43 research outputs found

    Quantifying the commutation error of a BLDC machine using sensorless load angle estimation

    Get PDF
    BLDC motors are often used for high speed applications, for example in pumps, ventilators and refrigerators. For commutation discrete position information is necessary. This feedback is often provided by Hall sensors instead of more expensive encoders. However, even small misalignment of the Hall sensors in low cost BLDC motors can lead to unwanted torque ripples or reduced performance of BLDC motors. This misplacement leads not only to noise and vibrations caused by the torque ripples but also to lower efficiency. In this paper, a self-sensing technique to assess the misalignment is introduced. The objective is to obtain knowledge of the quality of the commutation by quantifying the misalignment. The method used in this paper is based on the fundamental components of voltage and current measurements and only needs the available current and voltage signals and electrical parameters such as resistance and inductance to estimate the misalignment

    Transduction matrix to enable sensor-less application of DC motor

    Get PDF
    Sensorless technology is one of the popular topic in motor industry. The aim is to reduce number of sensor and sensor size in the system. One of the method to achieve this sensor-less application of a motor is thru transduction matrix method. Transduction matrix is a 2x2 matrix that show the relationship between electrical input and mechanical output  of the motor. By obtaining the transduction matrix of a chosen motor, the mechanical output of the motor can be calculated from its electrical input. This paper explains the theory behind and the method to obtain the transduction matrix of a DC motor. The DC motor is chosen because it is the common motor in industry

    Brushless Direct Current Motor and its Control

    Get PDF

    Skema Pengendali Motor BLDC Tanpa Sensor Posisi Rotor dengan Metode Deteksi Back EMF Berbasis Mikrokontroler Arduino

    Get PDF
    Motor Brushless DC (BLDC) adalah salah satu jenis motor sinkron yang semakin banyak digunakan di banyak aplikasi karena efisien, bebas perawatan dan rasio daya terhadap bobot yang baik. Namun pada pengoperasiannya motor  BLDC memerlukan sensor posisi rotor. Penelitian ini membangun skema pengendali motor BLDC tanpa sensor posisi rotor dengan menggunakan metode back EMF berbasis mikrokontroller arduino. Deteksi posisi dilakukan dengan cara mendeteksi sinyal back EMF yang terdapat pada terminal daya motor, dan dibandingkan dengan virtual ground.  Skema pengendali yang diusulkan telah diverifikasi secara simulasi dengan perangkat lunak Proteus dan secara eksperimen perangkat keras pada sekala laboratorium, dan bekerja dengan bai

    Brushless Direct Current Motor Control for Inspired Flight

    Get PDF
    Brushless direct current motors have become a very common part of many modern electronics. Although they are more expensive and less robust than conventional brushed direct current motors, they provide large advantages in control, power output, longevity as well as efficiency. To make these motors run, they need more than just power. Each motor needs a separate motor controller that is responsible for taking in a signal for what speed/torque to run the motor at, and then managing the current flow to the motor to keep it spinning while fitting within these boundaries. Brushless direct current motors have a set of pairs of poles that act as electromagnets that need to be turned on and off at very certain times to start and then spin the motor. There are a variety of control strategies, each with their benefits and shortcomings, to facilitate startup and operation. This paper will examine fixed as well as dynamic startup strategies, as well as six step and field oriented motor control strategies with code samples to show implementations. Fixed startup is easier to implement as it just runs a startup script over and over again until there is readable feedback from the motor, but dynamic can allow for a more controlled and faster startup that rarely has to reset entirely. Once spinning, field oriented control provides the most control but requires extra hardware and/or more processing power than six step alternatives but can be challenging to set up on a new motor. For drone applications, a combination of fixed startup scripts with field oriented control makes for the best control strategy by balancing complexity with improved control when you really need it

    Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Get PDF
    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented

    Isolated Converter for Power Factor Improvement in a Brushless DC Motor Driver

    Get PDF
    Las principales ventajas de un motor de CD sin escobillas son su alta efi ciencia, poco mantenimiento, larga vida útil, bajo ruido, simplicidad en el control, bajo peso y una construcción compacta. Sin embargo, el controlador tradicional tiene problemas de calidad de la energía relacionados con la inyección de corrientes armónicas y pobre factor de potencia. Este artículo presenta una alternativa para mejorar este aspecto y reducir el contenido armónico mediante un convertidor aislado que alimenta un inversor de voltaje CD-CA de un controlador tradicional para un BLDCM; el convertidor propuesto opera en modo de conducción discontinuo.El diseño y rendimiento del controlador se validan experimentalmente en un prototipo, a fi n de cumplir con el estándar internacional IEC 61000-3-2.The main advantages of the Brushless Direct Current Motor (BLDCM) are high efficiency, low maintenance, long life, low noise, control simplicity, low weight, and compact construction. However, the traditional driver has power quality issues related to harmonic current injection and poor power factor. This paper presents an alternative for power factor improvement and harmonic content reduction, by means of an isolated converter that supplies the DC-AC voltage source inverter of a traditional BLDCM driver. The proposed converter operates in discontinuous-conduction mode. The design and performance of the driver are validated experimentally in a prototype, in order to comply with the IEC 61000-3-2 international standard

    MODELLING AND ANALYSIS OF DC MOTOR ACTUATOR FOR AN ELECTRIC GRIPPER

    Get PDF
    Robot technology has seen developments to support both the needs of industry and human life. This paper presents a brief review on the modelling and simulation of robotic grippers. The design of two fingered electric gripper, actuated by a direct current motor, is described for pick and place of spark plug. Mathematical modelling of the motor is carried out to understand and relate the control parameters. Angular velocity and torque response of the motor for a step input are verified by simulation. Controlling the direct current motor with pulse width modulation technique gives gentle variation of velocity and relatively greater torque. Further, it results in quick response of motor torque
    corecore