908 research outputs found

    Matchings, Critical Nodes, and Popular Solutions

    Get PDF
    We consider a matching problem in a marriage instance G. Every node has a strict preference order ranking its neighbors. There is a set C of prioritized or critical nodes and we are interested in only those matchings that match as many critical nodes as possible. Such matchings are useful in several applications and we call them critical matchings. A stable matching need not be critical. We consider a well-studied relaxation of stability called popularity. Our goal is to find a popular critical matching, i.e., a weak Condorcet winner within the set of critical matchings where nodes are voters. We show that popular critical matchings always exist in G and min-size/max-size such matchings can be efficiently computed

    Popular Half-Integral Matchings

    Get PDF
    In an instance G = (A union B, E) of the stable marriage problem with strict and possibly incomplete preference lists, a matching M is popular if there is no matching M0 where the vertices that prefer M\u27 to M outnumber those that prefer M to M\u27. All stable matchings are popular and there is a simple linear time algorithm to compute a maximum-size popular matching. More generally, what we seek is a min-cost popular matching where we assume there is a cost function c : E -> Q. However there is no polynomial time algorithm currently known for solving this problem. Here we consider the following generalization of a popular matching called a popular half-integral matching: this is a fractional matching ~x = (M_1 + M_2)/2, where M1 and M2 are the 0-1 edge incidence vectors of matchings in G, such that ~x satisfies popularity constraints. We show that every popular half-integral matching is equivalent to a stable matching in a larger graph G^*. This allows us to solve the min-cost popular half-integral matching problem in polynomial time

    Maximum Cardinality Popular Matchings in Strict Two-sided Preference Lists

    No full text
    We consider the problem of computing a maximum cardinality {\em popular} matching in a bipartite graph G = (\A\cup\B, E) where each vertex u \in \A\cup\B ranks its neighbors in a strict order of preference. This is the same as an instance of the {\em stable marriage} problem with incomplete lists. A matching M∗M^* is said to be popular if there is no matching MM such that more vertices are better off in MM than in M∗M^*. \smallskip Popular matchings have been extensively studied in the case of one-sided preference lists, i.e., only vertices of \A have preferences over their neighbors while vertices in \B have no preferences; polynomial time algorithms have been shown here to determine if a given instance admits a popular matching or not and if so, to compute one with maximum cardinality. It has very recently been shown that for two-sided preference lists, the problem of determining if a given instance admits a popular matching or not is NP-complete. However this hardness result assumes that preference lists have {\em ties}. When preference lists are {\em strict}, it is easy to show that popular matchings always exist since stable matchings always exist and they are popular. But the complexity of computing a maximum cardinality popular matching was unknown. In this paper we show an O(mn)O(mn) algorithm for this problem, where n = |\A| + |\B| and m=∣E∣m = |E|

    Efficient algorithms for bipartite matching problems with preferences

    Get PDF
    Matching problems involve a set of participants, where each participant has a capacity and a subset of the participants rank a subset of the others in order of preference (strictly or with ties). Matching problems are motivated in practice by large-scale applications, such as automated matching schemes, which assign participants together based on their preferences over one another. This thesis focuses on bipartite matching problems in which there are two disjoint sets of participants (such as medical students and hospitals). We present a range of efficient algorithms for finding various types of optimal matchings in the context of these problems. Our optimality criteria involve a diverse range of concepts that are alternatives to classical stability. Examples include so-called popular and Pareto optimal matchings, and also matchings that are optimal with respect to their profile (the number of participants obtaining their first choice, second choice and so on). The first optimality criterion that we study is the notion of a Pareto optimal matching, a criterion that economists regard as a fundamental property to be satisfied by an optimal matching. We present the first algorithmic results on Pareto optimality for the Capacitated House Allocation problem (CHA), which is a many-to-one variant of the classical House Allocation problem, as well as for the Hospitals-Residents problem (HR), a generalisation of the classical Stable Marriage problem. For each of these problems, we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a polynomial-time algorithm for finding a maximum Pareto optimal matching. The next optimality criterion that we study is the notion of a popular matching. We study popular matchings in CHA and present a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, given any instance of CHA. We extend our findings to the case in CHA where preferences may contain ties (CHAT) by proving the extension of a well-known result in matching theory to the capacitated bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a maximum popular matching, or reporting that none exists. We next study popular matchings in the Weighted Capacitated House Allocation problem (WCHA), which is a variant of CHA where the agents have weights assigned to them. We identify a structure in the underlying graph of the problem that singles out those edges that cannot belong to a popular matching. We then use this to construct a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, for the case where preferences are strict. We then study popular matchings in a variant of the classical Stable Marriage problem with Ties and Incomplete preference lists (SMTI), where preference lists are symmetric. Here, we provide the first characterisation results on popular matchings in the bipartite setting where preferences are two-sided, which can either lead to a polynomial-time algorithm for solving the problem or help establish that it is NP-complete. We also provide the first algorithm for testing if a matching is popular in such a setting. The remaining optimality criteria that we study involve profile-based optimal matchings. We define three versions of what it means for a matching to be optimal based on its profile, namely so-called greedy maximum, rank-maximal and generous maximum matchings. We study each of these in the context of CHAT and the Hospitals-Residents problem with Ties (HRT). For each problem model, we give polynomial-time algorithms for finding a greedy maximum, a rank-maximal and a generous maximum matching

    Popular matchings in the marriage and roommates problems

    Get PDF
    Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching Mâ€Č with the property that more applicants prefer their allocation in Mâ€Č to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases

    Efficient algorithms for bipartite matching problems with preferences

    Get PDF
    Matching problems involve a set of participants, where each participant has a capacity and a subset of the participants rank a subset of the others in order of preference (strictly or with ties). Matching problems are motivated in practice by large-scale applications, such as automated matching schemes, which assign participants together based on their preferences over one another. This thesis focuses on bipartite matching problems in which there are two disjoint sets of participants (such as medical students and hospitals). We present a range of efficient algorithms for finding various types of optimal matchings in the context of these problems. Our optimality criteria involve a diverse range of concepts that are alternatives to classical stability. Examples include so-called popular and Pareto optimal matchings, and also matchings that are optimal with respect to their profile (the number of participants obtaining their first choice, second choice and so on). The first optimality criterion that we study is the notion of a Pareto optimal matching, a criterion that economists regard as a fundamental property to be satisfied by an optimal matching. We present the first algorithmic results on Pareto optimality for the Capacitated House Allocation problem (CHA), which is a many-to-one variant of the classical House Allocation problem, as well as for the Hospitals-Residents problem (HR), a generalisation of the classical Stable Marriage problem. For each of these problems, we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a polynomial-time algorithm for finding a maximum Pareto optimal matching. The next optimality criterion that we study is the notion of a popular matching. We study popular matchings in CHA and present a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, given any instance of CHA. We extend our findings to the case in CHA where preferences may contain ties (CHAT) by proving the extension of a well-known result in matching theory to the capacitated bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a maximum popular matching, or reporting that none exists. We next study popular matchings in the Weighted Capacitated House Allocation problem (WCHA), which is a variant of CHA where the agents have weights assigned to them. We identify a structure in the underlying graph of the problem that singles out those edges that cannot belong to a popular matching. We then use this to construct a polynomial-time algorithm for finding a maximum popular matching or reporting that none exists, for the case where preferences are strict. We then study popular matchings in a variant of the classical Stable Marriage problem with Ties and Incomplete preference lists (SMTI), where preference lists are symmetric. Here, we provide the first characterisation results on popular matchings in the bipartite setting where preferences are two-sided, which can either lead to a polynomial-time algorithm for solving the problem or help establish that it is NP-complete. We also provide the first algorithm for testing if a matching is popular in such a setting. The remaining optimality criteria that we study involve profile-based optimal matchings. We define three versions of what it means for a matching to be optimal based on its profile, namely so-called greedy maximum, rank-maximal and generous maximum matchings. We study each of these in the context of CHAT and the Hospitals-Residents problem with Ties (HRT). For each problem model, we give polynomial-time algorithms for finding a greedy maximum, a rank-maximal and a generous maximum matching.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully
    • 

    corecore