19 research outputs found

    CAD-Based Porous Scaffold Design of Intervertebral Discs in Tissue Engineering

    Get PDF
    With the development and maturity of three-dimensional (3D) printing technology over the past decade, 3D printing has been widely investigated and applied in the field of tissue engineering to repair damaged tissues or organs, such as muscles, skin, and bones, Although a number of automated fabrication methods have been developed to create superior bio-scaffolds with specific surface properties and porosity, the major challenges still focus on how to fabricate 3D natural biodegradable scaffolds that have tailor properties such as intricate architecture, porosity, and interconnectivity in order to provide the needed structural integrity, strength, transport, and ideal microenvironment for cell- and tissue-growth. In this dissertation, a robust pipeline of fabricating bio-functional porous scaffolds of intervertebral discs based on different innovative porous design methodologies is illustrated. Firstly, a triply periodic minimal surface (TPMS) based parameterization method, which has overcome the integrity problem of traditional TPMS method, is presented in Chapter 3. Then, an implicit surface modeling (ISM) approach using tetrahedral implicit surface (TIS) is demonstrated and compared with the TPMS method in Chapter 4. In Chapter 5, we present an advanced porous design method with higher flexibility using anisotropic radial basis function (ARBF) and volumetric meshes. Based on all these advanced porous design methods, the 3D model of a bio-functional porous intervertebral disc scaffold can be easily designed and its physical model can also be manufactured through 3D printing. However, due to the unique shape of each intervertebral disc and the intricate topological relationship between the intervertebral discs and the spine, the accurate localization and segmentation of dysfunctional discs are regarded as another obstacle to fabricating porous 3D disc models. To that end, we discuss in Chapter 6 a segmentation technique of intervertebral discs from CT-scanned medical images by using deep convolutional neural networks. Additionally, some examples of applying different porous designs on the segmented intervertebral disc models are demonstrated in Chapter 6

    Design and Applications of Additive Manufacturing and 3D Printing

    Get PDF
    Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products

    Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites

    Get PDF
    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex

    NON-PERIODIC LATTICE STRUCTURE DESIGN FOR ADDITIVE MANUFACTURING

    Get PDF
    Department of Mechanical EngineeringAs manufacturability of lattice structures has been relaxed with the availability of additive manufacturing (AM) technology, the study of cellular structure optimization has seen a rapid development during the past decade. Numerous design approaches for lattice structures have been proposed to help designers fabricate efficient lattice model. Generally, these approaches demand for unbearable computational cost and prior knowledge. To overcome the drawbacks of existing methods, Choi et al. proposes a simple framework of generating non-periodic lattice structures using topologically pre-optimized building blocks. However, this method does not properly consider the manufacturability of the lattice structure by neglecting additive manufacturing constraints in the design process. This thesis suggests a strategy to consider manufacturing constraints for the AM process in a contemporary lattice structure generation framework, in this case, Choi et al. work. The proposed method is devised to take full advantage of the already existing components, i.e. building block library, in order not to add complexity in the overall process. Considering the manufacturability of the lattice designs, an algorithm derived from the STL slicing method is introduced in the selection process to replace unprintable building blocks for optimal microstructure. Finally, numerical examples are presented, and reasonable solutions have been obtained to show the feasibility of the proposed method.clos

    Multiscale optimisation of dynamic properties for additively manufactured lattice structures

    Get PDF
    A framework for tailoring the dynamic properties of functionally graded lattice structures through the use of multiscale optimisation is presented in this thesis. The multiscale optimisation utilises a two scale approach to allow for complex lattice structures to be simulated in real time at a similar computational expense to traditional finite element problems. The micro and macro scales are linked by a surrogate model that predicts the homogenised material properties of the underlying lattice geometry based on the lattice design parameters. Optimisation constraints on the resonant frequencies and the Modal Assurance Criteria are implemented that can induce the structure to resonate at specific frequencies whilst simultaneously tracking and ensuring the correct mode shapes are maintained. This is where the novelty of the work lies, as dynamic properties have not previously been optimised for in a multiscale, functionally graded lattice structure. Multiscale methods offer numerous benefits and increased design freedom when generating optimal structures for dynamic environments. These benefits are showcased in a series of optimised cantilever structures. The results show a significant improvement in dynamic behavior when compared to the unoptimised case as well as when compared to a single scale topology optimised structure. The validation of the resonant properties for the lattice structures is performed through a series of mechanical tests on additive manufactured lattices. These tests address both the micro and the macro scale of the multiscale method. The homogeneous and surrogate model assumptions of the micro scale are investigated through both compression and tensile tests of uniform lattice samples. The resonant frequency predictions of the macro scale optimisation are verified through mechanical shaker testing and computed tomography scans of the lattice structure. Sources of discrepancy between the predicted and observed behavior are also investigated and explained.Open Acces

    Projection-based Topology Optimization Method for Linear and Nonlinear Design

    Get PDF
    Lighter designs are desirable in many industrial applications and structural optimization is an effective way to generate lightweight structures. Topology optimization is an important tool for investigating the optimal design of engineering structures. Although continuum topology optimization method has already achieved remarkable progress in recent years, there still exist several challenges for conventional density-based method such as manufacturability. Additive manufacturing (AM) is a rapidly developing technology by which the design can achieve more freedom. However, it does not mean that the optimized design generated by topology optimization algorithm can be directly manufactured without any geometry post-processing. Besides AM techniques, the traditional manufacturing methods of machining and casting are also popular in recent years, because the majority of engineering parts are manufactured through these methods. It is difficult for conventional density-based method to account for these manufacturing constraints. The projection-based topology optimization approach is a new trend in this field to properly restrict the optimal solutions by implementing geometric constraints. The nature of projection method is to apply new design variables projected in a pseudo-density domain to find the optimal solutions. In this dissertation, several advanced projection-based topology optimization schemes are proposed to resolve linear and nonlinear design problems and demonstrated through numerical examples. In chapter 2 and 3, a new projection technique is proposed to resolve nonlinear topology optimization problems with large deformation. Chapter 4 describes a novel design method, which combines the TPMS (Triply periodic minimal surface) formulation with standard projection-based method to design functionally graded TPMS lattice. In chapter 5, a projection-based method is combined with moving particles for reverse shape compensation for additive manufacturing technique. Chapter 6 describes a density‐based boundary evolving algorithm based on projection function for continuum‐based topology optimization. In the chapter 7, a novel projection-based method for structural design considering restrictions of multi-axis machining processes is proposed

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    3D Shape Descriptor-Based Facial Landmark Detection: A Machine Learning Approach

    Get PDF
    Facial landmark detection on 3D human faces has had numerous applications in the literature such as establishing point-to-point correspondence between 3D face models which is itself a key step for a wide range of applications like 3D face detection and authentication, matching, reconstruction, and retrieval, to name a few. Two groups of approaches, namely knowledge-driven and data-driven approaches, have been employed for facial landmarking in the literature. Knowledge-driven techniques are the traditional approaches that have been widely used to locate landmarks on human faces. In these approaches, a user with sucient knowledge and experience usually denes features to be extracted as the landmarks. Data-driven techniques, on the other hand, take advantage of machine learning algorithms to detect prominent features on 3D face models. Besides the key advantages, each category of these techniques has limitations that prevent it from generating the most reliable results. In this work we propose to combine the strengths of the two approaches to detect facial landmarks in a more ecient and precise way. The suggested approach consists of two phases. First, some salient features of the faces are extracted using expert systems. Afterwards, these points are used as the initial control points in the well-known Thin Plate Spline (TPS) technique to deform the input face towards a reference face model. Second, by exploring and utilizing multiple machine learning algorithms another group of landmarks are extracted. The data-driven landmark detection step is performed in a supervised manner providing an information-rich set of training data in which a set of local descriptors are computed and used to train the algorithm. We then, use the detected landmarks for establishing point-to-point correspondence between the 3D human faces mainly using an improved version of Iterative Closest Point (ICP) algorithms. Furthermore, we propose to use the detected landmarks for 3D face matching applications

    Interaction of elastomechanics and fluid dynamics in the human heart : Opportunities and challenges of light coupling strategies

    Get PDF
    Das menschliche Herz ist das hochkomplexe Herzstück des kardiovaskulären Systems, das permanent, zuverlässig und autonom den Blutfluss im Körper aufrechterhält. In Computermodellen wird die Funktionalität des Herzens nachgebildet, um Simulationsstudien durchzuführen, die tiefere Einblicke in die zugrundeliegenden Phänomene ermöglichen oder die Möglichkeit bieten, relevante Parameter unter vollständig kontrollierten Bedingungen zu variieren. Angesichts der Tatsache, dass Herz-Kreislauf-Erkrankungen die häufigste Todesursache in den Ländern der westlichen Hemisphäre sind, ist ein Beitrag zur frühzeit- igen Diagnose derselben von großer klinischer Bedeutung. In diesem Zusammenhang können computergestützte Strömungssimulationen wertvolle Einblicke in die Blutflussdynamik liefern und bieten somit die Möglichkeit, einen zentralen Bereich der Physik dieses multiphysikalischen Organs zu untersuchen. Da die Verformung der Endokardoberfläche den Blutfluss antreibt, müssen die Effekte der Elastomechanik als Randbedingungen für solche Strömungssimulationen berücksichtigt werden. Um im klinischen Kontext relevant zu sein, muss jedoch ein Mittelweg zwischen dem Rechenaufwand und der erforderlichen Genauigkeit gefunden werden, und die Modelle müssen sowohl robust als auch zuverlässig sein. Daher werden in dieser Arbeit die Möglichkeiten und Herausforderungen leichter und daher weniger komplexer Kopplungsstrategien mit Schwerpunkt auf drei Schlüsselaspekten bewertet: Erstens wird ein auf dem Immersed Boundary-Ansatz basierender Fluiddynamik-Löser implementiert, da diese Methode mit einer sehr robusten Darstellung von bewegten Netzen besticht. Die grundlegende Funktionalität wurde für verschiedene vereinfachte Geometrien verifiziert und zeigte eine hohe Übereinstimmung mit der jeweiligen analytischen Lösung. Vergleicht man die 3D-Simulation einer realistischen Geometrie des linken Teils des Herzens mit einem körperangepassten Netzbeschreibung, so wurden grundlegende globale Größen korrekt reproduziert. Allerdings zeigten Variationen der Randbedingungen einen großen Einfluss auf die Simulationsergebnisse. Die Anwendung des Lösers zur Simulation des Einflusses von Pathologien auf die Blutströmungsmuster ergab Ergebnisse in guter Übereinstimmung mit Literaturwerten. Bei Simulationen der Mitralklappeninsuffizienz wurde der rückströmende Anteil mit Hilfe einer Partikelverfolgungsmethode visualisiert. Bei hypertropher Kardiomyopathie wurden die Strömungsmuster im linken Ventrikel mit Hilfe eines passiven Skalartransports bewertet, um die lokale Konzentration des ursprünglichen Blutvolumens zu visualisieren. Da in den vorgenannten Studien nur ein unidirektionaler Informationsfluss vom elas- tomechanischen Modell zum Strömungslöser berücksichtigt wurde, wird die Rückwirkung des räumlich aufgelösten Druckfeldes aus den Strömungssimulationen auf die Elastomechanik quantifiziert. Es wird ein sequenzieller Kopplungsansatz eingeführt, um fluiddynamische Einflüsse in einer Schlag-für-Schlag-Kopplungsstruktur zu berücksichtigen. Die geringen Abweichungen im mechanischen Solver von 2 mm verschwanden bereits nach einer Iteration, was darauf schließen lässt, dass die Rückwirkungen der Fluiddynamik im gesunden Herzen begrenzt ist. Zusammenfassend lässt sich sagen, dass insbesondere bei Strömungsdynamiksimula- tionen die Randbedingungen mit Vorsicht gewählt werden müssen, da sie aufgrund ihres großen Einflusses die Anfälligkeit der Modelle erhöhen. Nichtsdestotrotz zeigten verein- fachte Kopplungsstrategien vielversprechende Ergebnisse bei der Reproduktion globaler fluiddynamischer Größen, während die Abhängigkeit zwischen den Lösern reduziert und Rechenaufwand eingespart wird
    corecore