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Investigations are undertaken into simple predator–prey models with rational interaction terms in one and
two spatial dimensions. Focusing on a case with linear interaction and saturation, an analysis for long
domains in 1D is undertaken using ideas from spatial dynamics. In the limit that prey diffuses much
more slowly than predator, the Turing bifurcation is found to be subcritical, which gives rise to localized
patterns within a Pomeau pinning parameter region. Parameter regions for localized patterns and isolated
spots are delineated. For a realistic range of parameters, a temporal Hopf bifurcation of the balanced
equilibrium state occurs within the localized-pattern region. Detailed spectral computations and numerical
simulations reveal how the Hopf bifurcation is inherited by the localized structures at nearby parameter
values, giving rise to both temporally periodic and chaotic localized patterns. Simulation results in 2D
confirm the onset of complex spatio-temporal patterns within the corresponding parameter regions. The
generality of the results is confirmed by showing qualitatively the same bifurcation structure within a sim-
ilar model with quadratic interaction and saturation. The implications for ecology are briefly discussed.
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1. Introduction

Spatial ecology is a relatively recently introduced term for the study of spatial effects in ecology,
see Fletcher & Fortin (2018) for an overview. As originally introduced by Tilman & Kareiva (1997),
the term mostly refers to statistical methodologies for studying the autocorrelation of ecosystems in
different spatial locations, as well as the effect of landscape change and animal movement. However,
the study of spatial effects in ecological models actually goes back much further than that, see e.g. the
groundbreaking work of Skellam (1951) who set the scene for hypotheses on dispersal that have been
studied extensively in the past few decades. Before that, there was the pioneering work independently by
Fisher, Kolmogorov, Pitrovski and Piskunov in 1937 that led to the famous K-KPP reaction–diffusion
model that is known to support travelling wave fronts, see e.g. Grindrod (1996) and references therein.
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LOCALIZED PATTERNS IN PREDITOR–PREY SYSTEMS 809

There is now a rich literature within theoretical ecology of models that can give rise to complex
spatio-temporal patterns.

The particular question of interest in this paper is whether predator–prey interaction can give rise to
stable spatial hotspots, which is temporally stable localized patterns of high or low population density
within a homogeneous environment. There are comparatively fewer studies that consider theories for
such patterns in ecological systems. Notable exceptions are early works by Okubu & Levin (2001);
see also Meron (2015) and references therein. There is also recent theoretical work seeking to explain
vegetation patterns in semi-arid zones (e.g. Bastiaansen et al., 2018; Gandhi et al., 2018; Meron, 2019;
or rainforest-savanna systems; Wuyts et al., 2017).

The context in which we choose to address this question is that of classical predator–prey systems,
where typically the interaction times are faster than many of the vegetation-pattern models. In the
late 1950s and early 1960s, Holling (1959, 1965) postulated three different types of functional
relationships between predator and prey, from a simple multilinear interaction (type I), to rational Hill-
type nonlinearities of power 1 (type II) or higher (type III). See Dawes & Souza (2013) for a modern
rigorous definition of these kinds of nonlinear terms as the limits of random processes. Actually, type II
functional responses were first considered by Rosenzweig & MacArthur (1963). The existence of Hopf
bifurcations in this model is ecologically significant, especially because the bifurcation occurs as the
prey carrying capacity is increased. This is known as the paradox of enrichment Rosenzweig (1971) and
Roy & Chattopadhyay (2007) for which spatial dispersal has been argued as one solution, at least on
some timescales (Grindrod, 1988). In fact, it has been known for almost 30 years that this model, when
spatially extended by diffusion, can exhibit spatio-temporal chaos (Pascual, 1993).

We also restrict attention to models that use simple second-order diffusion to model random dispersal
of spatially structured populations, which is at best only an approximation to how real populations
move. See e.g. the review by Potts & Lewis (2019) for models that incorporate territoriality, home-
range analysis and other kinds of taxis in pattern-forming behaviours where demographics (birth and
death) can be ignored. Others have considered slightly longer timescales and thus included demography
alongside more complicated models of movement than random dispersal, see e.g. Taylor et al. (2020)
and references therein. Typical models of vegetation pattern formation in semi-arid landscapes also
involve more complicated spatial effects such as advection of water. In what follows, we shall take
a parsimonious approach and ignore such complexities, while considering an intermediate timescale
where demography is important, but not so long as in the case of vegetation pattern formation.

Another motivation for the present work is the recent interest in the propensity for localized
structures in a multitude of different settings that are governed by systems of reaction–diffusion
equations; see e.g. Knobloch (2015) and Champneys et al. (2021) for reviews. Such structures appear
from the subcritical Turing bifurcations that emerge due to the bi-stability between homogeneous rest
states and spatially periodic patterned state. The existence of such localized patterns has been observed
in various area of study whenever there is an active medium and include chemical reactions, many areas
of fluid mechanics and soft matter, optical systems and even a theory of crime hot spots (Lloyd &
O’Farrell, 2013; Tes & Ward, 2016).

Of particular relevance here are several recent theories for spontaneous creation of localized
vegetation patterns (Bastiaansen et al., 2019; Dawes & Williams, 2016; Meron, 2016, 2018; Zelnik
et al., 2013). Indeed such localized patches have been reported in various study areas such as marine
sea-grasses (Ruiz-Reynés et al., 2017) and drylands (Lejeune et al., 2002; Zelnik et al., 2013, 2016).

Here though we shall focus on localized patterns in predator–prey systems, where in addition to
spatially periodicity, through a Turing bifurcation, one can have temporal periodicity through a Hopf
bifurcation. Our study was originally inspired by the works of Borgogno et al. (2009), Bordeu et al.
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810 F. AL SAADI ET AL.

(2016) and Cobbold et al. (2015), which study predator–prey-like models that might underlie the onset
of spatio-temporal patchiness. Our analysis is also in the same spirit as recent relevant bifurcation
analyses such as in the works of Mukherjee et al. (2018), Xiao & Jennings (2005), Bandyopadhyay
& Chattopadhyay (2005), Jiang et al. (2017) and Medvinsky et al. (2002). In particular, in the context
of Holling type-II and III predator–prey models, we mention the works of Berezovskaya et al. (2001)
and Hsu et al. (2001). Also the existence of Turing patterns and the chaos was considered in Banerjee
& Petrovskii (2011) and Medvinsky et al. (2002) and the existence of stable limit cycle was shown in
Xiao & Ruan (2001).

The rest of this paper is organized as follows. Section 2 presents a system of reaction-diffusion
equations that represent a predator–prey model with a modified Holling type-II nonlinearity. That
section also contains linear and weakly nonlinear analysis to identify the co-dimension two point where
pattern onset through a Turing bifurcation changes from subcritical to supercritical. Section 3 then
contains numerical bifurcation analysis for the system posed on a long 1D domain, where so-called
homoclinic snaking causes multistable patterns with arbitrarily many patches. The effect of a temporal
supercritical Hopf bifurcation is shown to lead to spatio-temporal chaos. Furthermore, Section 4 studies
the same model numerically in two spatial dimensions, and evidence is found of 2D localized patterns
and spatio-temporal chaos for similar parameter values. Section 5 shows that qualitatively similar results
can be found in a generalized Holling type-III ratio-dependent model. Finally, Section 6 contains
concluding remarks.

2. A ratio-dependent predator–prey model

Consider the ratio-dependent predator–prey reaction–diffusion system of nonlinear partial differential
equations (PDEs) studied in Kuang & Beretta (1998):

ut = f (u, v) + ε∇2u = u(1 − u) − βuv

u + v
+ ε∇2u, (2.1a)

vt = g(u, v) + ∇2v = αuv

u + v
− δv + ∇2v. (2.1b)

Here u(z, t) and v(z, t) represent, respectively, dimensionless prey and predator population densities at
position z. In what follows, we shall consider the problem in one spatial dimension, in which case z = x
or in 2D, in which case (x, y). We assume that the domain is large and there are homogeneous Neumann
boundary conditions at x = ±L and, if appropriate, y = ±L for some L � 1.

The parameters in (2.1) can be interpreted as follows: α is a conversion coefficient that measures the
positive effect of the predator’s interaction with the prey, β is the corresponding negative effect on the
prey, δ is ratio of net death rate of the predator to the birth rate of the prey in the absence of interaction
and ε � 1 is the ratio of diffusion of the relatively static prey to the much more mobile predators. When
applied to vegetation patches, u and v represent vegetation and the environment, respectively.

In the absence of the diffusion terms in (2.1), a straightforward calculation shows that the solution
(u, v) admits three homogeneous steady-state points. These being

(i) The extinct steady-state S1 = (0, 0).

(ii) The predator-free steady-state S2 = (1, 0).
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LOCALIZED PATTERNS IN PREDITOR–PREY SYSTEMS 811

(iii) The coexistence steady-state S3 = (u∗, v∗) with

u∗ = β (δ − α) + α

α
, v∗ = u∗ (δ − α)

δ
(2.2)

exists under the following conditions α > β(α − δ) and δ > α.

Several authors, e.g. Xiao & Ruan (2001) and Banerjee & Volpert (2017), have considered how ratio-
dependent predator–prey systems require some additional rule in order to be well defined at the origin.
In our case, the trivial steady-state S1 is at the edge of the allowed domain for (u, v) and is unstable in all
parameter regions we investigate. From a biological perspective, we are interested in localized patterns
that have as background the non-zero steady-state S3.

To develop a basic analytical understanding, we first consider (2.1) in one spatial dimension only.

Hence, for the remainder of this section, we will shall assume ∇2 = ∂2

∂x2 .

2.1 Linear stability analysis

The Jacobian matrix of the system linearized about the equilibrium S3 is

J =
⎛
⎝

(β−1)α2−β δ2

α2 −β δ2

α2

(α−δ)2

α
− (α−δ)δ

α

⎞
⎠ . (2.3)

A straightforward analysis of the eigenvalues of J reveals that a Hopf bifurcation occurs at the critical
value of α = αH given by

(β − δ − 1) αH
2 + δ2 (

αH − β
) = 0. (2.4)

Next, to look for a pattern-formation, or Turing, instability of S3, we follow a standard approach
(e.g. Cross & Hohenberg, 1993) by considering the ansatz

(
u
v

)
=

(
u∗
v∗

)
+

(
ak
bk

)
eikx+λt, (2.5)

where k and λ are the spatial wave number and the growth factor or temporal eigenvalue, respectively,
and ak and bk are the real amplitudes with solution ‖(ak, bk)‖ � 1. The corresponding dispersion
relation is

λ(k)2 − Tkλ(k) + Dk = 0 (2.6)

where

Tk =
(
β − (δ + 1) − (ε + 1) k2

)
α2 + (α − β) δ2

α2
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812 F. AL SAADI ET AL.

Fig. 1. Dispersion curves �(λ) in (2.6) versus k for β = 2.3, δ = 0.3, ε = 0.1 and three different bifurcation values of α: α = 0.4
(solid red line), α = 0.39188 (dotted black line) and α = 0.390 (dashed blue line).

and

Dk =
(
k2 + δ

) (
εk2 − β + 1

)
α2 − δ2

(
εk2 − 2 β + 1

)
α + β δ2

(
k2 − δ

)
α2 .

From (2.6), we have λ(k) = Tk±
√

T2
k −4Dk

2 . The solution is stable whenever �(λ) < 0 for all k and the
conditions for a Turing instability with critical wave number kc is

�(λ(kc)) = 0 and �(∂kλ(k)|k=kc
) = 0. (2.8)

Note that S3 is stable for the spatially homogeneous mode k = 0.
Applying (2.8) to (2.6), we find

(−εδ + β − 1) α2 + δ2 (α ε − β) = 2 α
√

ε δ (α − δ) (β (δ − α) + α), (2.9a)

k2
c = (−εδ + β − 1) α2 + δ2 (α ε − β)

2α2ε
. (2.9b)

Thus, (2.9) gives the value k = kc and the parameter condition for Turing instability. Figure 1
displays various dispersion curves for �(λ) in (2.6) versus k for specific values of the parameters β,
δ and ε while varying the bifurcation parameter α. The figure shows different scenarios of solution
stability for (2.1). Specifically, α > αc (solid red curve) represents instability where there are positive
eigenvalues λ for a range of k-values, α = αc (dotted black curve) represents the critical case of a Turing
bifurcation where for k = kc λ = 0 and dλ

dk = 0 and α < αc (blue dashed curve) which corresponds to
instability as λ < 0 for all k.

Moreover, we obtain the following condition for the existence of double real spatial eigenvalue
(sometimes referred to as a Belyakov–Devaney (BD) transition,

(−εδ + β − 1) α2 + δ2 (α ε − β) = −2 α
√

ε δ (α − δ) (β (δ − α) + α) (2.10)

the significance of which is explained in the next section.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/4/808/6311547 by guest on 06 M

ay 2022



LOCALIZED PATTERNS IN PREDITOR–PREY SYSTEMS 813

2.2 Weakly nonlinear analysis

We now seek an analytical expression for the codimension-two point for (2.1) where the Turing
bifurcation changes from a super to subcritical bifurcation. This is achieved by using normal form
analysis (Elphick et al., 1987; Haragus & Iooss, 2007; Verschueren & Champneys, 2017). Consequently,
we introduce a new set of variables (U, V) into (2.1) centered on the steady-state S3:

(
u
v

)
=

(
u∗
v∗

)
+

(
U
V

)
(2.11)

where u∗, v∗ represents the steady-state S3. Hence, we obtain

(
U
V

)
t
= [

J|S3
+ D∂xx

]
c

(
U
V

)
+

(
U
V

)
NL(U, V), (2.12)

where
[
J|S3

+ D∂xx

]
c

represents the linear operator of (2.12) with J being the Jacobian matrix evaluated
at S3, D is a diagonal matrix that accounts for the diffusion coefficients associated with the second-order
spatial derivatives and NL(U, V) is a scalar quantity that reflects the nonlinear terms in (2.1) after using
the change of variables (2.11). Here, the sub-index c is referring to the critical values of the parameters
(α, ε), which are determined by (2.9) for fixed β and δ. In the rest of the analysis, we will drop the
sub-index c assuming that all functions are evaluated at the critical values of these parameters.

We follow Elphick et al. (1987) to determine the coefficients of the normal form and use a similar
procedure of that in Verschueren & Champneys (2017) for our given system of equations (2.12). The
details are omitted for brevity. We seek a time-independent solution for (2.12) of the form

(
U
V

)∣∣∣∣ lin =
(

Aeikcx + c.c.
) (

w1
w2

)
, (2.13)

where k = kc is at the critical value of parameters (α, ε), c.c. means the complex conjugate, wi, i = 1, 2
are obtained from the Ker

(
J + D∂xx

)
in (2.12) and A is the constant amplitude of the pattern. At third

order, we obtain an amplitude equation of the form

∂tA = L1A + L3A|A|2 + O(A|A|4), (2.14)

where the Li are normal form coefficients that can be expressed in terms of all the parameters of the
problem. These expressions are lengthy but can easily be evaluated using computer algebra. Using the
algebraic expressions so obtained, Fig. 2a plots the value of L3 as a function of the single variable α with
ε = ε(α). The point L3 = 0 is indicated by a yellow circle. This represents a codimension-two point
where the Turing bifurcation changes from being subcritical (red) to a supercritical (blue). Figure 2b
presents the location of the codimension-two point in the (ε, α)-plane. The importance of the existence
of a subcritical region is that this leads to a bi-stability region between the homogeneous state and the
bifurcating periodic patterned state in which we might expect to find localized structures.
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814 F. AL SAADI ET AL.

Fig. 2. The fixed parameters values of β = 2.3 and δ = 0.3 are used. (a) A plot of L3 = L3(α) where the yellow coloured
circle indicates the zero of L3. (b) A plot of ε versus α along the critical curve in (2.9) where the codimensional-two point
(εc, αc) = (0.6044768459, 0.4537) is indicated by the yellow coloured circle. In both figures, the coloured yellow circle indicates
that there is a change in Turing bifurcation from being subcritical (red curve) to supercritical (blue curve).

3. Bifurcation analysis and numerical simulation

We now use the local bifurcations in the previous section as the starting point of an investigation into
localized pattern solutions to (2.1). These are solutions that asymptote to the coexistence homogeneous
state. In what follows, unless otherwise stated, we fix

β = 2.3, δ = 0.3 (3.1)

and treat α and ε as bifurcation parameters.

3.1 Numerical methods

The suite of numerical tools used to investigate localized pattern solutions to (2.1) is the same as used
in earlier papers by the first two authors, e.g. Champneys et al. (2021) and Al Saadi et al. (2021a,b).

Accurate computation of steady solutions as parameter vary is undertaken using the numerical
continuation package AUTO. To do this, we truncate to a long finite domain [−L, L] where L � 1.
Standard theorems on numerical approximation of homoclinic solutions (Sandstede, 1997) show that in
the case that the far field represents a hyperbolic equilibrium, then the convergence is exponential in L.
Also, without loss of generality, we solve on the half domain [0, L] for L � 1 with Neumann boundary
conditions. This is because the steady version of (2.1) on the real line can be written as a reversible
system, but it does not conserve a first integral. Therefore, symmetric homoclinic orbits (satisfying
Neumann boundary conditions at their mid point) are generic under parameter perturbation, whereas
asymmetric homoclinic orbits are not structurally stable (see e.g. Champneys, 1998, and references
therein). Typically, we use values of L = 200 but we often choose to depict only the portion of the
solution close to x = 0. Sometimes, for convenience, we also depict solutions for x < 0 also, which is
obtained by symmetry.
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LOCALIZED PATTERNS IN PREDITOR–PREY SYSTEMS 815

Fig. 3. (Left): bifurcation diagram of (ε, α) with white, green and yellow coloured regions to identify the different types of solution
(u(x), v(x)) for (2.1). All solution curves are obtained analytically except thin black lines which are a numerically contained curve
of folds of the single-patch localized structure shown in panel (d). In addition above the Hopf bifurcation line (red curve) steady-
state solutions are unstable to an oscillatory instability. (Right): solution profiles of typical steady state at the points labelled
(a)–(d) in the left-hand plot.

To look at the stability and dynamics of localized patterns, we use a dual approach in Matlab. We
compute stability by taking a second-order finite-difference approximation to the PDE system linearized
about one of the non-trivial steady states, extended to a symmetric domain [−L, L]. We then compute
the spectrum of the resulting discretized inhomogenous linear operator using Matlab routine eig. Care
was taken to allow both symmetric and anti-symmetric eigenmodes.

In addition, we simulate of the fully nonlinear PDE system obtained using the same finite-difference
approximation in space, with zero flux boundary conditions, using the Matlab stiff solver ode15s.
Typical values of the maximum temporal and spatial step sizes were chose as dt = 0.001 and dx =
0.05, respectively, so as to satisfy the CFL stability conditions. Care was taken to check that the results
presented are qualitatively robust to changes in L and in the step sizes and Matlab tolerance parameters.

3.2 Parameter space investigation in 1D

Figure 3 depicts an overall summary of the two-parameter bifurcation diagram, indicating the linear
stability boundaries and parameter regions where different kinds of solution are observed. The particular
curves plot consists of several boundaries: the Hopf bifurcation of S3 (red line) given by (2.4), the Turing
bifurcation (blue) (2.9), the BD transition curve (dashed green) (2.10) and the boundary of the parameter
regime in which we numerically find localized structures (black lines). It is clear that the Hopf line
divides the bifurcation diagram into two parts: α > αH where solutions are unstable to a global (spatially
uniform) oscillatory mode and α < αH where solutions are stable to such perturbations.

Also in the figure are three coloured regions that identify various types of steady-state solution
for (2.1). These regions are classified as follows: stable homogeneous solution region (white), periodic
spatial pattern region (green) and the ‘pinning region’ (yellow) in which localized structures occur. Note
that the localized structure region is separated into three pieces by the BD transition curve and the Hopf
bifurcation line, whereas the periodic-pattern region is divided into two parts by the Hopf line. Note the
yellow circle which represents the codimension-two point (εc, αc) found in Section 2.2 where the Turing
bifurcation changes critically. We see that this is the origin of the (yellow) localized structure region,
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816 F. AL SAADI ET AL.

which becomes exponentially thin as it approaches this point, just as predicted by the theory (Kozyreff
& Chapman, 2006).

The right-hand plots in Fig. 3 illustrates four different types of steady-state solution at parameter
values represented in the left-hand diagram. All points are taken for α < αH where the solutions are
stable to the global Hopf mode.

Point (a), (ε, α) = for (0.11, 0.413), represents the unique attracting solution in the white parameter
region which is the coexistence homogeneous equilibrium S3.

Point (b) has (ε, α) = (0.01, 0.409) represents a typical solution from the green parameter region of
large-amplitude spatially (quasi-) periodic patterns. The nature of the pattern here is that of a multi-scale
pattern in which there are repeated patches in which the population u(x) of prey is significantly reduced.
Note that the precise pattern observed on a long domain is a delicate function of parameters and domain
size, as is well known in the theory of Turing patterns (see e.g. Maini et al., 1997; Murray, 2002). A
difference here from the usual case, owing to the subcritical Turing bifurcation, is that there is no stable
small-amplitude pattern close to the Turing bifurcation. Instead, fully formed large-amplitude patterns
emerge from a fold bifurcation (close to the outer black line delineating the yellow pinning region).

Point (c), for (ε, α) = (0.05, 0.408), is an example of a localized structure from within the yellow
parameter region above the BD line. Such solutions with an arbitrary finite number of large-amplitude
u-oscillations within a background of the homogeneous state S3 coexist with fully periodic solutions.
Note that above the BD curve corresponds to where localized solutions have oscillatory tails. Typically,
such solutions lie on snaking bifurcation diagrams, as explained in the next subsection.

Finally, point (d), for (ε, α) = (0.013, 0.39), shows an example of a single isolated peak solution
within the yellow region beneath the BD curve. Here there is a single isolated patch of prey degradation
which has monotonic decay to the homogeneous steady-state S3. The mechanism of transition between
such localized structures and single-peak states across the BD curve seems to occur via exactly the same
process that was explained in Verschueren & Champneys (2021).

3.3 Homoclinic snaking and instability of localized patterns

Figure 4 shows a one-parameter bifurcation diagram with α of localized structures from the yellow
parameter region of Fig. 3 above the BD curve. The norm used is vector L2 − norm of u, v and their
first spatial derivatives. Representative solution profiles and their spectra are depicted in Fig. 5. Several
features can be observed from these two figures, which we now explain.

The first feature to note is the usual snaking structure that is typically observed within a Pomeau
pinning region that emerges from a subcritical Turing bifurcation (Beck et al., 2009; Knobloch, 2015;
Kozyreff & Chapman, 2006; Woods & Champneys, 1999). The inner and outer extent of the pinning
region is delineated by the accumulation of the fold curves on the left- and right-hand sides of the
snaking diagram. Following one of these folds in two parameters results in the black lines that delineate
the yellow region in Fig. 3. Note the intertwined nature of the curves on which patterns exist with even
and odd numbers of patches. There are stationary no ‘rung states’ (curves of asymmetric stationary
localized patterns) in this case because, although the system in question is spatially reversible, it does
not have variational structure (see Knobloch, 2015, and references therein for this distinction). At every
successive fold bifurcation, each of the branches loses stability or regains it in a fold bifurcation.

The additional feature of this snaking bifurcation diagram, which is not present in other studies, is
the presence of the Hopf bifurcation of the background state that cuts the bifurcation diagram in two.
A natural question would be to seek to understand the relation between the Hopf bifurcation of the
background state and a corresponding instability of the localized states. From the figures, it is clear that
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LOCALIZED PATTERNS IN PREDITOR–PREY SYSTEMS 817

Fig. 4. Numerical bifurcation diagram showing paths of localized structures for ε = 0.085 as α varies. Red/blue lines indicate
solutions with an odd/even number of localized patches. Profiles and spectra of solutions at the points labelled a to d are depicted
in Fig. 5. The vertical dashed line α = αH indicates the Hopf bifurcation of the homogeneous solution S3. Green dots indicate
Hopf bifurcation points causing loss of stability of localized structures. More generally, stability information is encoded in the line
type: continuous lines represent stable branches, whereas the dashed lines represent branches that are unstable to a real-eigenvalue
instability (through a fold in the homoclinic snake) and dotted lines indicate branches that are unstable to an oscillatory instability.

Fig. 5. Numerical spectral analysis of the localized patterns at the points lableled (a) to (d) in Fig. 4. (Left): solution profiles.
(Right): the largest few temporal eigenvalues of the problem linearised about these profiles; all other eigenvalues have real parts
that are more negative.

the instability is indeed inherited by the localized states but not at the same parameter values (cf. the
location of the green dots in Fig. 4 and the vertical line α = αH). At each of the green circles, we have
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Fig. 6. (Top): numerical bifurcation diagram with α of the single-patch state for ε = 0.01. The continuous/dashed line indicates
stable/unstable solutions. (Lower plots): solution profiles at the coloured points with their corresponding eigenvalues with largest
real parts.

found that the complex eigenvector that corresponds to the complex conjugate pair of eigenvalues that
cross the imaginary axis is indeed a global, approximately spatially homogeneous, mode corresponding
to the associated eigenvector of the Hopf bifurcation of the homogeneous state (result not shown).

Interestingly, the lowest part of the red curve in Fig. 4, which corresponds to the primary, single
pulsed solution has its Hopf bifurcation at αH . Where all other multi-patch solutions on the snaking
curve have their Hopf instability at α-values that are less than αH , which means that they destabilize
while the background state is still stable. What happens beyond the Hopf instability forms the subject
of the next subsection.

Before investigating more complex spatio-temporal behaviour, Fig. 6 completes the bifurcation
picture for localized solutions, by showing the one-parameter diagram with α of a single-patch solution,
below the BD curve. The depicted curve of solutions lies exclusively below the Hopf bifurcation line
for the parameter values chosen. Here, there is a single fold that connects a larger-amplitude (stable)
solution to a smaller amplitude (unstable) one. Such a solution structure could presumably be predicted
in the limit ε → 0 using so-called semi-strong interaction theory in the spirit of Ward & Wei (2002), as
recently shown for a Schnakenberg-like model in Al Saadi et al. (2021a). Note that the only instability
detected here is the fold, but the analysis in Al Saadi et al. (2021a) suggests that for very small values
of ε there may be another kind of Hopf bifurcation, which corresponds to a localized eigenvector. We
shall not explore that singular limit further here.

3.4 Onset of spatio-temporal chaos

Using the snaking diagram in Fig. 4, we choose six values of α from the odd/even (red/blue) curve in the
vicinity of the Hopf bifurcation to numerically generate Fig. 7. Here we carefully choose the parameter
values and initial conditions so that α is on the stable side of the corresponding Hopf bifurcation which
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are shown in plots (a) and (d), just beyond the Hopf bifurcation which are displayed in plots (b) and (e)
and a little further beyond the bifurcation point that are depicted in plots (c) and (f). It should be noted
that the α values used in (a)–(c) are from the odd curve while (d)–(f) are values taken from the even
curve. In each case, we plot the results of the simulation as a heat map (upper part) and as the time series
of the u-value at a single point in the domain.

From these simulations, we notice that the Hopf bifurcation for both kinds of solution is supercritical.
That is, just beyond the bifurcation point there is a stable limit cycle. Moreover, as can be seen from
the close inspection of the heat map plot, this limit cycle is a kind of ‘breather’ solution where all
points in the domain are subject to amplitude modulation. We find that this limit cycle only exists for
a narrow parameter window, as the amplitude of the oscillation changes rapidly with α − αH . In each
of the branches, we find that a secondary instability occurs in which outer patches collapse. This leads
to what appears to be spatio-temporal chaos that is somehow reminiscent of weak turbulence in which
the trajectory intermittently visits neighbourhoods of states with different numbers of localized patches.
For much higher values of α, the solution is observed to become more irregular.

4. Two-dimensional simulation results

A natural question arises whether analogues of the kind of structures we have observed in one spatial
dimension exists in 2D. To seek a preliminary answer, we have performed numerical simulations using
second-order finite differences on a square domain (x, y) ∈ [0, L] × [0, L], using Neumann boundary
conditions. As with the 1D simulations, we solve the resulting large system of ordinary differential
equations (ODEs) in time using Matlab’s ode15s again taking care to choose stepsizes that avoid
numerical instability. The domain size L is chosen to be sufficiently large such that obvious boundary
effects do not apply. Moreover, we retain the parameter values (3.1) from the 1D case while varying α

and ε. Nevertheless, the computational results are intended to be illustrative rather than exhaustive.
First, we choose values of ε and α from below the Hopf bifurcation curve in Fig. 3, where the 1D

model has attractors that are steady pattern states. Figure 8a shows corresponding 2D solutions from
the isolated patch region, Fig. 8b shows a solution corresponding to a localized patterned state and
Fig. 8c shows a spatially periodic solution from inside the Turing region. In these plots, we show the
concentration of prey as a coloured map. It can be seen that as we move from the isolated patch region
through to the snake region and then to the Turing region, there is an increase in the density of depleted-
prey patches.

Figure 9 in contrast shows the results of similar simulations for parameter values which correspond
in the 1D case to being above the Hopf-bifurcation line but in the localized pattern region. The upper
plots, Fig. 9a–c shows three different time-slices of the prey field plot as a colour map from a particular
initial condition which has a single depleted prey patch within a background close to S3. We have used
other initial conditions in this parameter region and have found no evidence that the simulation reaches
any steady state, other than the trivial one S3 for small enough perturbations from it. For sufficiently
large perturbations, we find that these non-repeating dynamics appear to be spatio-temporally chaotic.
This chaotic dynamics is further indicated by the time series of Fig. 9d, which shows the u-field at a
single point in space.

5. Results for a related model

To reinforce that what we have observed is in some way generic to a class of predator–prey models, we
shall briefly indicate results for a further model with a different nonlinearity, namely a Holling type-III
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820 F. AL SAADI ET AL.

Fig. 7. Numerical simulation of (2.1) depicted as a heat map of the u component (red/blue are higher/lower amplitude values) on
left and time series of the point u(8) on right for six different values of α from branches from Fig. 4 with odd and even numbers
of patches, by fixing ε = 0.085 using the following: (a) α = 0.41025, (b) α = 0.4105, (c) α = 0.4135, (d) α = 0.4103, (e)
α = 0.41055 and (f) α = 0.4135.
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Fig. 8. Two-dimensional solution patterns obtained by numerical simulation of (2.1). Figures represent typical pattern solutions
at the following parameter values: (a) a single spike for (ε, α) = (0.01, 0.39), (b) a localized pattern at (ε, α) = (0.05, 0.4) and (c)
a periodic-Turing pattern with (ε, α) = (0.02, 0.41).

predator–prey model. This model was studied in Wang (2010) who found evidence for Turing instability,
travelling waves and stationary patches. Our aim is to show that a similar bifurcation diagram applies
here too.

The model in question is represented by the following system of nonlinear PDEs:

ut = u(1 − u) − αu2v

v2 + u2 + ε∇2u, t > 0, (5.1a)

vt = βu2v

v2 + u2
− δv + ∇2v, t > 0, (5.1b)

subject to Neumann boundary conditions. For simplicity, we shall present results only in 1D, for x ∈
(−L, L), with L � 1. The positive parameters have similar meaning as they did in 2.1; α denotes the
consumption rate of the prey by the predators, β is the half-saturation constant, δ is the death rate of the
predator and ε � 1 is the prey to predator diffusion ratio.

The model has many similar properties to (2.1) and can be analysed similarly. We omit most of the
details. There are again three spatially homogeneous equilibria: S1(0, 0), S2(1, 0) and S3(u

∗, v∗) where

u∗ = β − ξ

β
, v∗ = u∗ξ

α δ
, ξ =

√
α2δ (β − δ).

Note that both components are positive if β > δ and β > ξ , which is a constraint on the parameters in
order for the coexistence state to exist.

Figure 10a presents the linear and weakly nonlinear analysis, which is presented in exactly the same
ways as Fig. 3. We note that the results are qualitatively highly similar to those of the previous model.
Numerical simulation has also indicated the oscillatory behaviour above the Hopf bifurcation line.

Interestingly, even though the qualitative results are similar, the models cannot be mapped onto one
another by any simple transformation, owing to the different powers in the interaction terms. Also, note
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Fig. 9. Two-dimensional solution patterns by numerically solving (2.1). Figures represent typical pattern solutions in the snaking
region with parameter values (ε, α) = (0.125, 0.416) at three different time steps: (a) t = 200; (b) t = 1700; (c) t = 3500 and (d)
time evolution of the u-field at a single point in the domain (x, y) = (15, 15).

the differences in the values of the parameters in Figs 3 and 10a. Thus, the similarity between results
points to a certain generality to the bifurcation structures revealed.

6. Discussion

The purpose of this paper has been to systematically investigate the propensity of predator–prey systems
to develop spatially localized dynamics, without the need for any spatial heterogeneity. Although,
previous studies have explored spatio-temporal dynamics of predator–prey models within the Turing–
Hopf region (as outlined in the Introduction) we believe this is the first attempt at a systematic study
showing how spatially localized structures can occur on large domains.

Specifically, a suite of tools that combines linear and nonlinear analysis with numerical continuation
and simulation has been used to obtain qualitative two-parameter bifurcation diagrams for two different
reaction–diffusion predator–prey models. Our aim has been to uncover the specific behaviour of models
of particular ecological systems but that of a wide class of predator–prey models. Also, rather than
exhaustive numerical studies, we have sought to explain a general morphology of the bifurcation
diagram of such systems.
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Fig. 10. (a) Two-parameter bifurcation diagram of steady solutions to (5.1) in the (ε, α)-plane for fixed δ = 0.86 and β = 0.9.
The meaning of colours and symbols is as in Fig. 3, as is the method of computation. (b) Homoclinic snaking for ε = 0.03
as α varies. The continuous (dashed) line indicates stable (unstable) solution, whereas red (blue) indicates that the number of
peaks in the solution is odd (even). Two stable solutions with different number of peaks marked by the hexagon and star in the
snaking diagram are shown alongside. (c) One-parameter continuation of the single patch solution for ε = 0.004, showing a stable
large-amplitude state being connected to an unstable lower-amplitude one via a fold.
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In particular, we have shown that as we approach the singular limit that the ratio of diffusion
constants between prey and predator tends to zero, then the fundamental Turing bifurcation of the
coexistence equilibrium becomes subcritical. This leads to a pinning region between background and
patterned states within which localized structures are known to occur via the homoclinic snaking
mechanism. Remarkably, the global bifurcation structure of stationary patterns in two parameters is
found to follow a similar pattern to that recently observed (Al Saadi et al., 2021a; Verschueren &
Champneys, 2017, 2021) in Schnakenberg-type reaction-diffusion equations, which do not have a
predator–prey structure. This suggests a certain ubiquity to these overall bifurcation structure, which
will be further reported on elsewhere (Al Saadi et al., 2021b).

A novel feature of predator–prey systems compared with Schnakenberg-type models is that the
spatially homogeneous model can naturally undergo Hopf bifurcation in addition to a Turing instability.
Thus, we have deliberately chosen parameter values in which this Hopf bifurcation interacts with the
region in which the subcritical Turing bifurcation and localized structures exist. This led to interesting
novel observations on the nature of the Hopf bifurcations occurring on branches of localized steady
states. These were found to all be supercritical, yet to occur for parameter values that are different from
that of the homogeneous Hopf bifurcation. We also found that the Hopf bifurcation gives a route to
localized spatio-temporal chaos within this parameter region. It would be interesting in future work to
consider an unfolding of the codimension-three point where the super- to subcritical Turing bifurcation
transition occurs simultaneously with the Hopf bifurcation.

Most of our results were presented in one spatial dimension. Although much remains to be done to
explore these mechanisms in 2D, we nevertheless provided evidence of two-dimensional analogues of
these 1D structures occurring at similar parameter values.

This paper is not primarily designed to contribute to practical understanding of spatial ecology.
Nevertheless, there is one broad conclusion, namely that the observation of spatially localized patterns
of high or low species concentrations (whether spatial or spatio-temporal) do not necessarily imply
the existence of spatial heterogeneous causes. Specifically, within the simplest generic predator–prey
models there are parameter regimes where the Turing bifurcation is subcritical and localized patterns
are to be expected. In the models we have studied, the parameter limit in question requires that the prey
is relatively static while the predator diffuses more rapidly. One particular application of this limit could
be the existence of localized vegetation patches in an arid environment where the prey is associated with
the vegetation ecosystem which the predator is associated with the wider environment of the region; see
e.g. Borgogno et al. (2009), Bordeu et al. (2016) and Cobbold et al. (2015).
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