both mechanisms play significant roles in the pattern formation61

process, with their relative contributions depending on rainfall levels.62

In this work, we take a landscape ecology perspective and subdivide the environment into63

distinct patches. A patch is defined as an environmentally homogeneous geographic region whose64

spatial extent is comparable to the species’ dispersal scale so that a population can be assumed65

relatively homogeneous within a patch. Population dynamics on each patch are then coupled66
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via migration between patches. Such multi-patch models have a long and distinguished history67

in spatial and community ecology (see for example (Cantrell et al., 2012) for a discussion).68

In this framework, we study conditions for spatial patterns to evolve in the interesting range69

where the landscape scale is comparable to the Turing scale (see above). We implement habitat70

heterogeneity through patch attributes and movement bias.71

A series of papers explores pattern formation in epithelia where cell-cell interaction is domi-72

nated by nearest-neighbour (juxtacrine) signalling (Owen and Sherratt, 1998; Owen et al., 2000;73

Webb and Owen, 2004a; O’Dea and King, 2011, 2013; Wearing et al., 2000; Wearing and Sher-74

ratt, 2001). In these works, all cells have equal properties (i.e. there is no spatial variation),75

and interaction between neighbouring cells is non-linear. We will adapt some of the analytical76

methods used there for our model. A closely related model for a linear inhomogeneous array of77

coupled chemical reactors was studied in Horsthemke and Moore (2004) as a discretised version78

of the work in Voroney et al. (1996).79

We begin by deriving the predator-prey patch model that forms the basis of our study. We80

explore emergent patterns with a numerical bifurcation analysis when the number of patches is81

small. We find a large number of patterns, often stably coexisting, and complex bifurcation dia-82

grams. In the second part, we perform a linear stability analysis when the number of patches is83

large. For reference and comparison, we identify the stability conditions for the spatially homo-84

geneous model. We compare and contrast these results and discuss the ecological implications85

of our findings.86

2 The Model87

In a linear landscape of patches of two types (type 1 and type 2), arranged to be periodically88

alternating, we denote by u1,2, v1,2 the respective densities of two interacting species. In our89

explicit calculations, we focus on predator-prey interaction where a type-1 patch is suitable for90

the prey and a type-2 patch is not. Viewing landscapes as mosaics of patches of different quality91

is common in landscape ecology and also arises in managed ecosystems, for example, a series of92

marine reserves along a coastline (Botsford et al., 2001; Gouhier et al., 2010) or intercropping93

in agriculture (Jones and Sieving, 2006).94

On a patch of type i, the dynamics of these species evolve according to the equations95

u̇i = fi(ui, vi), v̇i = gi(ui, vi). (1)

Throughout, we assume that functions fi, gi are sufficiently smooth and that the system preserves96

non-negativity of solutions.97

We denote by Li the length of patch type i, and by L = L1+L2 and l = L1/L2 the landscape98

period and patch size ratio, respectively. We say that a tile consists of a patch of type 1 and99

its adjacent patch of type 2 on the right. Hence, a tile represents one period of the landscape100

(see Figure 1(a)). We denote species’ densities on tile j by uj1,2, v
j
1,2. We note here that “tile” is101

introduced only as a convenient way to describe the system, not as an ecological unit.102

We model movement by a discrete diffusion process, so that moving from one good patch103

to the next requires moving through a bad patch. Individuals of species u (v) leave a patch104

of type 1 with migration rate µu (µv) and move to one of the adjacent patches of type 2 with105

equal probability. The leaving rate for patch type 2 is multiplied by κu (κv) to account for106

patch-dependent dispersal behavior. If κu,v > 1 (κu,v < 1) then the average time spent in a107
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Figure 1: Diagram of patch and tile structure (a) and example pattern solutions (b), (c). (a)
illustrates the landscape made up of a series of tiles, with each tile made up of two patches, one
of type 1 and one of type 2 with patch sizes L1 and L2 respectively. (b) illustrates a stationary
solution of the model (2,3) for the parameter values µu = 0.5, µv = 5, l = 1, b = 0.1, s = 0.2,
m = 0.6, κu,v = 1, q = 2.8. Prey density is denoted by stars and solid lines and predator

density by squares and dashed lines. The pattern in prey density uji is of period 4 on a periodic
landscape consisting of 8 tiles. The white regions correspond to the type 1 (‘good’) patches and
the light grey regions correspond to the type 2 (‘bad’) patches. The prey density in the ‘good’
patches on tiles 1, 4, 5, and 8 is low, in particular it is lower than the prey density in the ‘bad’
patch on tiles 2 and 6. (c) illustrates the result of converting the patches 1, 4, 5 and 8 from (b)
to bad patches. The result is that the prey density on the remaining good patches is increased
while the predator density is decreased on all patches.
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patch of type 2 is shorter (longer), so that overall movement is biased towards patch type 1108

(type 2). The spatially coupled model system reads109

u̇j1(t) = µu

[
κu
uj2 + uj−1

2

2
− uj1

]
+ f1(u

j
1, v

j
1),

u̇j2(t) = µul

[
uj1 + uj+1

1

2
− κuuj2

]
+ f2(u

j
2, v

j
2),

v̇j1(t) = µv

[
κv
vj2 + vj−1

2

2
− vj1

]
+ g1(u

j
1, v

j
1),

v̇j2(t) = µvl

[
vj1 + vj+1

1

2
− κvvj2

]
+ g2(u

j
2, v

j
2),

(2)

where the multiplication of µu, µv by l in the equations on type-2-patches is the scaling factor110

that accounts for conservation of individuals. In the case of a finite number of tiles (N) we close111

the system by assuming periodic boundary conditions such that u1i = uNi and v1i = vNi . Periodic112

boundary conditions allow for easy comparison to dynamics on an infinite domain, moreover113

they are equivalent to Neumann boundary conditions on a domain of length N/2.114

Dynamics on a patch115

On patches of type 1 (‘good’) we choose the non-dimensional Leslie or May model (May, 1974;116

Strohm and Tyson, 2009; Mukhopadhyay and Bhattacharyya, 2006) for predator species v and117

prey species u, given by118

f1(u, v) = u(1− u)− uv

b+ u
, g1(u, v) = sv

(
1− v

qu

)
. (3)

In this scaling, b denotes the half-saturation constant of the Holling type II functional response.119

The predator grows logistically with intrinsic rate s and carrying capacity qu. This formulation120

arises from the assumption of variable predator-territory size (Turchin, 2001).121

Patches of type 2 (‘bad’) are unsuitable for the prey so that we replace the logistic growth122

term by a linear death term. Predator dynamics depend only on prey abundance and not on123

patch type. Hence, model equations on patches of type 2 are given by124

f2(u, v) = −mu− uv

b+ u
, g2 = g1. (4)

On an isolated good patch, there is a unique positive steady state, given by125

u∗ =
1

2

(
1− b− q +

√
(1− b− q)2 + 4b

)
, v∗ = qu∗. (5)

Parameter q is the ratio of predator-to-prey steady-state densities and will be used as a bifur-126

cation parameter later. The community matrix at this state,127

J =

[
1− 2u∗ − b(1−u∗)

b+u∗
− u∗
b+u∗

sq −s

]
, (6)

has positive determinant. The stability therefore depends on the sign of the trace. The trace is128

zero when129

1− 2u∗ − b
1− u∗
b+ u∗

= s. (7)
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If s is large, then this equation has no solution and the steady state is stable. If s is small enough,130

there are two critical values qH,1 < qH,2 where a Hopf bifurcation occurs. The steady state is131

unstable for qH,1 < q < qH,2 and a stable limit cycle exists. Depending on parameter values, the132

bifurcation at qH,2 may be subcritical so that a limit cycle may exist for values q > qH,2 (Gasull133

et al., 1997). For the parameter values we use in the next section (b = 0.1, s = 0.2), these134

critical points are qH,1 ≈ 0.895, and qH,2 ≈ 4.05, and the latter bifurcation is subcritical.135

Dynamics on a tile136

When we couple the dynamics on a good patch with those on a bad patch, migration has a137

stabilising effect on the dynamics. For all parameters sets that we have studied, numerical138

investigation suggests that there is a unique positive stable coexistence steady state. We do not139

attempt to find exact conditions for when this happens since our focus is on the question of140

spatial pattern formation at a landscape level.141

Qualitatively, this stabilisation occurs when the bad patch is large enough, movement rates142

are large enough, and movement preference for the good patch is not too strong. The periodic143

orbits for intermediate values of q on a single good patch can also be present on a tile if the144

influence of the bad patch is weak enough. The latter scenario arises, for example, when the145

size of the good patch is much larger than that of the bad patch, when migration rates are very146

small so that the patches are only weakly coupled, or when migration preference for the good147

patch is particularly strong.148

For our base-line parameters, we fix patch sizes to be equal (l = 1) and choose migration149

without patch preference (κu,v = 1). We also fix migration rates so that the prey moves much150

less (µu = 0.5) than the predator (µv = 5). The population dynamics parameters are fixed at151

b = 0.1, s = 0.2, and m = 0.6. Then, numerically, the dynamics on an entire tile show a unique,152

globally stable positive steady state for all q ∈ (0, 10] even though the dynamics on a single good153

patch can have oscillations for intermediate values of q. We will return to some aspects of cyclic154

dynamics in section 3.2.155

3 Methods and Results156

We structure our analysis of pattern formation in the heterogeneous landscape into two parts.157

First we use a numerical bifurcation method to study patterns when the number of tiles is158

relatively small. Depending on our bifurcation parameter q, we document a large number of159

complex, stable, steady spatial patterns. Secondly, we use linear analysis to derive the disper-160

sion relation of the ‘spatially homogeneous steady state’ on an infinite patchy landscape. This161

approach allows us to identify stability boundaries and the onset of spatial patterns with re-162

spect to all other parameters, in particular those parameters governing movement and landscape163

attributes. Finally, we discuss the similarities and differences between the two approaches.164

The term ‘homogeneous steady state’ warrants some explanation. Our system does not165

support a homogeneous steady state in the classical sense where prey and predator densities are166

constant in space, i.e. independent of patch type. However, if we consider the tile as the basic167

spatial unit, we do obtain a steady state solution where each of the four densities uj1, u
j
2, v

j
1 and168

vj2 is independent of tile-number j. We refer to this solution as our homogeneous solution or169

tile-independent solution.170

Unless otherwise stated explicitly, parameter values in this section are µu = 0.5, µv = 5,171

l = 1, b = 0.1, s = 0.2, m = 0.6, κu,v = 1 and q = 1.8.172
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3.1 Numerical bifurcation results for small systems173

The simplest solution of our model is the homogeneous steady state. Our extensive program of174

numerical simulations suggests that when parameter q is either sufficiently small or sufficiently175

large, there is a unique solution of this type, which is globally stable.176

For intermediate values of q, simulations reveal “patterns” by which we mean locally stable177

time-independent solutions in which the predator and prey densities are not the same in all tiles.178

We undertook a numerical investigation of such patterns via numerical bifurcation analysis, for179

which we used the software package auto (Doedel, 1981; Doedel et al., 1991, 2006). For a180

relatively small value of q (e.g. q = 1) we calculated numerically the j-independent solution.181

We then continued this solution numerically, looking for bifurcations to patterned solutions and182

then continuing these pattern solution branches. Auto is able to detect not only the existence of183

patterns, but also to determine their stability as model solutions. This approach to investigating184

periodic solutions of spatially discrete systems has been used previously in developmental biology,185

for epithelia in which there is direct cell–cell contact via juxtacrine signalling (Wearing and186

Sherratt, 2001; Webb and Owen, 2004b; O’Dea and King, 2013). Although it is simple in187

concept, the approach raises many technical difficulties in the present context, and we discuss188

these in detail in Appendix A, focussing here on the results of our analysis.189

Figure 2 shows the bifurcation diagrams for N = 2, 4, 6, 8 tiles, plotting the values of uj1190

against q; (examples of bifurcation diagrams for odd number tiles can be found in the supple-191

mentary material) . The thin black lines denote unstable patterns (spatially non-constant steady192

states), and the thin yellow-black dashed lines denote unstable tile-independent solutions. The193

thick bright yellow lines are stable tile-independent (“period 1”) solutions, and the other thick194

coloured lines denote stable patterns; representative patterns are shown in the same colours195

above the main plot. The black stars denote results from a series of 1000 simulations for each of196

q = 1.0, 1.25, 1.5, . . .. Here we solved the equations with initial conditions in which each variable197

was chosen randomly from a uniform distribution between 20% and 200% of its value in the198

tile-independent solution. In these simulations, we solved for a long time and then plotted the199

values of uj1 for each j.200

For N = 2, the bifurcation diagram is relatively simple. The tile-independent solution is201

stable for q < 1.89 and q > 4.03. At these two critical values it changes stability, giving202

rise to a looped branch of period-2 solutions. For N = 4, the tile-independent solution loses203

stability a little earlier, at q = 1.59, with a patterned solution branch emanating subcritically.204

There are three different stable portions of patterned solution branches, with small overlaps.205

These overlaps imply two coexisting stable patterns, and this is confirmed by simulation results206

for q = 3.75, with 607/1000 of the initial conditions generating the purple pattern, and the207

remaining 393/1000 giving the bright green pattern. Note that a doubled version of the pattern208

solution branch for N = 2 is necessarily also a solution for N = 4, but it is unstable on the209

larger domain. For N = 6 the number of solution branches is significantly greater, forming a210

complicated network, and there are eight separate stable sections of solution branches: one of211

period 2, two of period 3, and five of period 6. The brown solution branch is a tripled version212

of the pattern solution branch for N = 2: the whole of this branch is necessarily a solution for213

N = 6, but only a small part of it is stable. For some values of q there are three coexisting214

stable patterns, all of which are observed in our simulations. For N = 8 the bifurcation is215

slightly simpler, but again there are multiple coexisting stable patterns for significant ranges of216

q.217

To illustrate the rapidly increasing complexity of emergent patterns, Figure 3 shows the218
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Figure 2: Bifurcation diagrams showing the values of uj1 in stationary solutions of the model
(2,3) as a function of q, for N = 2, 4, 6, 8 tiles. Thin black lines denote unstable solutions,
thick bright yellow lines denote stable tile-independent (period-1) solutions, and thick coloured
lines denote patterns. Each stable part of a solution branch is plotted in a different colour, and
representative examples of the corresponding patterns are shown above the main figure panels.
Black stars denote results from a series of 1000 simulations for each of q = 1.0, 1.25, 1.5, . . ..
Here we solved the equations with the value of each variable at t = 0 chosen randomly from a
uniform distribution between 20% and 200% of its value in the tile-independent solution. We
plot the values of uj1 for each j at t = 108: this large solution time is necessary because there
can be long transients near unstable solutions. To avoid numerical solutions getting trapped
near solutions that are only just unstable, we used a small absolute tolerance of 10−8.
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results for N = 12 and N = 16. The network of solution branches is so complicated that in219

many places no space is visible between them, and there are many stable pattern branches:220

19 for N = 12 and 54 for N = 16. Moreover the wide variety of coexisting stable patterns221

is reflected in the results of our simulations: for most values of q in our range, many different222

patterns develop, depending on initial conditions. Note that to improve clarity, we do not show223

simulation results in Figure 3 but they are included in the online supplementary material, where224

we show bifurcation diagrams for N = 2, 3, . . . , 10, 12 and 16, plus representative patterns from225

each stable portion of a solution branch.226

The overall message of our results is that unless the number of tiles N is very small, there227

is a rich and highly complex array of stable patterns, located within an enormous number of228

unstable patterns. Moreover our many of the stable solution branches arise in out simulations229

using random initial conditions, which indicates that they have appreciable basins of attraction,230

and should therefore be observable in real systems. Since the numerical bifurcation methods231

applied in this section require intensive computations, we present an alternative approach to232

study pattern formation in the next section.233

3.2 Dispersion relation, stability and patterns234

An analytic approach for studying pattern-formation conditions is to linearise at a spatially235

constant steady state and to derive the dispersion relation that gives the temporal growth236

rate of perturbations of a certain wave number. This technique is well established in reaction-237

diffusion equations (Murray, 2001) and coupled lattices (Webb and Owen, 2004a; Wearing et al.,238

2000; Lubensky et al., 2011) and networks (Wolfrum, 2012). As discussed previously, we obtain239

a homogeneous solution only on the level of tiles. We denote this tile-independent state as240

(u∗1, u
∗
2, v

∗
1, v

∗
2). The spatial relation of u∗1, v

∗
1 and u∗2, v

∗
2 within a tile needs to be reflected in the241

perturbation ansatz. Hence, after we linearise the equations in (2), we look for solutions of the242

form243

ũj1(t) = ū1 exp(σt+ jki), ũj2(t) = ū2 exp

(
σt+

(
j +

1

2

)
ki

)
, (8)

and similarly for vn, where ūn is a constant, and i2 = −1. The temporal growth rate of the244

solution is given by σ, the wave number is k, and j is the discrete (integer) distance corresponding245

to tile number. To interpret k as a wave number corresponding to wavelength N on the lattice,246

it needs to be of the form k = N/2π; however, for analytical purposes, it is helpful to consider247

it as a continuous variable. Here, N is shortest number of tiles needed to see a pattern of that248

wave length, this is not the same as the N defined in section 3.1, but it is closely related and so249

we use the same letter. Since the centre of a type-2-patch is halfway between two consecutive250

type-1-patches (see Figure 1(a)) we need to evaluate the linearisation on bad patches at j+ 1/2,251

as it appears in (8).252

The desired solutions exist if the constants x̄T = (ū1, ū2, v̄1, v̄2) satisfy the linear system253

(M − σI)x̄ = 0, where254

M =


−µu + f1u κuµu cos(π/N) f1v 0
lµu cos(π/N) −κulµu + f2u 0 f2v

g1u 0 −µv + g1v κvµv cos(π/N)
0 g2u lµv cos(π/N) −κvlµv + g2v

 , (9)

and N = 2π/k is the wavelength as above. Partial derivatives of the interaction terms are255

10



Figure 3: Bifurcation diagrams as in Figure 2 for N = 12 and 16 tiles. For improved visual
clarity we omit simulation results, but otherwise all details are as in Figure 2. In view of the
large number of stable portions of solution branches, we do not show examples here, but a
representative pattern from each stable portion is plotted in the online supplementary material.
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denoted by subscripts, for example256

f1u =
∂f1
∂u
|(u∗1,v∗1), g2v =

∂g2
∂v
|(u∗2,v∗2),

and the other terms analogously. From the condition that the solution to this linear system be257

non-trivial, we obtain the dispersion relation258

F (k, σ) = det(M − σI) = 0. (10)

For spatial pattern formation we require the steady state to be (i) stable to homogeneous per-259

turbations (i.e. <(σ) < 0 when k = 0), and (ii) unstable to inhomogeneous perturbations260

(i.e. <(σ) > 0 for some k 6= 0). We illustrate and discuss the stability boundary of the j-261

independent solution in several figures below. In each figure, we indicate whether a perturbation262

of wavelength N can grow with a positive real eigenvalue (σ > 0, white region) or will decay263

with a real negative eigenvalue (σ < 0, black region) or non-real eigenvalue with negative real264

part (<(σ) < 0, grey region). We expect patterns to form in the white region. To generate these265

figures, we calculated the stable tile-independent steady state by numerically solving Equations266

(2) on a single tile with periodic boundary conditions. For each wavelength, we then found the267

characteristic polynomial of M and evaluated its roots numerically (using the root command268

in Matlab). We focus our results on the effects of movement-related parameters.269

Relative dispersal ability270

A key requirement for classical diffusion-driven pattern formation is a difference in dispersal271

ability, to achieve short-range activation and long-range inhibition (Murray, 2001). Since the272

prey corresponds to the activator in our model and the predator to the inhibitor, we expect273

that patterns form when the relative dispersal ability µv/µu is large enough. Figure 4 (a)274

shows essentially this behaviour, but the situation is slightly more complex than in the case of275

a homogeneous landscape. In Figure 4 (a) we fixed µu = 0.5 and varied µv. When µv = µu,276

no patterns form. As µv increases, patterns of wavelength 3 and 4 emerge, and the range of277

unstable wavelengths increases as µv increases. Note that the white region between N = 1 and278

N = 2 corresponds to non-integer wavelengths and is not observable on our lattice. We note279

that a different class of spatio- temporal dynamics arises when predator dispersal is very small.280

The dispersion relation then predicts periodic traveling waves, i.e. instabilities with non-real σ281

and <σ > 0. This scenario is present in panel (a) for values of µv below 0.1004 (thin white strip282

at the bottom of the figure). The dynamics on an isolated good patch are oscillatory, and prey283

dispersal propagates these oscillations in space to generate periodic traveling waves.284

In Figure 4 (b) we instead fixed µv = 5 and varied µu. When µu ≥ 1, no patterns form. As µu285

decreases, patterns with small wavelengths (3 ≤ N ≤ 6) emerge as expected from the previous286

scenario. The choice of µv seems to constrain the range of unstable wavelengths that can be287

obtained by varying µu, but not vice versa (compare panel (a)). Rietkerk and van de Koppel288

(2008) also observed the key role of long distance negative feedback in determining the existence289

and regularity of patterns. As µu decreases even further, the homogeneous state becomes stable290

again, even though the ratio µv/µu is large. In this case, the range of activation becomes too291

small to spread across the neighbouring bad patch since the residency time in the good patch292

( 1
µu

) is high. For the chosen parameter values, the dynamics on an isolated good patch are293

oscillatory (as discussed in section 2), but the relatively large predator movement stabilises the294

dynamics. The analysis suggests mobile predators and prey are both needed to observe patterns,295

however a low predator residency time in good patches appears to be an important ingredient296

for determining the wavelength of resulting patterns.297
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Movement bias κu and κv298

The dispersion relation predicts that no patterns form when prey movement is heavily biased299

towards good patches (e.g. κu > 1.4 in Figure 4 (c)). As κu decreases, perturbations of relatively300

small wavelengths (2 ≤ N ≤ 6 for the chosen parameters) become unstable and patterns arise.301

Even though the movement rates are constant in this figure, the emergence and disappearance of302

patterns can be explained in terms of the relative scales of activation and inhibition as follows. By303

decreasing κu, the residence time in bad patches ( 1
µuκu

) is increased, which effectively increases304

travel time between two consecutive good patches. Thereby the activation range decreases. Vice305

versa, increasing κu decreases the residence time in bad patches. Effectively, prey move faster306

through the landscape, thereby increasing the activation range and destroying any potential307

patterns.308

With movement bias of the predator, the same mechanisms are in effect. Since long-range309

inhibition aides pattern formation, these mechanisms produce contrasting results (not shown).310

As κv increases, predators bias their movement towards good patches by decreasing their resi-311

dence time in the bad patches. This behaviour effectively increases their overall movement rate,312

and with increased inhibition range, patterns may form.313

Patch size314

Pattern formation can occur for intermediate size of good patches relative to bad patches.315

Figure 4 (d) shows the case of fixed L2 and varying L1, but the reverse case is qualitatively the316

same. When the ratio l = L1/L2 is small, prey growth on good patches cannot compensate for317

prey death in bad patches to produce enough activation for patterns to form. At intermediate318

ranges, good patches are large enough to enhance prey growth and bad patches are large enough319

to stabilise the oscillatory dynamics on good patches. When l is large, then the oscillatory320

dynamics on a good patch cannot be stabilised by the (relatively) small bad patches, and the321

dynamics on each tile are oscillatory. Due to movement, these local oscillations then form322

periodic traveling waves. Webb and Owen (2004b) also found periodic travelling waves in their323

lattice model of intracellular signalling. As the focus of the current work is the study of stable324

patterns we leave the study of the periodic travelling waves for future work.325

Homogeneous versus heterogeneous landscapes326

To complete this section, we ask what effect the bad patches have on the occurrence of patterns327

compared to a homogeneous landscape. When all patches are good patches (i.e. f1 = f2, g1 = g2),328

then we have a homogeneous landscape, consequently there is no patch preference (i.e. κu,v = 1).329

In this case, the four-dimensional system (9) reduces to two equations, and the dispersion relation330

can be written explicitly as331

K2(µuµv)(1 + l)2 +K
[
σ(µu + µv)(1 + l)− a11µv(1 + l)− a22µu(1 + l)

]
+
[
σ2 − σ(a11 + a22) + a11a22 − a12a21

]
= 0

(11)

where K = sin2(k/4) and aij are the entries in the community matrix J given in Equation (6),
i.e. a11 = f1u, a22 = g1v and so on. The conditions for diffusion-driven instabilities in this
dispersion relation are

a11 + a22 < 0, a11a22 − a12a21 > 0, a11µv + a22µu > 0,

4(a11a22 − a12a21)µuµv < a11µv + a22µu.
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Figure 4: Stability boundaries illustrating the outcome of the linear stability analysis of the
patch-independent (period 1) solution on an infinite, one-dimensional spatial domain. The white
regions indicate values of the parameter (y-axis) for which we expect to obtain a pattern of
wavelength N (x-axis). In the white region the patch-independent solution is stable to spatially
homogeneous perturbations, and unstable to spatially varying perturbations of wavelength N .
In the black and grey regions the period 1 solution is stable to spatially varying perturbations of
wavelength N . In the black regions, the dominant eigenvalue associated with spatially varying
perturbations of wavelength N is real, in the grey regions, it is not. We illustrate in (a) the
effect of predator migration rate, (b) the effect of prey migration rate, (c) the effect of prey
patch preference, and (d) the effect of relative patch size, on pattern formation. In both (a) and
(d) periodic travelling wave solutions are predicted; this occurs in the small white region at the
bottom of figure (a) (µv ≈ 0.1004) and in the top region of figure (d) (l ≥ 2.0276).
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These conditions are the familiar ones for reaction-diffusion equations with movement rates µu,v332

replacing diffusion constants (cf. Murray (2001)). This similarity is understandable since in a333

homogeneous landscape, our model is essentially a midpoint discretisation of a continuous-space334

model. Note that relative patch size l = L1/L2 drops out from the relation, as it should in a335

homogeneous landscape.336

The two plots in Figure 5 illustrate the difference in the stability behaviour of the tile-337

independent solution for a homogeneous (two good patches per tile, left plot) and heterogeneous338

(a good and a bad patch per tile, right plot) landscape. (We use two good patches per tile so that339

we can compare the length scales of the emergent patterns between the two types of landscapes.)340

In the homogeneous landscape, only a very narrow range of q leads to pattern formation for a341

limited range of wavelengths N (white region). There is a large region of oscillatory solutions342

when q < 4 (see Section 2), but the entire region q > 5 has a stable homogeneous solution. In343

the heterogeneous landscape, the region of pattern formation is much larger (white region, right344

plot). The presence of bad patches stabilises all the oscillations for q < 4 so that spatial patterns345

can emerge there. In addition, patterns can arise for values of q up to at least 7; much larger346

than in the homogeneous case. We hypothesise that the small-scale variation in the steady-state347

densities that is generated by the presence of bad patches can act as a catalyst that favours348

pattern formation.349

3.3 Comparison of the different approaches350

The numerical continuation method in Section 3.1 revealed a great number of coexistent spatial351

patterns, but was limited to a single bifurcation parameter and required intensive computations.352

The analytical dispersion-relation method in Section 3.2 captures the stability behaviour of the353

tile-independent state in an infinite landscape relatively easily, but cannot detect other patterns354

and is based only on linear stability. We compare the two methods in Figure 6. For each355

wavelength (N), the hashed bars in (a) indicate the range of q for which the tile- independent356

solution is unstable according to the numerical method applied to the nonlinear model. The357

white bars in (a) indicate the values of q for which (locally stable) non-trivial spatial patterns358

exist. The white region in (b) corresponds to linear instability of the tile-independent state359

according to the dispersion relation.360

We see that the instability region for finitely many tiles (hashed bars, panel (a)) correspond361

reasonably well to the instability region on the infinite landscape (white region, panel (b)), but362

that the pattern formation region (white bars, panel (a)) is much larger than the instability363

region of the tile-independent solution. Specifically, we saw in Figure 2 that all primary bifur-364

cations from the period-1 pattern are sub-critical. Despite this, the linear analysis still predicts365

the patterns for small wavelengths with reasonable success. For example, in the case N = 4,366

a period-4 pattern branches sub-critically from the period-1 pattern, and only becomes stable367

once it folds back. Secondary bifurcations lead to additional patterns that are stable and fold368

back to the period-1 pattern long after this period-1 pattern is stable again. As the propen-369

sity for secondary bifurcations increases, the ability of the linear analysis to predict patterns370

decreases. Diffusion-driven instabilities arising in reaction-diffusion models typically result from371

supercritical solutions so that the linear stability analysis predicts patterns well, at least close to372

the bifurcation point. In discrete-space systems, however, sub-critical bifurcations are common373

(O’Dea and King, 2013). And even continuous-space systems can exhibit numerous sub-critical374

bifurcations in the presence of an advection term (Sherratt, 2013; van der Stelt et al., 2013;375

Siteur et al., 2014). Hence, the linear stability analysis can serve as an entry point into study-376

ing pattern formation, but to obtain the full picture, one has to consider the nonlinear model377
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Figure 5: Comparison of stability conditions, according to the dispersion relation, between the
homogeneous (panel a) and heterogeneous (panel b) landscape. The homogeneous landscape
consists of only good patches whereas the heterogeneous landscape has good and bad patches
alternating. White, black and dark grey colours indicate Turing instability and stability, re-
spectively, as in previous figures. The light grey shaded region in (a) indicates that the patch-
independent (period 1) solution is unstable to spatially homogeneous perturbations giving rise
to population cycles and preventing Turing pattern formation. We use the baseline parameters
with the exception of µv = 10.
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entirely.378

4 Discussion379

One of the great challenges in ecology is to explain the mechanisms behind the observed spatio-380

temporal variation in species densities. Such spatial variation could be (i) externally imposed in a381

heterogeneous landscape by variations in habitat quality, or (ii) arise on homogeneous landscapes382

from species interaction and dispersal through diffusion-driven instabilities or other feedback383

mechanisms that lead to self-organised population patterns. The former view is reflected in384

habitat suitability models where population abundance is correlated with local habitat features385

and resource availability (Ergon et al., 2001). Documenting the latter has been a highly active386

area of ecological research in recent years (Rietkerk et al., 2004). Examples can be found in387

arid ecosystems (Rietkerk and van de Koppel, 2008), marine systems (Wang et al., 2010a),388

and also in other areas of the biophysical sciences such as developmental biology and coupled389

chemical reactors (Gilbert, 1994; Horsthemke and Moore, 2004). In reality, both aspects are390

likely to interact (Schmitz, 2010). The strength of this interaction and the expected resulting391

patterns depend on the relative length scales of the different mechanisms (Sheffer et al., 2013;392

Benson et al., 1993b). If the spatial extent of landscape features is much larger than the length393

scale on which biological feedbacks (through dispersal and species dynamics) operate, then any394

patterns in species abundance are likely to be self-organised. If the two scales are comparable395

then we expect the two mechanisms to interact such that spatial patterns are more difficult to396

predict. Sheffer et al. (2013) propose a conceptual framework and empirical setting to explore397

this influence of spatial scales.398

We developed a theoretical framework to understand the spatial patterns that arise in a399

predator-prey system where external factors and self-organisation interact. We represented400

the heterogeneous landscape generated by abiotic factors as a series of periodically alternating401

patches, and the population dynamics on each patch as a system of differential equations. While402

pattern formation has been studied in other contexts on homogeneous lattices and networks of403

patches (Wearing et al., 2000; Lubensky et al., 2011; Formosa-Jordan et al., 2012), to the best404

of our knowledge, our model is the first application of these ideas to spatial ecology and the first405

attempt to deal with strong heterogeneity (but see Webb and Owen (2004a) for a related idea).406

Due to the spatial heterogeneity, this system does not have a spatially constant steady state on407

the level of patches. Instead, there is a steady state that is spatially constant on the level of408

tiles. Within each tile, species densities vary between the good and bad patch, reflecting the409

populations tracking externally imposed landscape heterogeneity. We employed linear dispersion410

relation and numerical bifurcation analysis to study the stability of this steady state to spatially411

non-uniform perturbations as well as the occurrence of stable, spatially non-uniform (on the412

level of tiles) states.413

We found that (i) the homogeneous (tile-level) state can be destabilised by non-constant414

spatial perturbations (e.g. Figure 1); that (ii) there are potentially many stable, coexisting,415

spatially-structured states with reasonably large basins of attraction (e.g. Figure 2). Similar416

results are known on homogeneous networks (Wolfrum, 2012). In addition, we find that (iii)417

externally imposed spatial heterogeneity seems to have the potential to promote self-organised418

spatial patterns (e.g. Figure 5). Sheffer et al. (2013) had reached a similar conclusion from their419

conceptual model of vegetation patterning. The patterns we find can be explained with the clas-420

sical mechanisms (Segel and Jackson, 1972; Gierer and Meinhardt, 1972) of long-range inhibition421
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Figure 6: Stability boundary plots comparing the results from the full non-linear bifurcation
analysis (a) to the results of the linear stability analysis of the patch-independent (period 1)
solutions on an infinite one dimensional spatial domain (b). In (a) the hashed bars indicate the
range of q which give unstable patch-independent (period 1) solutions found from the numerical
bifurcation analysis of the full non-linear model. The white bars indicate the full range of q
where patterns arise in the full non-linear model. The white region in (b) indicates values of the
parameter q for which we expect to obtain a pattern of wavelength N . In the white region the
patch-independent (period 1) solution is stable to spatially homogeneous perturbations, but is
unstable to spatially varying perturbations of wavelength N . In the black and grey regions the
period 1 solution is stable to spatially varying perturbations of wavelength N and patterns are
not possible according to the linear analysis. The difference between the black and grey regions
is that dominant eigenvalues are real and complex respectively.
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(predator) and short-range activation (prey), when properly taking into account how dispersal422

rates, patch residence times and landscape configuration interact to create the length scale of423

biological feedbacks. The difference in predator-prey dispersal ability required for long-range424

inhibition and short range activation is often observed in marine systems. Marine piscivores reg-425

ularly migrate across spatial scales much larger than the habitat occupied by their prey (Spencer426

and Collie, 1995) , and so marine environment may provide a good setting for potential appli-427

cations of our findings.428

Our results have particular implications for the management of biological systems, for exam-429

ple the alteration of existing habitats and the design of reserves. For example, optimal design430

and spacing of systems of marine reserves is usually based on maximising the likelihood of pop-431

ulation persistence, but once persistence is guaranteed, interaction with other populations is432

often not considered (but see Gouhier et al. (2010)). Between two consecutive marine reserves433

(good patches) lies a region of unprotected habitat (bad patch) where prey death is high due434

to harvesting. Our results show that long-range spatial patterns may arise in such a situation.435

Figure 1(b), for example, shows a period-4 pattern on a system of eight tiles where the prey436

density in the good patches on tiles 1, 4, 5, and 8 is low, even lower than the prey density in the437

bad patches in tiles 2 and 6. It might be tempting to conclude that the good patches in tiles438

1, 4, 5, and 8 are not successful reserves that could be removed. We simulated the system with439

those four patches converted to bad patches (Figure 1(c)), and we found that this local change440

caused by patch conversion has a global effect, elevating the prey density on all of the remaining441

good patches. The original pattern wavelength is typically preserved and the predator densities442

(not shown) are also globally affected, often showing a decrease in density. These observations443

apply equally well to naturally heterogeneous habitats. When patterns arise in heterogeneous444

landscapes, the steady-state population density need not be uniformly high on good patches;445

it may, in fact, be lower on some good patches than on some bad patches (Figure 1). Hence,446

neither are low population densities in good patches a sign of impending collapse, nor is low447

population density a sign for low habitat quality. Both can merely be a consequence of species448

interaction and spatial coupling.449

There are many examples of spatially periodic habitats of the type considered in our model.450

One particularly rich example is semi-arid vegetation, which tends to self-organise into patterns451

because of the positive feedback between vegetation density and water infiltration (Rietkerk452

et al., 2004; Meron, 2012; Sherratt, 2015). Bonachela et al. (2015) have shown that the spatial453

heterogeneity created by periodic patterns of termite mounds plays an important regulatory454

role for the vegetation patterns that develop in this heterogeneous landscape. Most notably,455

they predicted that the heterogeneity increases resilience to reductions in rainfall, a result in456

keeping with the work of Yizhaq et al. (2014) on spatial heterogeneity in soil water diffusion.457

Moreover the vegetation itself provides a spatially patterned habitat for other fauna, although458

this is an aspect of semi-arid ecosystems that has received little attention in the literature.459

Other examples of spatial patterns at the whole ecosystem scale include mussel beds (Wang460

et al., 2010a), intertidal mudflats (Weerman et al., 2012), ribbon forests (Bekker et al., 2009)461

and peat bogs (Eppinga et al., 2009). In each case these systems provide patterned habitats462

for other components of the ecosystem, although again this has been little studied, with the463

research focus being on the landscape patterning itself.464

We have demonstrated that unless the number of tiles is small, there can be a large number of465

coexisting stable spatial patterns, many of which have an appreciable basin of attraction. Many466

of these solutions are very similar to one another, implying that populations can be in any of a467

range of stable patterns, which differ only slightly. For example, a variety of different patterns468
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could become established on similar landscapes, depending on initial conditions or environmental469

perturbations. Empirical evidence for this statement comes from Sheffer et al. (2013). In the470

same vein, landscape alterations may have a number of unexpected consequences for population471

densities. Species abundances could change far beyond the range of the actual alteration if472

the system is moved between basins of attraction for two distinct patterns. Based on our473

observation that landscape heterogeneity can promote spatial patterns, landscape alterations474

that increase heterogeneity could lead to emergent patterns where there were none to begin475

with. The mechanisms that we uncovered complement those found by Page et al. (2003) in a476

developmental context. In Page et al.’s work, a spatial discontinuity in the population dynamic477

parameters drove the pattern formation, and the resulting patterns were centred around this478

discontinuity. In our case, the patterns are not originating from such parameter discontinuities,479

instead they occur across the entire domain driven by spatial coupling as well as the short-range480

destabilising effect of the prey and the long-range stabilising effect of the predators.481

It is well known that standard Lotka-Volterra or Rosenzweig-MacArthur predator-prey mod-482

els do not support diffusion-driven instabilities on homogeneous landscapes (Okubo and S.A.,483

2001), while the model by Leslie and May that we considered does (Mukhopadhyay and Bhat-484

tacharyya, 2006). Fasani and Rinaldi (2011) showed that the Rosenzweig-MacArthur model can485

readily show the required activator-inhibitor structure by including one of at least nine potential486

demographic factors for the predator. While not all factors enhanced the propensity for pattern487

formation, their result suggests that the ideas presented here may have wide applicability. Fur-488

thermore, since we observed pattern formation in the heterogeneous landscape for a much wider489

range of parameters than for a homogeneous landscape, and especially for parameter values490

where the model on an isolated good patch has oscillatory dynamics, we conjecture that most491

of our results are fairly robust and apply to more general predator-prey models. Some support492

for this conjecture comes from work by Strohm and Tyson (2009) who compared the dynamics493

of several predator-prey models on a simple fragmented landscape and found that results were494

largely insensitive to model type. Future work will have to explore how robust our results are495

with respect to other modelling assumptions, for example, the arrangement and sizes of patches.496

Managed ecological settings are not the only context within which our work is applicable.497

Heterogeneous environments are also present in developmental biology. As an embryo grows,498

patterns are laid down in a hierarchical fashion with new patterns forming on top of earlier499

patterns. Spatially discrete models have been used to describe developmental pattern formation500

before, but not in the context of a heterogeneous domain. Instead, coupled ODEs have been501

used to describe juxtacrine signalling (a means of nearest neighbour communication that occurs502

in closely packed cells), but the assumption has been one of a homogenous spatial environment503

on which fine-grained patterns form in developing tissue. Our approach offers a new way to504

study pattern formation on a heterogenous domain. Previous studies of pattern formation had505

largely been limited to simple cases of spatially-dependent step-functions in diffusion or kinetic506

parameters (Benson et al., 1993b; Page et al., 2003).507
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Appendix A516

In section 3.1 we presented the results of a numerical bifurcation analysis of our model equa-517

tions. In this Appendix we discuss the details of this method, highlighting the various technical518

difficulties that we encountered and how we overcame them. Readers considering reproducing519

the figures should be aware that they require large amounts of computer time. Taken together,520

all of the numerical continuations for N = 16 took about 2 weeks on a Linux PC with a 2.83GHz521

Intel Core 2 Quad Q9500 processor.522

Our basic approach is to calculate numerically the patch-independent solution for a relatively523

small value of q, and then numerically continue the solution in q from this starting point,524

detecting bifurcations and following bifurcating branches. We performed our calculations using525

the software package auto97 (Doedel, 1981; Doedel et al., 1991, 2006). The values of key auto526

parameters are: ips=1 (stationary solutions of odes); isp=1 (enable detection of bifurcation527

points); isw=1 (enable branch switching); iid=0 (minimal diagnostics; otherwise the file fort.9528

becomes extremely big). With these settings, auto attempts to calculate not only the primary529

solution branch, but also the bifurcating branches from the first |mxbf| bifurcation points. In530

principle therefore, auto should automatically calculate the entire bifurcation diagram in a531

single run. However a major difficulty arises in practice when solution branches are loops.532

Then the numerical continuation will typically trace round the loop several times before ending533

when the number of continuation steps reaches its pre-assigned maximum nmx. Therefore each534

bifurcation point on the loop is recorded several times, and each occurrence acts as a starting535

point for a new branch calculation, causing bifurcation points along the branch to be located536

several times. These bifurcating branches may themselves be loops, in which case there will537

be multiple recording of bifurcation points for each replicate of the branch. Repetition of this538

process gives the potential for an exponential increase in the number of times a solution branch539

is calculated as a function of the number of bifurcations separating it from the primary solution540

branch. It turns out that looped solution branches are quite common for our equations. Moreover541

the same problem can occur when the numerical continuation turns around at the end of a542

solution branch and recomputes it in the opposite direction; in theory this should be prevented543

by setting mxbf < 0, but in practice it sometimes happens anyway.544

This multiple calculation of bifurcation points and solution branches is a feature of all our545

computations. It means that however large |mxbf| is, the calculation will always continue until546

this upper limit on the number of solution branches is attained, and one can never be certain547

whether or not the resulting bifurcation diagram is complete. We took mxbf = −4000, which548

compares with the value |mxbf| = 10 used in most examples in the auto manual. The vast549

majority of the 4000 solution branches that are then calculated are repeats: nevertheless there550

may be omissions. Therefore we augmented the basic calculation with an additional step. For551

each value of q in the set 1.0, 1.25, 1.5 1.75,. . . we ran 1000 simulations of the model equations552

with initial conditions in which each variable was chosen randomly from a uniform distribution553

between 20% and 200% of its value in the patch-independent solution. Many of the patterns554

generated by these simulations lie on solution branches that have already been calculated, but555

typically some do not, due to the incompleteness of the preliminary bifurcation diagram. In556

such cases, we performed separate runs of auto starting from the pattern found via simulation,557

with mxbf reset to 10; we deliberately set mxbf > 0 in this case. During such a run, one wants to558

record uj1 for all values of j since these should all be plotted on the bifurcation diagram; however559

auto only records up to 6 variable values (in the fort.7 output file), which presents a problem560

for N > 6. One possible remedy would be to edit the auto source code to output more variable561

values. However we adopted the alternative strategy of doing N separate runs of auto, starting562
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the pattern found via simulation, and k = 0, 1, . . . , N − 1.564

It is important to note one consequence of our two-step method for calculating the bifurcation565

diagrams, which is that we cannot guarantee that we have calculated all of the solution branches.566

Indeed, for the very complicated diagrams for N = 12 and N = 16, we think that it is very567

likely that our results omit some unstable solution branches, although given the dense network of568

such branches it would probably be difficult to distinguish the results visually if some additional569

branches were included. Because we use the results from a large volume of simulations to570

give starting points for numerical continuation, we think it likely that we have calculated the571

vast majority of the branches with stable parts. However we cannot rule out the possibility of572

additional stable portions of solution branches that have either very small extent in q, or a very573

small basin of attraction.574

We also mention two other more minor technical difficulties, for the benefit of readers con-575

sidering using our approach themselves. Firstly, in some cases auto erroneously detects some576

Hopf bifurcation points. These occur when two real eigenvalues change sign simultaneously: nu-577

merical discretisation introduces very small imaginary parts to these eigenvalues, causing auto578

to detect a Hopf bifurcation. These do not cause any difficulties in practice, and so can safely be579

ignored – in particular auto does not automatically attempt to trace limit cycle branches em-580

anating from Hopf bifurcation points. Alternatively the “Hopf bifurcations” can be eliminated581

by reducing the error tolerances and step sizes. We have not found any genuine Hopf bifurca-582

tions in any of the bifurcation diagrams we calculated. Secondly, the fact that most solution583

branches are calculated many times causes very long rendering times for plots. To avoid this,584

we processed the data files before plotting, removing repeated solution branches. Specifically,585

we removed branches whose first 20 points were within a small tolerance of the first 20 points586

of a previous branch.587

We end this Appendix with a full listing of the various auto parameters that we used588

in our calculations. NDIM=4N , IPS=1, IRS=0, ILP=0, NICP=1, ICP=1, NTST=50, NCOL=4,589

IAD=3, ISP=1, ISW=1, IPLT=0, NBC=0, NINT=0, NMX=4000, RL0=0.6, RL1=15.0, A0=0, A1=100,590

NPR=4000, MXBF=−4000, IID=2, ITMX=8, ITNW=5, NWTN=3, JAC=0, EPSL=10−7, EPS=10−7,591

EPSS=10−5, DS=0.0005, DSMIN=0.0001, DSMAX=0.005, IADS=1, NTHL=1, I=11, THL=0, NTHU=0,592

NUZR=0. The only variation in these values was to MXBF, which was set to 10 or 1 in some runs,593

as discussed above.594
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