Feeding Interactions and Their Relevance to
Biodiversity under Global Change

Yuanheng Li

Mar. 03, 2017






Feeding Interactions and Their
Relevance to Biodiversity under Global
Change

Dissertation

for the award of the degree
"Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences
in the Faculty of Biology and Psychology
of the Georg-August-Universitdt Gottingen

within the doctoral program Biology
of the Georg-August University School of Science (GAUSS)

submitted by

Yuanheng Li

from Shijiazhuang, China

Gottingen
Mar. 03, 2017



Thesis Committee:

Members of the Examination Board:

Reviewer:

Second Reviewer:

Further Members
of the Examination Board:

Prof. Dr. Ulrich Brose,
Friedrich Schiller University Jena

Prof. Dr. Kerstin Wiegand,
Georg-August-Universitat Gottingen

Prof. Dr. Ulrich Brose,
Friedrich Schiller University Jena

Prof. Dr. Kerstin Wiegand,
Georg-August-Universitat Gottingen

Prof. Dr. Stefan Scheu,
Georg-August-Universitat Gottingen

Prof. Dr. Holger Kreft,
Georg-August-Universitit Gottingen

Dr. Matthias Waltert,
Georg-August-Universitat Gottingen

Dr. Oliver Schiilke,
Georg-August-Universitat Gottingen

Date of the oral examination: Mar. 17, 2017



B RO &






Summary

Feeding interaction strengths are key in characterizing ecological networks. They are
of great importance to the dynamics and stability of the networks (hereby food webs)
and biodiversity. Even though feeding interactions have been studied for more than
one century, there still exist many aspects that need to be addressed in order to better
bring studies of feeding interactions and food webs together. Feeding interactions
are normally investigated in short-term and at individual-level, whereas, food-web
studies are normally explored from the perspectives of long-term, population- and
community-level. Especially, how to bring them together under current global
change is even less studied. Therefore, I focused on two processes occurred in
feeding, experimental duration and satiation level of predators in the first research
chapter. I used a meta-analytical approach to investigate their effects on estimating
feeding interaction strengths (i.e. functional response parameters). I gained not only
a better mechanistic understanding towards feeding interactions, but also how to

better quantify interaction strengths in the population-and community-level studies.

In lights of the first study, I generated an individual-based model (IBM) to mimic the
predator-prey feeding experiments in the laboratory and investigated the influence
of one global change driver, habitat degradation (represented by habitat loss and
habitat simplification). This IBM model allowed me to systematically investigate
the effects of habitat loss and habitat simplification on the estimates of interaction
strengths, which is operationally not possible for empirical studies. Moreover, in
this second study, I combined the individual-level IBM with a population-level
model of ordinary differential equations (ODE) to upscale the effects of habitat
degradation to a predator-prey system. Finally, in the last research chapter of this
thesis, I analyzed an extensive set of empirical functional responses to quantify the
combined effects of two global change drivers, habitat loss and global warming,
on the estimates of interaction strengths. Following the new scalings of functional
response parameters from this analysis, I illustrated the synergistic effects of habitat
loss and global warming on biodiversity by an ODE model of a food chain (a basic
food-web motif).

The result of my first study highlighted the importance of experimental duration
and predator satiation on functional response parameters. The attack rate decreased
with increasing experimental duration and the handling times for starved predators
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were lower than those for the satiated predators. These results also pointed out
the importance of digestive processes for feeding interactions and estimates of
functional response parameters. Thereafter, I generated an IBM model of feeding
interactions with empirically supported and digestively elaborated physiological
processes. The results of the IBM model showed that feeding efficiency (i.e. half-
saturation density) decreased with increasing habitat complexity (presented by prey
refuge availability) but was not influenced by patch size (marginally increased with
patch size). The results from the analytical ODE model illustrated that patch size
needs to be larger that a baseline to be able to support both predator and prey
populations and increasing habitat complexity can decrease such baseline. The third
study illustrated, for the first time, that the feeding efficiency increased with patch
size and confirmed that the maximum feeding rate increased with temperature.
Combined with other important rates of energy flux which scale with body mass and
temperature by empirically-supported values, the food chain models suggested that
habitat loss fosters the negative effect of warming on biodiversity, leading to higher
extinction risks of consumers at higher trophic levels.

This thesis contributes to a better understanding of feeding interactions and presents
new theoretical tools to predict the response of ecological systems to global change
factors. For future studies, the importance of ,experimental duration‘ and ,sati-
ation level of predator‘ could be proven helpful when designing new studies of
feeding interactions and quantifying feeding interaction strengths in population-
or community-level studies. It would also be important to further investigate the
physiological mechanisms of how patch size affects the feeding efficiency. For global
change research, my studies also highlight the importance to investigate multiple
drivers of global environmental change (GEC) and emphasis that quantifying the
effects of GECs on the individual biological rates and combining these rates through
a network structure allow us to better explore their effects on biodiversity.
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Introduction

Physics is mathematics not because we know too
much about the physical world, but because we
know too little; the only thing we can discover
are the mathematical properties of the physical
system.

— Bertrand Russell

Biodiversity and species interactions under global
change

The effect of global change on biodiversity has become a major concern in ecology
(Kareiva et al., 1992; Vinebrooke et al., 2004). Five major drivers of global environ-
mental change, i.e. land-use change, climate change, nitrogen deposition, elevated
atmospheric CO, level and biotic exchange have pronounced influences on natural
ecosystems (Sala et al., 2000). Atmospheric CO, and N deposition have received
the most attention (Tylianakis et al., 2008) and biotic exchange influences mostly
freshwater ecosystems (Sala et al., 2000). Therefore, I focused on relatively less
explored drives. I explored the impact of land-use change with the association of
climate change in this thesis. Land-use change pervades more than three quarters of
our planet (Seto et al., 2014) and its consequences such as habitat loss and habitat
simplification constitute the primary driver of biodiversity loss (Brook et al., 2008).
Climate change (e.g. warming) can increase extinction risk of a large fraction of
species in both terrestrial and freshwater ecosystems (IPCC, 2014b). Further, more
and more studies start to focus on the synergistic effects of multiple global change
drivers and suggest that biodiversity is threatened most by the synergy of climate
change and other environmental changes (e.g. Sala et al., 2000; Brook et al., 2008;
IPCC, 2014b).

Species living in the ecosystems are not isolated from each other. They are linked
together by intra- and inter-specific interactions and hence these species and their
linking structure form ecological networks (Ings et al., 2009; Kéfi et al., 2012).
A fundamental type of ecological networks is the food web, describing ,,who eats
whom*. Feeding interaction strength is a core aspect in characterizing the material
and energy flux in food webs, as the species in such networks are predominantly
linked by feeding interactions. Consumers, being at higher trophic levels, gain
material and energy to support their lives via consuming their resource species. The



material and energy flowing through such networks support the species existence

and are crucial for the biodiversity in the nature.

The influences of land-use change and climate change are not only reflected in
biodiversity loss, but their effects also pervade populations of species at each trophic
levels; however, the magnitude and direction of their effects on different populations
and trophic groups vary substantially (Tylianakis et al., 2008; Bowler et al., 2017).
To disentangle the diverse responses of species to global change drivers and to gain a
better understanding of the mechanisms behind the individual and synergistic effects
of habitat degradation (loss and simplification) and global warming, I focus on
feeding interactions and address their relevance to biodiversity from the viewpoint
of energy flux in food webs in this thesis.

Feeding interaction and functional response model

Feeding processes

Feeding interactions are composed of the processes involved in consumers’ activities
of foraging and consumption. Due to different foraging natures of species, it can con-
tain up to ten (or more) components, such as ,rate of successful search” (i.e. attack
rate), ,time exposed” (i.e. period when predator and prey encounter), ,,handling
time*, ,hunger” and so on (Holling, 1966). The first three components mentioned
(rate of successful search, time exposed and handling time) describe phenomena that
occur in feeding processes. In contrast, the component ,hunger inserts its effect into
the phenomenological components. For instance, a predator’s hunger level would
influence its willingness to forage and affect the ,rate of successful search’ (Jeschke,
2007). Both these phenomenal and mechanistic components are important for the
construction of in silico feeding experiments which is studied in the second research

chapter (chapter 3).

Functional response models

Other than viewing feeding interactions as different processes and components,
feeding interactions can also be mathematically described by functional response
models which can date back to the 1940s (Solomon, 1949). Such models quantify
the feeding rates as a function of resource densities. Functional response models
have been widely used in population and community ecology as they connect
individual feeding studies with population dynamics. Functional response models
with empirically derived values allow to quantify the part of energy flowing through
the specific feeding link where the values are derived from. Even though there exists
many different functional response models (Jeschke et al., 2002), most of them
are derived from three models, i.e. Holling’s type I, type II and type III functional



responses. However, the type I functional response is density-independent and has
been suggested to be an artifact (Sarnelle and Wilson, 2008).

The type II and type III functional responses can be combined by an descendant
model by Real (1977), which can be formulated as:

aN"

= 1.1
1—|—aThNh ( )

f(N)
In Eq. (1.1), the feeding rate of the consumer f(V), is expressed as a function of
resource density N, characterized by three parameters, attack rate a, handling time
T}, and the Hill exponent h. Even though the first parameter q, is called ,attack rate’,
it actually describes the space (area or volume) that a consumer successfully searches
in a unit of time. The second parameter 7}, describes the time that a consumer
needs to attack and subdue a resource item. When the Hill exponent equals one, the
equation (Eq. (1.1)) represents the most-widely used model of functional responses,
i.e. the type II functional response (Holling, 1959b). The graphic representation
of the type II functional response is an asymptotic line approaching a maximum of
feeding rate (Fig. 1.1A). When the Hill exponent is larger than one, the equation
stands for the type III functional response, which turns to a sigmoid curve (Fig. 1.1B).
Consequently, it is called the ,strict” type III functional response when the Hill
exponent equals two (Holling, 1959a). Type III functional responses have important
applications to food web studies and biodiversity, as they have stabilizing effects on
population dynamics and therefore supporting more species (Brose et al., 2006b; Rall
et al., 2008). Fig. 1.1B shows that for a functional response with the Hill exponent
larger than unity, the feeding efficiencies of consumer at low resource densities are
reduced. Therefore, the ,,top-down* pressure (from consumer to resource) is weaken,
changing dynamic populations to stable (Williams and Martinez, 2004b). Due to the
importance of the Hill exponent for biodiversity, it is one of my focuses in the second
research chapter (chapter 3). Yet due to the limitation of available data, I am not
able to investigate this parameter in the first and third research chapter (chapter 2
and 4).

Other than the set of functional response parameters elucidated above, Real’s func-
tional response model (Eq. (1.1)) can also be described by maximum feeding rate
and half saturation density:

_ fmaxNh

= Jmess 1.2
N + N (1-2)

f(N)
The maximum feeding rate f,,,., illustrates the limit of feeding rate and the half satu-
ration density Vg, is the resource density when the feeding rate of consumer reaches
half of the maximum feeding rate (Fig. 1.1B). These two sets of functional response



parameters are not isolated with each other, 1
fma:p - Tih .

as they are interconvertible. When the Hill exponent turns from one to two, the
half saturation density would increase and therefore a consumer would become
less efficient (Fig. 1.1B). As the parameters handling time and attack rate have a
more direct connection with processes and components of feeding, the researchers
who conduct empirical feeding studies often use this set of functional response
parameters. Whereas, maximum feeding rate and half saturation density describe
the functional response model better. Therefore, I chose to use handling time and
attack rate in the first research chapter (chapter 2) and maximum feeding rate and
half saturation density in the last two research chapters (chapter 3 and 4) where I

upscaled the effect of feeding interaction to population levels.
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Fig. 1.1: Functional response curves with prey density as x-axis and feeding rate as y-axis.
In panel A, a type II functional response is present which is characterized by attack
rate (a) and handling time (73). In panel B, the sigmoid blue curve represents the
strict type III functional response (h = 2) and the asymptotic black curve type II
functional response(h = 1) . The gray curves in between represent the functional
responses where the Hill exponents are between 1 and 2. All the functional
responses in panel B have the same maximum feeding rates (f,.q.) and the blue
dotted line stands for the half of f,,,..

Other than the individual-based explanation of functional response, Eq. (1.1) and
(1.2) can be converted to a biomass-based function by dividing prey density (V) into
prey body mass and dividing feeding rate (f(/V)) into predator-prey body-mass ratio.
The biomass-based functional response, then, describes how much prey biomass
is eaten by a unit of predator biomass as a function of prey biomass density. Such
conversion is important for combining individual-based feeding experiments and
population-level food-web studies. Food-web studies are normally modeled by ODEs

and each ODE in such models stands for the biomass change of one population



(e.g. Brose et al., 2006b). Whereas, empirical feeding studies usually quantify
the feeding rates for one predator individual (e.g. Holling, 1959a). For example,
in the first research chapter (chapter 2) I focused on some aspects occurring in
conducting feeding experiments, therefore, individual-based functional response
with attack rate and handling time was used. Whereas, in the third research chapter
(chapter 4), my study objective is to illustrate the effects of global change on network-
level, thereafter, biomass-based functional response with half saturation density and
maximum feeding rate was chosen. In the second research chapter (chapter 3), I
chose to use the set of half saturation density and maximum feeding rate. Yet, both
individual- and biomass-based functional responses were used as I quantified both
in silico feeding experiments and population dynamics models.

From functional response to biodiversity

Other physiological rates and population dynamics model

To document the material and energy transfer (henceforth, energy flux) between
species in an ecological network, further pathways of energy flux (other than feeding)
also need to be considered. The original energy input of an ecosystem comes from
autotrophic species on the lowest level of food webs since they obtain energy from
abiotic sources, e.g. solar or chemical energy and fix these energies as their own
biomasses (refer to intrinsic growth rate of basal species). However, the abiotic
sources are not infinite: they are only capable of supplying a certain amount of
autotrophic biomasses (e.g. due to micro- or macro-nutrient limitation). That
is to say there is environmental carrying capacity. The intrinsic growth rate of
basal species and environmental carrying capacity, together describe the energy
input of basal species, logistic growth (mathematical formula below, first item of
Eq. (1.4a)). To be noticed, the logistic growth integrates the respiration of basal
species already. Other than being eaten by their consumers, the heterotrophic species
(consumers) have another major pathway of energy loss, metabolism. The metabolic
rate quantifies the basic metabolic demand of a species per unit of time (Brown
et al., 2004).

To illustrate how the feeding and non-feeding energy pathways mentioned above
integrally change species in ecological networks, I use ordinary differential equations
(ODEs) to describe changes of population densities of species in the networks (food
webs). Such mathematical abstraction comes from a bioenergetic consumer-resource
model originally developed by Yodzis and Innes (1992):
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Bj = ef(BZ) Bj — .%'j Bj . (14]3)

The resource population 4, gains biomass by growth and loses biomass through being
fed on by the consumer species j. The resource growth is described by the logistic
growth with the intrinsic growth rate r, and environmental carrying capacity K. The
consumer population loses biomass due to the metabolism z. and gains biomass
through feeding. Not all the biomass obtained by feeding is converted into predator
biomass which is determined by an assimilation efficiency e. The feeding interaction
is characterized by consumer biomass B,, and feeding interaction strength which
is quantified by type II or type III functional responses f(B,). All the feeding and
non-feeding physiological rates and densities that I used in this thesis are based on
empirically derived paradigms and values which will be explained in the following
section.

This bioenergetic model can be upgraded to a food chain. It is a linked path,
excluding loops, from a consuming species to a basal (resource) species (Williams
and Martinez, 2004a). Even though a food chain is the simplest food web motif of
three species, I can still infer basic patterns on how global change affects biodiversity
through them (Williams and Martinez, 2004a; Binzer et al., 2012). Nevertheless,
combined with given link structures, i.e. food-web topologies, this bioenergetic
models also can be applied to food webs.

The ODE models can be either analytically solved or numerically simulated. Nu-
merical solutions are normally obtained by simulating the models until the system
reaches a steady state or an invariable pattern. The predator-prey system utilized in
the second research chapter (chapter 3) is solved analytically. Due to the lack of ana-
lytical solution, the tritrophic food chain is numerically simulated. The ODE models
of more complex systems with more species are normally solved by simulating as
well.

How global change comes into play

Physiological rates scale with species traits

To better quantify the basic energetic principle in food webs, the physiological
rates and densities mentioned above have to be given values according to the basic
principles of the chemistry and physiology of organisms. The metabolic theory of
ecology provides a framework combining the scalings of physiological rates and
densities with two core ecological traits: body mass and temperature (Brown et al.,
2004). With the aid of these scaling relationships, the metabolic theory of ecology



allows to parameterize the ODEs of food-web models which present basic patterns of
real ecosystems (e.g. Brose et al., 2006b). These scaling relationships also have rich
empirical support (e.g. Brown et al., 2004; Savage et al., 2004a; Ehnes et al., 2011).
For example, Meehan (2006) abstracted the scalings of natural population densities
with both body mass and temperature and Ott et al. (2014) improved the scaling
with body mass by using almost 5000 data points. In these ,,allometric equations®
which describe the scaling relationships, physiological rates scale with body-mass by
a power law and with temperature by an exponential function:

T-Ty

Y = a, MY "0 (1.5)

in which Y stands for a physiological rate or density (e.g. metabolic rate or a
functional response parameter); a, is a constant; b is the power law scaling with
body-mass (M) and E stands for the exponent with temperature (7). The parame-
ters, Tp and k [eVK '], are constants converting Celsius temperature to Arrhenius
temperature. The Arrhenius temperature allows to set the scaling part of temper-
ature to unity when temperature equals to Ty which can be set to a value based
on the basic temperature of any target system. For example, T, was set to average
German temperature in the second research chapter (chapter 3) to be consistent
with the database where I derived the other scaling values.

Parameterization

To systematically illustrate the influence of global change on biodiversity, I tried to
add another scaling relationship which depicts the scalings of functional response
parameters with habitat degradation in the framework above (Eq. (1.5)). These
empirically derived scalings often come from statistical analyses of certain empirical
data. These meta-analyses are carried out using models of linear regression with
log-transformed data. After obtaining the intercepts and estimates of regressions,
they can be used in back-transformed equations (Eq. (1.5)). The intercept represents
the constant (a,) and estimates of regressions represent the scalings (b and E).
By adding another independent variable in the models of the statistical analyses
which stands for habitat loss or habitat simplification, I am able to analyze the
potential scaling relationship between functional response parameters and habitat
degradations.

Moreover, I searched for body-mass scalings of species’ behaviors (e.g. movement and
predator-prey encounter) and digestive properties (e.g. gut size) and parameterized
these respective traits in the individual-base model (IBM) in the second research
chapter (chapter 3). These parameterizations distinguish my IBM model from others
which have rather random trait values and enable the findings from my IBM model

to be more convincing.
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Difficulties in parameterizing the constants

Due to lack of empirical support, earlier studies usually utilize a set of relative
constants for these allometric equations. Therefore, the ODE models of a food
chain or food web need to be transformed to have a set of relative constants. By
transforming, the modeled system is given a relative timescale at the same time. For
example, the timescale of such models is defined by setting the mass-specific growth
rate of the basal species with body mass of 1 mg at 293.15K (20 °C) to unity. Then,
all other biological rates are normalized by the timescale according to Yodzis and
Innes (1992); Otto et al. (2007):

T-T)

r=r MY eI (1.62)
= g Mbe EFTTY (1.6b)
K = Ko MV (F<ETT; (1.6¢)
Bo = by M. A (FETTs (1.6d)
Fonaz = fo Mot A%t FrFTTs (1.6€)

with rg, o, Ko, bp and f as normalized constants. However, with more and more
meta-analytical studies on these basic rates and densities, I was able to skip the
transforming process and apply the real (absolute) timescale to my food-chain model
in the last research chapter (chapter 4). Moreover, combining the meta-analytical
results of a big dataset of functional responses and other meta-analytical studies,
I was also able to directly apply the real spatial scale to this food-chain model by
utilizing appropriate constants in these allometric equations.

Outline of research chapters

To elucidate the impact of habitat degradations on biodiversity with the association
of global warming from the viewpoint of species interactions, I investigated feeding
interaction strengths and its relevance to food-web motifs from both empirical and
theoretical approaches in the following research chapters. I first went deeply into
the feeding processes, trying to address some key points affecting the estimates
of feeding interaction strength from the point of view of conducting feeding ex-
periments (chapter 2). In the light of the gained understanding of these feeding
processes, I generated an individual-based and process-based model to explore the
effects of habitat loss (i.e. patch size) and habitat complexity on the estimates of
feeding interaction strength (chapter 3). With the aid of this model, I was able
to investigate very large gradients of patch sizes and habitat complexities which
would be impossible for empirical studies to gain a more systematical understanding.
Finally, I investigated the synergistic effects of habitat loss and warming on feeding



interaction strength and their relevance to biodiversity by upscaling theses effects

on interaction strengths to a basic food-web motif, food chain (chapter 4).
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Experimental duration and
predator satiation level affect
functional response parameters

Yuanheng Li, Bjorn C. Rall, Gregor Kalinkat

Abstract

Empirical feeding studies where the feeding rates are fitted to functional response
models are often used to parameterize the feeding interaction strengths in population
or food web models. Whether the estimates of functional response parameters from
short-term feeding studies are valid to represent the feeding interaction strengths
in long-term models remains largely untested. To address this void, we utilized
a meta-analytical approach to test systematic influences of experimental duration
and satiation level of predator on the estimation of functional response parame-
ters, attack rate and handling time. Meta-analyses show that attack rates decrease
with increasing experimental duration and handling times for starved predators are
consistently lower than handling times for satiated predators. Therefore, both the
experimental duration and the predator satiation would have major influences on the
predictions of the dynamics and stability of populations and food webs as the feeding
interaction strengths are a key aspect in population and food web models. Our study
especially highlights that theorists shall not take the functional response parameters
estimated from short-term feeding experiments to parameterize population dynamics
models and also take into account the influence of satiation level of predator.

Keywords | Type II functional response, Handling time, Attack rate, Experimental
duration, Predator satiation level, Diurnal cycle, Digestive limit
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Introduction

Understanding species interactions and how they shape communities and ecosystems
is one of the core topics in ecological research. Among different types of interactions,
those that are trophic (i.e. trophic interactions) are fundamental for ecosystems,
as they determine energy flow and nutrients cycling in ecological networks (Elton,
1927; Brown et al., 2004; Thompson et al., 2012). Trophic interaction strengths play
a crucial role in determining population dynamics and the stability of food webs
(May, 1972; Oaten and Murdoch, 1975a; Oksanen et al., 1981; Rall et al., 2008;
Brose, 2010; Kalinkat et al., 2013b; Li et al., 2017a). Furthermore, the higher the
stability of a food web the better it sustains biodiversity and ecological functioning
(Schneider et al., 2016). Functional response models relating per capita feeding
rates of consumers to resource densities (Solomon, 1949; Holling, 1959b) provide a
widely applied and standardized way to quantify the interaction strengths in food
webs (Berlow et al., 2004). Most empirical studies aiming to quantify interaction
strengths are carried out in the laboratory. The feeding data are then fitted to a
functional response model to obtain estimates of the functional response parameters.
These can then be used to parameterize the interaction strengths in food web models.
Hence, functional response models often serve as the connection between studies of
short-term, individual-level interactions and long-term, community-level studies (e.g.
Kalinkat et al., 2013b). However, the majority of such studies only investigate the
feeding of an individual over a short portion of its life, from minutes (e.g. Schroder
et al., 2016) to days (e.g. Buckel and Stoner, 2000). These short term estimates
are then applied to studies investigating immensely longer periods that may include
many generations (that may extend for hundreds of years) (Fox and Murdoch, 1978).
It is largely untested, however, whether functional response parameters estimated
over short periods hold for longer periods. There are some case studies on this point
(e.g. Fox and Murdoch, 1978), but there do not appear to be any synthetic study.
How satiated predators are before feeding studies begin also affects the estimates
of functional response parameters. This is because predator satiation influences
its motivation to forage (Jeschke, 2007). A satiated (i.e. well fed) predator may
consume fewer prey than a starved one and this alters the functional response
parameters. Therefore, we will use a meta-analytical approach to address whether
and how the experimental duration and the satiation level of predator influence the
estimates of functional response parameters.

The type II functional response (Holling, 1959b) is the original and most widely-
applied functional response model (Jeschke et al., 2002; Rall et al., 2012). The per
capita feeding rate, f(N), is formulated as a function of prey (resource) density, NV
with two parameters, instantaneous rate of searching for prey, a (often called attack
rate) and handling time, h:



aN

“1+ahN - @D

f(N)

In this model, Holling (1959b) assumed that a predator spends its all time foraging,
i.e. in feeding-related activities, searching for prey and processing the prey. The
attack rate, a, describes the space (area or volume) that a predator searches per
unit of time, which links to the activity of ,searching for prey‘. The handling time,
h, associating with ,processing the prey‘, describes the average time that a predator
spends on a prey item that has been caught, i.e. subduing and ingesting. These two
parameters also determine the shape of the functional response curve, where the
attack rate determines the feeding rate at low prey densities and the handling time
determines the limit (maximum) of feeding rate, Fig. 2.1.
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Fig. 2.1: Schematic curve of type II functional response. The red dashed line denotes the
inverse of handling time, ; which sets the limit of maximum feeding rate. The
blue dashed line denotes the tangent to the curve at minimal prey density, N
which describes the potential increase of feeding with prey density around low
prey densities. This potential increase around low prey densities is determined by
attack rate, a.

There is often a mismatch between the attack rates and handling times estimated
by functional response models and those measured directly (e.g. by stop watch)
(e.g. Mols et al., 2004; Sentis et al., 2013). This is because these parameters (attack
rate and handling time), actually collapse together a plethora of biological (i.e.
physiological and behavioral) processes (Jeschke et al., 2002). After all, ,searching
for prey‘ and ,dealing with the prey‘ are not the only activities in a predators life cycle,
or even in its diurnal cycle (active and sleep periods). There, in fact, many more.
Even when active, a predator may well not spend all its time foraging. For example,
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grazing ruminants feed intermittently rather than continuously, i.e. they switch
between grazing and resting (Gregorini et al., 2006). However, the type II functional
response lacks a term for such additional activities, e.g. rest or sleeping. The
handling times and attack rates derived from the model thus have to incorporate the
time spent on these other activities if they occur. Imagine two feeding experiments on
the same predator-prey pair, one short-term (e.g. minutes) and the other long-term
(e.g. days). The short-term experiment contains only foraging, but the long-term one
also contains periods of predator being inactive. In consequence, the feeding rates
determined from the long-term study must be lower than those from the short-term
study. These reduced feeding rates in long-term experiments produce changes in
the estimates of functional response parameters. They reduce estimated attack rates
and increase handling times, Fig. 2.2a and 2.2b. Mathematically, the feeding rate,
f(N) is negatively related to the handling time, h (Eq. (2.1)). Therefore, increased
handling times may correspond to the reduced feeding rates estimated from long
experiments (more biological reasoning below). As the attack rate derives from
the average successful search rate for the entire experiment, increasing experiment
duration will generally include activities than foraging which leads to reduced attack
rates (Casas and McCauley, 2012).

Predator satiation influences a predator’s willingness to forage (Jeschke, 2007). At
the extreme, a predator with a fully-filled gut is not able to feed anymore even if its
food supply is infinite. This is called ,digestive limit‘ (Kleiber, 1961; Herbers, 1981).
It supposes that consumers are rather easily able to fill-up their guts and meet their
energy needs, e.g. on a daily-base. Thereafter, the (maximum) feeding rates and
therewith handling times, are also limited by gut sizes and digestion rates. Some
vertebrates and invertebrates face such ,digestive limits‘ (Karasov and McWilliams,
2005; Jeschke and Tollrian, 2005; Jeschke, 2007). Furthermore, the satiation levels
of predators are likely to strongly affect estimates of handling times (Anderson
et al., 1978; Jeschke et al., 2002; Jeschke, 2007; Maselou et al., 2015). Under the
assumption that ,digestive limits‘ apply generally to consumers, the satiation level of
a predator before a feeding study will influence the estimate of handling time. Using
pre-fed predators would lead to longer handling times than using starved ones. The
time budget of the handling time of a satiated predator would involve not only the
time for killing (¢4,;) and ingesting (t;,4), but also the time for digestion (t4;,), see
Fig. 2.2c.

As experimental duration increases, the probability reaching satiation would increase
dramatically for an efficiently foraging predator. Therefore, if the experimental
duration is long enough and there is sufficient prey, the predator can reach satiation
and hence face its digestive limit. In this case, the handling time could be inflated
by including the time budget for digestion. As the experimental duration increases
further, other activities of the predator (e.g. sleep) could be involved. In this case,
increased experimental duration might lead to even larger handling times.
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Fig. 2.2: The potential influences of experimental duration (panel a and b) and satiation
level of a predator (panel ¢). We hypothesize that increasing experimental duration
reduces attack rate, a (panel a) and might also affect handling time (h). Long
experiments may lead to increased handling times (panel b). We also hypothesize
that longer handling times (k) will be estimated if a satiated (pre-fed) predator is
used rather than hungry (starved) predators (panel c).

In this study, we used a dataset of Type II functional responses that contained 451
data points involving 14 orders of magnitude in predator body-mass and covering
predator species from 28 orders (Rall et al., 2012; Li et al., 2017b). The data derived
mostly (99 %) from controlled laboratory experiments. In 78 %, the predators were
arthropods and in 17% vertebrates. We analyzed the dataset to test (1) if the
experimental duration has any effect on functional response parameters, especially
on the attack rate and (2) if the influence of predator satiation on handling time
holds through different taxonomies and body sizes. We address here that the
functional response parameters, handling time and attack rate, are affected by both
experimental duration and predator satiation. As consumers not only forage but also
devote their time to other activities like rest and sleep in their diurnal cycles, (1)
attack rates must decrease with increasing experimental duration and (2) handling
times may also increase with increasing experimental duration. As elaborated above,
we assume that, in general, satiated predators consume fewer prey than hungry ones
on the premise that all other conditions are the same. The handling time evaluated
for the satiated predators would incorporate not only time for killing and ingestion
but also (at least) digestion. Therefore, (3) the handling time of satiated predators
might be larger than that of hungry ones.

Methods

Data and statistical analysis

We used data of functional responses from empirical studies (Rall et al., 2012;
Li et al., 2017b) for the meta-analyses. To this dataset, we checked and added
information on the satiation levels of predators where available. Predators were
considered satiated or not depending on ,feeding-or-not“ before a study; i.e. ,fed* for
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predators which were fed before the feeding trials and ,starved* for predators which
were isolated from food source before the feeding trials. Afterwards, we excluded
data points which (1) lacked information on experimental duration or predator
satiation levels; (2) excluded data which are not type II functional responses and
(3) excluded those for parasitoids (not suitable for testing predator satiation). The
final dataset consisted of 451 data points. It included 338 data points for starved
predators and 113 for fed ones. It included data on experimental duration ranging
from 0.08 h to 240 h although 67.6 % were for 24 h. It also included data points for
studies performed in two- and three-dimensional spaces and 243 data points were
for 2D and 208 for 3D. We paid special attention to dimensionality as the units of
attack rates are different in two- and three-dimensional spaces (i.e. [m?s~!] and
[m3s~!]) (Pawar et al., 2012; Li et al., 2017b).

We analyzed the functional response parameters attack rate, @ [m2s~! | m3s~!],
and handling time, A [s] in relation to experimental duration, ¢, [ s] and predator
satiation, S (starved, S, or fed, S,). We additionally added predator body mass,
temperature and dimensionality as explanatory variables, as they had major influ-
ences on the functional response parameters (Rall et al., 2012; Li et al., 2017b).
The following equations demonstrate how we analyzed the attack rate and handling

time:
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In the equations above, ag and hg are constants, b and c are the scaling exponents for
predator body mass, M [mg], E, and E}, [ eV ] are activation energies describing the
exponents of temperature and 7 and j represent the scaling exponents of attack rate
and handling time for experimental duration. The temperature term is transformed
using Boltzmann’s constant, k& [eVK ™! ], and the intercepts of temperature scalings
are shifted to the values at 293.15 K (20 °C) by the normalization temperature, Ty (for
more details see Gillooly et al., 2001; Rall et al., 2012). The subscript, g, represents
the predator satiation which can either be ,starved* (S,) or ,fed‘ (S,). The subscripts
o and 3 in the attack rate models, eq. (2.2a), (2.2b) denote the dimensionality (2D
or 3D). We tested the collinearity between independent variables (Zuur et al., 2010).
A variance inflation factor (VIF) test showed that there was no collinearity between
any independent variables (details in the supporting information). We analyzed the
data with linear mixed-effects models (,lme‘ function in ,nlme‘ package (Pinheiro
et al., 2016) in R (R Core Team, 2016)) by In-transformed data (see linear statistical
models below).
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We first selected the optimal random structures of the models based on restricted
maximum likelihood (REML) and Bayesian Information Criterion (BIC) (Zuur et al.,
2009, p. 121). Due to over-parameterization, the fixed structure of the attack rate
model for selecting the optimal random structure, i.e. beyond optimal model (the
most complex fixed structure possible, more details see Zuur et al., 2009) was se-
lected to include all possible pairwise interactions. The beyond optimal model of the
handling time model included all the possible interactions between its explanatory
variables. According to the BIC, the optimal random structure of the attack rate
model includes random intercept by study identity and random scaling of predator
mass and the optimal random structure of the handling time model only includes
random intercept which is influenced by both study identity and dimensionality.
Thereafter, the best models for attack rate and handling time were selected according
to BIC as well using ,dredge‘ function (Barton, 2016).

Results

Tab. 2.1: Statistical results for attack rate and handling time. All interaction terms have
been excluded by model selection (see section Methods for details).

Variable @  Estimate S.E. p-value
. . ap 0.78 196 >0.1
dimension aozz -1.28 1.9 >01
attack rate predator mass b 0.49 0.08 < 0.01
temperature FE, 0.43 0.06 <0.01
experimental duration i -0.56 0.18 < 0.01
predator satiation excluded
predator satiation hos, 073 044 >0.1
handling time hog, 1.64 0.73 < 0.05
predator mass c -0.73 0.05 <0.01
temperature Ey -0.30 0.10 <0.01

experimental duration excluded

“see Eq. (2.3)

We first selected the appropriate models based on BIC for both, attack rate and
handling time. The selected model for attack rate included predator body mass,
temperature, experimental duration and dimensionality. The selected model for
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Fig. 2.3: Dependence of attack rate and handling time. Partial residuals are plotted as y-
axes and all the variables other than temperature are expressed as In-transformed.
More details on the derivation of partial residuals can be found in the supporting
information. The attack rates (a) increase with predator body mass [ mg] (panel
A), temperature [ °C] (panel B), and decrease with experimental duration [s]
(panel C), while attack rates in two-dimensional settings are higher than those
in three-dimensional settings (see legends and Tab. 2.1). The handling times (k)
decrease with predator body mass (panels D) and temperature (panels E), while
handling times for fed predators are larger than those for starved predators (see
legends and Tab. 2.1).

handling time included predator body mass, temperature and predator satiation
(Tab. 2.1). The attack rate scaled negatively with experimental duration but not
with predator satiation level. The model for attack rate included the influence of
dimensionality on its intercepts even though this effect was not significant (panel A,
B and C of Fig. 2.3). The model of handling time included the influence of predator
satiation level, but experimental duration is excluded from the model. Predator sati-
ation level did not interact with other independent variables, resulting in their only
being different constants for starved and fed predators (panel D and E of Fig. 2.3).

Discussion

We used a large dataset of functional responses to investigate synthetically if the
experimental duration and satiation level of predator have any effects on the esti-
mates of functional response parameters. We chose the studies which fitted their
feeding data to the most widely-spread ,type II functional response‘ model to gain



more general conclusions and our integrative dataset contained data points across
different ecosystem types including marine, freshwater and terrestrial and data for
predators ranging from protists to vertebrates. The results showed the functional re-
sponse parameter attack rate decreases with experimental duration and the handling
times for satiated predators are higher than those for hungry predators. Thus two
of our hypotheses were fulfilled (Fig. 2.2a, c), yet our hypothesis that experimental
duration also affects handling time was rejected.

Our analyses of attack rates illustrated the influences of predator body mass, temper-
ature and experimental duration. The results of the effects of predator body mass
and temperature on attack rates are consistent with previous studies (Rall et al.,
2012; Li et al., 2017b). The effect of experimental duration on the estimates of
attack rates, to our knowledge, is shown for the first time from a meta-analysis. The
finding that attack rate decreases with experimental duration is intuitive. Longer
experimental duration will automatically mean that activities other than feeding
will occur during feeding experiments. Within a diurnal cycle (24 hour period), the
majority of the ,other activities‘ are resting and sleeping. In those cases where all
other conditions are same (e.g. same predator-prey pair, same satiation level of the
predator and same laboratory conditions), the estimate of attack rate of a feeding
study of 24 hours will be smaller than that of an experiment of a duration only
containing the active hours of the predator. This is because of the two experiments
contain the same foraging but have different time lengths. Gut size can change in
some predators over the long term (weekly or monthly) (Karasov and McWilliams,
2005; Van Gils et al., 2005). However, this dose not affect our results because 96 %
of our data are from experiments lasting 24 h or less. Our results thus show the effect
of experimental duration alone which supported our assumption (Fig. 2.2a).

Our findings are supported by some previous studies as well. We found a study of a
backswimmer (Notonecta hoffmanni) involving both short-term (3h) and long-term
(12h) experiments (Fox and Murdoch, 1978). Even though Fox and Murdoch did
not statistically compare the estimates of functional response parameters between
short- and long-term experiments, the estimated values for attack rates showed
the same trend as ours. A more recent modeling study not only confirmed the
influence of experimental duration on the estimates of attack rates but also explicitly
highlighted the effect of involving different activities on attack rates (Casas and
McCauley, 2012). For future studies, it would be important to have the opportunity
to investigate whether and how even longer feeding trials, e.g. weeks and months,
affect the estimates of interaction strengths (Buckel and Stoner, 2000).

Our statistical results on handling times showed the influences of predator body
mass, temperature and predator satiation. With a dataset which involved both
invertebrate and vertebrate predators, we showed that the estimates of handling
times for starved predators were lower than those for the fed ones. Previous studies
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suggested the influence of satiation level on handling times mostly for vertebrate
predators (Karasov and McWilliams, 2005; Jeschke and Tollrian, 2005; Jeschke,
2007). We generalized this finding to invertebrates, as 78 % of the data are for
arthropods. This indirectly supported the assumption that generally, both vertebrate
and invertebrate predators face ,digestive limits‘. Anderson et al. (1978), on the
feeding of a fish predator (Brachydanio rerio), is the only experimental study that
we are aware of to involve predator satiation. They clearly showed that starved
predators had larger maximum feeding rates than satiated ones. Maselou et al.
(2015) found the estimates of functional response parameters not to be affected by
predator satiation. However, this study compared only between different starvation
times, no satiated treatment was involved. It is the comparison between fed and
starved predators, therefore, that demonstrates the effect of predator satiation level.
A rather recent study investigated the influence of predator satiation with field data
(Essington et al., 2000). They stated that feeding rates are reduced by predator
satiation which our finding is in line with. One of their conceptual developments
deserves to be more frequently considered in future studies. They separated the
effect of predator satiation onto two temporal scales: (1) instantaneous satiation
that occurs when feeding rate exceeds gut capacity (constraint of gut size) and (2)
integrated satiation that occurs when feeding rate exceeds the time required to
digest prey (constraint of digestion rate). The higher handling times associated with
satiated predators may reflect mostly the constraint of digestion rate and the lower
handling times of starved predators may be associated with the less strong constraint
of gut size.

We switched the focus to how two common issues in feeding studies, i.e. satiation
level of predators and experimental duration, affect the parameters of commonly
used type II functional response model. Our study indicates that they have clear and
intuitive influences on functional response parameters which are also crucial for the
stability and dynamics of ecosystems and biodiversity. The increasing attack rates
with decreasing experimental duration and lower handling times of starved predators
will both strengthen the feeding interaction strengths in population and food web
models. These changes caused by inappropriate experimental settings would strongly
affect the dynamics and stability of these models. Increasing interaction strength
would generally lead to stronger top-down pressure. For a predator-prey pair which
has cycling dynamics, such strengthening would lead to collapse of the system and
the extinction of predator species (e.g. Rip and McCann, 2011). Such strengthening
may also change a stable food web to one that is dynamic and unstable (e.g. Rall
et al., 2008). Therefore, to gain a relatively realistic predication of food webs,
both the empiricists who conduct feeding studies on the estimates of functional
response parameters and theorists who try to analyze the dynamics and stability
of populations and food webs must take into account the effects of experimental
duration and predator satiation. We also suggest further studies to investigate the



relationship of species lifespan and some fundamental traits, e.g. body-mass, with
the aid of which we will be able to investigate the effect of experimental duration
as a portion of species life. To gain a reasonable estimate of feeding interaction
strength, we suggest investigating the time period which is representable for at
least the active period of the predator and report the length of its non-active period
(sleeping period). For the satiation level of the predator, we suggest making trials
with predators of different satiation levels.
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How patch size and refuge
availability change interaction
strength and population dynamics:
a combined individual- and
population-based modeling
experiment

Yuanheng Li, Ulrich Brose, Katrin Meyer, Bjorn C. Rall

Abstract

Knowledge on how functional responses (a measurement of feeding interaction
strength) are affected by patch size and habitat complexity (represented by refuge
availability) is crucial for understanding food-web stability and subsequently bio-
diversity. Due to their laborious character, it is almost impossible to carry out
systematic empirical experiments on functional responses across wide gradients
of patch sizes and refuge availabilities. Here we overcame this issue by using an
individual-based model (IBM) to simulate feeding experiments. The model is based
on empirically measured traits such as body-mass dependent speed and capture
success. We simulated these experiments in patches ranging from sizes of petri dishes
to natural patches in the field. Moreover, we varied the refuge availability within
the patch independently of patch size, allowing for independent analyses of both
variables. The maximum feeding rate (the maximum number of prey a predator can
consume in a given time frame) is independent of patch size and refuge availability,
as it is the physiological upper limit of feeding rates. Moreover, the results of these
simulations revealed that a type III functional response, which is known to have a
stabilizing effect on population dynamics, fitted the data best. The half saturation
density (the prey density where a predator consumes half of its maximum feeding
rate) increased with refuge availability but was only marginally influenced by patch
size. Subsequently, we investigated how patch size and refuge availability influenced
stability and coexistence of predator-prey systems. Following common practice, we
used an allometric scaled Rosenzweig-MacArthur predator-prey model based on
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results from our in silico IBM experiments. The results suggested that densities
of both populations are nearly constant across the range of patch sizes simulated,
resulting from the constant interaction strength across the patch sizes. However,
constant densities with decreasing patch sizes mean a decrease of absolute number
of individuals, consequently leading to extinction of predators in smallest patches.
Moreover, increasing refuge availabilities also allowed predator and prey to coexist
by decreased interaction strengths. Our results underline the need for protecting
large patches with high habitat complexity to sustain biodiversity.

Keywords | Functional response, Habitat loss, Habitat complexity, Food web,
Individual-based model, Interaction strength, Population dynamics, Extinction, Patch
size, Ordinary differential equation



Introduction

The interplay between stability, complexity and biodiversity of ecological networks
(especially food webs) is a subject of a long lasting and still ongoing discussion in
ecology (e.g. MacArthur, 1955; May, 1972; McCann, 2000). From a mathematical
point of view, an increase of species richness is only possible when the interaction
strength between the species in a network (i.e. the strength of feeding interactions in
a food web) decreases (May, 1972), otherwise species richness (represents biodiver-
sity) must decline. A few possible solutions to overcome this problem have already
been proposed, including a non-random organization of the feeding links in real food
webs (Yodzis, 1981) and a decrease of specific interaction strength with increasing
trophic levels (de Ruiter et al., 1995), both driven by allometry (Yodzis and Innes,
1992; Brose et al., 2006b; Otto et al., 2007). Classic stability analyses assumed that
the strength of interactions (the functional response) increased linearly with increas-
ing resource availability (e.g. May, 1972). In food web studies, interaction strength
refers to feeding interactions, which can be studied by investigating the ,functional
response‘: how the number of prey eaten by a predator changes with increasing prey
densities. In his seminal work, Holling (1959b) described the mechanism of func-
tional responses mathematically and showed that under the simplest assumptions
it should follow a hyperbolic curve. This experiment was performed in a simple
experimental trial with blindfolded students (the predator) on a plain 9 square foot
table as the experimental arena and sandpaper discs as prey. Interestingly, already
in the same year Holling (1959a) showed that the shape of functional response
could also follow a sigmoid (i.e. s-shaped) curve when investigating small mammals
on a large natural scale, including natural complexity in the habitat. The different
possible shapes of functional responses are known as type I functional responses
(linear with a limit), type II functional responses (hyperbolic) and type III functional
responses (sigmoid), forming the core set of functional responses alongside a number
of other descendant types (Jeschke et al., 2002). Notably, it has been shown that the
type I functional response is an artifact (Jeschke et al., 2004; Sarnelle and Wilson,
2008), so in this study we focus only on the non-linear functional responses. One of
the descendants of Holling’s functional response models based on enzyme kinetics
(Real, 1977) unifies the type II and the type III functional responses:

fmaa: Nh
N)= —F—— 3.1
FN) = e (3.1)
where f(N) is the per capita feeding rate, depending on the resource density, N. The
curve is characterized by a maximum feeding rate, f,q. [ # h~!]; a half saturation
density, Ng [ # m~2], i.e. the prey density when the predator’s feeding rate reaches

half of the maximum feeding rate and a unitless Hill exponent, h, determining the
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curve shape. If the Hill exponent is set to unity, the resulting function is the ,strict”
type II functional response. Whereas if the Hill exponent is set to two, it is the ,strict*
type III functional response in a very classical sense (but see Juliano (2001) for
alternative descriptions of the type III functional response). We will subsequently
refer to any functional responses as type III functional responses if the Hill exponent
is larger than unity.

But why is it so important to know if the functional response is a type II functional
response or a type III functional response? The answer is that type III functional re-
sponses are known to stabilize population dynamics thereby allowing for persistence
of large food webs (Williams and Martinez, 2004b; Brose et al., 2006b; Rall et al.,
2008), by regulating prey populations to low densities (Nunney, 1980a,b). Several
mechanisms have been put forward to explain why a type III functional response
should appear, including the predator learning to exploit prey better (Holling, 1966)
and switching between different prey types to the most abundant prey (Murdoch
and Oaten, 1975; Oaten and Murdoch, 1975b). More recently, it was suggested that
refuges for the prey can also lead to a type III functional response (e.g. Scheffer
and De Boer, 1995; Vucic-Pestic et al., 2010a). However, there was only mixed
support from studies manipulating habitat complexity in general without introducing
prey refuges explicitly (Kaiser, 1983; Hoddle, 2003; Hohberg and Traunspurger,
2005; Hauzy et al., 2010; Vucic-Pestic et al., 2010a; Kalinkat et al., 2013a). Those
differences may be caused by variations in how habitat complexity influences for-
aging and hence feeding: 1) complexity negatively affects feeding by e.g. refuges
restraining predation especially at low prey densities and eventually leading to a
type III functional response; 2) it affects feeding by e.g. obstacles preventing the
movements of both predator and prey leading to reduced encounter rates at all
prey densities but leaving the functional response type unaffected (Hauzy et al.,
2010). Moreover, if the habitat complexity influences neither movement nor refuge
provision, it will simply cause a dilution effect, a virtual increase of the patch size
(Kalinkat et al., 2013a).

Furthermore, functional response studies are predominantly carried out under
artificial laboratory conditions (Jeschke et al., 2004; Kalinkat and Rall, 2015). This
means that (1) most of the studies mentioned above have used rather artificial
habitat complexity and (2) due to spatial limitations of a laboratory, the size of the
experimental units are relatively small (e.g. petri-dishes for estimating the functional
response of ladybugs, Stethorus japonicus (Gotoh et al., 2004)). Only a few studies
have attempted to investigate functional responses in natural environments, but
these studies are only roughly comparable to the controlled laboratory studies as they
rely on scat counting or gut content analyses combined with assessments of natural
prey density (e.g. Dale et al., 1994; Smout and Lindstrgm, 2007). To our knowledge,
only one study, so far, investigated and compared the simplified laboratory functional
response experiments (using petri dishes) with functional responses measured in



the greenhouse or in the field (Munyaneza and Obrycki, 1997). In this study, the
attack rates in the laboratory were over 40 times higher than those in the green
house but those in the field were three to nine times lower than in the petri dishes
(note that all functional responses in the original publication were fitted to a type
II functional response model and the attack rates were scaled to the total size of
the experimental arena, we compared the attack rates scaled to square meters (Rall
et al., 2012)). As the experiments carried out by Munyaneza and Obrycki (1997)
altered habitat complexity and patch size at the same time, and both gradients
increased simultaneously from the petri dish experiments over the greenhouse to the
field experiments, it was not possible to disentangle the potential interactive effect
of habitat complexity and patch size. Furthermore, Bergstrom and Englund (2004)
reported increases in attack rates with patch size, and studies manipulating habitat
complexity reported a decrease in attack rates (e.g. Vucic-Pestic et al., 2010a). This
might lead to the explanation that the relatively low attack rates in the field, shown
in the study of Munyaneza and Obrycki were due to the increased patch size and
habitat complexity.

Beside the examples above, we are not aware of any more study addressing the
effect of patch size and habitat complexity on the functional-response parameters.
Moreover, most of the studies only vary habitat complexity or patch size by up to
four levels (e.g. Kalinkat et al., 2013a; Bergstrom and Englund, 2004) and none of
them systematically varied both complexity and size. This lack of studies is perhaps
due to the laborious nature of functional response studies. For example, Vucic-Pestic
et al. (2010b) used prey ranging from 1 up to 4000 individuals for fitting a single
functional response, measuring up to 90 feeding experiments. Doubling the patch
size would already lead to a maximum of 8000 individuals and a 10 times larger
patch would require already a maximum of 40 000 individuals.

As such extreme laboratory settings are not feasible, we developed an individual-
based model (IBM) to study the effects of patch size and refuge availability on
functional-response parameters. We explored full-factorial patch size and habitat
complexity to disentangle effects of both variables and eventually their interactive
effects on the functional-response parameters. Subsequently, we analyzed the
stability of a predator-prey system depending on patch size and habitat complexity
by developing a predator-prey population dynamics model which has a long standing
usage and wide applicability (see section ,Methods“ for details).

Methods
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Individual-based model of feeding interaction

Overview

To investigate the effects of patch size and habitat complexity (represented by refuge
availability) on functional-response parameters, we developed an individual-based
allometric predator-prey model (for details, see ,,Overview, Design concepts, Detail
protocol“ in the supporting information, Grimm et al. (2006, 2010)) to mimic the
feeding experiments in the laboratory. We assumed that the maximum feeding
rate was driven by mechanical and physiological processes such as chewing and
digestion and would not scale with patch size or refuge availability. Therefore we
first investigated the maximum feeding rate without any explicit space properties.
Second, we modeled a two-dimensional square area to mimic an explicit patch in
which both predator and prey can continuously move. The modeled patch consisted
of cells all individuals can enter, however cells may be marked as refuges preventing

predation.
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Fig. 3.1: Schematic diagram in processes of the in silico feeding experiment model. The text
in the dashed oval is the only prey action which is also the start of the processes.
Texts in the squares are decisions or actions of the predator. Texts in the diamonds
are decisions making, e.g. ,handling prey?‘.



The Model Processes

The first process applied in the model is prey movement (random walk with ran-
domly chosen direction, 0 to 27 double precision floating number and allometrically
calculated distance). The following processes applied in the model are all decisions
and actions of the predator (Fig. 3.1). First, the digestion of the predator is calcu-
lated. Subsequently, the algorithm checks if the predator is handling prey (caught
in an earlier time step). If not and the predator’s gut is full (>= 60%), it rests (not
taking further actions). If the predator is not handling prey and is hungry (gut filling
< 60%), the predator moves (random walk, see above). After reaching the new
position, the predator investigates if it encounters a prey in the cell. If there is a prey
individual in the same cell, it will be attacked. If the attack is successful, another
prey item is placed randomly into the grid to keep the prey density constant. The
predator starts to handle (chew) prey in the next time step.

Variables and parameters

Most species traits regulating the processes described above follow allometric rules
(Kleiber, 1961; Peters, 1983; Brown et al., 2004; Brose, 2010), including velocity,
V [ems™!], of both the predator and the prey (Peters, 1983); and the traits of
the predator: gut size, G [mg] (Ibarrola et al., 2012), digestion rate, D [mgs™' ]
(Ibarrola et al., 2012), handling time, T}, [ s] (estimated from Rall et al., 2012, see
supporting information) and attack success, S, [unitless] (Brose et al., 2008; Gergs,
2011):

V =vg M*™ (3.2a)

G = go M (3.2b)

D = do M (3.20)

Ty, = ho Mp"™ My"™ (3.2d)
A

S, = ag (R]jpt el_Rfét> (3.2¢)

where vo, go, do and hg are constants, a,,, a4, aq and a;, are the allometric scalings,
and M is the body mass of the corresponding individual. Subscripts, , and ,, indicate
predator and prey respectively. We used the widespread generalized Ricker’s function
(Persson et al., 1998; Persson and Bronmark, 2002b,a; Wahlstrom et al., 2000; Brose
et al., 2008; Rall et al., 2011) to describe the scaling of attack success depending on
body mass. This function consists of the maximum attack success ag, predator-prey
body-mass ratio, R and its optimum R,,; and a shaping parameter, A. Predator
and prey also possessed some state variables to assist their decision making and
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activities, i.e. the ,position‘ for all individuals; the ,gut fullness and if the predator
is ,still handling‘ and an identifier, ,prey identity’, to distinguish between the prey
individuals.

Parameters’ range

20 cm

lcm

Fig. 3.2: Schematic diagram of a square grid of the IBM model. The grid in this example is
0.04 m? with cell resolution of 1 cm x 1 cm and with a ,wall-boundary condition’
(individuals not able to penetrate the walls). The black cells are the refuge cells.
The small white bugs represent prey and the big black bug represents the predator.
The random walk of the individuals is decided by a randomly chosen direction, O
to 27w and an allometrically decided distance (as denoted by the white circles and
black arrows).

The cell resolution of the square grid, in which the in silico simulations are conducted
is 1cm x 1cm. As we intended to mimic laboratory experiments, the walls of the
grid are set to ,wall-boundary condition‘ (individuals cannot penetrate the walls).
We chose twelve patch sizes ranging from 0.2 m x 0.2 m = 0.04 m? (the size of a
standard patch in some terrestrial functional response experiments (Brose et al.,
2008; Rall et al., 2010; Vucic-Pestic et al., 2010a; Rall et al., 2011; Vucic-Pestic
et al., 2011; Kalinkat et al., 2013a) to 100 m? (the size of a field patch (Munyaneza
and Obrycki, 1997)). The sizes of each patch were: 0.04 m?, 0.16 m?, 0.64 m?,
1.44 m?, 2.56 m?, 4 m?, 16 m?, 36 m?, 49 m?, 64 m?, 81 m?, and 100 m?. The second
independent variable we modeled was prey refuge that served as surrogate for
habitat complexity which preventing feeding. We randomly selected refuge cells on



Tab. 3.1: Parameters values in allometric equations (Eq. 3.2)

parameter value parameter value

) 0.546 Qy 0.29

90 0.50 ag 0.434

do 5x107° aq 0.75
anp,  -0.330

ho 37.504 o 0.173
Ropt 100

agp 0.10 A\ 1

the grid for each simulation in a certain percentage of cells in steps of 5% (5%-75%
as the ratio of refuge cells to all cells), see Fig. 3.2 as a case example. These two
independent variables are full-factorially simulated. For each simulation run, the
refuge distribution is newly drawn. Those randomly chosen cells do not support any
feeding by the predator and therefore act as refuges for the prey. The body masses
of the predator and prey were set to 100 mg and 1 mg, a common body-mass ratio
for animal predatory interactions, close to the optimal feeding ratio of invertebrates
(e.g. Vucic-Pestic et al., 2010b; Rall et al., 2011; Kalinkat et al., 2013b). We ran each
of the in silico feeding trials for 3600 steps (representing 1 h). The simulation for
estimating the maximum feeding rate was repeated 50 times and each prey density
dependent simulation was repeated five times. We simulated prey densities from 2°
to 2™ as the density when the predator (only one predator per simulation) is satiated.
For example, twenty prey densities from 2° to 2! are selected for the patch size
of 36 m? and 35% refuge-area ratio. Values for the parameters in allometric Egs,
Eq. (3.2), are empirically-based and given in Tab. 3.1. These values (Tab. 3.1) are
derived from the same studies where we derived the formulas. Yet the maximum
attack success ay is taken as the mean of 5 measurements from Gergs (2011). The
optimum predator-prey body-mass ratio is consistent with terrestrial invertebrates
from Brose et al. (2008).

Statistics

Functional response fitting

We first calculated the mean maximum feeding rate for the predator-prey pair. We
used a generalized linear model (GLM) assuming that maximum feeding rates follow
Poisson distribution as feeding rates were count data of non-negative integers of
which the error distribution increases with increasing mean. The statistics were
ran in R (R Core Team, 2016), but see chapter 13 in Crawley (2007) for details.
Subsequently, we used this mean maximum feeding rate as a fixed parameter in the
functional response model (Eq. (3.1)) to estimate the dependencies of the remaining
half saturation density and Hill exponent.
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We analyzed the feeding data from IBM models using Real’s functional response,
Eq. (3.1). As there is no well-established scaling relationships of functional-response
parameters (half saturation density and Hill exponent) to habitat properties investi-
gated here, i.e. patch size and refuge availability, we preliminarily tested whether
the scalings of these functional-response parameters followed a power law or expo-
nential function. To reduce the potential influences of interaction terms (between
patch size and refuge availability) which may influence the dependencies of the
half saturation density or Hill exponent, we included all interaction terms in the
preliminary testing (Zuur et al., 2009). We analyzed in total 16 full models and
compared them using the Bayesian Information Criterion (BIC), see Tab. S3.3 in the
supporting information. This analysis revealed that the scalings of half saturation
densities with patch size and refuge availability can be best described by a power
law and an exponential function, respectively:

Ny = Cl, A%Wo ePNo B g7 In(A4) R (3.3)

where Cl, is a constant, ay, is the scaling exponent of half saturation density
to patch size, A, by, is the scaling parameter of half saturation density to refuge
availability, R and vy, is the parameter giving the strength of the interaction between
patch size and refuge availability. Preliminary analyses also showed that the Hill
exponent depended on patch size and refuge availability both following power
laws:

h = Cj, A Rbr ¢ In(A)In(R) (3.4

where C}, is a constant, ay is the scaling parameter of the Hill exponent to patch
size, A, by, is the scaling exponent of the Hill exponent to refuge availability, R and
~p, is the parameter giving the strength of the interaction between patch size and
refuge availability.

We fitted the functional response model, Eq. (3.1) with the dependencies described
above using a maximum likelihood method, ,mle2()‘ (Bolker and R Development
Core Team, 2014), (see Bolker (2008) for details). As we replaced eaten prey after
each feeding event (see above), we assumed that the residuals followed a negative
binomial distribution. We fitted this functional response model to the data assuming
a log link between data and model:

In (Ng) =In(Cp,) +an, In(A) +bn, R + 98, In(A) R (3.52)
In(h) =In(Ch) +ap In(A) +b, In(R) + 7, In(A4) In(R) (3.5b)



i.e. we did not fit the values for the constants C' in equations (3.3) and (3.4), but
for the intercepts in the In-transformed version In(Cly,) and In(C}) in Eq. (3.5).
We performed a model selection using the Bayesian Information Criterion (BIC) by
comparing all possible combinations of setting the parameters a, b and v to ,,0%,
resulting in 25 meaningful combinations (note that either a or b only can be excluded
if the interaction term, - is excluded).

Population dynamics model

To investigate how patch size, A, and refuge availability (a measurement of habitat
complexity), R, affect population dynamics and stability of a predator-prey system,
we set up an ordinary differential equations (ODE) model. Such models were widely
used to study one population (e.g. Gompertz, 1825; Verhulst, 1838) over food
web motifs (e.g. Lotka, 1925; Volterra, 1926; Rosenzweig and MacArthur, 1963;
Rosenzweig, 1971; Yodzis and Innes, 1992) to multi-trophic food web models (e.g.
Williams and Martinez, 2004b; Binzer et al., 2016; Schneider et al., 2016) and
used to predict patterns of experimental microcosms (e.g. Schneider et al., 2012;
Fussmann et al., 2014) up to whole food webs (e.g. Boit et al., 2012). The ODE
model describes the change in prey density [ # m~2], dN, and predator density
[# m™?2], dP, over time, dt (Rosenzweig and MacArthur, 1963; Yodzis and Innes,
1992; Otto et al., 2007):

dN N fmaa:Nh

AR A 3.6

i~ NI R e N (36
h

AP _ g Jmae N b p (3.7)

dt Y Np+ NE

where the prey growth is described by logistic growth with r [d™'] being the
intrinsic growth rate and K [# m~2] being the carrying capacity. The prey are
consumed by the predator following Real’s functional response, Eq. (3.1), with
fmaz being the maximum feeding rate, Ny being the half saturation density and h
being the Hill exponent. The predator population grows according to the functional
response multiplied by the assimilation efficiency, e, and the effective foraging time
proportion w. Moreover, it loses population density by metabolism, z [d™'].

We used the estimated values from the functional response fitting of our individual-
based model (see above) in the ODEs. Additionally we calculated the values for
carrying capacity, K, growth rate, » and metabolism, x, according to empirically
derived studies (Rall et al., 2010; Meehan, 2006; Savage et al., 2004a; Peters, 1983)
(details described afterwards).
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Equilibrium densities of the predator-prey system and extinction boundaries

The predator-prey population model has a set of non-trivial analytical solutions,

being a predator isocline

z No" 1
N=(——F—— 3.8
(ewfmaz_x)h (3.8)
and a prey isocline
Nh—i-Nh
P=rN"hk-N)=2L 3.
Ry G2

After obtaining these isoclines, the equilibrium densities of predator and prey are
compared with extinction boundaries [ # m~2]. Such boundary is set to an artificial
small number in the common practice of ODE models, but we explicitly set it to two
individuals per patch. In cases where the predator population is not sustained, i.e.
the equilibrium density is less than the extinction boundary, prey population would
grow to its capacity, N = K and the predator population goes extinct, P = 0.

Parameter values for the ODE

The functional-response parameters, the maximum feeding rate, f,,.., the half
saturation density, Ny and the Hill exponent, h, are set according to the statistical
results of the IBM simulations. We assumed that the predator foraged approximately
12 hours a day (Ebeling and Bray, 1976), therefore we added a foraging time
proportion w = 1. The assimilation efficiency, e, accounts for the proportion of food
overwhelmed by the predator which can be converted to its own body mass, which is
set to 0.85, a common value for predatory consumers (Yodzis and Innes, 1992; Otto
et al., 2007). The prey growth follows the logistic growth consisting of the intrinsic
growth rate r and the carrying capacity K. Together with metabolic rate of the
predator, these three parameters are calculated by empirically derived equations.

Eo (Tg-T) 2
K = Ko M"% eTF (ope T ) eftlo (ti=1) (3.10a)
r=rg M'ST e% (3.10b)
T = 0Cy X M;;“' e% (3.10¢)

The carrying capacity K scales with body mass, M,, (gram), environmental tem-
Eqs (To—T) z

perature, 7' (K), net primary production of the habitat, (cpe *T70 ) , and the
trophic level of the prey, ¢I. The values for all parameters are derived for invertebrate



detritivores assuming German weather conditions and productivity: Ky = e~31'1%;
b = —0.72; Ex = 0.71; k£ = 8.62e — 05; T = 282.65; o9 = 600; E, = —0.35;
Ty = 293.15; z = 1.03; tlp = —2.68; tI = 1.5 (see Meehan (2006) and Rall et al.
(2010) for details). The growth rate r, scales with body mass (microgram) and
environmental temperature, where ro = ¢323%, b, = —0.25 and E, = —0.84 (details
see Savage et al. (2004a) and Rall et al. (2010)). The metabolic rate x, also scales
with body mass (gram) and environmental temperature with 2y = 2708, b, = 0.72
and F, = 0.87 (see Peters (1983), Savage et al. (2004b) and Rall et al. (2010) for
details). Savage et al. (2004b) reported that field metabolic rate were three times
larger than basal, therefore we include the coefficient o as 3. The normalization
constant ¢, 12342.86 M, 1 (M, in milligram), converts the metabolism from Js™!
to d™! (Peters, 1983).

We set predators to 100 mg, and prey to 1 mg, consistent with our individual-based
model simulations described above. We also explored the same ranges of the patch
size and habitat complexity as for the individual-based model simulations explained
above. Extinction boundaries for predator and prey were set to two individuals per
patch.

Results

Results of IBM simulation

Tab. 3.2: Statistical results for the in silico functional response experiments. Note that the
maximum feeding rate is a priori assumed to be independent of patch size and
refuge availability.

Estimate S.E. p-value

maximum feeding rate  In(finae) 1.902 0.05 < 0.001

In(Cn,)  4.577 0.031 < 0.001

. . an, -0.007 0.005 0.21

half saturation density b, 1.777 0063 < 0.001
YN, excluded by model selection

In(Cp) 0.25 0.011 < 0.001
Hill exponent ap, excluded by model selection
P by, excluded by model selection
Yh excluded by model selection

The maximum feeding rate, f,,q.., was estimated prior to the functional response
fitting and revealed that predators of 100 mg fed in average 6.7 prey individuals
per hour (Tab. 3.2, note that the statistics were performed using a log-link function,
i.e. the In-linear feeding rate was estimated).We subsequently fitted the functional

response with a fixed maximum feeding rate. Our model comparison of patch size

39



40

0.7 — — 380

0.6 —
~ 310
205
)
= &
£ w
8 0.4 - 240 3
"('U‘ |
= |—’}"
o]
So3
170
0.2
0.1 102

0 20 40 60 80 100
patch size [m?]

Fig. 3.3: The effect of patch size (x-axis) and refuge availability (y-axis) on half saturation
density (see color scale).

and refuge availability dependent functional response models, based on BIC, included
a scaling of half saturation density with patch size and refuge availability, but it did
not include any scaling of the Hill exponent with either parameter (Tab. 3.2). The
half saturation density increased with refuge availability, and decreased marginally
with patch size, see Fig. 3.3. The estimated Hill exponent across patch sizes and
refuge availabilities was 1.284 which significantly different from a Hill exponent
of 1 therefore indicating a type III functional response (Tab. 3.2, note that the
In-transformed Hill exponent was tested against ,,0“ what is a Hill exponent of
»,1%). The emerging functional responses are of the same shape but feeding is
realized at higher prey densities with increasing refuge availability (Fig. 3.4). Other
predator-prey body-mass ratios showed similar results, see the section ,In silico
feeding experiments on other body-mass ratios“ in the supporting information.

Results of population dynamic model

We solved the population dynamics model by a set of analytical solutions (Eq. (3.8)
and (3.9)) and the extinction boundaries. In small patches only the prey species
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Fig. 3.4: Results of the individual-based functional response in silico experiments (black
dots) and their corresponding fits (red lines). The panels are arranged by increas-
ing refuge availability, starting at 5% (A) to 75% (O). The patch size effect on the
half saturation density is too small to result in visually distinguishable regression
lines. All prey densities are In-transformed. The grey vertical lines denote the half
saturation densities.

survived, but refuge availability relaxed this pattern, allowing predators to survive at
smaller patches. Both predator and prey population densities increased with refuge
availability, whereas in larger patches, the densities of predator and prey populations
decreased slightly (Fig. 3.5).

Discussion

Effects of spatial properties on interaction strength

We developed an allometric individual-based model to investigate the effects of
patch size and habitat complexity (represented by refuge availability) on feeding in-
teractions. We found that the interaction strength decreased with refuge availability,
as the half saturation density increased with it. This result is consistent with most
of empirical studies aiming to account for how refuges affect predation rates (e.g.
Kaiser, 1983; Folsom and Collins, 1984; Kalinkat et al., 2013a). Our results showed
that patch size, however, did not significantly influence the interaction strength.
Bergstrom and Englund (2004) reported that the attack rate (the maximum in-
teraction strength at low prey densities) increased with patch size. This increase
was explained by behavioral changes in moving activity (increasing speed of the
predator) and an aggregative behavior of both their prey and predator at the walls
of their experimental aquariums (animals clustered more at the aquarium walls with
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Fig. 3.5: Number of surviving species (panel A), population densities of predator (panel
B) and prey (panel C) depending on patch size (x-axis) and refuge availability (y-
axis). When the system is embedded in very small patches, the predator becomes
extinct due to energy limitation and the prey grows to its carrying capacity (green
areas in B and C). The non-green areas of B and C show the densities, [# m~2],
of predator and prey when the system is feasible (see color code above each plot).

increasing patch size). We did not include such behavioral changes in our model
as we wanted to provide a simple basic model in this study, which may explain the
differences of our results from Bergstrom and Englund. The Hill exponents in our in
silico individual-based experiments were 1.28 across patch sizes and refuge availabil-
ities. This is quite surprising, as a simple type II functional response was thought
to be the appropriate model for feeding interaction experiments under simplified
conditions in the laboratory. However, the empirical findings of Sarnelle and Wilson
(2008) suggested that type III functional responses would emerge if researchers were
able to include experimental trials on small prey densities, which was not feasible
for experiments carried out in small patches. A few feeding interaction studies on
mammals (jintelligent predators®) carried out in the field also suggested type III
functional responses (Holling, 1959a; Smout and Lindstrgm, 2007). More recent
studies found type III functional responses for invertebrates as well (Aljetlawi et al.,
2004; Vucic-Pestic et al., 2010b). Our study not only corroborates the finding of
type III functional response, but also confirms that for the mechanistically simplified
predators as in our individual-based model, a type III functional response is appro-
priate, which is not only suitable for ,intelligent predators‘ with the ability to learn
(Holling, 1966). The statistical results for in silico experiments of other body-mass
ratios showed consistency with the results discussed above.

Former laboratory experiments that compared a homogeneous habitat with a com-
plex habitat documented a shift from a type II to a type III functional response
(Vucic-Pestic et al., 2010a) and argued that this was due to a refuge effect. We did,
however, not find any increase in the Hill exponent with increasing refuge availability.
As we did not include explicit behaviors for hiding, we infer that this switch from
a type II to a type III functional response (or an increase of the Hill exponent) not



only needed refuges as shelter for the prey, but also active behavioral changes in
sub-habitat choice (Schmitz et al., 2004; Miller et al., 2014).

Our individual-based predator-prey model framework allowed us to investigate
the effects of patch size and refuge availability on functional-response parameters,
which would not have been possible in laboratory or field experiments. Even without
incorporating more complex movement models than random walks or behaviors
like chasing or hiding, we were able to detect general patterns on the scalings of
functional-response parameters with increasing patch size and refuge availability.
Nevertheless, future individual based predator-prey models should incorporate more
complex movement models to better understand the mechanisms of functional

responses.

Effects of spatial properties on population dynamics

To investigate how changes in interaction strength scale up to population dynamics
and coexistence, we analyzed a predator-prey ordinary differential equation model.
We used the results from our in silico feeding experiments and combined it with
empirically measured values for growth, carrying capacity and metabolism (Meehan,
2006; Savage et al., 2004a,b; Brown et al., 2004; Rall et al., 2010). Increasing patch
size turned the extinction of predators to survival, meaning the smallest patches
were not able to sustain the predator population. This is surprising as the feeding
interaction strength does not change with patch size (i.e. a non-significant effect
of patch size). As all parameters of the model are constant in respect to patch size,
we expected that neither the stability (sensu population dynamics) nor persistence
will be affected. This paradox behavior of the system can only be explained by
the increasing extinction thresholds with decreasing patch size. We defined the
extinction threshold as two individuals per patch leading to increasing densities
for extinctions with decreasing patch size (Fig. 3.6 as an example). Increasing
refuge availability counteracted this pattern and allowed predators to survive at
even smaller patches. This is surprising as the half saturation density increased with
refuge availability, suggesting less energy intake by the predator. However, increasing
half saturation density also led to an increase in prey density in equilibrium that
subsequently sustained a higher predator density. Both predator and prey have been
feasible in larger patches and across the range of habitat complexities we explored.

Using a predator-prey population dynamics model, parameterized by the in silico
functional response experiments discussed above, we were able to detect patterns
of coexistence when patch size and refuge availability increased. These results are
predominantly driven by the incorporation of a nearly constant feeding interactions
with increasing patch size and a realistic assumption for the extinction boundaries of
populations which is usually ignored in an ordinary differential equation modeling
frameworks (e.g. McCann et al., 2005; Otto et al., 2007). Future studies that aim
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to investigate effects of space on persistence using ordinary differential equation

models should consider to include such more realistic extinction boundaries as
presented in our study.
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Fig. 3.6: Equilibrium densities and extinction boundaries of the predator-prey system. This
is an example where 73% of the cells are prey refuges. The solid lines depict the
equilibrium population densities of the predator (red) and prey. The dashed line

indicates the extinction boundaries of the predator and prey, 2 individuals per
patch.

Conclusions

How species interactions react to environmental changes such as habitat homog-
enization and habitat loss is a key point for understanding how current global
changes (IPCC, 2014a) influence the stability and biodiversity of ecological networks.
Increasing the stability of food webs is possible via obtaining weaker interaction
strengths (May, 1972) which is important for maintaining biodiversity. We found
that loss of habitat complexity would lead to increased interaction strength via



decreasing half-saturation density. Additionally, even though the constant interaction
strengths through different patch sizes lead to constant population densities, it
would result in less absolute number of individuals in smaller patches. By reduced
number of individuals in smaller patches, decreasing patch size would cause species
extinctions, especially at higher trophic levels. Therefore, shrinking patch sizes and
homogenizing habitats would both lead to destabilization of ecological networks
and biodiversity loss. Altogether, our study underlines the urgent need for protecting
large complex habitats to save biodiversity.
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Joint effects of habitat loss and
warming alter species interactions
and enhance biodiversity loss

Yuanheng Li, Gregor Kalinkat, Bjérn C. Rall

Abstract

Global warming and habitat loss are threatening natural ecosystems. They not only
affect ecological processes and mechanisms at all hierarchical levels, but their effects
are also brought into force simultaneously under current global change. While
former studies predominantly focused on describing pattern changes induced by
either warming or habitat loss, we shift the focus to address both mechanisms and
their synergistic effects on consumer-resource interactions and food webs. We first
investigated the strength of trophic interactions as it is an essential component driv-
ing the dynamics and stability of ecological networks, i.e. food webs. We studied the
effects of warming and habitat loss on interaction strength by analyzing a literature
based data set on consumer-resource functional responses. Thereafter, we applied
the results of the meta-data analysis to a bioenergetic model of a three-species
food chain to investigate their synergistic effects on population stability and species
persistence. Our results indicate that habitat loss decreases the feeding rates at low
resource densities by increasing half saturation densities while warming increases
the overall energy intake of consumers by increasing maximum feeding rates. Even
though we found an increasing energy intake of consumers with warming, energy
requirements (i.e. metabolic rates) increase even more with warming leading to an
reduction of energetic efficiency and consequently to an overall decreasing energy
transfer to consumers with warming. Thereafter, the synergistic effects of warming
and habitat loss lead to lower numbers of surviving species than either of their
single effects in three-species food chains. Our study highlights that the realized
threat from multiple global change drivers may be more severe than what studies on
singular drivers revealed.

Keywords | Habitat loss, Global warming, Feeding, Interaction strength, Type II
functional response, Food chain, Ordinary differential equation
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Introduction

Biodiversity is threatened by global environmental changes including climate change
(e.g. global warming) and land-use change (e.g. habitat loss) (Sala et al., 2000;
Tylianakis et al., 2008). Previous research revealed that the influence of warming
permeated different levels of ecosystems, such as population dynamics (e.g. Fuss-
mann et al., 2014), species composition and turnover (e.g. Gibson-Reinemer et al.,
2015) and trophic structure (e.g. Petchey et al., 1999; Shurin et al., 2012). Especially,
consumers in higher trophic levels, that are commonly larger in body mass, have a
higher risk to extinct when warming (Petchey et al., 1999; Shurin et al., 2012). As
warming will lead to increases of species metabolic demands (Brown et al., 2004),
it, then, may lead to the increases of total energetic demands (especially) for species
in higher trophic levels. Therefore, warming would lead to a higher vulnerability
for higher trophic-level species than those in lower trophic levels. Besides ongoing
global warming, human-induced habitat loss also affects biodiversity. Habitat loss is
suggested to have large, consistently negative effects on biodiversity (Fahrig, 2003).
Such negative effects are also suggested to affect species in higher trophic levels
more (Holt et al., 1999; Dobson et al., 2006; Brose et al., 2016). For example, Post
et al. (2000) observed shorter food-chain lengths in smaller patches. Yet we are
not aware of any meta-analytical study which quantifies the effect of patch size on
feeding interaction strengths or other basic biological rates.

Besides the studies on single global change drivers, there is an increasing interest
among researchers to study the combined effects of multiple global change drivers
on biodiversity (Tylianakis et al., 2008). IPCC (2014b) suggested that such combined
effects amongst different global change drivers contributed to induce the current,
rapid global change. For instance, in their current, most comprehensive meta-
analytical study, Mantyka-Pringle et al. (2012) stated that the effects of habitat
loss and fragmentation on general biodiversity loss (population density or species
richness) were greatest in areas with high maximum temperatures yet the mechanism
is lacking.

To understand the mechanisms of biodiversity loss induced by warming and habitat
loss, it is of major importance to understand how species interactions are affected
by these environmental changes (Schmitz et al., 2003; Tylianakis et al., 2008;
Valiente-Banuet et al., 2015). However, as species and their interactions in different
ecosystems respond very differently to each of the global change drivers (Tylianakis
et al., 2008), exploring how warming and habitat loss affect biodiversity is not
very straightforward. Therefore, investigating one species and its interactions as an
integral component in the context of network structure (e.g. food web motifs) would
be of crucial importance to clarify how the conjunction of these interactions affect
biodiversity (Gray et al., 2014; Harvey et al., 2016). The response of one species to
global change drivers is determined by the net responses of its all basic biological



rates which quantify its energy flux and linkage to other species (Schmitz et al.,
2003). These biological rates such as the feeding interaction strength (linkage to
other species), growth rates (energy supply) and metabolic rates (energy demand)
are cores to understand the dynamics and stability of populations, food chains up to
food webs (Yodzis and Innes, 1992; Brown et al., 2004; Brose et al., 2006b).

Functional response models are a measurement of feeding interaction strengths
describing the responses of feeding rates to increasing prey (resource) densities. The
type II functional response model (Holling, 1959b) is one of the oldest functional
response models, yet still the most utilized one. It describes the feeding rates by a
hyperbolic curve (Fig. 4.1) and this curve can be mathematically captured by two
functional response parameters, half saturation density (By) and maximum feeding

rate (finaz):

_ fmaz B
Bo+B

f(B) 4.1)
The half saturation density (biomass per area in two-dimensional patches or biomass
per volume in three-dimensional patches) represents the prey density when the
feeding rate of a predator reaches half of its maximum feeding rate. The maximum
feeding rate depicts the maximal amount of food a predator can feed in a unit of
time. In this study, we used the so-called ,specific maximum feeding rate“ which
quantifies the maximum feeding rate per predator mass, i.e. biomass per mass rather
than biomass per individual.

The metabolic theory of ecology suggests that both feeding- and non-feeding-related
rates scale with body mass and temperature (Brown et al., 2004), and can be
described mathematically by:

T-T)

Y =qy M eE kTTo | 4.2)

in which Y can stand for any of the variables mentioned above (e.g. metabolic rate,
growth rate, carrying capacity or functional response parameters); b is the power law
scaling of body mass, (M), and F describes the scaling exponent with temperature,
(T). The parameters, Ty and k are constants converting the common-used Celsius
temperature to Arrhenius temperature (see Section Methods).

Combining the metabolic theory with bioenergetic models for population dynamics
(Vasseur and McCann, 2005), Binzer et al. (2012) illustrated that warming would
lead to energy limitation of consumers resulting in the extinction of consumers in
food chains. The energy limitation of consumers mainly comes from the inconsistent
responses of energy demand and energy supply to warming (Fig. 4.2A). According
to previous findings (Rall et al., 2010; Vucic-Pestic et al., 2011; Fussmann et al.,
2014), for consumers, the metabolic rates (energy demand) increase with warming
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Fig. 4.1: Schematic diagram of type II functional response. The red dashed line represents
maximum feeding rate (f,,4.) and the blue lines indicate half saturation density
(Bo).-

more strongly than maximum feeding rates (energy gain) in general. Moreover, the
carrying capacity of environment (energy supply) decreases with warming whilst
the half saturation density of consumers are rather constant (Hansen et al., 1997,
Vasseur and McCann, 2005; Fussmann et al., 2014). Summing up these responses
subsequently results in energy limitation of the consumers and may lead to the
extinction of species in higher trophic levels (Binzer et al., 2012, 2016).

Even though habitat loss is suggested to have large, negative consequence on
biodiversity (see above), there does not yet exist a well-established mechanism
explaining this finding. Similar to warming (above), we can build up the mechanism
for habitat loss by examining the responses of those rates which determine the energy
flux of species (Fig. 4.2B). Because of their physiological natures, we can assume that
habitat loss does not influence the metabolic rates and maximum feeding rates of
species (Brown et al., 2004; Brose, 2010). As the maximal densities of basal species
(i.e. carrying capacity) are suggested to have same scalings as metabolic rates (Pawar
et al., 2012), we assume that the carrying capacity does not vary with patch size
either. For feeding interaction strengths, some studies suggested a hint that they
shall depend on habitat loss. For example, Bergstrom and Englund (2004) observed
that species got less active and caught less prey in smaller patches and Li et al.
(2017a) also found a marginal decrease of feeding efficiency (i.e. increase of half
saturation density) with increasing habitat loss. To our knowledge, comprehensive
studies, generalizing such findings are yet lacking. Therefore, we speculate a case
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Fig. 4.2: Schematic diagram illustrating the hypotheses in this study. The gray panel in the
middle shows an example of a body-mass structured food chain (e.g. predator-
prey body-mass ratio as 100 : 1). The light green triangle indicates the energy
supplied to basal species (carrying capacity of the environment), the dark green
arrows interaction strengths (feeding rates), the orange arrows metabolic rates.
Warming would decrease the energy supply, increase both interaction strengths
and metabolic rates, but increase metabolic rates more than interaction strengths
(panel A on the left). As a consequence, warming causes the loss of top predator.
As former studies found that habitat loss would especially harm higher level
species and it would not influence energy supply or metabolic rates, the reason
why habitat loss harms top predator may be that it decreases interaction strengths
(panel B on the right). Therefore, the combined effects of warming and habitat
loss probably would also influence the intermediate consumer.

to explain how habitat loss may induce biodiversity loss. In cases where habitat
loss increases the half saturation density (decrease of feeding efficiency), habitat
loss would decrease the energy gains of the consumers, leading to reduced sizes of
consumer populations and eventually species loss. Based on the statements above,
we could infer how warming and habitat loss synthetically affect biodiversity. As
Mantyka-Pringle et al. (2012) stated a more sever negative effect of habitat loss on
biodiversity in cases of higher temperature, we speculate that the energy limitation
caused by warming would be enhanced by habitat loss due to its effect on restricting

feeding efficiency (Fig. 4.2C).
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We attempt to answer the question how the synergy of habitat loss and warming
affects biodiversity by investigating the responses of feeding interaction strengths
and food chains. Previous studies showed that warming would in general restrict
the biomasses of basal species as it decreases the carrying capacity and it increases
metabolic rates more than increasing feeding rates (Brown et al., 2004; Rall et al.,
2012). Yet, the mechanism of how habitat loss induces biodiversity loss is yet
not clear. Based on the statements above, we assumed that habitat loss does not
influence metabolic rates or carrying capacities (Brown et al., 2004; Pawar et al.,
2012) but it would decrease the feeding efficiencies of consumers. Synthetically, we
hypothesize that warming would increase feeding interaction strengths and increase
the vulnerabilities of consumers in food chains. In this study, we investigated how
warming and habitat loss affect functional response parameters by a meta-analysis
and developed a simulation model in the light of empirically-supported parameter
values to explore the synergistic effect of global warming and habitat loss on food

chains.

Methods

Meta-data and statistical analysis

We used data on functional responses originally compiled by Rall et al. (2012).
Before the statistical analyses, we did a quality check and added patch sizes in-
formation for all the data points according to the original papers. We only chose
predation or filtration data with explicit patch sizes fitted to type II functional re-
sponses. As there are some data points which have extremely large or small patch
sizes, we excluded all studies with a patch size smaller or larger than twice the
standard deviations of mean patch size, to avoid the scaling of patch size to be
driven by these extremes (17 data points out of 589, see Fig. S4.1). We analyzed
the dependencies of half-saturation densities, By [mgm~2 | mg m~—3], and specific
maximum feeding rates, f,,q, [mg d! mg~ '] on the predator body mass, M, [mg],
environmental temperature, T' [K], patch size, A [m? | m?], the interaction between
temperature and patch size and the dimensionality of the feeding interaction, D
(two- or three-dimensional spaces, 2D/3D). Prey body mass was not used as it
was highly correlated with predator body mass, Pearson’s r = 0.74, p-value < 0.01
(Zuur et al., 2007) and predator body mass was commonly used in such analysis
(e.g. Brose et al., 2006b). To prevent further collinearity, we analyzed the variance
inflation factors (VIF) for all the independent variables and the results showed no
evidence for collinearity in these variables (for details see supporting information).
The dependencies of half saturation density and specific maximum feeding rate
described above can be described by (Brown et al., 2004; Rall et al., 2012):



T—T T—T,
Ep, =7l In(A 0
By = ap, M.Pp 70 FTTy Acsp 80 M) ETTy (4.32)
T-T, T-T,
N OF S In(A) =%
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in which ap and ay are constants, bg and b; are scaling exponents of predator body
mass, Ep and E; [eV] are activation energies describing the scaling exponents with
temperature, cg and cy represent the scaling exponents with patch size and ¢?? and
e7f quantify the interacting effect of temperature and patch size of half saturation

density and specific maximum feeding rate, respectively (i.e. the interaction terms).

The subscript p represents fits using either two- or three-dimensional spaces. T
[K] is the normalization temperature, 293.15 K and & [eV K '] is the Boltzmann
constant. Before the analyses, we In-transformed the Egs. (4.3):

In(Boy) = In(agp,,) + bp,, In(Me) + Epy, {74¢ + cap IN(A) + 75, In (A) 722,
(4.4a)
In(finae) = In(ap,) + bry In(M.) + Epy L2100 4 ¢ In(A) + 4, In(A) L=1o
max fp fp c IDET T, fp Vfp kT Ty
(4.4b)

Thereafter, we used linear mixed-effect models to analyze the data with Egs. (4.4)
by ,Ime‘ function in the package of ;nlme‘ (version 3.1-128, Pinheiro et al., 2016) in
R (version 3.3.1, R Core Team, 2016). We chose the optimal random structure using
restricted maximum likelihood (,(REML‘) and Bayesian Information Criterion (BIC)
following Zuur et al. (2009, p. 121), more details of which found in the supporting
information. Based on BIC, we allowed a random intercept (a) and a random slope
of predator body mass (b) by study identity as the random factors for the model of
half-saturation density, Eq. (4.4a) and only a random intercept with the factor study
identity in the model of specific maximum feeding rate, Eq. (4.4b). After choosing
the random structures, maximum likelihood ((ML‘) estimation method (Zuur et al.,
2009) were applied for obtaining the optimal fixed-structure. We chose the models
with the lowest BIC values by applying an automated model selection tool, ’dredge’
function in ,MuMIn‘ package (Barton, 2016). As the dimensionality defines the units
of the patch sizes, e.g. m? for 2D, we fixed the variable dimensionality to be part of
the optimal model for half-saturation densities. To get reliable p-values, we applied
,REMLS to the final models (Zuur et al., 2009).

Food-chain model

We constructed a three-species food-chain model to investigate the effects of patch
size and environmental temperature on population dynamics and stability (Vasseur
and McCann, 2005; Binzer et al., 2012). The biomass changes of basal species

[mgm~2 | mgm~3], B;, intermediate consumer [mgm~2 | mgm—3], B, and top
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predator [mgm~—2 | mgm?], By, are described by ordinary differential equations
(ODE):

. Bz fmax-Bi

Bi = rBi(1 — 2%y — Imani 7 g 5
i=rBill = 3) Bo, +B; 7 (4.5a)
3 fmasz fmax B

B — e i7" BB, — LMk ) B 4.5b
I B+ B, T T By 1B (4.5b)
5 fmax 1

B.=¢e, —*") B, — 2.B:. 4.5¢
k kBoj—l—Bj k — Tk DBy (4.5¢)

The growth of basal species, i, is described by the logistic growth with an intrinsic
growth rate, » [mgd ' mg~'], and a carrying capacity, K [mgm~2 | mgm~>]. The
basal species is consumed by the intermediate consumer, j, which gains biomasses
by this feeding interaction with an assimilation coefficient, e;. The intermediate
consumer loses biomass via feeding by the top predator, k¥ and the metabolic demand,
z [mgd~'mg']. The top predator gains biomass by feeding the intermediate
consumer (with an assimilation coefficient, e;,) and loses biomass via metabolism.

The non-feeding biological rates, intrinsic growth rate (r), environmental carrying
capacity (K) and metabolic rate (z) all scale with body mass and temperature
(Savage et al., 2004a; Meehan, 2006; Brown et al., 2004). The feeding-related
rates, half-saturation densities of consumers, By, and specific maximum feeding
rates, fiae, Scale with body mass, temperature and/or patch size according to our
statistical results:

Er

T = a, MibT €8.62x107°T | (4.6a)
Eq
T = ay ]\4']/1617I €8.62x107°T (4.6b)
b B )

K =ax M;’% e K%TT, , (4.6¢)
T-T,

By =ag Mj/ka AcB eEBikTTg ’ (4.6d)
T—T,

fmax =ay Mj/kbf ASf eEfrTTg , (4.6e)

where a,, a, and ak are allometric constants, b,., b, and by are the scaling exponents
of body masses, E,, E, and FEx are activation energies describing the scalings with
temperature and parameters in equations of half saturation density (By) and specific
maximum feeding rate (f,,4,) are according to Eq. (4.3). Inserting these scaling
equations (Eq. (4.6)) into the ordinary differential equations (Eq. (4.5)) yields a
population-dynamic model for three-species food-chain.

Some parameter values of intrinsic growth rate and metabolic rate, a, = 1.06 x 10'?,
b, b, = —0.30 and E,, E, = —0.69 are from Ehnes et al. (2011) and some values
of carrying capacity, ax,, = 30.20, bx = 0.32 and Ex = —0.71 are from Ott et al.
(2014) and Meehan (2006). To be noticed, the scalings of carrying capacity shall



be invariant between different dimensions as it reflects the maximal abundance of
primary producers (Pawar et al., 2012). For the simulations in two-dimensional
spaces, the constant of intrinsic growth rate, a,,,, is set to be proportional to the
constant of metabolic rate 4.76 x 10! (a,,, = a,/0.2227) according to Otto et al.
(2007). The body masses of basal species, M;
and top predators, My, ,, are set to 1 mg, 10mg and 100 mg according to the mean

intermediate consumers, M;

2D> 2D

predator-prey body mass ratio for invertebrates (Brose et al., 2006a) and the assim-
ilation efficiencies are 0.85 (Yodzis and Innes, 1992) (as the basal species here is
assumed to be an animal in two-dimensional cases). For the simulations in three-
dimensional spaces, the constant of intrinsic growth rate, a,,,, is set to 3.37 x 10
(ary, = a,/0.314) according to the proportionality in Rall et al. (2008); the constant
of carrying capacity, ar,,, is set to 5370.32 according to Boit et al. (2012) and Bundy
(2004) and the body masses are set to M;,, =1 x 10~%mg, M;
and M;,, = 1 mg according to the body masses in lakes (Boit et al., 2012). The

.o =1x1073mg
assimilation efficiency for intermediate consumer, e; is 0.45 (Rall et al., 2008) (as
the basal species here is assumed to be phytoplankton) and that for top predator
(es) 0.85.

We varied the patch size (0.01 m? | m3 to 10 m? | m?®) and environmental temperature
(0°C to 40°C) of the system to investigate the effect of different combinations of
these two variables. To be noticed, the range of patch sizes is set according to the
range in the dataset of functional response to ensure the validation of the scalings
with patch size. The initial biomass densities of species were all set to half of the
carrying capacity of the particular combination of patch sizes and temperatures (K
in Eq. (4.6¢)) and each simulation was ran for 274 years (100 000 steps) to make
sure the system running to an equilibrium stage. During the simulations, as long as
the population biomass of a species was dropped below 1 x 1073 mgm~2 | mgm 3,
it counted as death. We recorded species biomasses of last 10% of each simulation
to test the stabilities of the surviving species with coefficient of variation (CV).

Results

Statistical analyses of functional response parameters

The dataset used for the statistical analyses consists of 572 observed values for half
saturation densities and specific maximum feeding rates (Nop = 297; N3p = 275).
The best model for half saturation density included the scalings with body mass and
patch size and the model for specific maximum feeding rate included the scalings
with body mass and temperature (Tab. 4.1). The analyses showed that the half-
saturation densities in both two- and three-dimensional cases increased with predator
mass and decreased with patch size (Fig. 4.3A and 4.3B). The specific maximum
feeding rates decreased with predator mass (Fig. 4.3C), whilst they increased with
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Tab. 4.1: Statistical results for the meta-analysis. The table shows the statistical results
fitting Eq. (4.4) to the dataset of functional response. The parameters that have
been excluded by the model selections are marked. The constants are represented
by a, the scalings with body mass and temperature are represented by b and F
and the scalings with patch size are represented by c.

Estimate  S.E. p-value

In(ap,,) 3.446 0.939 < 0.001
In(ap,,) 4355  1.068 < 0.001

bB,, 0.500 0.086 < 0.001
half saturation density bp,,, 0.217 0.084 < 0.01
cB -0.369 0.130 < 0.01
Ep excluded by model selection
VB excluded by model selection

In(ay,,) 1.804  0.437 < 0.001
In(ag,,) -1.027 0425 <0.05

maximum feeding rate bs 0248 0.038 < 0.001
Ey 0.274  0.084 <0.01
cy excluded by model selection
o7 excluded by model selection

temperature (Fig. 4.3D). The specific maximum feeding rates did not scale with
patch size and the intercepts were different for two- and three-dimensional cases
(Tab. 4.1). The interacting effects between temperature and patch size for both
functional response parameters were excluded by model selections.

Food-chain model

When patches were small, the number of surviving species decreased with increasing
temperature, but increasing patch sizes could compensate the decease of survival
number of species (Fig. 4.4). However, in three-dimensional cases, such compensa-
tion effect of increasing patch sizes was minor when temperature was low (upper-left
corner in Fig. 4.4B). In two-dimensional cases, all three species survived for large por-
tions of the combination of patch sizes and environmental temperatures we explored.
Yet in three-dimensional cases, the decrease of surviving number of species with
increasing temperature was so quickly that only a some portion of the investigated
combinations ended up to have three species survived. The results of coefficient of
variation (CV) suggested that all populations for surviving species in two-dimensional
cases had small CVs (upper row in Fig. 4.5). Yet for three-dimensional cases, when
all three species survived, their populations had rather large CVs compared to the
cases in two-dimensional spaces (lower row in Fig. 4.5).
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Fig. 4.3: Statistical results of the dependencies of functional response parameters using the
dataset. All the variables other than temperature are expressed as In-transformed
and partial residuals plots are presented (details of partial residuals plots in the
supporting information). Panels A and B show the results for half-saturation
densities (By [mgm~2 | mgm~—2]) and their scalings with predator mass and
patch size, respectively. Panels C and D show the results for specific maximum
feeding rates (fmq, [mgd ' mg='1) and their scalings with predator mass and
environmental temperature, respectively. Data points for different dimensional
scenarios (2D, 3D) are plotted with different colors and styles (see legend).

o
!

|
a
L

x 2D
-« 3D

S
K

o d

4

*

x

r12

ri1o

-1o0

-5 0 5
In(predator mass)

10 15

x 2D
« 3D

104

7% 2D

« 3D

-12

-1o

B % 4

r-10

-1s

-1o0

Discussion

Our study quantified the effects of global warming and habitat loss on feeding
interaction strengths (i.e. functional response parameters) by a meta-analysis and
consequently illustrated the combined effects of warming and habitat loss on sim-
ulated food chains by integrating feeding-related and other biological rates. We
showed that global warming increases the energy intake of predators (through
increasing the specific maximum feeding rates of predators in feeding interactions)
and habitat loss decreases the feeding efficiencies of predators (by decreasing the
half-saturation densities). Therefore the combined effects of warming and habitat
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loss severely damage the food chains, causing consumers to go extinct.
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Fig. 4.4: Number of surviving species (see color codes) for the food-chain models after 274
years (100 000 steps). Different dimensional cases are shown in panel A (2D) and
panel B (3D). Patch size (y-axis) plotted are transformed by common logarithm
(log,,), but the actual patch-size values are shown.
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Fig. 4.5: Coefficient of variation (CV) for the surviving species in the food chain models
(see color code). The CVs are calculated by the last 10 000 steps (27.4 years) of
simulations. The CVs for basal species (panels A and D), intermediate consumers
(panels B and E) and top predators (panels C and F) are shown in different
columns. The panels in the upper row are for the two-dimensional cases and the
ones in the lower row for three-dimensional cases. Patch size (y-axis) plotted are
transformed by common logarithm (log,,), but the values for actual patch sizes
are shown.

Specific maximum feeding rates decrease with predator mass by a power-law scaling
of -0.248, which is remarkably consistent with the theoretical prediction, —;11 (Brown



et al., 2004). As the metabolic theory predicts that the specific metabolic rate scales
with body mass by an exponent —%, the energy gain from feeding shall also (at
least) have the same scale, which is widely applied in food web studies. Habitat
loss does not influence the specific maximum feeding rate. This result confirms
our hypothesis that this rate is only physiologically related, as the metabolic theory
predicted that maximum feeding rate only depend on the time components of
ingesting and digesting the prey (Brown et al., 2004; Brose, 2010). This assumption
is also supported by the fact that there is no scaling difference between 2D and 3D.
Nevertheless, Pawar et al. (2012) separated 2D and 3D when analyzing handling time
(reverse of maximum feeding rate) as they argued that different dimensionalities
imposed different physical constraints on consumers. This is probably due to their
suggestion that the time needed to pursue potential prey shall be included in the
definition of handling time. We argue that the time for pursuing should influence
attack rate, as handling time, h only counts for the time spend on successfully
attacked prey items, but a predator could try to pursue a prey and fail. Researchers
can have different assumptions on functional response components even with the
same model (Okuyama, 2012) which is an important point to be aware of when
comparing results in different studies.

Our results of the meta-analysis showed that the half-saturation density does not
scale with temperature which is consistent with Hansen et al. (1997) and confirmed
by Rall et al. (2012) and Fussmann et al. (2014) using a similar dataset. However,
the half saturation density increases with increasing predator mass and habitat loss.
Previous studies often assumed that it did not scale with predator mass (e.g. Brose
et al., 2006b) due to the lack of deterministic supports of the scaling of attack rate,
a (By = ﬁ), theoretically (McGill and Mittelbach, 2006) and empirically (Hansen
et al., 1997). However, we found an increase of half saturation density with predator
mass. Our results also showed that the scalings of half saturation densities are
different for two- and three-dimensional spaces. This dimensional difference may
rely on the impacts of dimensionality on the movements of predators and prey and
their encounter probability, as McGill and Mittelbach (2006) suggested that visual
receptions between 2D and 3D dimensional spaces shall be different. Furthermore,
as the allometric scaling of half saturation density with predator mass is shallower
in three-dimensional spaces, we infer that the encounter rates of predators and prey
are lower in a three-dimensional space than in a two-dimensional space.

The result that half-saturation density increases with habitat loss is the key why
habitat loss fosters the warming effect on biodiversity loss, consistent with Li et al.
(2017a) who also found that decreasing patch size (habitat loss) is likely to increase
half-saturation density based on an individual-based simulation modeling. This
result confirmed our hypothesis that habitat loss would decrease feeding rates. This
results may be because of the different experimental setups between micro-organism
and large predators in the dataset. For micro-organisms, their feeding trails must
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involve a group of predator individuals (e.g. Wickham, 1995) whereas for other
larger predator, the feeding trails are typically carried out for only one predator
individuals (e.g. Spitze, 1985). Therefore, for smaller predators which are also
associated with smaller patch sizes, the intra-specific competition may contribute to
a higher half-saturation density. Nevertheless, predator mass and patch size are not
considerably correlated (Person’s correlation being 0.67), Fig. S4.2 in the supporting
information. This suggested that the mentioned caveat above shall only be of minor
importance for our results. Other reasons can be related to behavioral changes
that species got less active and caught less prey in smaller patches (Bergstrom and
Englund, 2004) and the edge effect that in smaller patches, individuals tend to be
stuck at the edges (Li et al., 2017a). However, these behavioral changes still have
their conversational meanings, as the current human-induced habitat loss is often
associated with habitat fragmentation and degradation (Fahrig, 1997). We suggested
that future studies aiming to investigate feeding interactions should be aware of the
importance to choose an appropriate experimental arena which allows their results
to be applied to natural ecosystems.

According to the food chain simulations, more species go extinct with increasing
temperature in both two- and three-dimensional scenarios and decreasing patch size
fosters this negative effect on consumer species. With increasing temperature, the
metabolic demands of the consumers increase more than their abilities of obtaining
energy (i.e. feeding rates). Therefore, consumers and especially the species in higher
trophic levels are first affected and may go extinct due to starvation (Binzer et al.,
2012). In cases of warming and habitat loss, not only the metabolic demands of
consumers increase (due to warming), but the feeding efficiencies also decrease
due to the effect of habitat loss. Therefore, consumer species are more vulnerable
than under the isolated influence of warming. However, species coexistence in
different ecosystems under the influences of multiple global change drivers show
complex patterns. For example, when temperature is low, increasing patch size
in three-dimensional cases also results in species loss (Fig. 4.4B). The different
consequences of enlargement of patch size at lower or higher temperatures are
due to different mechanisms. When temperature is low and patch size is large, the
biomass density of basal species is limited as the growth of basal species is low due
to low temperature, whereas, consumers are very efficient as half-saturation density
decreases with increasing habitat size. In this case, consumers will starve to death
which refers to as bottom-up effect (see plot of timeseries, Fig. S4.3 in the supporting
information). Yet, in case of a low temperature and a small patch, the bottom-up
effect is relaxed as the feeding efficiency of consumers are low due to the effect
of habitat loss on half-saturation density. Therefore, all the species survived but
with highly dynamic population-cycles (see Fig. 4.5 and Fig. S4.4 in the supporting
information).



Up to the food web level, previous studies (e.g. Petchey et al., 1999; Post et al.,
2000; Binzer et al., 2016) indicated the negative effect of either warming or habitat
loss. Inferring from our results, we expect that the single and combined effects of
warming and habitat loss first affect higher trophic level species and further result
in the loss of entire higher trophic levels. Our meta-analysis showed that warming
decreases relative energy flux to energy loss of consumers, which is consistent with
Binzer et al. (2012); Fussmann et al. (2014). Our results also indicated an increase
in half-saturation density with habitat loss. Under the reduced population sizes
of intermediate-level consumers due to warming, habitat loss further fosters the
strength of deceased energy flux relative to energy loss. Therefore, in a structured
food web (consumers have larger body masses than their resources), we expect
biodiversity loss and loss of trophic levels in the combined effects of warming and
habitat loss.

Our simulations on simple food chains suggest that, in general, the range of the
combinations of temperature and patch size which supported all three species in
three-dimensional space is smaller than in two-dimensional space. This may due
to the lower assimilation coefficient for the intermediate consumer, lower growth
rate of the basal species (plant) and the larger predator-prey body-mass ratio in
three-dimensional cases than in two-dimensional cases (Eq. (4.6)). This result is
in contrast to Pawar et al. (2012) that they found advantages for consumers in
three-dimensional environments (as it supported large population sizes and a larger
range of predator-prey pairs). This is probably due to the fundamental differences of
the body-mass scaling of half-saturation density. In the population dynamics model
of Pawar et al., half-saturation densities (calculated to be comparable with ours)
scale with consumer mass by a scaling of 0.07 and —0.31 in 2D and 3D but 0.50
and 0.217 in ours. More steeply increasing half-saturation densities is an important
reason why 3D has smaller range to support a food chain in our model. Given
decreasing half-saturation densities with body mass in the 3D scenario of Pawar et al.
(2012), much higher baseline constant (comparable ax in our model) is probably
another necessary condition for their model to obtain the advantage of 3D.

The most important result of our study is that habitat loss fosters the effect of warm-
ing on biodiversity loss, which is consistent with the empirical studies as summarized
by Mantyka-Pringle et al. (2012). Furthermore, it is ecologically important to study
the combined effects of climate warming and habitat loss (Brook et al., 2008). Land
use change is one of the most influential human impact on ecosystem. It would
directly result in habitat loss and fragmentation, which further may foster local
warming Smith et al. (2014).

Thus, researchers attempted to understand how global environmental changes (GEC)
(e.g. global warming and habitat loss) affect biodiversity and ecosystem by meta-
data analysis (e.g. Tylianakis et al., 2008) or snapshots of controlled experiments
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(e.g. Dossena et al., 2012; Shurin et al., 2012). As species in an ecosystem interact
with each other under the context of a network, the interactions of a specific pair of
species are affected by all the other interactions involving those species. Therefore,
it’s difficult to understand how one or several global environmental factors influence
a specific interaction without considering it as a part of the ecological network.
Similarly, as the ecological networks are universally dynamic, only one or several
snapshots of a system (e.g. Dossena et al., 2012; Shurin et al., 2012) is not enough to
show the general response of this ecosystem to some GEC drivers. If conditions allow,
time-series data would be better to show and understand the response and stability of
an ecosystem (e.g. Fussmann et al., 2014). To understand the mechanisms, we need
to design specific research questions to be able to measure how global change drivers
affect basic biological rates. From the point of view of interaction strengths, the
mechanism of how attack rates are influenced by body mass in different dimensions
also need a lot more effort.



Part Ill

General discussion






Discussion

Habitat degradation associated with warm-
ing harms biodiversity

This thesis explores how land-use change, with the association of climate change,
influences species’ feeding interactions and the resulting consequences to biodiversity.
The influences of land-use change are represented by habitat degradations (habitat
loss and habitat simplification) and climate change by warming. Feeding interaction
strengths are modeled by Holling’s type II or type III functional responses and I
tried to quantify how functional response parameters scale with habitat loss and
simplification. Their relevance to biodiversity are demonstrated by a predator-prey
system and a tritrophic food chain. Due to the potentially inaccurate estimations
of interaction strengths by results of individual feeding studies, I first investigated
the effects of experimental duration and predator satiation level on the estimates of
functional response parameters by a meta-analysis in chapter 2. This offers a better
understanding of feeding processes and how to improve the estimates of interaction
strengths. I, then, studied the effects of habitat loss and habitat simplification on
interaction strengths and a predator-prey system by a simulation model (IBM) and
an analytically-solved model (ODE), respectively (chapter 3). Finally, I combined
the meta-analytical approach and modeling approach to illustrate the synergistic
effect of habitat loss and global warming on interaction strengths and persistence of
food chains (chapter 4). The results showed that both habitat loss and simplification
severely influenced feeding interaction strengths, leading to a loss in biodiversity.

There exist a potential barrier between individual feeding experiments and pop-
ulation dynamic models in food web studies. If functional response parameters
estimated from individual feeding studies serve as a good estimation of interaction
strengths from a viewpoint of long-term population dynamics remained largely
untested. To improve such estimation, my results in chapter 2 pointed out the
importance of experimental duration and predator satiation level. The attack rate
decreases with increasing experimental durations. The handling time is larger for
satiated predators than for starved ones. Therefore, these results have important
implications. They suggest to carefully choose a relatively longer period of time,
during when the feeding processes are more representative for the life cycle of the
predator. They also suggest that theorists could find a better conversion for the
inappropriate estimates of interaction strengths, rather than use them directly. As
the satiation level of predator also affects handling time, the results of this study
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suggest the importance to average the effect of predator satiation, e.g. by using
predators with half-full guts or report the pre-feeding treatments to predators more
carefully.

The range of experimental durations covered in this chapter was mostly within
24 hours. Therefore, I explained the rationale of the influence of experimental
duration from two major processes in a diurnal cycle, feeding and resting. The
longer a feeding experiment, the more likely that resting will be involved which
would strongly influence the attack rate. The effect of predator satiation level can
be interpreted by ,digestive limit' which targets on the joint influences of gut size
and digestion rate (Jeschke, 2007). If a predator can fill up its gut faster than
digestion, the predator will then face a digestive limit. The result that handling times
for satiated predators are larger than for starved predators is a reflection for the
rationality of this explanation. Yet the data I analyzed in this chapter are mostly from
laboratory studies. Whether consumers in the field are also facing ,digestive limits‘ is
open to be investigated. One field study did test this question and suggested that a
fish predator (Micropterus salmoides showed digestive limit in the field (Essington
et al., 2000)). Even though the dataset I analyzed in this research chapter is mostly
comprised of the feeding studies in the laboratory, they have a strong connection
with interaction strengths used in theoretical studies of food webs. Whereas, feeding
studies in the field are mostly studied with a focus on conservation (for terrestrial
carnivores) or for fishery production, where they quantify the functional responses
by quite different approaches (Hunsicker et al., 2011; Zimmermann et al., 2015).

The laborious nature of functional response experiments and the limits of empirical
experiments (e.g. sizes of experimental arenas and uncontrollable side effects of
adding habitat complexities) both hinder the development of spatial ecology in the
field of feeding interactions. Therefore, I constructed an individual-based model
(IBM) to carry out in silico feeding experiments. It allowed me to investigate a large
ingredient of patch sizes (from experimental arena to field plot) and disentangle the
complex effects of habitat complexity. I also constructed a predator-prey model with
ordinary differential equations (ODE) in light of these in silico feeding experiments.
The results in chapter 3 showed that half saturation density increased with increasing
habitat complexity (represented by refuge availability for prey). Yet, patch size did
not influence any functional response parameters. The increasing half saturation
density indicated that the feeding efficiency of the predator decreased. With reduced
feeding efficiencies, the predator-prey system became more viable. The reason why
decreasing feeding efficiencies increase the viability of the predator-prey system is
that it decreases the energy gain relative to energy loss for the predator which would
lead to more stable population sizes of both predator and prey (Rip and McCann
(2011), more details below). Yet, I suspected the reason why patch size did not
affect functional response parameters (statistically not significant) might lie in the



fact that I only constructed a simple IBM without more behavioral complexities (see

Bergstrom and Englund, 2004, for the case with more behaviors).

Bearing in mind that in chapter 3, the question remained whether habitat loss
had an effect on functional response parameters, I conducted a meta-analysis and
constructed a tritrophic model of food chain. They allowed to investigate the
effects of habitat loss and warming on feeding interaction strengths and therefore
biodiversity. The results of this study (chapter 4) suggested, for the first time, that
the half saturation density decreased with increasing patch size based on a dataset
containing data systematically across different taxa and ecosystems. The results also
confirmed that the maximum feeding rate increases with temperature (Rall et al.,
2012; Fussmann et al., 2014). Combining the general rules on the scalings of other
major physiological rates (i.e. growth rate of basal species, carrying capacity of
environment and metabolic rate) with body mass and temperature, I showed by a
tritrophic model of food chain that the synergistic effect of habitat loss and warming
harmed the persistence of food chains. The result of reduced half saturation density
with increasing patch size is a key finding in this thesis. Even though I found a study
of video tracking supporting this finding, there exist much more to be investigated
in more details in the future (e.g. the mechanistic explanations). This study of video
tracking observed a behavioral change of species when patches were getting larger
(Bergstrom and Englund, 2004). They found that species got more active and caught
more prey in larger patches. However, due to time restraints, I was not able to check
if there was intra-specific competition of predators in the studies involved in this
database. If competition among predators plays a role, it may contribute to the
effect of patch size on half saturation density. Studies in the future shall investigate
this point to better understand the mechanism behind the effect of patch size on
functional response parameters.

I managed to identify the dimensionality of the data used in the meta-analysis of
chapter 4. I also parameterized the food-chain model in this chapter according
to different dimensionalities. The results of these two dimensional cases showed
consistency in major aspects. However, species persistence in food chains when
temperature is low and patch size is large showed quite different patterns in two-
and three-dimensional cases. In three-dimensional case when temperature is low,
the surviving species decreased with increasing patch size, which did not corroborate
my general findings from the meta-analysis. This is because of the reduced surviving
species here is induced by another mechanism. The reduced surviving species in
three-dimensional space is driven by the large variability of population densities.
Whereas, in the corresponding two-dimensional space, the populations were much
more stable. Rip and McCann (2011) suggested that any causes which lead to an
energy gain relative to energy loss would push the multi-population systems towards
oscillation. The relative energy decrease with increasing habitat complexity did
make the predator-prey system more viable and stable (chapter 3). Yet the relative
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energy decrease with decreasing patch size (i.e. habitat loss), within the range I
investigated in chapter 4, in general decrease the supporting number of species in
food chains. This is mainly due to the large range of patch sizes that I investigated.
The degree of energy decrease with habitat loss has been large enough to turn the
population densities to zero. But within the narrow domain where all three species
survived in three-dimensional cases, the population dynamics indeed get more stable
with habitat loss (see the coefficient of variation plots in Fig. 4.5).

Separating different dimensional cases has other major benefits. Habitat loss may
harm different dimensional ecosystems differently, e.g. ocean systems are dominated
by three-dimensional interactions and terrestrial ecosystems by two-dimensional
interactions (Barrios-O’Neill et al., 2016). Furthermore, to appropriately quantify
the functional response parameters, it is necessary to disentangle data from dif-
ferent dimensions. This is especially necessary as the direct interaction between
two individuals (i.e. searching, hiding, moving) operates differently in two- and
three-dimensional environments (McGill and Mittelbach, 2006) and the half satura-
tion density is directly dependent on the dimensionality (i.e. biomass per area in
two-dimensional patches and biomass per volume in three-dimensional patches).
Consequently, half saturation densities in different dimensionalities might respond
differently to habitat loss. This is a point that future studies should be dedicated to
investigate.

Even though I did not manage to include extinction boundaries for populations in the
food-chain model of chapter 4 as I did in the predator-prey model of chapter 3, this
point should be included in the future studies. The idea behind extinction boundaries
is among one of the oldest considerations in spatial ecology, i.e. ecosystem-size
hypothesis (Holt, 1993): a decrease of patch size decreases the absolute amount of
available resources in the whole patch and therewith leads to an energy limitation
that threatens most likely the upper trophic levels. Incorporating such extinction
boundaries (e.g. two individuals per patch) into population-based models would
allow a better implementation of space into of traditional food web studies (Kalinkat
et al., 2015). It can be done either by modifying the extinction boundaries according
to this individual concept in the algorithm of ODE simulations or to compare the
ending population densities from these ODE simulations with these individual-based
extinction boundaries afterwards. Yet future studies should be dedicated to figure
out and test for better techniques to incorporate this.

Some researchers suspected that the environmental carrying capacity (i.e. supporting
biomass per unit of size) would decrease with habitat loss, i.e. productivity-space
hypothesis (Elton, 1927). Since such research is difficult to carry out, I was not
able to include this point in the simulation models due to lack of empirical support
(chapter 3 and 4). I parameterized the constants of carrying capacities (i.e. ax) in
different dimensional spaces in chapter 4 according to different empirical studies, in



order to account for some influence from spatial properties. Future studies should

focus on such issues to gain a better understanding of the influences of space.

Allometric scalings were not only used to parameterize the variables in ODEs for
population dynamics models (i.e. major physiological rates which decide energy
flux in chapter 3 and 4), but also to parameterize the behaviors involved in feeding
processes (i.e. attack success, digestion rate and gut size in chapter 3). The metabolic
theory of ecology is capable of incorporating these behaviors as they are also limited
by the physiological and chemical properties of molecular and cellular components
for life (Brown et al., 2004). Yet, due to the lack of empirical support, most of
the feeding-related parameters (hereby digestion-related) in the IBM model were
parameterized based on data from one single study combined with rational guess. A
more mechanistically understanding of the behaviors involved in feeding processes
could be elaborated in the future studies.

The food-chain models I used in chapter 4 nicely demonstrate and explain how the
ensemble of species interaction (hereby feeding) and other major physiological rates
integrally determine the survival of species and they are also capable of inferring the
basic pattern of food webs, e.g. higher trophic level species are more vulnerable to
habitat loss and warming (Dobson et al., 2006; Shurin et al., 2012). Yet they are
not able to show more detailed behavior of some species in a food web, such as
omnivores. Especially the omnivores who feed on both resource and other consumer
species, as habitat loss does not directly influence the major physiological rate of
resource species, i.e. intrinsic growth rate yet does influence the feeding efficiency of
consumer species. In order to understand the mechanism of habitat modification on
biodiversity from the viewpoint of species interaction and other major physiological
processes, future studies can go beyond the feeding interaction which is the main
focus in this thesis to investigate other important physiological processes.

Altogether, this thesis provides a systematic investigation of the influences of habitat
modifications on biodiversity utilizing two modeling tools, individual-based modeling
and population-based modeling of ODEs, combined with a meta-analysis. The results
not only confirmed the importance of habitat complexity on supporting biodiversity
but also suggested the influence of habitat loss on biodiversity loss and its aggra-
vating effect on fostering global warming to induce biodiversity loss. I also utilized
allometric scalings to parameterize feeding-related behaviors, providing a model
framework which was capable of testing a lot of potential important mechanisms
involved in feeding-related studies. For example, by controlling the satiation level of
the predator, it showed the direct effect of predator satiation on feeding interaction
strengths (Scotti et al., 2017). In the ODE model of food-chain, I was able to include
absolute patch sizes by combing a set of empirically supported allometric scalings.
This improvement would aid to better explore research questions of spatial ecology
in food webs as the models before used to be normalized to only have relative space
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and time (e.g. Otto et al., 2007). The approach in this thesis of focusing on the
effects of global change on individual physiological rates and integrate these parts
which control energy flux into ecological networks allows to better investigate the
mechanisms of the influence of global change on biodiversity. I therefore address
the importance of species interactions and other major physiological traits on the
research of biodiversity and global change.



Part IV

Appendix
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Supporting information for
Chapter 2

VIF (variance inflation factor) test on independent
variables

According to Zuur et al. (2010), the independent variables of a linear mixed-effects
model shall all have the values of VIF less than 3 to make sure that there are not
correlation between them (i.e. multicollinearity). The variance inflation factor test is
operated in R (R Core Team, 2016) using the ,corvif* function provided by Zuur et al.
(2009). Before the test, we converted the values of binary variable predator satiation
level to either zero or one to make this variable valid for such test. All independent
variables involved in the analyses of functional response parameters turned out to
have VIF values less than 3: predator mass with VIF of 1.64, temperature 1.25,
experimental duration 1.33, predator satiation 2.19 and dimensionality 2.18.

Partial residual plots

The plotted points in Fig. 2.3 are presented as €,/ + bq/s Tq/s + aq/s VETSUS T4/,
where ¢4/, is the residuals of the statistical model for the specific dimensionality or
predator satiation, by, 74/ represents the fitted coefficient and the plotted indepen-
dent variable and ag, is the fitted intercept of the model for that dimensionality or
predator satiation.
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Supporting information for
Chapter 3

ODD protocol for in silico feeding experiment

Overview

We modeled allometric predator-prey feeding interactions using an individual-based
approach. The model description followed the ODD (Overview, Design concepts,
Details) protocol (Grimm et al., 2006, 2010). The model was implemented in C++
using Code::Blocks as development environment.

Purpose

The purpose of the model is to estimate the dependencies of functional-response
parameters on patch size and habitat complexity (represented by refuge availability)
in a system with one predator and several prey items. As a preparation, we first
investigated the maximum feeding rate without any explicit space properties, as we
assumed that the maximum feeding rate is driven by physiological (mechanical)
parameters such as chewing and digesting and does not scale with patch size or
habitat complexity. Secondly, we assessed functional responses of predators to
different prey densities in patches of different sizes and refuge availability.

Entities, state variables and scales

One predator and several prey individuals make up the agents of the model. The
common state variables of predator and prey are individual identity, spatial coordi-
nates (in cm), body mass (in mg), and body-mass dependent velocity. The predator
is characterized by further state variables related to hunting and digestion. The
parameter ,gut-fill captures how many milligrams of food are currently in the gut
of the predator, ,still-handling‘ captures how many time steps are still needed for
handling prey, and ,prey-eaten‘ counts the number of prey items consumed by the
predator.

The environment consists of a two-dimensional square area where its size and habitat
complexity can be modified. To manipulate habitat complexity in the form of refuge
availability for the prey, each cell in this area is characterized by the boolean state
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variable ,prey hiding‘. This variable is set to 1 if prey individuals staying in this cell
cannot be found by a predator, and to 0 otherwise. The predator and prey can move
continuously in the area via random walk. Predator and prey are both able to enter
all the cells, but the predator is not able to find prey in refuge cells. We implemented
non-periodic wall-like boundary conditions (Attard, 2006) to simulate a finite-sized
patch.

In terms of scales, one grid cell is always 1 cm x 1cm and the spatial extent of the
patch is modified from 20 cm x 20 cm to 1000 cm x 1000 cm to account for different
patch sizes. One time step represents one second and the simulations are ran for
3600 time steps corresponding to one hour.

Process overview and scheduling

The first process that is applied in this discrete-time model is prey movement (random
walk with randomly chosen direction and allometric distance, i.e. the velocity of an
individual scales with its body mass). The following processes are the predator’s
decisions and actions (Fig. 3.1 in the main text). First, the predator digests and
afterwards if it has caught prey previously and is still handling it, the predator does
the process of handling. Subsequently, if the predator is not handling prey anymore
and its gut is full (,gut-fill' >= 60%), it rests, i.e. it does not take any actions in this
time step. If the predator is not handling prey and is hungry (,gut-fill' < 60%), the
predator moves according to the same rules as prey. After reaching the new position,
the predator investigates if it encounters a prey in the current cell. If there is a prey
individual in the same cell and this cell is not marked as refuge, the prey will be
attacked. If the attack is successful, another prey item is placed randomly into the
grid to keep prey density constant. The predator starts to handle the prey in the next
time step.

Design concepts

Basic principles - This model mimics classical functional response experiments in
the laboratory, but the model allows to explore much larger patch sizes than in a
real laboratory arena. Moreover, the model can more easily be used to determine
maximum feeding rates than laboratory experiments, because the amount of prey
can be held constantly until maximum feeding rates are reached. Emergence -
Functional responses are the main emerging pattern from the model, arising from
the predator’s efficiency at catching prey in patches of different sizes and habitat
complexity (refuge availability). Sensing - Predator and prey are able to detect each
other when they meet in the same cell which is not marked as refuge. Both predator
and prey are able to detect patch edges and stop nearby when they reach an patch
edge. Next time when this individual needs to move, it just moves according to the
same rules as before. Interaction - The predator interact with prey by feeding on the
prey when they meet on the same cell and the prey is not hidden. When the prey



is in a refuge cell, the predator can enter that cell, but does not interact with the
prey. Stochasticity - Random numbers are used in initialization of most variables,
including coordinates of agents, the refuge availability of cells and the state variable
,gut-fill° of the predator. Stochasticity is also involved in the moving direction of
agents when random walk applies. Bernoulli-distributed random numbers are drawn
to determine the handling time for a prey item as time is a discrete variable in this
model. Observation - In each in silico experiment, the number of prey items eaten
by the predator is recorded at each time step. At the end of each simulation run,
patch size, refuge availability (percentage of refuge cells), initial prey number, and
,prey-eaten‘ are recorded.

Initialization

Random values are used to initialize the spatial coordinates of all agents and choose
refuge cells. All other initial parameters are listed in Table S3.1.

Tab. S3.1: Agents’ state variables and parameters

sort variables unit note
gut-fill rate randomly initialized
state variable still-handling S initially set to zero
individual identify number
prey-eaten number initially set to zero
velocity cms—!
rate of successful attack rate
calculated parameter full gut mg allometrically calculated
digestion rate rate
handling time S

Most species traits regulating the processes described above are calculated by allo-
metric rules. These include velocities of predator and prey V [ecms~!], Eq. (S3.1a),
(Peters, 1983), and the predator-specific traits: gut size G [ mg], Eq. (S3.1b), (Ibar-
rola et al., 2012); digestion rate D [mgs~!], Eq. (S3.1c), (Ibarrola et al., 2012);
handling time 7}, [s], Eq. (83.1d), (modified from Rall et al., 2012); and rate of
successful attack S, unitless, Eq. (S3.1e), (Wahlstrom et al., 2000; data from Gergs
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and Ratte, 2009, and Gergs, 2011):

V =vgM™ (S3.1a)
G = gg M% (S3.1b)
D = dy M% (83.1¢)
Ty, = ho Mp™" My"" (S3.1d)
A
R
Sy = ag [ L et o (S3.1¢)
Ropt

where vy, go and d are constants, a,, ay4, and a, are the allometric exponents, and
M is the body mass of the corresponding individual. Subscripts , and ,, of M indicate
predator and prey, respectively. As only few relevant studies were found on digestion
mechanisms, we used generalized Ricker’s function (Persson et al., 1998; Persson
and Bronmark, 2002b,a; Wahlstrom et al., 2000; Brose et al., 2008; Rall et al., 2011)
to describe the scaling of attack success (S,) depending on body size. This function
consists of the maximum attack success ag, predator-prey body-mass ratio, R and
its optimum R,,; and a shaping parameter, \. Predator and prey also possess some
state variables to assist their decision making and activities, i.e. ,position‘ for all
individuals; ,gut fullness‘ and ,still handling‘ for the predator; ,prey identity* for

prey.

Submodels

1. Prey move. This process is the first one for each time step. Prey individuals do
random walks consecutively according to their identity number. A random direction
is generated (a double precision floating number from O to 27) and position changes
vertically and horizontally are calculated according to prey velocity. Before updating
the actual coordinates, wall boundary conditions are considered, checking if values
of the coordinates would be beyond the boundaries. If so, the value is set close to
the coordinate value of that edge but with a distance to the edge of 1076 cm.

2. Digest. The state variable ,gut-fill° of the predator is subtracted by ,digestion
rate‘ in this process. It is executed each time step even when the gut is already empty.
If the value of gut fill drops below zero, it is set to zero.

3. Handle prey. This process is executed under the condition that the state
variable ,still-handling‘ has a positive value. The value of ,still-handling‘ is reduced
by one in this process.

4. Move. The predator does a random walk. If the predator is satisfied, meaning
,gut-fill exceeds 0.6, this process is skipped.

5. Encounter and attack? Here, the coordinate of the predator is checked only
when it is about to hunt (,gut-fill' < 0.6). If the predator is currently in a refuge
cell, the hunting process is forfeited. If it is not forfeited, the following actions are



executed. 1) Check potential prey, checking if there exists one prey item that is in
the same cell as the predator. Checking order follows the prey’s identity numbers.
As soon as one prey fulfills the condition, the checking is finished. 2) If there is
a potential prey item, a random number (ranging from 0 to 1) is generated and
compared to ,rate of successful attack to decide if this prey flees.

6. Attack success? If the attacked prey does not flee (attack success), values
of ,gut-fill and ,still-handling will be increased by the amounts calculated from the
prey mass and ,prey-eaten‘ will be increased by one. As time is discrete in our model,
a Bernoulli-distributed random number is drawn to make sure that the value of
,still-handling’ is an integer and on average still satisfying the calculated handling
time. If the prey flees (attack unsuccessful), this time step ends.

7. Replace caught prey. If attack succeeds, the killed prey item (i.e. its identity
number) would be randomly given a new set of spatial coordinates, but body mass
never changes.

8. Output data. Data are recorded immediately after each of 3600 time steps.
The number of prey eaten and relevant input values are recorded, i.e. body masses
of agents, patch size, percentage of refuge cells and initial number of prey items.

Allometric handling time

We used data from Rall et al. (2012) to parameterize the equation for handling time
(Th, Eq. (3.2d)). We only selected the data for predation (parasitism excluded) and
for short experimental duration (< 10 minutes) to make the analysis. We fitted 67
data points to a linear mixed-effects model (,lme’ in the package ,nlme‘ in R, Pinheiro
et al. (2016); R Core Team (2016)). To correct for differences between studies, study
identity was used as a random factor, and all the variables (explanatory variables,
body masses of predator and prey species and dependent variable handling time)
were In-transformed. The statistics showed that the handling time increased with
increasing prey mass and decreased with increasing prey mass and decreases with
increasing predator mass (Fig. S3.1, Table S3.2).

Tab. S3.2: Statistics for handling time ¢

Estimate S.E. p-value

intercept 3.624 0.839 0.0001
Inpred? -0.330  0.059 <0.0001
In.prey ¢ 0.173 0.051 0.0013

“handling time is In-transformed
®In-transformed predator body mass
‘In-transformed prey body mass
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part. resid. In(handling time [s])

iy

T T T T T T T T T T
-10 -5 0 5 10 -20 -15 -10 -5 0

In(predator mass [mg]) In(prey mass [mg])

Fig. S3.1: Statistical results for handling time (7}) show that handling time decreases with
increasing predator body mass and increases with increasing prey body mass.
Data are In-transformed before fitting. The partial residual of handling time is
used as y-axis.

Preliminary model selection

We listed the statistical results of ,preliminary tests‘ (section ,,Functional response
fitting“ in the main text) on the types of scaling that functional-response parameters
had with patch size or refuge availability, Tab. S3.3. For the simulations on predator-
prey body-mass ratio of 100 and 200, the selected best model (according to the
BIC) includes (1) half saturation density scaling with power law to patch size and
exponentially to refuge availability; (2) Hill exponent scaling with power law to both
patch size and refuge availability. For the simulation on body-mass ratio of 50, (1)
the model is selected for the same scaling relationships of half saturation density
as for body-mass ratio of 100 and 200; thus, (2) Hill exponent scales exponentially
with both patch size and refuge availability.

In silico teeding experiments on other body-mass
ratios

We additionally did functional response simulations for predator mass of 200 mg
and 50 mg (prey mass of 1 mg). However, we reduced the numbers of patch
sizes and refuge availabilities. The simulated patch sizes for both predator masses
are 0.04m?, 0.64m?, 2.56m?, 16m?, 49m? and 64m?; and the simulated refuge



Tab. S3.3: Full model selection on scaling rules of functional-response parameters

. ab BIC
model scaling rules 100 500 G
eeee 45061.65 5710.646 3930.403
eepe ¢ 45083.81 5709.091 3933.047
peee 45026.84 5709.33  3928.032°¢
eeep 45057.89 5706.494 3930.711
epee 45219.88 5741.362 3940.024
pepe 45025.2  5707.415 3930.593
eepp 45091.41 5705.066 3932.338
eppe 45218.91 5754.17 3944.321
peep 45025.39 5706.341 3928.081
ppee 45228.25 5735.171 3938.638
epep 45231.84 5734.309 3940.953
pepp 45023.57 5703.671 3930.069
pppe 45185.07 5733.498 3941.549
eppp 45223.9  5731.754 3944.204
ppep 45236.62 5737.974 3944.041
ppPPP 45189.86 5729.644 3941.185

“scaling of Ny to A, Ny to R, hto A and h to R, subsequently

b Ny half saturation density, » Hill exponent, A patch size, R refuge availability
‘predator-prey body-mass ratio

de/p: exponential/power law scaling

“lowest BIC value

550 -
220
500 -
200 -
450
180

No

400
160 -

350
140 1

300 -
120

250 -

100
200 50
T T T T T T T T

T T T T
0.1 0.2 0.3 0.4 05 0.6 0.1 0.2 0.3 0.4 0.5 0.6
refuge availability refuge availability

Fig. S3.2: Effect of habitat complexity (expressed as refuge availability) on half saturation
density. Panel A and B show the results for body-mass ratio of 200 and 50,
respectively (right-bottom corner).

availabilities are 5% to 65%, in steps of 15%. All the following statistics follow the
descriptions in the paper.
The maximum feeding rate, f,,q., were 4.12 and 10.56 individuals for predator
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Tab. S3.4: Statistical results of functional-response parameters simulated on other body-

mass ratios

predator mass parameter ¢ estimate s.e. p-value

Jmaz 10.56 0.04 <2x 10716
200 b, 1.504 0.159 <2x1071¢
ht In(Cy,) 5.338 0.067 <2 x 10716
In(Ch) 0.25 0.028 <2x 10716
Jmaa 4.12 0.07 <2x10716

50 b, 1.423 0.257 3x 1078
In(Cy,) 4.503 0.110 <2x 10716

In(Ch) 0.26 0.047 3x 1078

“refer to Eq. (3.5) in the main text

0 5 10 0o 5 10 0 5 10
In (prey density [# m™])

Fig. S3.3: Results of in silico functional response experiments (black dots) and their corre-
sponding fits (red lines). The panels are arranged by increasing refuge availability
and increasing body-mass ratios of predator-prey. The upper row (panels A to E)
are for body-mass ratio of 200 and lower (panels F to J) for 50. Each row starts
with data of 5% refuge availability (A, uppermost left) to 65% (O, lowermost
right). All prey densities are In-transformed. The grey vertical lines denote the
half saturation densities.

mass of 50 mg and 200 mg (Tab. S3.4). The final models for predator mass of
50 mg and 200 mg based on the BIC selection showed the same dependencies,
including an exponential scaling of half saturation density with refuge availability
but no scaling with patch size (refer to Eq. (3.5a)). Consistent with the result for
predator mass of 100 mg in the main text, they did not include any scaling of
Hill exponent for both predator masses (refer to Eq. (3.5b)). The half saturation
densities increased with increasing refuge availability, by, = 1.504 for predator
mass of 200 mg and by, = 1.423 for predator mass of 50 mg , see Fig. S3.2 and
Tab. S3.4. The In-transformed intercepts of the half saturation density were 5.338
and 4.503 for predator mass of 200 mg and 50 mg, respectively (Tab. S3.4). The
estimated Hill exponents across all patch sizes and refuge availabilities were 1.284



for predator mass of 200 mg and 1.300 for predator mass of 50 mg (Tab. S3.4). The
fitted functional response curves are of the same shape but feedings are realized at
higher densities with increasing refuge availabilities (Fig. S3.3).
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Supporting information for
Chapter 4

Details on meta-data and statistical analyses

Preprocessing of the meta-data
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Fig. S4.1: Deleted data from the meta-data. Excluded data points are marked gray which

are out of two standard deviations of mean patch sizes (m? | m®) in both two-

and three-dimensional spaces (see legends). Data plotted are In-transformed.

We excluded the data points which are out of the two standard deviations of the mean
patch sizes before the statistical analysis (see Fig. S4.1). Besides, we also did a test
on variance inflation factor (VIF) before data analysis. All the independent variables
(predator mass, temperature, patch size and dimensionality) that we included in
the statistical models have VIF values less than 3 (Zuur et al., 2010), meaning that
there’s no evidence for collinearity in these variables. Therefore, it’s valid to do the
analysis that we carried out for meta-data.
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Selection of random structures

The table S4.1 illustrates how we selected random structures for the statistical models
of functional response parameters, half-saturation density and specific maximum

feeding rate.

Tab. S4.1: Selection of random structures used in models analyzing functional response

parameters
FR parameter fixed structure random structure BIC
1+ in(M,) |EM/P4  2152.384
_ 1|EM/P 2163.007
a M) + 3720 xIn(A) )« D P
1|P 2153.044
1+ in(M,)|EM/P  2115.123
_ 1|EM/P 2098.115
g T-Ty h
il fimaz) (In(Me) gy = n(A))« DE ) ) p 2096.333
1|P 2094.934

%half saturation density

bsee Eq. (4.32)

‘ecosystem type (terrestrial, freshwater or marine) plus metabolic type of the predator (invertebrate,
ectothermic vertebrate or unicell)

dpublication name

‘the factor P is nested in the factor EM

frandom factor affecting both intercept (1) and predator mass (In(M.)) of the model

$specific maximum feeding rate

hsee Eq. (4.3b)

Partial residuals plots

The data points plotted in Fig. 4.3 are presented as ¢4 + bgx g + ag versus xy where ¢4
is the residuals of the statistical model for the specific dimensionality, bz, represents
the fitted coefficient and the plotted independent variable for that dimension and ay4
is the fitted intercept of the model for that dimension.

Data points with large deviations

The line of data points at In(patch size) of -3 which lining across a large range of
,partial residual In(By)‘ are the data from Galarowicz and Wahl (2005), see Fig. 4.3B.
In this study, Galarowicz and Wahl made feeding trails not only with the suitable
prey for that stage of the predator but also with the unsuitable prey, resulting the
long line at In(patch size) of -3.
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Fig. S4.2: Plot of predator body mass versus patch size. This figure demonstrates the range
of patch sizes [m? | m? ] for all predator body masses [ mg ]. Data points for two-
and three-dimensional spaces are plotted separately (see legend).

101



102

Patch size and predator body mass

Our meta-data shows that the predator body mass and the size of the patch where
the feeding trails are conducted is positively related (Fig. S4.2). Yet for each predator
mass, the associated patch sizes still exhibit a considerable variation.

Timeseries of some selected food chain
simulations
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Fig. S4.3: Timeseries of a food chain simulation in three-dimensional space. The simulation
shown utilizes the type II functional response and the simulated patch size and
temperature are shown. The biomass changes of basal species (B;), intermediate
consumer (B;) and top predator (By) over time (x-axis) are illustrated. The
ending biomasses are stable for this simulation.
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Fig. S4.4: Timeseries of a food chain simulation in three-dimensional space. The simulation
shown utilizes the type II functional response and the simulated patch size and
temperature are shown. The biomass changes of basal species (B;), intermediate
consumer (B;) and top predator (B;) over time (x-axis) are illustrated. The
biomasses exhibit cycling dynamics for this simulation.
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