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Abstract

Matching problems involve a set of participants, where each participant has a capacity

and a subset of the participants rank a subset of the others in order of preference (strictly

or with ties). Matching problems are motivated in practice by large-scale applications,

such as automated matching schemes, which assign participants together based on their

preferences over one another.

This thesis focuses on bipartite matching problems in which there are two disjoint sets

of participants (such as medical students and hospitals). We present a range of efficient

algorithms for finding various types of optimal matchings in the context of these prob-

lems. Our optimality criteria involve a diverse range of concepts that are alternatives to

classical stability. Examples include so-called popular and Pareto optimal matchings, and

also matchings that are optimal with respect to their profile (the number of participants

obtaining their first choice, second choice and so on).

The first optimality criterion that we study is the notion of a Pareto optimal match-

ing, a criterion that economists regard as a fundamental property to be satisfied by an

optimal matching. We present the first algorithmic results on Pareto optimality for the

Capacitated House Allocation problem (CHA), which is a many-to-one variant of the

classical House Allocation problem, as well as for the Hospitals-Residents problem (HR),

a generalisation of the classical Stable Marriage problem. For each of these problems,

we obtain a characterisation of Pareto optimal matchings, and then use this to obtain a

polynomial-time algorithm for finding a maximum Pareto optimal matching.

The next optimality criterion that we study is the notion of a popular matching. We

study popular matchings in CHA and present a polynomial-time algorithm for finding a

maximum popular matching or reporting that none exists, given any instance of CHA.

We extend our findings to the case in CHA where preferences may contain ties (CHAT)

by proving the extension of a well-known result in matching theory to the capacitated

bipartite graph case, and using this to obtain a polynomial-time algorithm for finding a

maximum popular matching, or reporting that none exists.

We next study popular matchings in the Weighted Capacitated House Allocation prob-

lem (WCHA), which is a variant of CHA where the agents have weights assigned to them.

We identify a structure in the underlying graph of the problem that singles out those edges

that cannot belong to a popular matching. We then use this to construct a polynomial-

time algorithm for finding a maximum popular matching or reporting that none exists, for
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the case where preferences are strict.

We then study popular matchings in a variant of the classical Stable Marriage problem

with Ties and Incomplete preference lists (SMTI), where preference lists are symmetric.

Here, we provide the first characterisation results on popular matchings in the bipartite

setting where preferences are two-sided, which can either lead to a polynomial-time algo-

rithm for solving the problem or help establish that it is NP-complete. We also provide

the first algorithm for testing if a matching is popular in such a setting.

The remaining optimality criteria that we study involve profile-based optimal match-

ings. We define three versions of what it means for a matching to be optimal based on its

profile, namely so-called greedy maximum, rank-maximal and generous maximum match-

ings. We study each of these in the context of CHAT and the Hospitals-Residents problem

with Ties (HRT). For each problem model, we give polynomial-time algorithms for finding

a greedy maximum, a rank-maximal and a generous maximum matching.
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Chapter 1

A selective review of the literature

1.1 Motivation

Matching problems are motivated in practice by large-scale applications, such as auto-

mated matching schemes, which assign participants together based on their preferences

over one another. In Scotland [27] and the USA [49] for example, centralised automated

matching schemes, such as the Scottish Foundation Allocation Scheme (SFAS) and the Na-

tional Resident Matching Program (NRMP) respectively, annually construct allocations of

graduating medical students to hospital posts. In Singapore, a centralised matching mech-

anism is used to assign primary school students to secondary schools [61]. In Romania [36],

the Netherlands [11] and the USA [52–55], systematic programs have been established for

managing kidney exchange. Additionally, there are many other examples of centralised

matching schemes in various countries, in educational, vocational and medical contexts.

Matching problems involve a set of participants, where each participant has a capacity

and a subset of the participants rank a subset of the others in order of preference (strictly

or with ties). The term matching implies the attempt to assign each participant to one or

more acceptable partner(s) in some way to meet some specified criterion without exceeding

the capacities of the participants. Given the large number of participants typically involved

in the types of matching schemes discussed above, constructing matchings manually is

time-consuming, error-prone and infeasible for large instances. Algorithms automate the

process and again, given the typical sizes of input datasets, it is vital to ensure that

algorithms for matching problems are as efficient as possible. In its broadest sense, the

notion of efficiency involves all the various computing resources needed for executing an

algorithm. The measure of efficiency that will be the prime focus of this research is the time

1
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requirement of a given algorithm because it is often the dominant factor that determines

whether or not a particular algorithm is useful in practice, regardless of potential increases

in processing power [21].

Furthermore, given the applications of matching problems, and the implications of a

participant’s allocation in a matching for their quality of life, it is of paramount importance

that the matching algorithms that drive such applications should optimise in some sense,

and insofar as is possible, the satisfaction of the participants according to their preferences.

There are many ways to classify matching problems and a convenient distinction can

be made between a bipartite matching model in which there are two disjoint sets of par-

ticipants, and a non-bipartite model in which there is only a single set of participants.

Three-dimensional matching problems (in which there are three disjoint sets of partici-

pants) have also been considered but a number of variants have been shown to be NP-

complete [21,45,58]; thus it is unlikely that there exist efficient algorithms for the solution

of such problems. In addition, matching problems may be further sub-divided according

to the types of preference lists that are involved (two-sided or one-sided) as well as the

kind of mapping that is being sought in order to assign the members of one side to the

other, so that it is possible to classify these problems as follows:

1. Bipartite matching problems

(a) One-sided preference lists

i. One-one mapping, e.g., House Allocation problem

ii. Many-one mapping, e.g., Capacitated House Allocation problem

(b) Two-sided preference lists

i. One-one mapping, e.g., Stable Marriage problem

ii. Many-one mapping, e.g., Hospitals-Residents problem

2. Non-bipartite matching problems

(a) One-one mapping, e.g., Stable Roommates problem

For bipartite matching problems with preferences, an extensively studied problem is

the classical Stable Marriage Problem (SM) [17], in which the participants consist of

two disjoint sets of agents, say n men and n women, each of whom ranks all members

of the opposite sex in order of preference and a matching is just a one-one mapping

2
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between the two sets. Note that we henceforth use the term agents to refer to those

participants in matching problems who have preference lists. Hence, the agents in an

SM instance are the men and women. Alternatively, bipartite matchings can also involve

many-one mappings. For example, in the context of the Hospitals-Residents problem

(HR) [17, 22], the participants are residents (graduating medical students) and hospitals,

with each member of the latter set having some fixed number of “posts”(its capacity).

All participants are agents since each resident ranks a subset of hospitals in order of

preference and vice versa. A matching is an assignment of residents to hospitals so that no

hospital exceeds its capacity. These are examples of bipartite matching problems where

the preference lists are two-sided.

Alternatively, preference lists for bipartite matching problems can be one-sided. An

example of this type of problem is the House Allocation problem (HA) [1, 3], where an

attempt is made to allocate a set H of objects (e.g., houses, posts etc) using a one-one

mapping among a set A of agents, each of whom ranks a subset of H in order of preference.

The Capacitated House Allocation problem (CHA) is a generalisation of HA in which

a many-one mapping of A to H is sought instead. In addition to bipartite matching

problems, non-bipartite matching problems are also widely studied. In the classical Stable

Roommates problem (SR) [17, 25], the participants consist of a single set of agents each

of whom ranks the others in order of preference, and a matching is a partition of the set

into disjoint pairs of roommates.

The focus of this research will be the bipartite matching model which underpins most of

the aforementioned matching schemes. We explore a diverse range of optimality concepts

that are applicable to many new and also well-studied bipartite matching problems, and

find efficient algorithms for constructing matchings that are optimal according to these

criteria. The remainder of this chapter is structured as follows. In Section 1.2, we give a

brief overview of several important results from matching theory in bipartite graphs; some

of these will subsequently be used by the algorithms that we will describe for the bipartite

matching problems considered in this thesis. Reviews of previous results on bipartite

matching problems with one-sided preferences, bipartite matching problems with two-

sided preferences and non-bipartite problems are then contained in Sections 1.3, 1.4 and

1.5 respectively.

3
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1.2 Theory of matching in bipartite graphs

1.2.1 Unweighted Graphs

Let G = (U,W,E) be a bipartite graph with n1 vertices in U , n2 vertices in W and m

edges. Also, let n = n1 + n2. A matching M of G is a subset of E such that no two edges

in M share a common vertex. We say that an edge e ∈ E is matched if e ∈ M ; otherwise,

e is unmatched. Similarly, we say that a vertex v ∈ U ∪W is matched in M if it is incident

to an edge in M or unmatched otherwise. We define the cardinality of the matching M ,

denoted by |M |, to be the number of edges in M . A matching M is maximal if M is not a

proper subset of any other matching in G. A matching M is maximum if M contains the

largest possible number of edges. Note that every maximum matching must be maximal,

but the converse need not be true. A matching M is perfect if every vertex in U ∪W is

matched in M . Given an arbitrary matching M , an alternating path is a path P in which

the edges of P are alternatively in M , and not in M . An augmenting path with respect to

M is an alternating path whose end vertices are unmatched. The following theorem due

to Berge gives one of the most fundamental results underpinning matching theory.

Theorem 1.2.1 (Berge [8]). Let M be an arbitrary matching in G. Then, M has maxi-

mum cardinality if and only if there is no augmenting path with respect to M .

This theorem gives rise to the classical augmenting path algorithm for finding a max-

imum matching in any bipartite graph G [46], as shown in Algorithm 1. The algorithm

runs in stages where a search for an augmenting path is conducted in each stage.

Starting from the unmatched vertices in U , it is straightforward to see that the search

for an augmenting path relative to M can be organised as a restricted breadth-first search

in which only edges not matched in M are followed from vertices in U and only edges

matched in M are followed from vertices in W , to ensure alternation. If any augmenting

path exists, then it is clear to see that this search will find one, which we denote by P .

The algorithm then augments the current matching M with P by inverting the matched

edges in P , i.e. the matched edges in P become unmatched, and vice versa, so that we

increase the cardinality of M by 1. If an augmenting path does not exist, then M is

maximum by Theorem 1.2.1. It is easy to see that a search for an augmenting path using

the method described above takes O(n + m) time. Since there are at most O(n) such

searches, it follows that the classical augmenting path algorithm can thus be made to run

in O(n(n + m)) time.
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Algorithm 1 Classical augmenting path algorithm
1: M := ∅;

2: while G admits an augmenting path P with respect to M do

3: M := M ⊕ P ;

4: return M ;

However, faster algorithms for finding a maximum matching in a given bipartite graph

exist, and the best known algorithm is due to Hopcroft and Karp [23]. Their approach

is similar to the classical augmenting path algorithm but in each stage, a maximal set

of vertex disjoint augmenting paths of shortest length is found and used to augment the

matching instead of a single augmenting path. The importance of this is that the number

of searches is reduced to at most O(
√

n), and the Hopcroft-Karp algorithm thus runs in

O(
√

nm) time. Hence, we have the following result.

Theorem 1.2.2 (Hopcroft and Karp [23]). Let G = (U,W,E) be a bipartite graph,

with n vertices in U ∪ W and m edges in E. Then, a maximum matching in G can be

found in O(
√

nm) time.

1.2.1.1 Capacitated graphs

Let G = (U,W,E) be a bipartite graph in which each vertex vi ∈ U ∪W has an associated

capacity ci ≥ 1. We refer to G as a capacitated bipartite graph and a matching M of G is a

subset of E such that for each vi ∈ U ∪W , |e ∈ M : vi ∈ e| ≤ ci. Note that in this thesis,

we are concerned only with capacitated bipartite graphs in which the vertices in U have a

capacity equal to 1 (and the vertices in W can have non-unitary capacity). The problem

of finding a maximum matching in G is also referred to in the literature as the maximum

cardinality degree-constrained subgraph problem or maximum cardinality DCS in short,

and Gabow’s algorithm [15] provides the fastest way to solve this, taking O(
√

Cm) time,

where C =
∑n2

j=1 cj denote the sum of the capacities of the vertices in W .

1.2.2 Weighted Graphs

Let G = (U,W,E) be a bipartite graph where each edge e ∈ E has an associated weight

wt(e) ∈ N. We define the weight of a matching M of G as wt(M) =
∑

e∈M wt(e). A

common problem, given any weighted bipartite graph G, is to find a maximum weight

matching of G. This is also known as the Assignment problem [46].

5
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For the case where all vertices have capacity 1, the running time of the best algo-

rithm is usually stated as O(nm + n2 log n) [14]. For the capacitated bipartite graph,

the fastest time to solve the problem is due to Gabow’s algorithm for the maximum

weight degree-constrained subgraph problem, or maximum weight DCS in short, which

takes O(C min(m log n, n2)) time [15].

1.2.3 Edmonds-Gallai Decomposition

Let G be some bipartite graph where all the vertices have capacity 1. The Edmonds-

Gallai Decomposition (see [4,35,47]) is a well-known result in matching theory that gives

an important characterisation of maximum matchings in G. That is, let M be a maximum

matching in G. Then, the vertices of G can be partitioned into three disjoint sets: E , O,

and U . Vertices in E , O, and U are called even, odd and unreachable respectively. A

vertex v is even (odd) if there exists an alternating path of even (odd) length from a

vertex that is unmatched in M to v. If no such alternating path exists, v is unreachable.

We henceforth refer to this vertex labelling as an EOU labelling. The fundamental results

of the Edmonds-Gallai Decomposition are summarised in the following lemma, the proof

of which can be obtained explicitly from [4].

Lemma 1.2.1. Let E, O, and U be the vertex sets defined by G and M above. Then,

(a) The sets E, O and U are pairwise disjoint. Every maximum matching in G partitions

the vertices into the same sets of even, odd and unreachable vertices.

(b) Every maximum matching M in G satisfies the following properties:

(i) every vertex in O and every vertex in U is matched;

(ii) every vertex in O is matched to a vertex in E;

(iii) every vertex in U is matched to another in U ;

(iv) |M | = |O|+ |U|/2.

(c) No maximum matching in G contains an edge between two vertices in O or a vertex

in O with a vertex in U . There is no edge in G connecting a vertex in E with a

vertex in U , or between two vertices of E.
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1.3 Bipartite matching problems, one-sided preference lists

1.3.1 House Allocation Problem

Bipartite matching problems involving two sets of participants, namely a set of agents and

a set of objects, are commonly referred to as House Allocation problems [1–3, 16, 19, 24].

These problems have been widely studied not only due to their theoretical interest, but also

in view of their practical importance. Widespread applications occur in real-life resource

allocation problems such as campus housing allocation in US universities [1], hence the

problem name; in assigning probationary teachers to their first posts in Scotland; and in

Amazon’s DVD rental service.

An instance I of the House Allocation problem (HA) comprises two disjoint sets A

and H, where A = {a1, a2, ..., an1} is the set of agents and H = {h1, h2, ..., hn2} is the set

of houses. Each agent ai ∈ A ranks in strict order a subset of those houses in H giving

rise to his preference list. If ai ranks a house hj ∈ H in his preference list, we say that ai

finds hj acceptable. An agent ai prefers one house hj to another house hl if hj precedes

hl in ai’s preference list. We define the underlying graph of I to be the bipartite graph

G = (A,H, E), where E is the set of edges in G representing the acceptable houses of the

agents. We let n = n1 + n2 and m = |E|.

Given an agent ai ∈ A and an acceptable house hj ∈ H for ai, we define rankai(hj)

to be the number of agents that ai prefers to hj plus 1. If rankai(hj) = k, we say that

hj is the kth choice of ai. Let (ai, hj) ∈ E be any edge. Then, we define the rank of

(ai, hj) to be r(ai, hj) = rankai(hj). Let z ≤ n2 be the maximum length of any agent’s

preference list in I. Clearly, z corresponds to the largest rank of a house taken over all

agents’ preference lists in I. We assume that no agent has an empty preference list and

each house is acceptable to at least one agent, i.e., m ≥ max {n1, n2}.

An assignment M is a subset of A × H such that (ai, hj) ∈ M only if ai finds hj

acceptable. If (ai, hj) ∈ M , we say that ai and hj are assigned to each other, and we

call ai and hj partners in M . A matching is an assignment M such that (i) each agent is

assigned to at most one house in M , and (ii) each house hj ∈ H is assigned to at most one

agent in M . If a participant p ∈ A∪H is assigned in M , we denote by M(p) the participant

that p is assigned to in M . If p is not assigned in M , we say that p is unassigned. Given

two matchings M and M ′ in G, we say that an agent ai prefers M ′ to M if either (i) ai is

assigned in M ′ and unassigned in M , or (ii) ai is assigned in both M ′ and M and prefers

7



Chapter 1. A selective review of the literature

M ′(ai) to M(ai). We use M to denote the set of all matchings in I.

Several variants of HA may be formulated as follows.

1.3.1.1 Variants of HA

First of all, we can have a straightforward extension of HA by allowing ties in the agents’

preference lists. A tie between two houses hj and hl occurs in an agent ai’s preference

list when rankai(hj) = rankai(hl), and we say that the agent ai is indifferent between hj

and hl. The problem then becomes known as the House Allocation problem with Ties, or

HAT for short.

We can have a variant of HA in which each agent a has an assigned positive weight w(a)

that indicates his priority (which may be based on such objective criteria relevant to the

matching application). This is known as the Weighted House Allocation problem, denoted

by WHA, or WHAT if ties are present. If the houses are allowed to have non-unitary

capacity, we then have a generalisation of HA that is known as the Capacitated House

Allocation problem, denoted by CHA, or CHAT if ties are present. A third possible

variant of HA combines WHA and CHA by letting the agents have a positive weight

to indicate their priority, and allowing the houses to have non-unitary capacity. This is

known as the Weighted Capacitated House Allocation problem, denoted by WCHA, or

WCHAT if ties are present.

We remark that all the notations and terminology that were defined for HA in Section

1.3.1 carry over directly to each of its variants with the exception of some terms that we

will require to define separately. We henceforth assume these definitions in any variant of

HA in the rest of this thesis and explicitly define relevant concepts only where we need to

adapt them to the context of the variant.

In each of CHA, CHAT, WCHA and WCHAT, we require to redefine a matching

since each house hj may now have a non-unitary capacity cj ≥ 1, and a many-one mapping

of the agents and houses is sought in these contexts instead. Here, we define a matching

to be an assignment M such that (i) each agent is assigned to at most one house in M ,

and (ii) each house hj ∈ H is assigned to at most cj agents in M . Consequently, M(hj)

refers to the set of agents assigned to hj in M (which could be empty) in these contexts.

If |M(hj)| < cj , we say that hj is undersubscribed in M ; otherwise hj is full in M . We

also let C =
∑n2

j=1 cj denote the sum of the capacities of the houses.
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1.3.2 Optimality criteria for bipartite matching problems

For bipartite matching problems with one-sided preferences, various criteria as to what

constitutes an “optimal” matching have been considered. In this section, we give a review

of the optimality criteria that are considered in this thesis.

1.3.2.1 Pareto optimal matchings

One solution concept that has received much attention, particularly from the Economics

community is Pareto optimality [1–3, 7, 51, 56, 57], because it is regarded by Economists

as a fundamental property to be satisfied in the context of matching problems. Let I be

an instance of HA or any or its variants. Then, we may define a relation ≺ on M based

on the preference of agents over matchings in I (as defined above): that is, given any two

matchings M and M ′, M ′ ≺ M if and only if no agent prefers M to M ′, and some agent

prefers M ′ to M . A matching M is defined to be Pareto optimal if and only if there is no

other matching M ′ such that M ′ ≺ M .

Various algorithms exist for finding a Pareto optimal matching in any given instance of

HA, the most straightforward being a greedy algorithm known as the serial dictatorship

mechanism [1, 56] which considers each agent a in turn, and gives a his most preferred

vacant house (if such a house exists). However, such an algorithm may fail to find a

Pareto optimal matching of maximum cardinality (henceforth a maximum Pareto optimal

matching), which is undesirable in applications that seek to assign as many agents as

possible (see Chapter 2 for further details).

Abraham et al. [3] gives the fastest algorithm, which takes O(
√

nm) time, for finding a

maximum Pareto optimal matching given an HA instance. In this thesis, we extend their

results to the capacitated bipartite graph case in Chapter 2 by constructing an O(
√

Cm)

time algorithm for finding a maximum Pareto optimal matching given any instance of

CHA. Since the definition of a Pareto optimal matching in WCHA is identical to that in

CHA, this algorithm can also be used for the analogous problem in the weighted capaci-

tated bipartite graph case.

1.3.2.2 Popular matchings

Another important solution concept is that of a popular matching. Let I be an instance

of CHAT. Also, let M and M ′ be two arbitrary matchings in I and let P (M,M ′) denote

the set of agents who prefer M to M ′. We say that M is more popular than M ′ if

9



Chapter 1. A selective review of the literature

|P (M,M ′)| > |P (M ′,M)|, i.e. the number of agents who prefer M to M ′ is greater than

the number of agents who prefer M ′ to M . A matching M in I is popular if there is no

other matching M ′ in I that is more popular than M .

We remark that the definition of a popular matching can be extended to WCHAT in

the following way. First of all, given any two matchings M and M ′ in a weighted setting,

we define the satisfaction of M with respect to M ′ to be sat(M,M ′) =
∑

a∈P (M,M ′) w(a)−∑
a∈P (M ′,M) w(a). We then say that M is more popular than M ′ if sat(M,M ′) > 0. A

matching M is defined to be popular if there is no other matching in the problem instance

that is more popular than M .

Gärdenfors [20] first introduced the notion of a popular matching (referring to this con-

cept as a majority assignment) in the context of voting theory. We remark that the more

popular than concept can be traced back even further to the Condorcet voting protocol.

Popular matchings were then considered by Abraham et al. [4] in the context of HA. They

showed that popular matchings need not exist, given an instance of HA, and also noted

that popular matchings can have different cardinalities. The same authors described an

O(n + m) algorithm for finding a maximum cardinality popular matching (henceforth a

maximum popular matching) if one exists, given an instance of HA. They also described

an O(
√

nm) counterpart for HAT.

Mahdian [37] showed that a popular matching exists with high probability given an

instance of HAT when (i) preference lists are random, and (ii) the number of houses is a

small multiplicative factor larger than the number of agents. To cope with the possible non-

existence of a popular matching, McCutchen [40] defined two notions of a matching that

are, in some sense, “as popular as possible”, namely a least-unpopularity-factor matching

and a least-unpopularity-margin matching. McCutchen proved that computing either type

of matching is NP-hard. Abraham and Kavitha [5] considered voting paths in relation to

popular matchings in a dynamic matching market in which agents and houses can enter

and leave the market. Mestre [43] then described an O(n + m) algorithm for finding a

maximum popular matching if one exists, given an instance of WHA. He also described

an O(min(k
√

n, n)m) counterpart for WHAT, where k is the maximum priority of any

agent.

In Chapter 4, we consider popular matchings in CHAT. For the case where preference

lists are strict, we give an O(
√

Cn1 + m) time algorithm to find a maximum popular

matching, or to report that none exists. We then show how to extend Lemma 1.2.1, an
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important result in matching theory, to the capacitated bipartite graph case, and use this

result to construct an O(
√

Cm) time algorithm to find a maximum popular matching

or report that none exists in a given CHAT instance. We also consider the analogous

problem in WCHA in Chapter 5. There, we identify a structure in the underlying graph

of the problem that singles out those edges that cannot belong to a popular matching. We

then use this to construct a O(
√

Cn1 + m) time algorithm that finds a maximum popular

matching, or reports that none exists in a given WCHA instance.

1.3.2.3 Profile-based optimal matchings

Finally, let I be an instance of HAT or any of its variants. Recall that z is the largest

rank of a house taken over all agents’ preference lists in I. Define the profile ρ(M) of a

matching M in I to be the z-tuple (x1, x2, ..., xz) where for each i (1 ≤ i ≤ z), xi is the

number of agents who are assigned in M with one of their ith choice houses. Then, it is

possible to define at least three versions of what it means for a matching to be optimal

based on its profile.

Informally, a greedy maximum matching is a matching that has lexicographically max-

imum profile taken over all maximum matchings. On the other hand, a rank-maximal

matching is a matching that has lexicographically maximum profile taken over all match-

ings. Finally, a generous maximum matching is a matching whose reverse profile is lex-

icographically minimum taken over all maximum matchings. We remark that each of a

rank-maximal, a greedy maximum and a generous maximum matching must be Pareto

optimal; however, they are not necessarily popular.

The fastest combinatorial approach for finding a rank-maximal matching given an

HAT instance is described by Irving et al. [29], and this takes O(min(z∗
√

n, n + z∗)m)

time where z∗ is the maximal rank of an edge in an optimal solution. Kavitha and Shah [33]

studied rank-maximal matchings in WHAT and described an O(min(z∗
√

n, n+z∗)m) time

algorithm for solving the problem. In an unpublished manuscript [28], Irving describes

an approach based on the Bellman-Ford algorithm to find greedy maximum and generous

maximum matchings in HAT.

In Chapter 7, we consider the individual problems of finding a rank-maximal, a greedy

maximum and a generous maximum matching in the context of CHAT. For the case of

finding a rank-maximal matching, we construct an O(min(z∗
√

C, C+z∗)m) time algorithm

for solving the problem. For each of the cases of finding a greedy maximum and a generous
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maximum matching, we explore two alternative solutions for the problem, the faster of

which (in most practical applications as we shall show) takes O(zC min(m log n, n2)) time.

1.4 Bipartite matching problems, two-sided preference lists

1.4.1 One-one mapping: the classical Stable Marriage Problem

The classical Stable Marriage problem (SM) is a widely studied example of a combinatorial

problem in the category indicated by this subsection. An instance I of SM involves two dis-

joint sets U and W where U = {u1, u2, ..., un} is the set of men, and W = {w1, w2, ..., wn}

is the set of women. Each person p ∈ U ∪W ranks all members of the opposite sex in strict

order of preference giving rise to his/her preference list. We say that person p prefers q to

r if q precedes r on p’s preference list.

An assignment M is a subset of U ×W such that (ui, wj) ∈ M only if ui and wj find

each other acceptable. If (ui, wj) ∈ M , we say that ui and wj are assigned to each other.

A matching in I is an assignment M such that (i) each man is assigned to at most one

woman in M , and (ii) each woman is assigned to at most one man in M . If (ui, wj) ∈ M ,

ui and wj are called partners in M . A blocking pair for M is a (man,woman) pair (ui, wj)

such that ui prefers wj to M(ui) and wj prefers ui to M(wj), where M(q) denotes q’s

partner in M for any person q in I. A matching that admits no blocking pair is said to

be stable.

Stable matching problems were first studied by Gale and Shapley [17] in their seminal

paper “College Admissions and the Stability of Marriage”. There they gave an algorithm,

now widely known as the Gale-Shapley (GS) algorithm, that always finds a stable matching

for any instance of SM in O(n2) time [34]. Very briefly, the algorithm involves a sequence

of “proposals” from members of one sex to members of the opposite sex and it terminates

when everyone becomes engaged. If the men were the proposers, then we obtain the man-

oriented version of the GS algorithm, otherwise the algorithm is known as woman-oriented.

The algorithm is inherently non-deterministic in that the order in which the proposals take

place is of no consequence to the result [22].

Gale and Shapley [17] observed that the man-oriented version of the GS algorithm

always gives the man-optimal stable matching, in which each man has the best partner

that he can have in any stable matching. The man-optimal stable matching is also woman-

pessimal, for each woman has the worst partner that she can have in any stable matching
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[41]. If the woman-oriented version of the GS algorithm is used, then this gives analogous

results: we obtain the woman-optimal stable matching which is man-pessimal. Gusfield

and Irving [22] gave an extended version of the man-oriented GS algorithm which simplifies

the process by deleting from a woman w’s preference list every man u′ who succeeds a

man u from whom she has received a proposal. This is because no such pair (u′, w) can

be part of any stable matching.

Several variants of the Stable Marriage problem exist and have been widely studied as

follows.

1.4.1.1 Incomplete lists

A natural variant of SM occurs when each person p in an SM instance I need not rank

all members of the opposite sex. Then the preference list for each person p contains a

subset of members of the opposite sex such that person p finds q acceptable if and only

if q appears in p’s preference list. We henceforth assume in all contexts where all the

participants are agents, that if an agent a ranks another agent b in a’s preference list, then

b also ranks a in b’s preference list. Furthermore, the numbers of men and women need not

be equal. We say that these preference lists are incomplete and use SMI (Stable Marriage

with Incomplete Lists) to denote this version of SM.

In this setting, a man ui and a woman wj are assigned to each other in a matching M

only if ui and wj are acceptable to one another. Thus, matchings need not be complete,

i.e. not all members of either sex need be assigned in a given matching in this setting.

Here, a (man,woman) pair (ui, wj) constitutes a blocking pair for M whenever (i) ui and

wj find each other acceptable, (ii) ui is either unassigned in M or prefers wj to M(ui),

and (iii) wj is either unassigned in M or prefers ui to M(wj). A matching in an instance

of SMI is stable if it admits no such blocking pair. Every SMI instance admits a stable

matching [17], and Gusfield and Irving [22] showed that the extended GS algorithm can

be used to find a stable matching, given an SMI instance. Furthermore, for any matching

M in an instance of SMI, some agents may be unassigned in M , but the same agents are

unassigned in all stable matchings and as a consequence, all stable matchings in I have

the same cardinality [18].
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1.4.1.2 Ties

Another variant of SM occurs when the preference list of each person is allowed to contain

ties. We say that a person p is indifferent between q and r if q and r appear in a tie in

p’s preference list, and use SMT (Stable Marriage with Ties) to denote this variant of

SM. The introduction of ties in a person’s preference list gives rise to three definitions of

stability, namely weak stability, strong stability and super-stability [26].

A matching M is defined to be weakly stable if there does not exist any blocking pair

(ui, wj) such that ui and wj prefer each other to their partners in M . On the other hand,

a matching M is strongly stable if there does not exist any blocking pair (ui, wj) such

that either (i) ui prefers wj to M(ui), and wj either prefers ui to M(wj) or is indifferent

between them, or (ii) wj prefers ui to M(wj), and ui either prefers wj to M(ui) or is

indifferent between them. We define a matching M to be super-stable if there does not

exist any blocking pair (ui, wj) such that ui either prefers wj to M(ui) or is indifferent

between them, and wj either prefers ui to M(wj) or is indifferent between them.

A weakly stable matching can always be found for an instance of SMT by simply

breaking the ties arbitrarily and then applying the extended Gale-Shapley algorithm to

the derived instance. This guarantees to produce a matching that is weakly stable in the

original instance with ties [22]. Also, all weakly stable matchings have the same cardinality

in this context. We remark that strongly stable matchings and super-stable matchings need

not exist for a given instance of SMT; hence, we do not devote any more attention to the

results concerning these versions of stability and refer the reader to [26] for more details.

1.4.1.3 Ties and Incomplete lists

SMT and SMI can be combined to give the Stable Marriage problem with Ties and

Incomplete lists, or SMTI in short. That is, a given preference list in SMTI can be

incomplete and can contain ties. In addition, the definition of weak stability can be

extended from SMT to SMTI in a natural way. A weakly stable matching may be found

using the same algorithm described for the corresponding problem in SMT. Unlike the

case in SMT, weakly stable matchings can have different cardinalities, and Manlove et

al. [39] shows that the problem of finding a maximum cardinality weakly stable matching

given an instance of SMTI is NP-hard, even if the ties are at the tails of the lists and on

one side only, there is at most one tie per list, and each tie is of length two.
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1.4.2 One-many mapping: the Hospitals-Residents Problem

The Hospitals-Residents problem is a many-one extension of SM that was first considered

by Gale and Shapley [17] and referred to in that paper as the College Admissions problem.

This problem has since invariably been known as the Hospitals-Residents problem mainly

because of its applications in the medical matching context such as the SFAS and NRMP

as mentioned in Section 1.1.

An instance I of the Hospitals-Residents problem (HR) comprises two disjoint sets R

and H, where R = {r1, r2, ..., rn1} is the set of residents and H = {h1, h2, ..., hn2} is the

set of hospitals. Each resident ri ∈ R ranks a subset of the hospitals in H in strict order

of preference giving rise to his preference list. Similarly, each hospital hj ∈ H ranks a

subset of the residents in R in strict order, giving rise to its preference list. If ri and hj

rank each other in their preference lists, we say that they find each other acceptable, and

ri and hj are each an acceptable partner for one another. We say that a resident ri prefers

one hospital hj to another hk if hj precedes hk in ri’s preference list. Similarly, we define

the preferences of hospitals over residents. Each hospital hj ∈ H has a capacity cj which

indicates the maximum number of posts it may fill. We define the underlying graph of I

to be the bipartite graph G = (R,H, E), where E is the set of edges in G representing the

acceptable hospitals of the residents. Let C =
∑n2

j=1 cj denote the sum of the capacities

of the hospitals. We also let n = n1 + n2 and m = |E|.

An assignment M is a subset of R × H such that (ri, hj) ∈ M only if ri finds hj

acceptable and vice versa. If (ri, hj) ∈ M , we say that ri and hj are assigned to each

other. A matching in I is an assignment M such that (i) each resident is assigned to at

most one hospital in M , and (ii) each hospital hj ∈ H is assigned to at most cj residents

in M . If a resident ri ∈ R is assigned in M , we denote by M(ri) the hospital that ri is

assigned to in M . We define M(hj) to be the set of residents assigned to hj in M (thus

M(hj) could be empty). We say that a hospital hj ∈ H is full in M if |M(hj)| = cj , and

undersubscribed in M if |M(hj)| < cj .

A blocking pair for M is a (resident,hospital) pair (ri, hj) such that

• ri and hj find each other acceptable

• either ri is unassigned in M , or ri prefers hj to M(ri)

• either hj is undersubscribed in M , or hj prefers ri to its worst assigned resident in

M(hj)
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A matching that admits no blocking pair is said to be stable, and every instance of

HR admits a stable matching [22]. Note that SMI is a special case of HR in which

cj = 1 for all hj ∈ H. Furthermore, we can extend the definition of a man-optimal and a

woman-optimal stable matching in SMI to a resident-optimal and a hospital-optimal stable

matching respectively in HR (see Section 1.6 of [22]). For any given instance I of HR,

efficient algorithms exist to find such stable matchings of I [22]. An HR instance can have

more than one stable matching. However, all stable matchings have the same cardinality,

and the same residents are assigned in all stable matchings [18, 49]. Furthermore, any

hospital that is undersubscribed in one stable matching is assigned with exactly the same

residents in all stable matchings [50]. Collectively, these results are known as the Rural

Hospitals Theorem because of their historical significance relating to the problems that

rural hospitals face when recruiting interns in the NRMP [22].

Given two matchings M and M ′, we say that a resident ri prefers M ′ to M if either

(i) ri is assigned in M ′ and unassigned in M , or (ii) ri is assigned in both M ′ and M and

prefers M ′(ri) to M(ri). Unlike the case for residents, it is less straightforward to define

the preference of a hospital hj over two matchings since hj may have non-unitary capacity.

Given that the primary goal of many practical matching applications is to maximise the

number of agents assigned, as well as to optimise the satisfaction of the agents according

to their preference lists, we give what may be viewed as a definition of a hospital hj ’s

preference over matchings in I as follows.

Definition 1.4.1. We say that the hospital hj prefers one matching M ′ to another M if

1. |M ′(hj)| > |M(hj)|, or

2. |M ′(hj)| = |M(hj)| and hj prefers the worst resident assigned to it in M ′ to the

worst resident assigned to it in M .

Note that even though there are no ties in hj ’s preference list, Definition 1.4.1 allows

a hospital hj to be indifferent between two matchings M and M ′ if |M(hj)| = |M ′(hj)|,

the worst resident assigned to hj is the same in both M and M ′ but hj has different sets

of residents assigned to it in M and M ′. If hj does not prefer M ′ to M , and also does not

prefer M to M ′, we say that hj is indifferent between M and M ′.

As is the case in SMI, we can permit ties in the preference lists in this context, and use

HRT (Hospital-Residents problem with Ties) to denote this variant of HR. The definition

of weak stability carries over from SMTI to HRT in an analogous way to the extension of
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the definition of classical stability from SMI to HR. Since SMTI is a special case of HRT,

it follows that the problem of finding a maximum cardinality weakly stable matching is

also NP-hard in HRT.

We remark that each of the concepts of a Pareto optimal matching, a popular matching

and a profile-based optimal matching, can be defined in SM, HR, and their respective

variants in the same way as the respective concepts were defined in the context of HA and

its variants in Section 1.3.2. Given that stable matchings sometimes do not satisfy the

key requirement in many practical matching contexts, which is to maximise the number

of agents assigned in any given matching (as we shall show), we thus also apply these

optimality criteria to SM and HR and some of their variants, and obtain new results as

follows.

In Chapter 3, we study the problem of finding a maximum Pareto optimal matching

given an instance of HR, and describe an O(
√

Cm) time algorithm for its solution. We

also show how this algorithm can be adapted to solve the analogous problem given an

instance of SMI in O(
√

nm) time. We then consider the structure of popular matchings in

SMTI-SYM, a special case of SMTI where preference lists are symmetric, in Chapter 6.

Little is known about how to find a maximum popular matching, or to determine that none

exists, in the bipartite setting where all the participants are agents (i.e. all participants

have preferences). A first step in this direction is presented by our characterisation results

of popular matchings in SMTI-SYM in Chapter 6. There, we also give an O(
√

nm) time

algorithm for testing if a matching in a given SMTI-SYM instance is popular. We also

consider the individual problems of finding a rank-maximal, a greedy maximum and a

generous maximum matching in the context of HRT in Chapter 8. For each problem, we

explore two alternative algorithms for its solution, the faster of which (in most practical

applications as we shall show) takes O(zC min(m log n, n2)) time. We also show how this

algorithm can be adapted to solve the analogous problem given an instance of SMTI in

O(z(nm + n2 log n)) time.

1.5 Non-bipartite matching problems

1.5.1 Stable Roommates Problem

In an instance of the Stable Roommates (SR) problem, first introduced by Gale and

Shapley [17], there is a set of n agents where n is even. Each agent ranks the n− 1 others

17
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in strict order of preference. A matching M is a partition of the set of agents into disjoint

pairs. A blocking pair for M is a pair of agents {x, y} /∈ M such that x prefers y to M(x)

and y prefers x to M(y) where M(q) denotes q’s partner in M for any agent q. A matching

is stable if it admits no blocking pair.

It is well-known that SM is just a special case of SR, since the set of stable matchings is

unchanged if we reduce an SM instance I into an SR instance by appending to the very end

of each agent’s preference list all the other agents that are of the same sex in I [22]. Not all

SR instances admit a stable matching [17], and Knuth [34] posed the question of whether

the problem of determining the solvability of SR instances might be NP-complete. This

question was answered by Irving [25], who gave an O(n2) algorithm for finding a stable

matching or reporting that no such matching exists. Alternative approaches for finding a

stable matching if one exists, given an SR instance have since been described [12,13,58–60].

As with SM, we may formulate an extension of SR where preference lists may include

ties and be incomplete (SRTI). In such a setting, the definition of a weakly stable matching

may be extended from the SMTI context in a natural way given an SRTI instance, and

weakly stable matchings, if they exist, can have different cardinalities. The problem of

finding a maximum cardinality weakly stable matching given an SRTI instance is NP-

hard [30,48].

We remark that, as in SM, HR and their respective variants, each of the concepts of a

Pareto optimal matching, a popular matching and a profile-based optimal matching, can

be defined similarly in SR and its variants as they were defined in Section 1.3.2. Pareto

optimal matchings in SR was recently studied by Abraham and Manlove [7]. There,

the authors gave an O(
√

nα(m,n)mlog3/2n) time algorithm for the problem of finding a

maximum Pareto optimal matching in an SR instance I, where n is the number of agents,

m is the total length of the preference lists in I and α is the inverse Ackermann function.

Chung [10] considered popular matchings in instances of SR and noted that a stable

matching is popular; however, the same need not be true in the presence of ties. Abraham

et al. [6] studied rank-maximal matchings in a special case of SR in which roommate pairs

are ranked globally, and gave an O(min(z∗
√

n, z∗+n)m) time algorithm for the solution to

the problem. Little is known about the individual problems of finding a popular matching

(if one exists) and finding profile-based optimal matchings, given the general case of SR.
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Chapter 2

Pareto optimal matchings in CHA

2.1 Introduction

As mentioned in Section 1.3.2, Pareto optimality is a solution concept that has received

much attention from the Economics community in the context of matching problems since

it is regarded as a fundamental solution concept. Pareto optimality interests us from the

point of view of this research because most of the associated algorithmic questions have

not, on the other hand, been considered extensively in the literature.

In this chapter, we study the problem of finding a maximum Pareto optimal matching

in the context of CHA, a general case of bipartite matching problems with one-sided

preferences. The main results of this chapter, and their organisation are as follows. We

give some terminology and preliminary results on Pareto optimal matchings in CHA in

Section 2.2. We then give a characterisation of Pareto optimal matchings in CHA in

Section 2.3, which we subsequently use in Section 2.4 to construct an O(
√

Cm) time

algorithm for finding a maximum Pareto optimal matching given an instance I of CHA

where C is the total capacity of the houses and m is the total length of preference lists

in I respectively. Note that we reuse most of the terminology and notation from HA as

defined in Section 1.3.1, and we explicitly define relevant concepts only where we need to

adapt them to CHA.

2.2 Basic terminology and preliminary results

Let I be an instance of CHA, and let G = (A,H, E) be the underlying bipartite graph of

I as defined in Section 1.3.1. Each house hj ∈ H has a capacity cj ≥ 1 which indicates the
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maximum number of agents that may be assigned to it. Recall from Section 1.3.1 that an

assignment M is a subset of A×H such that (ai, hj) ∈ M only if ai finds hj acceptable.

Furthermore, if (ai, hj) ∈ M , we say that ai and hj are assigned to each other, and we call

ai and hj partners in M . A matching M in an instance I of CHA is an assignment such

that (i) each agent is assigned to at most one house in M , and (ii) each house hj ∈ H is

assigned to at most cj agents in M . If an agent ai ∈ A is assigned in M , we denote by

M(ai) the house that ai is assigned to in M . We define M(hj) to be the set of agents

assigned to hj in M (thus M(hj) could be empty). We say that a house hj ∈ H is full in

M if |M(hj)| = cj , and undersubscribed in M if |M(hj)| < cj . We assume that no agent

has an empty preference list and each house is acceptable to at least one agent so that

m ≥ max {n1, n2}. Let C =
∑n2

j=1 cj denote the sum of the capacities of the houses.

2.3 Characterisation of Pareto optimal matchings

Let M be a matching in I. We say that M is maximal if there is no agent ai ∈ A and

house hj ∈ H such that ai is unassigned in M , hj is undersubscribed in M and ai finds

hj acceptable. Also, M is trade-in-free if there is no (agent,house) pair (ai, hj) such that

ai is assigned in M , hj is undersubscribed in M and ai prefers hj to M(ai).

A cyclic coalition with respect to M is a sequence of distinct assigned agents C =

〈a0, a1, . . . , ar−1〉, for some r ≥ 2, such that ai prefers M(ai+1) to M(ai) for each i (0 ≤

i ≤ r−1). Henceforth, all subscripts are taken modulo r when reasoning about coalitions.

Given a cyclic coalition C, the matching

M ′ = (M\{(ai,M(ai)) : 0 ≤ i ≤ r − 1}) ∪ {(ai,M(ai+1)) : 0 ≤ i ≤ r − 1}

is defined to be the matching obtained from M by satisfying C. We say that M is cyclic-

coalition-free if M admits no cyclic coalition. The following lemma gives a necessary and

sufficient condition for a matching to be Pareto optimal.

Lemma 2.3.1. Let M be a matching in a given instance I of CHA. Then M is Pareto

optimal if and only if M is maximal, trade-in-free and cyclic-coalition-free.

Proof. Let M be a Pareto optimal matching. Suppose for a contradiction that M is not

maximal. It follows that there exist an agent ai and a house hj such that ai is unassigned in

M , hj is undersubscribed in M and ai finds hj acceptable. Let M ′ = M∪{(ai, hj)}. Then,

M ′ ≺ M , a contradiction. Now, suppose for a contradiction that M is not trade-in-free.
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It follows that there exist an agent ai and a house hj such that ai is assigned in M , hj is

undersubscribed in M , and ai prefers hj to M(ai). Let M ′ = (M\ {(ai,M(ai))}∪{(ai, hj)}.

Then, M ′ ≺ M , a contradiction. Finally, suppose that M admits some cyclic coalition C.

Let M ′ be the matching obtained by satisfying C. Clearly then, M ′ ≺ M , a contradiction.

Conversely, let M be a matching that is maximal, trade-in-free and cyclic-coalition-

free. Let us suppose for a contradiction that M is not Pareto optimal. Then there exists

some matching M ′ such that M ′ ≺ M . Let G be the underlying graph of I. We clone G

to obtain a cloned graph C(G) as follows. We replace every house hj ∈ H with the clones

h1
j , h

2
j , . . . , h

cj

j . We then divide the capacity of each house among its clones by allowing

each clone to have capacity 1. In addition, if (ai, hj) ∈ G, then we add (ai, h
p
j ) to C(G)

for all p (1 ≤ p ≤ cj). Let us then adapt the matching M in G to obtain its clone C(M)

in C(G) as follows. If a house hj in G is assigned to xj agents a1, ...axj in M , then we add

(ap, h
p
j ) to C(M) for 1 ≤ p ≤ xj , so that |C(M)| = |M |. We repeat a similar process for

M ′ to obtain its clone C(M ′) in C(G).

Let us consider X = C(M) ⊕ C(M ′) and let C be a connected component of X. It

follows that C is a path or cycle whose edges alternate between C(M) and C(M ′). Now,

C cannot be an even-length alternating path that has more agents than houses or an an

odd-length alternating path whose end edges are in C(M), for otherwise we have an agent

who is assigned in M but unassigned in M ′, a contradiction since M ′ ≺ M . In addition,

C cannot be an even-length alternating path that has more houses than agents or an

odd-length alternating path whose end edges are in C(M ′) because there then exists an

agent ai in C who becomes assigned in M ′ to a house hj which is undersubscribed in M .

Now, since there are no ties in preference lists, ai must prefer hj to M(ai) for otherwise

M ′ 6≺ M . However, M is then not trade-in-free, a contradiction. Hence, C must be a

cycle. Here, each agent ai in C is assigned in both M and M ′ and since M ′ ≺ M , each ai

prefers M ′ to M . However, C is then a cyclic coalition with respect to M , a contradiction.

It follows that M ′ 6≺ M and M is Pareto optimal.

Henceforth we will establish the Pareto optimality of a given matching M in an instance

I of CHA by showing that M is maximal, trade-in-free and cyclic-coalition-free. We now

show that Lemma 2.3.1 leads to an O(m) algorithm for testing M for Pareto optimality.

Let G be the underlying graph of I. Then, we can check if M is maximal and trade-in-free

in O(m) time by a traversal of the edges in G. To check if M is cyclic-coalition-free, we

construct the envy graph [3] of M as follows. We form a directed graph GM of M by
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Algorithm 2 Algorithm Greedy-PaCHA
1: M := ∅;

2: for each agent ai in turn do

3: if there exists some undersubscribed house in ai’s preference list then

4: let hj be the most-preferred such house;

5: M := M ∪ {(ai, hj)};

letting GM consist of one vertex for each agent assigned in M . We then construct an

edge from an agent ai to another agent aj in GM if ai prefers M(aj) to M(ai). It follows

that M is cyclic-coalition-free if and only if GM is acyclic. Note that even though M is a

matching of a CHA instance, all vertices in GM have only unitary capacity (being agent

vertices). It follows that a depth-first search suffices to detect any cycles in O(m) time so

that these observations lead us to the following lemma.

Lemma 2.3.2. Let M be a matching in a given instance of CHA. Then we may check

whether M is Pareto optimal in O(m) time.

Now, given an instance I of CHA, a greedy approach using the serial dictatorship

mechanism of [1] gives us a straightforward algorithm, Algorithm Greedy-PaCHA as shown

in Algorithm 2, for finding a Pareto optimal matching M in I. Here, we consider each

agent ai in turn and give ai his most preferred house that is currently undersubscribed in

the matching built so far. The following lemma shows that the matching constructed by

the algorithm must be Pareto optimal.

Lemma 2.3.3. Let M be the matching returned by an execution of Algorithm Greedy-

PaCHA. Then, M is Pareto optimal.

Proof. For, suppose not. For each ai ∈ A, let Ai denote the set of acceptable houses

for ai. Consider an agent ai who is unassigned in M . It follows that Ai contains no

undersubscribed house hj , otherwise (ai, hj) would have been added to M , a contradiction.

Hence, M is maximal. If M is not trade-in-free, then there exists an agent ai who prefers

some undersubscribed house hj to M(ai). This is a contradiction, since hj must be full

at the point when we assign ai to M(ai). If M is not cyclic-coalition-free, let us then

consider the coalition C = 〈a0, a1, ..., ar−1〉 which exists with respect to M . It follows that

there exists some agent ai (0 ≤ i ≤ r− 1) in C who was considered first by the algorithm.

By definition of C, ai prefers M(ai+1) to M(ai). Now, ai+1 must be considered by the

algorithm after ai. However, it follows that M(ai+1) must then have had at least one place
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Agent Pref list House Capacity

a1: h1 h2 h1 : 1

a2: h1 h2 : 1

Figure 2.1: An instance I1 of CHA

free when ai was assigned to M(ai), a contradiction to the fact that the algorithm gives

each agent his most preferred undersubscribed house. Hence, M is Pareto optimal.

The main drawback of Algorithm Greedy-PaCHA is that a given CHA instance may

admit Pareto optimal matchings of different cardinalities but Algorithm Greedy-PaCHA

may fail to find a Pareto optimal matching of maximum cardinality. For example, Figure

2.1 shows a given CHA instance in which Algorithm Greedy-PaCHA returns a Pareto

optimal matching M1 = {(a1, h1)} of cardinality 1, given the agent ordering 〈a1, a2〉, and

constructs the maximum Pareto optimal matching M2 = {(a1, h2), (a2, h1)} of cardinality

2 given the agent ordering 〈a2, a1〉. It follows that the order in which the agents are

considered can have a consequence on the cardinality of the outcome. This is significant

from a practical point of view, given that a prime objective in many matching applications

is to assign as many agents as possible.

We remark that a straightforward way to find a maximum Pareto optimal match-

ing given a CHA instance I is by constructing a maximum cardinality minimum weight

matching as follows. For each edge (ai, hj) in the underlying graph G of I, we assign a

weight wt(ai, hj) to the edge by letting wt(ai, hj) = rankai(hj) where rankai(hj) denotes

the rank of hj in ai’s preference list. Call this weighted graph G′. We then construct a

maximum cardinality minimum weight matching in G′. The following lemma shows that

such a matching must be a maximum Pareto optimal matching in I.

Lemma 2.3.4. Let M be a maximum cardinality minimum weight matching in G′. Then,

M is a maximum Pareto optimal matching in I.

Proof. Suppose not. Since M is a maximum matching, it follows that M is maximal.

Now, if M is not trade-in-free, then there exists a (agent,house) pair (ai, hj) such that

ai is assigned in M , hj is undersubscribed in M and ai prefers hj to M(ai). Consider

the matching M ′ = (M\(ai,M(ai))) ∪ (ai, hj). It is clear that |M ′| = |M | and so M ′ is

another maximum cardinality matching of G′. However, since ai prefers hj to M(ai), the

weight of M ′ must be smaller than the weight of M , a contradiction.
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Hence, suppose that M admits some cyclic coalition C = 〈a0, a1, ..., ar−1〉. Let M ′ be

the matching obtained by satisfying C. Then, it is clear that |M ′| = |M | again. Moreover,

since each ai prefers M(ai) to M ′(ai) for 0 ≤ i ≤ r − 1, the weight of M ′ is again smaller

than the weight of M , a contradiction.

Note that the above lemma also indicates that a maximum Pareto optimal matching

in I has the same cardinality as a maximum matching in G and any maximum cardinality

minimum weight matching of G′ gives us a maximum Pareto optimal matching in I.

A well known transformation in matching theory (described in [42]) allows us to trans-

form the problem of finding a maximum cardinality minimum weight matching into the

Assignment problem. Recall from Section 1.2 that we can solve the Assignment problem

in the capacitated bipartite graph in O(C min(m log n, n2)) time [15], so this allows us to

find a maximum Pareto optimal matching in the same time complexity. However, since the

problem of finding a maximum matching in the capacitated bipartite graph takes O(
√

Cm)

time (as mentioned in Section 1.2), it is of interest to consider whether faster algorithms

for finding a maximum Pareto optimal matching in CHA exist.

2.4 Maximum Pareto optimal matchings

In this section, we describe a three-phase algorithm for finding a maximum Pareto optimal

matching in CHA by satisfying the necessary and sufficient conditions in Lemma 2.3.1.

Let I be an instance of CHA and G be its underlying graph. The problem of finding a

maximum matching in G can be viewed as an instance of maximum cardinality DCS [15]

as described in Section 1.2 (the two problems are essentially the same, except that agents

have no explicit preferences in the DCS case; the definition of a matching is unchanged).

Hence, Phase 1 of the algorithm uses Gabow’s algorithm [15] to compute a maximum

matching M in G. This phase guarantees that M is maximal and takes O(
√

Cm) time.

The next two phases ensure that M is trade-in-free and cyclic-coalition-free respectively

as detailed below.

2.4.1 Phase 2 of the algorithm

In this phase, we transform M into a trade-in-free matching by conducting a repeated

search for (agent,house) pairs (ai, hj) such that hj is undersubscribed in M and ai prefers

hj to M(ai). Whenever such a pair is found, the algorithm breaks the existing assignment

24



Chapter 2. Pareto optimal matchings in CHA

Algorithm 3 Phase 2 loop
1: while S 6= ∅ do

2: hj := S.pop();

3: (ai, r) := Lj .removeHead();

4: if r < currai then

5: h′j := M(ai);

6: M := (M\
{
(ai, h

′
j)

}
) ∪ {(ai, hj)};

7: currai
:= r;

8: if |M(hj)| < cj and Lj 6= ∅ then

9: S.push(hj);

10: hj := h′j ;

11: if Lj 6= ∅ and hj /∈ S then

12: S.push(hj);

between ai and M(ai), and promotes ai to hj . It follows that a space in M(ai) becomes

freed in the process, which may consequently be assigned to some assigned agent ak who

prefers M(ai) to M(ak). Note that if hj remains undersubscribed after such a step, it

may also be assigned to some assigned agent al who prefers hj to M(al). We show how

to obtain a trade-in-free matching from M by using a slight modification of the Phase 2

loop of the algorithm described by Abraham et al. [3] to find a maximum Pareto optimal

matching in HA.

For each house hj , we maintain a linked list Lj of pairs (ai, r) where ai is an assigned

agent who prefers to be assigned to hj than M(ai) at the start of Phase 2, and r is the

rank of hj in ai’s preference list. Note that the pairs in Lj may subsequently contain an

agent ai who prefers M(ai) to hj if M(ai) is no longer the house that ai was assigned to at

the start of Phase 2 as a result of promotions executed over the course of the algorithm.

We will maintain a stack S of all undersubscribed houses hj where Lj is non-empty. Also,

for each house hj , we assume that we store a counter for |M(hj)|. For each assigned agent

ai, let currai be a variable which stores the rank of M(ai) in ai’s preference list.

Let us now consider the pseudocode of the Phase 2 loop as shown in Algorithm 3.

During each iteration of the main while loop, we pop an undersubscribed house hj from S

and remove the first pair (ai, r) from Lj (which must be non-empty). Now, if r < currai ,

it follows that ai prefers hj to M(ai) so we promote ai from h′j = M(ai) to hj and we

update M and currai in the process. Now, if hj remains undersubscribed at the end of

this step, then we push hj back onto S if Lj is non-empty. We also push h′j onto S if Lh′
j

25



Chapter 2. Pareto optimal matchings in CHA

is non-empty and if h′j is not already in S. Otherwise, if r ≥ currai , we push hj back onto

S if Lj is non-empty.

Now, the algorithm must terminate, for each iteration of the main while loop removes a

pair from a list Lj but no new pair is ever added to any list during a loop iteration. Hence,

the algorithm terminates when S is empty. It must be the case that when this happens no

assigned agent ai prefers an undersubscribed house to M(ai), so that M is trade-in-free

as a result. Moreover, since each agent assigned at the end of Phase 1 is also assigned

at the end of Phase 2, M remains a maximum matching. Let us then consider the time

complexity of Phase 2. We can initialise all variables used in the Phase 2 loop in O(m) time

using a single traversal of the agents’ preference lists. The number of iterations of the main

while loop is bounded above by the total length of preference lists. It is straightforward to

verify that each operation within the while loop takes constant time (with a suitable choice

of data structures such as those described later in Section 2.4.3). Hence, the algorithm

runs in O(m) time, giving us the following result.

Lemma 2.4.1. Given a maximum matching M in an instance of CHA, the Phase 2 loop

ensures that M is trade-in-free in O(m) time.

2.4.2 Phase 3 of the algorithm

In this phase, we transform M into a matching M ′ that admits no cyclic coalition by using

a modification of the linear-time extension [3] of Gale’s Top Trading Cycles Method [57].

This phase consists of a pre-processing step which we will describe in detail, and then the

main Phase 3 loop shown in Algorithm 5. Throughout Phase 3, we maintain a stack of

agents P which will help us to identify cyclic coalitions. The matching M ′ and the stack

P are empty at the start of Phase 3. For each agent ai, we maintain a pointer p(ai) to the

first house on ai’s preference list, and subsequently p(ai) traverses left to right over the

course of execution of Phase 3. We will also maintain a queue of agents Q, each of whom

is an agent ai waiting to be assigned to p(ai) in M ′. In addition, for each house hj , we

will use M0(hj) to store those agents who are assigned to hj in M but who are unassigned

in M ′ so far in the execution of Phase 3. Initially, M0(hj) will contain all those agents

assigned to hj in M . As we assign agents in M0(hj) to houses in M ′, we will remove these

agents from M0(hj). Finally, we also maintain a linked list Lj for each house hj containing

agents such that if ai is an agent in Lj , then ai prefers hj to M(ai).
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Algorithm 4 Process (Q)
1: while Q 6= ∅ do

2: ai := Q.removeHead();

3: hj := p(ai);

4: hk := M(ai); {// possibly hj = hk}

5: M ′ := M ′ ∪ {(ai, hj)};

6: label ai;

7: if ai ∈ P then

8: remove ai from P ;

9: M0(hk) := M0(hk)\ {ai};

10: if |M ′(hj)| = cj then

11: for each unlabelled a′i ∈ Lj do

12: delete hj from the preference list of a′i;

13: if p(a′i) = M(a′i) then

14: Q.add(a′i);

2.4.2.1 Pre-processing step

Let us now introduce the pre-processing step which helps to reduce the number of

iterations of the Top Trading Cycles Method in the main Phase 3 loop. This step makes

use of the observation (as in [3]) that no agent ai assigned to his first choice house hj in M

can be involved in a cyclic coalition. At the outset of Phase 3, we check if p(ai) = M(ai)

for each agent ai and add every such ai to Q.

If Q is non-empty, then we run the sub-routine Process(Q), shown in Algorithm 4, as

the pre-processing step. Note that this usage of Process(Q) is prior to the main Phase

3 loop starting, but it will be used again in general during the main Phase 3 loop. This

sub-routine considers each agent ai in Q in turn, by removing ai from Q and then adding

the edge (ai, hj) to M ′. Every such ai is then labelled to differentiate ai from those agents

unassigned in M ′ so far in the execution of the algorithm (all agents are initially unlabelled

at the outset of Phase 3). Now, P must be empty during pre-processing. However, this

may not be true during a subsequent execution of Process(Q) by the main Phase 3 loop.

Hence, Process(Q) checks if ai lies in P , and if so, removes ai from P so as to remove the

agent from further consideration by the main Phase 3 loop, since ai has just been assigned

in M ′. Let p(ai) = hj . Now, if |M ′(hj)| = cj after the assignment of ai to hj , then we

remove hj from the preference lists of the remaining agents since such a house that is full

in M ′ could not subsequently be involved in a cyclic coalition. We refer to those preference
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lists in which houses have been removed as reduced preference lists. We then apply the

observation made at the start of this subsection recursively to the reduced preference lists

of the remaining agents until either (i) no agents remain unassigned in M ′, or (ii) at least

one agent is not assigned to his reduced first choice in M ′ by Process(Q). In case (i), each

agent is assigned to his reduced first choice (i.e. the first choice on his reduced preference

list) in M ′ and so cannot be involved in any cyclic coalition as Lemma 2.4.4 on page 31

will establish. The following lemma shows that when case (ii) happens at the end of the

pre-processing step, a cyclic coalition must exist with respect to M .

Lemma 2.4.2. Suppose that pre-processing terminates, and there exists an agent1 who is

unassigned in M ′. Then a cyclic coalition must exist with respect to M .

Proof. Let a0 be an agent who is not assigned in M ′ to his reduced first choice p(a0)

at the end of pre-processing. Hence, a0 is an unlabelled agent and p(a0) 6= M(a0). It

follows that p(a0) must be full in M for otherwise M is not trade-in-free, a contradiction.

However, p(a0) cannot be full in M ′ for otherwise p(a0) would have been removed from

a0’s preference list by pre-processing and cannot be the reduced first-choice house of a0.

Hence, there exists some agent a1 ∈ M(p(a0))\M ′(p(a0)) because if an agent a is assigned

in M ′ by Process(Q) in pre-processing, it must be the case that a must be assigned in

M ′ to M(a). It follows immediately that a1 must be unassigned in M ′. Furthermore,

p(a1) 6= M(a1) (or else a1 /∈ M(p(a0))\M ′(p(a0))) so that p(a0) 6= p(a1). By reusing the

same argument, it follows that we can trace a sequence of agents S = 〈a0, a1, ...〉 such that

ai is assigned in M but unassigned in M ′ and p(ai) = M(ai+1) for i ≥ 0. Since the number

of agents is finite, there must be some r such that ar = ax for some 0 ≤ x < r − 1, where

without loss of generality ax, ax+1, ..., ar−1 are distinct agents. However, the substring

of agents C = 〈ax, ax+1, ..., ar−1〉 within S must then constitute a cyclic coalition with

respect to M .

Now, it is clear that an (unlabelled) agent ai can only be added to Q when the last

house that ai prefers to M(ai) gets removed from his preference list so that p(ai) becomes

equal to M(ai), and this happens only once in pre-processing. Since no agent is added to Q

twice, the while loop of process(Q) is bound to terminate. As a result, the pre-processing

step must also terminate.
1in fact, if there exists one such agent, then this lemma proves that there will be at least two such

agents
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Algorithm 5 Main Phase 3 loop
1: for each unlabelled agent ai do

2: P := {ai}; {// P is a stack of agents}

3: c(ai) := 1; {// counter record the number of times an agent is in P}

4: while P 6= ∅ do

5: a′i := P.pop();

6: if c(a′i) = 2 then

7: a′′i := a′i;

8: repeat

9: Q.add(a′′i );

10: a′′i := P.pop();

11: until a′′i = a′i

12: call Process(Q);

13: else

14: P.push(a′i);

15: choose any a′′i ∈ M0(p(a′i));

16: c(a′′i ) := c(a′′i ) + 1;

17: P.push(a′′i );

2.4.2.2 Phase 3 loop

We then make use of the algorithm in the main Phase 3 loop, as shown in Algorithm 5 to

construct the envy graph in order to detect and satisfy cyclic coalitions. For each agent ai

who is not assigned to his reduced first-choice in M , we repeatedly build a path of agents

(represented by P ) starting from ai in the main while loop and check if P cycles. To do

so, we initialise a counter c(ai) to 0 for each agent ai.

Now, if c(a′i) 6= 2 for some agent a′i in P during an iteration of the while loop, then we

extend P by following the reduced first-choice edge of a′i in line 15. Let p(a′i) = hj and let

a′′i be any member of M0(hj). Note that M0(hj) must be non-empty. For, suppose not.

Since a′i prefers hj to M(a′i), hj must be full in M (or else M is not trade-in-free). Each

agent ak assigned to hj in M either becomes assigned to hj again in M ′ if p(ak) = M(ak),

or to some other house via the satisfaction of some cyclic coalition. In the latter case, this

causes some agent al to be assigned to hj in M ′ in ak’s place. Since hj is not full in M ′ by

definition of p(a′i) = hj , it follows that there exists some agent belonging to M(hj) who is

currently unassigned in M ′. Hence, M0(hj) must be non-empty.

Otherwise if c(a′i) = 2, it follows that we have a cyclic coalition in P starting from a′i.
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We satisfy C by popping each agent a′′i in C from P until we remove C, and add each a′′i

to Q. We then call Process(Q) to assign each a′′i to p(a′′i ) in M ′, to label each a′′i in order

to remove the agent from further consideration by the algorithm, as well as to remove

M ′(a′′i ) from the preference lists of the remaining unlabelled agents if the house becomes

full in M ′.

2.4.2.3 Correctness of Phase 3 loop

If there are unlabelled agents at the start of the main Phase 3 loop, there must exist at

least one cyclic coalition with respect to M involving a subset of these agents by Lemma

2.4.2. The following lemma strengthens this result by showing that if there exist any

unlabelled agents at any point of time in the execution of Phase 3, then a cyclic coalition

must exist.

Lemma 2.4.3. Consider a given iteration of the for loop in Phase 3. If there exists an

agent who remains unlabelled, then a cyclic coalition must exist with respect to M .

Proof. Let a0 be an agent who is unlabelled during a given iteration of the for loop of Phase

3. Then, a0 is not assigned in M ′ to his reduced first choice p(a0). It follows that p(a0) 6=

M(a0). Now, p(a0) must be full in M for otherwise M is not trade-in-free, a contradiction.

However, p(a0) cannot be full in M ′ for otherwise p(a0) would have been removed from

a0’s preference list by Process(Q) and cannot be the reduced first-choice house of a0. Now,

each agent a′ ∈ A becomes assigned in M ′ to either M(a′) when M(a′) = p(a′), or to p(a′)

when we satisfy a cyclic coalition involving a′. Since p(a0) is currently undersubscribed in

M ′, it follows that there exists a non-empty subset of agents As such that each agent a

in As belongs to M(p(a0))\M ′(p(a0)) and a is currently unassigned in M ′. Let a1 ∈ As.

It must be the case that p(a1) 6= M(a1) and hence, p(a1) 6= p(a0). By reusing the same

argument, it follows that we can trace a sequence of agents S = 〈a0, a1, ...〉 such that ai is

assigned in M but unassigned in M ′ and p(ai) = M(ai+1) for i ≥ 0. Since the number of

agents is finite, there must be some r such that ax = ar for some 0 ≤ x < r − 1, where

without loss of generality ax, ax+1, ..., ar−1 are distinct agents. However, the substring

of agents C = 〈ax, ax+1, ..., ar−1〉 within S must then constitute a cyclic coalition with

respect to M .

The next lemma shows that when all agents are assigned in M ′, we then obtain a

cyclic-coalition-free matching.
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Lemma 2.4.4. If no unlabelled agents remain at any stage of Phase 3, then M ′ is cyclic-

coalition-free.

Proof. If there does not exist any unlabelled agents, then every agent is assigned in M ′.

Let a0 be an arbitrary agent. Suppose that there is a cyclic coalition C = 〈a0, a1, ..., ar−1〉

with respect to M ′ involving a0. Let M ′(a0) = hj and let M ′(a1) = hk. By definition of

C, a0 must prefer hk to hj . Since a0 was assigned to hj instead of hk in M ′, it follows

that hk must have been full in M ′ at the time that a0 was assigned to hj in M ′. It must

then be the case that a1 was considered by Phase 3 before a0 or else M ′(a1) 6= hk. Now,

by applying the same argument to the remaining agents in C, we can establish that ar−1

must have been considered by Phase 3 before a0. Let M ′(ar−1) = hl. It follows that ar−1

must prefer hj to hl. Now, it must be the case that at the time that ar−1 was assigned in

M ′, hj must have been undersubscribed for otherwise a0 could not have been assigned to

hj later on. However, this gives a contradiction for ar−1 prefers hj to hl and should then

be assigned to hj by Phase 3 instead.

Suppose that the envy graph involves the sequence of agents S = 〈a0, a1, ..., ar−1〉 and

suppose that only a substring of these agents C = 〈ai, ai+1, ..., ar−1〉 constitute a cyclic

coalition where 0 ≤ i < r − 1. Let us call the agents in the substring 〈a0, a1, ..., ai−1〉 the

tail of C. Now, if certain houses become full in M ′ as a result of satisfying C, thereby

causing M(ai−1) to become the reduced first choice house for the agent ai−1, then ai−1

gets added to Q and assigned to M(ai−1) in M ′ subsequently by Process(Q). Note that

this can cause an unwinding effect in the tail in which each agent ak (0 ≤ k ≤ i − 2),

such that M(ak) lies immediately after p(ak) in ak’s reduced preference list, gets added

to Q and assigned to M(ak) in M ′ by Process(Q) in descending agent subscript order

until either we reach an agent ak−1 such that there exists a house between p(ak−1) and

M(ak−1) in ak−1’s reduced preference list or the tail becomes empty as a result. In the

former case, the main Phase 3 loop then extends P by following the reduced first-choice

edge of ak−1. In the latter case, the main Phase 3 loop tries to extend P by following the

reduced first-choice edge of the next unlabelled agent, if one exists.

It is straightforward to see that the labelling of agents and the maintenance of c(ai)

for each agent ai ensures that no agent ai is added more than twice to P in Phase 3.

Clearly, if P is non-empty, P must cycle at some point of time in the execution of Phase

3 (as observed by Lemma 2.4.3). Since each agent ai that we add to P belongs to a cyclic
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coalition or to the tail of a cyclic coalition, we are bound to remove ai from P as a result.

It also follows by the labelling of agents that any agent added to Q by the for loop in the

main Phase 3 loop is not added to Q again by Process(Q) and vice versa. Hence, no agent

gets added to Q twice.

Hence, Phase 3 must terminate when no unlabelled agents remain. When this happens,

it follows by Lemma 2.4.4 that M ′ must be a cyclic-coalition-free matching. We next show

that each agent ai assigned in M at the end of Phase 2 must also be assigned in M ′ at

the end of Phase 3.

Lemma 2.4.5. Each agent ai assigned in M at the end of Phase 2 is also assigned in M ′

at the end of Phase 3.

Proof. Suppose not. Then, let ai be an agent who is unassigned in M ′. Let M(ai) = hj .

Then, ai ∈ M(hj)\M ′(hj). It follows that hj cannot have been the first house on ai’s

preference list, or else pre-processing would have assigned M ′(ai) to be hj . Hence, there

exists at least one house that ai prefers to hj . Now, if ai is not assigned in M ′ to any of

these houses, then the pointer p(ai) should move across ai’s preference list until it points at

hj . When this happens, ai should then be assigned to hj in M ′. However, ai is unassigned

in M ′ so that hj must have been removed from ai’s preference list prior to this as a result

of it becoming full in M ′. Now, if hj is full in M ′, then for every ak ∈ M ′(hj), either

ak ∈ M(hj) or there exists a unique al ∈ M(hj)\M ′(hj) such that ak and al belong to the

same cyclic coalition. However, this implies that cj + 1 agents were assigned to hj in M ,

a contradiction.

Since M is a matching that is also maximum, it follows by Lemma 2.4.5 that M ′ is

also a maximum matching.

2.4.3 Implementation and analysis

The time complexity of Phase 3 depends on how efficiently we can implement Process(Q)

and the main Phase 3 loop. Let us consider briefly the data structures required.

First of all, let us assume that we represent the stack P as a doubly linked list emdedded

within an array. We let P contain n1 elements and we indicate the presence or absence

of an agent in P by a 1 or 0 respectively. We maintain a pointer to the top of the stack

in addition to previous and next pointers between agents in P at any point of time. We

implement Q as a straightforward linked list. We also represent the preference list prefai
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of each agent ai as a doubly linked list embedded within an array. Each element in position

j of prefai stores the house lying in the corresponding position in ai’s preference list. Also,

for each house h in prefai , we maintain a pointer each to the house preceding and following

h on ai’s preference list respectively. We let p(ai) point to the first house in prefai , i.e. ai’s

(reduced) first choice house. Note that as with any doubly linked list, p(ai) gets updated

as part of the deletion operation whenever the (reduced) first choice house in prefai is to

be deleted from prefai . We then build a rank array rankai for each agent ai which stores

the position of each house hj on ai’s preference list, i.e. rankai [j] gives the position of hj

on prefai .

For each house hj , we represent M0(hj) also as a doubly linked list embedded within

an array. There are n1 entries in each M0(hj) indexed according to agent subscript, but

we maintain previous and next pointers for at most cj of these entries, i.e. previous and

next pointers exist between consecutive agents in M0(hj) only if these agents belong to

M(hj) but are currently unassigned in M ′. It is straightforward to see that Lj for each hj

can be implemented as a linked list. We also maintain a counter |M ′(hj)| for each house

hj to keep track of the number of agents assigned to it in M ′ so far in the execution of

Phase 3.

Note that for each doubly linked list that we use, we let the previous pointer of the

first element and the next pointer of the last element to each point to null. Now, if we

use virtual initialisation (described in [9, p.149]) for the initialisation of P , it is clear that

it takes only a single traversal of the agents’ preference lists in agent subscript order to

initialise the rest of the data structures.

To illustrate the use of these data structures, suppose firstly that we pop an agent

ai from Q. It is straightforward to see if ai belongs to P by checking if P [i] is 1 or 0.

To remove ai from P , we set P [i] = 0 and update the previous and next pointers of

P [i]’s predecessor and successor, as well as the pointer to the top of P if necessary. Let

hk = M(ai). To remove ai from M0(hk), we update the next and previous pointers of

M0(hk)[i]’s predecessor and successor respectively. Let p(ai) = hj . If hj becomes full in

M ′ as a result of assigning ai to hj , i.e. |M ′(hj)| = cj , we want to remove hj from the

preference lists of those unlabelled agents in Lj . It is clear that it takes only time linear

in the size of Lj to find these agents. Let al be such an agent. Then, rankal
[j] enables

us to look up the position of hj on al’s preference list in constant time. We then delete

hj from prefal
by updating the pointers of hj ’s predecessor and successor in prefal

. In
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this way, p(al) always points to the head of al’s preference list (which must be currently

undersubscribed in M ′).

Let us then consider the time complexity of Phase 3 by looking at the entire execution

of the main Phase 3 loop and Process(Q) taken over the algorithm’s execution. It has

already been observed that each agent can be added to P no more than twice and added

to Q at most once. Now, lines 8-11 of the main Phase 3 loop are executed at most once

for each agent in P . All other operations in the main Phase 3 loop are just O(1) stack

operations or simple manipulation of data structures. In Process(Q), all operations apart

from those in lines 11-14 can be implemented to run in O(1) time for each agent that is

added to or removed from Q. Finally, it is clear that lines 11-14 are executed at most once

for each house, and hence, the total number of iterations of the for loop is O(m), taken

over all calls to Process(Q). It follows that Phase 3 takes O(m) time overall, giving us the

following result.

Lemma 2.4.6. Given a maximal trade-in-free matching M in an instance of CHA, Phase

3 constructs a cyclic-coalition-free matching M ′ from M in O(m) time.

Since Phase 1 dominates the overall complexity of the algorithm to find a maximum

Pareto optimal matching in an instance of CHA, we have the following result.

Theorem 2.4.1. Given an instance I of CHA, we can find a maximum Pareto optimal

matching in I in O(
√

Cm) time.

Recall that an alternative approach to finding a Pareto optimal matching given an

CHA instance I involves obtaining a weighted graph G′ of I and then finding a maximum

cardinality minimum weight matching of I. This takes Ω(C min(m log n, n2)) time. If

m log n ≤ n2, then it follows that our algorithm is faster by a factor of Ω(
√

C log n).

Otherwise, m log n > n2 and our algorithm is faster by a factor of Ω(
√

Cn2/m).

2.5 Open problem

We conclude with the following open problem.

The problem model of CHA defined in Section 2.2 can be generalized by permitting

agents to contain ties in their preference lists, i.e. CHAT. In this context, the definition

of the relation ≺ is the same as that given in Section 1.3.2.1, and hence the definition

of Pareto optimality remains unchanged. A maximum Pareto optimal matching can be
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found in O(C min(m log n, n2)) time [15] by transformation to the Assignment problem as

described in Section 2.3. However, is the problem of finding a maximum Pareto optimal

matching also solvable in O(
√

Cm) time in the presence of ties?
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Pareto optimal matchings in HR

3.1 Introduction

In this chapter, we extend our study of Pareto optimal matchings from Chapter 2 to

the bipartite model with two-sided preferences. We focus our attention on the Hospitals-

Residents problem without ties (HR), which was introduced in Section 1.4.2.

The main results of this chapter, and their organisation are as follows. We give some

terminology and preliminary results on Pareto optimal matchings in HR in Section 3.2.

We then give a characterisation of Pareto optimal matchings in HR in Section 3.3, which

we subsequently use in Section 3.4 to construct an O(
√

Cm) time algorithm for finding

a maximum Pareto optimal matching given an instance I of HR, where C is the total

capacity of the hospitals and m is the total length of preference lists in I. Finally, in

Section 3.5, we show how to adapt our algorithm for HR to obtain a faster O(
√

nm) time

algorithm to solve the analogous problem given an instance of SMI, a special case of HR,

where n is the total number of men and women.

3.2 Basic terminology and preliminary results

Let I be an instance of HR. We reuse the notations and terminology for HR as defined in

Section 1.4.2, and also provide some additional definitions as follows.

Given a resident ri ∈ R and an acceptable hospital hj for ri, we define rankri(hj) to

be the number of hospitals that ri prefers to hj plus 1. If rankri(hj) = k, we say that hj

is the kth choice of ri. In a similar way, we define rankhj
(ri) and the kth choice of hj .

We assume that no resident has an empty preference list and each hospital is acceptable
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to at least one resident so that m ≥ max {n1, n2}. Also, let M be a matching in I. We

define a vertex v in G to be exposed with respect to M if either (i) v is a resident vertex

that is unassigned in M , or (ii) v is a hospital vertex that is undersubscribed in M . An

augmenting path in G is an alternating path, both of whose end vertices are exposed.

Let M ′ be another matching in I. Recall from Section 1.4.2 that a resident ri prefers

M to M ′ if either (i) ri is assigned in M and unassigned in M ′, or (ii) ri is assigned in

both M and M ′ and prefers M(ri) to M ′(ri). Furthermore, a hospital hj prefers M to

M ′ if

• |M(hj)| > |M ′(hj)|, or

• |M(hj)| = |M ′(hj)| and hj prefers the worst resident assigned to it in M to the worst

resident assigned to it in M ′.

Unlike the case for residents where it is necessary for ties to be present in the preference

lists in order for a resident to be indifferent between any two matchings M and M ′,

a hospital hj may be indifferent between M and M ′ if |M(hj)| = |M ′(hj)|, the worst

resident assigned to hj is the same in both M and M ′ but hj has different sets of residents

assigned to it in M and M ′.

Given these definitions, we may define a relation ≺ on the set of all matchings in I as

in Section 1.3.2.1: that is, M ≺ M ′ if and only if no agent prefers M ′ to M , and some

agent prefers M to M ′. A matching M is defined to be Pareto optimal if and only if it is

≺-minimal. In other words, a matching M is Pareto optimal if there is no other matching

M ′ such that M ′ ≺ M .

3.3 Characterisation of Pareto optimal matchings in HR

Let M be a matching in I. The following defines a necessary and sufficient condition for

M to be Pareto optimal in I.

Definition 3.3.1. An improving coalition with respect to M is a sequence of agents C =

〈r0, h0, r1, h1, ..., rk−1, hk−1〉, for some k ≥ 1, such that the residents are distinct and:

1. (ri, hi−1) ∈ M (1 ≤ i ≤ k − 1),

2. Either
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(a) r0 is unassigned in M and finds h0 acceptable, and hk−1 is undersubscribed in

M and finds rk−1 acceptable, or

(b) k ≥ 2, and (r0, hk−1) ∈ M .

3. ri prefers hi to hi−1 for each i (1 ≤ i ≤ k−1), and r0 prefers h0 to hk−1 if Condition

2(b) holds,

4. hi prefers M ′ to M or is indifferent between the matchings for each i (0 ≤ i ≤ k−1)

where M ′ = M ⊕ C.

If M admits no improving coalition, we say that M is improving coalition-free.

If C satisfies Condition 2(a), we also refer to C as an augmenting coalition, otherwise we

also refer to C as a cyclic coalition. We define the size of C to be 2k, and henceforth, all

subscripts are taken modulo k when reasoning about improving coalitions. The matching

M ′ obtained by M ′ = M ⊕C is defined to be the matching obtained from M by satisfying

C. Note that the hospitals may be repeated in C in view of their non-unitary capacities.

A matching M is maximal in G if M ∪{e} is not a matching for any e ∈ E\M where E is

the edge set in I. By Definition 3.3.1, M is maximal if and only if M admits no improving

coalition of size 2. The following lemma gives a necessary and sufficient condition for a

matching in HR to be Pareto optimal.

Lemma 3.3.1. Let M be a matching in a given instance I of HR. Then M is Pareto

optimal if and only if M is improving coalition-free.

Proof. Let M be a Pareto optimal matching. If M admits some improving coalition C,

let M ′ be the matching obtained by satisfying C. By Definition 3.3.1, each resident in C

prefers M ′ to M and each hospital in C either prefers M ′ to M or is indifferent between

the two matchings. However, this implies that M ′ ≺ M , a contradiction.

Conversely, let M be a matching that is improving coalition-free, and suppose for a

contradiction that M is not Pareto optimal. Then there exists some matching M ′ such

that M ′ ≺ M . Let X = M ⊕M ′ and let C be a connected component of X. We consider

three cases according to the form of C.

– Case (i): C is an alternating path with an even number of edges. However, this

implies that either there exists a resident ri who is assigned in M but who becomes

unassigned in M ′, or there exists a hospital hj such that |M ′(hj)| < |M(hj)|. Both

possibilities contradict the fact that M ′ ≺ M .
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– Case (ii): C is an alternating path with an odd number of edges. Clearly, the end

edges of C cannot be in M for otherwise we can obtain a similar contradiction as in Case

(i). Hence, the end edges of C are in M ′. Let ri be the exposed resident vertex in C.

Clearly, ri prefers M ′ to M . For each resident rj 6= ri in C, it must be the case that

rj prefers M ′(rj) to M(rj) since M ′ ≺ M . Hence, every resident in C prefers M ′ to

M . Let hx be the exposed hospital vertex in C. Clearly, |M ′(hx)| > |M(hx)| so that hx

prefers M ′ to M by Definition 1.4.1(i). For each hospital hy 6= hx in C, it is clear that

|M ′(hy)| = |M(hy)|. Furthermore, hy must either prefer M ′ to M or is indifferent between

the matchings according to Definition 1.4.1(ii), or else it cannot be the case that M ′ ≺ M .

However, C is then an augmenting coalition with respect to M .

– Case (iii): C is an alternating cycle. Clearly, each resident ri in C is assigned in

both M and M ′. Since M ′ ≺ M , it must be the case that each ri prefers M ′(ri) to M(ri).

For each hospital hj in C, it is clear that |M ′(hj)| = |M(hj)|. Furthermore, hj must either

prefer M ′ to M or is indifferent between the matchings according to Definition 1.4.1(ii),

or else it cannot be the case that M ′ ≺ M . However, C is then a cyclic coalition with

respect to M , a contradiction.

Henceforth we will establish the Pareto optimality of a given matching M in an instance

I of HR by showing that M is improving coalition-free. We now show that Lemma 3.3.1

leads to an O(m) algorithm for testing a given matching in an HR instance for Pareto

optimality. Let M be a matching in an HR instance I and let G be the underlying graph

of I. We first perform the following transformation to the preference lists of agents. That

is, for every resident ri ∈ R, we remove the hospital hj from the preference list of ri, and

remove ri from the preference list of hj if hj is a hospital that lies after M(ri) in ri’s

preference list, i.e. rankri(hj) > rankri(M(ri)). For each hospital hk, let rp be the worst

resident assigned to it in M . We then remove each resident rq from the preference list of

hk and remove hk from the preference list of rq whenever rankhj
(rq) > rankhj

(rp). The

effect of these truncations is that each agent is assigned in M to a “worst choice” partner.

Let us call the instance with truncated preference lists I ′, and its underlying graph G′, i.e.

G′ contain only those edges representing the truncated preference lists of the agents. It is

straightforward to see that it takes O(m) time to construct G′.

By Lemma 3.3.1, M is Pareto optimal if it admits no augmenting coalition or cyclic

coalition. We can check for the former structure by testing for an augmenting path in

G′. We use a similar form of restricted breadth-first search as described in Section 1.2, in
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Resident Pref Hospital Pref Hospital Capacity

r1: h2 h1 h1: r1 h1 : 1

r2: h2 h2: r1 r2 h2 : 1

Figure 3.1: An instance I1 of HR

which only edges not in M are followed from vertices in R and edges of M are followed

from vertices in H. If an augmenting path P is found in G′, then by augmenting along

P , we obtain a new matching M ′ such that each resident ri prefers M ′(ri) to M(ri), and

each hospital hj either prefers M ′ to M or is indifferent between the two matchings as a

result of the preference list truncations. Hence, M is not Pareto optimal if G′ admits an

augmenting path. It is straightforward that this takes O(m) time.

To test for a cyclic coalition, we form a directed graph GC with respect to M by letting

GC consist of one vertex for each assigned resident in I ′. We then construct an edge from

a resident ri to another resident rj in GC if ri prefers M(rj) to M(ri) in I ′. By a similar

argument to the above, it follows that M is cyclic-coalition-free if and only if GC is acyclic.

Note that even though M is a matching of a HR instance, all vertices in GC have only

unitary capacity (being resident vertices). It follows that a depth-first search suffices to

detect any cycles in O(m) time so that these observations lead us to the following lemma.

Lemma 3.3.2. Let M be a matching in a given instance of HR. Then we may check

whether M is Pareto optimal in O(m) time.

Figure 3.1 shows us an HR instance I1. Note that the unique stable matching M =

{(r1, h2)} has cardinality 1 here, but the maximum Pareto optimal matching M ′ =

{(r1, h1), (r2, h2)} has cardinality 2. Hence, Pareto optimality is a criterion that can give

rise to larger matchings than stability. Furthermore, it is straightforward to see that by

creating p copies of J , we may construct an HR instance Jp with 4p agents which admits

a stable matching Mp = {(r2i+1, h2i+2) : 0 ≤ i ≤ p− 1} of size p and a Pareto optimal

matching M ′
p = ({r2i+1, h2i+1), (r2i+2, h2i+2) : 0 ≤ i ≤ p− 1} of size 2p. It follows that we

can have an infinite family of HR instances for which the cardinality of a stable matching

is half the size of a maximum Pareto optimal matching.

Hence, given any HR instance I, we are also interested in considering the problem of

finding a maximum Pareto optimal matching in I as an alternative optimality criterion.

The next section presents an efficient algorithm for solving this.
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3.4 Maximum Pareto optimal matchings in HR

In this section, we describe a two-phase algorithm for finding a maximum Pareto optimal

matching in an instance I of HR by satisfying the necessary and sufficient conditions

of Lemma 3.3.1. Phase 1 of the algorithm uses Gabow’s algorithm [15] to compute a

maximum matching M in the underlying graph G. This phase guarantees that M admits

no augmenting coalition and takes O(
√

Cm) time. Phase 2 transforms M into a matching

that admits no cyclic coalition in the following way.

Let us construct a graph G′ from G by repeating the truncation of preference lists

as described in the aforementioned methods for testing a given matching in I for Pareto

optimality. Hence, all agents are assigned to a worst-choice partner in G′. It thus follows

as a result that the residents always improve and the hospitals either improve or remain

indifferent even if we satisfy any cyclic coalition with respect to M by considering pref-

erence lists on only one side. This allows us to obtain a cyclic-coalition-free matching

in G′ from M by considering the problem from only the point of view of the residents’

truncated preference lists, which effectively transforms the problem in I to an instance of

the analogous problem for the Capacitated House Allocation problem.

Hence, this allows the Phase 3 algorithm, described in Chapter 2 for finding a maximum

Pareto optimal matching given a CHA instance, to be reused from the residents’ point of

view in order to obtain a matching M ′ from M that is cyclic-coalition-free in G. We note

that M ′ must be cyclic-coalition-free by the correctness proof presented in Section 2.4.2.3.

Furthermore, the correctness proof also shows that M ′ remains a maximum matching since

each resident who was assigned at the end of Phase 1 remains assigned after the execution

of the Phase 3 algorithm. With the use of suitable data structures such as those described

in Section 2.4.3, the Phase 3 algorithm is guaranteed to run in O(m) time. Hence, it takes

O(m) time for Phase 2 of our algorithm to find a maximum Pareto optimal matching given

a HR instance. It follows that Phase 1 dominates the overall complexity of our two-phase

algorithm for HR, giving us the following result.

Theorem 3.4.1. A maximum Pareto optimal matching in an instance I of HR can be

found in O(
√

Cm) time.
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3.5 Maximum Pareto optimal matchings in SMI

Since SMI is a special case of HR, it follows that Lemma 3.3.1 also gives a necessary and

sufficient condition for a matching in an SMI instance J to be Pareto optimal.

We first show how to test a given matching M in J for Pareto optimality. Let G′ be

the underlying graph of J and let m be the number of edges in G′. We form a subgraph

GM of G′ by letting GM contain only those edges in M ∪ bp(M) where bp(M) is the set

of blocking pairs with respect to M . It is clear that GM can be constructed in O(m) time

by considering the edges of G. By Lemma 3.3.1, M is Pareto optimal in J if and only

if M admits no augmenting path or alternating cycle in GM . Clearly, we can test for an

augmenting path in GM in O(m) time using restricted breadth-first search as described in

Section 1.2. In order to test for an alternating cycle, we remove any unmatched vertices

and their incident edges from GM . Any cycle in GM that remains is an even-length

alternating cycle, so that a depth-first search suffices to detect this. Hence, we can check

if a matching in J is Pareto optimal in O(m) time.

We next show how the algorithm for finding a maximum Pareto optimal matching

in HR can be easily modified for the analogous problem in SMI. First of all, we use

the Hopcroft-Karp algorithm for finding a maximum matching M in Phase 1 instead of

Gabow’s algorithm. Then, this step takes O(
√

nm) time where n is the total number of

men and women. Using a similar form of preference list truncation to that for HR as

described above, we can then transform the problem in J to the House Allocation problem

(HA).

Hence, this allows Phase 3 of the implementation of the Top Trading Cycles Method

in [3] to be reused from the men’s point of view in order to obtain a matching M ′ from

M that is cyclic-coalition-free in G. We note that M ′ must be cyclic-coalition-free by the

correctness of the Top Trading Cycles Method [57]. Furthermore M ′ remains a maximum

matching since the algorithm in [3] ensures that each man and woman who is assigned at

the end of Phase 1 of our algorithm is also assigned when it completes execution. With

the use of suitable data structures such as doubly linked lists or arrays, we can ensure that

the initialisation and subsequent deletion of entries from the preference lists takes O(m)

time. Since the nested loops in Phase 3 of the implementation in [3] are guaranteed to

run in O(m) time, Phase 2 of our algorithm also runs in O(m) time. This gives us the

following result.
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Theorem 3.5.1. A maximum Pareto optimal matching in an instance J of SMI can be

found in O(
√

nm) time.

It follows that it is generally faster to find a maximum Pareto optimal matching in an

SMI instance using the techniques described in this section as opposed to the algorithm

for HR described in Section 3.4.

3.6 Open problems

In this chapter, we presented efficient algorithms for finding a maximum Pareto optimal

matching given an instance of HR or SMI. A number of open problems remain. For

example,

• The problem of finding a maximum Pareto optimal matching given an instance

of HR or SMI can be generalised by permitting agents to contain ties in their

preference lists, i.e. HRT or SMTI respectively. As with CHA, the definition of the

relation ≺ remains unchanged in the context of ties. For SMTI, we remark that a

maximum Pareto optimal matching can be found in O(nm + n2 log n) time [14] by

transformation to the Assignment problem in an analogous way to that described in

Section 2.2 for the case of CHA. However, it is open as to whether a similar form of

transformation exists to solve the problem in HRT. It is also open as to whether the

problem of finding a maximum Pareto optimal matching, given an instance of HRT

or SMTI, is also solvable in the same time complexity as its counterpart in the case

of strict preferences?

• [7] shows that the problem of finding a maximum Pareto optimal matching in an

instance of SRI is solvable in O(
√

nα(m,n)m log3/2 n) time. However, it remains to

consider whether a maximum Pareto optimal matching in SRI can be constructed

in O(
√

nm) time, which is the complexity of the fastest current algorithm for finding

a maximum matching in a general graph [44].
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Popular matchings in CHAT

4.1 Introduction

In this chapter, we consider the problem of finding a maximum popular matching given an

instance of CHA or CHAT. As noted in Section 1.3.2.2, many recent papers have focused

on popular matchings, given the importance of voting to many economic decisions, and also

given the viability of popular matchings as an optimality criterion for matching problems

with one-sided preferences. Here, we present the first algorithmic results for computing

popular matchings in a capacitated bipartite graph. The main results of this chapter, and

their organisation are as follows.

In Section 4.2, we first develop a characterisation of popular matchings in a CHA

instance I. We then use this characterisation to construct an O(
√

Cn1 +m) algorithm for

finding a maximum popular matching in I or reporting that none exists, where C is the

total capacity of the houses, n1 is the total number of agents and m is the total length of

the preference lists in I respectively. In Section 4.3, we provide the first extension of the

Edmonds-Gallai Decomposition to the case of a capacitated bipartite graph. Using this,

we build a new characterisation of popular matchings in a CHAT instance J , and then

use it to construct an O(
√

Cm) algorithm for finding a maximum popular matching in J

or reporting that none exists. We finally remark that a straightforward solution to each

of the problems of finding a maximum popular matching, given an instance I of CHA

or CHAT, may be to use “cloning”. Informally, this entails creating cj clones for each

house hj , to obtain an instance C(I) of HAT (i.e. each house has capacity 1), and then

applying the algorithms of [4] to C(I). However, we will show in Sections 4.2 and 4.3 that

this method in general leads to slower algorithms than the direct approach that we will
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be using in each case.

4.2 Popular matchings in CHA

4.2.1 Characterising popular matchings

Let I be an instance of CHA, and let G = (A,H, E) be the underlying graph of I, where

A = {a1, a2, ..., an1} is the set of agents, H = {h1, h2, ..., hn2} is the set of houses and E is

the set of edges in G representing the acceptable houses of the agents. We assume all the

notations and terminology that have been defined for CHA in Chapters 1 and 2. Recall

that, given two matchings M and M ′ in I, we say that an agent ai prefers M ′ to M if

either (i) ai is assigned in M ′ and unassigned in M , or (ii) ai is assigned in both M ′ and

M and prefers M ′(ai) to M(ai). Let P (M ′,M) denote the set of agents who prefer M ′

to M . Then, M ′ is more popular than M if |P (M ′,M)| > |P (M,M ′)|, i.e. the number of

agents who prefer M ′ to M is greater than the number of agents who prefer M to M ′.

Furthermore, a matching M in I is popular if there is no other matching M ′ in I that is

more popular than M .

For each agent ai ∈ A, let f(ai) denote the first-ranked house on ai’s preference list.

Any such house hj is called an f-house. For each hj ∈ H, let f(hj) = {ai ∈ A : f(ai) = hj}

and fj = |f(hj)| (possibly fj = 0). We create a unique last resort house l(ai) with capacity

1 for each agent ai ∈ A, and append l(ai) to ai’s preference list. We also henceforth assume

that G contains the vertex l(ai) and the edge (ai, l(ai)) for each ai ∈ A, and that H contains

the respective last resort houses. We let n = n1 + n2 and m = |E|.

The following lemma is a vital first step in characterising popular matchings in I.

Lemma 4.2.1. Let M be a popular matching in I. Then for every f-house hj, |M(hj) ∩

f(hj)| = min {cj , fj}.

Proof. We consider the following two cases.

– Case (i): Suppose fj ≤ cj . We will show that f(hj) ⊆ M(hj). For, suppose not.

Then choose any ar ∈ f(hj)\M(hj). We consider the subcases that (a) hj is undersub-

scribed and (b) hj is full. In subcase (a), promote ar to hj to obtain a more popular

matching than M . In subcase (b), choose any as ∈ M(hj)\f(hj). Let hk = f(as). Then

hk 6= hj . If hk is undersubscribed, promote ar to hj and promote as to hk to obtain

a more popular matching than M . Otherwise, choose any at ∈ M(hk). If ar = at, we
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then promote ar to hj and promote as to hk to obtain a more popular matching than M .

Otherwise, we then promote ar to hj , promote as to hk and demote at to l(at) to obtain

a more popular matching than M .

– Case (ii): Suppose fj > cj . If hj is undersubscribed, then f(hj) 6⊆ M(hj) so

there exists some ar ∈ f(hj)\M(hj) that we can promote to hj to obtain a more popular

matching as in Case (i)(a). Hence, hj is full. Now, suppose for a contradiction that

M(hj) 6⊆ f(hj). Then there exists some as ∈ M(hj)\f(hj). As fj > cj , it follows that

f(hj) 6⊆ M(hj) so there exists some ar ∈ f(hj)\M(hj). The remainder of the argument

follows Case (i)(b).

Hence the following properties hold for the new matching. If fj ≤ cj , then f(hj) ⊆

M(hj). Otherwise, M(hj) ⊆ f(hj) and |M(hj)| = cj . Thus, the condition in the statement

of the lemma is now satisfied.

For each agent ai, we next define s(ai) to be the most-preferred house hj on ai’s

preference list such that either (i) hj is a not an f -house, or (ii) hj is an f -house such that

hj 6= f(ai) and fj < cj . Note that s(ai) must exist in view of l(ai). We refer to such a

house hj as an s-house. We remark that the set of f -houses need not be disjoint from the

set of s-houses. It may be shown that a popular matching M will only assign an agent ai

to either f(ai) or s(ai), as indicated by the next two lemmas.

Lemma 4.2.2. Let M be a popular matching in I. Then no agent ai ∈ A can be assigned

in M to a house between f(ai) and s(ai) on ai’s preference list.

Proof. Suppose that ai is assigned to a house hk between f(ai) and s(ai). Then hk is an f -

house and fk ≥ ck, for otherwise s(ai) = hk. As fk ≥ ck, by Lemma 4.2.1, M(hk) ⊆ f(hk).

However, f(ai) 6= hk, thus ai /∈ f(hk). Hence, ai cannot be assigned to hk.

Lemma 4.2.3. Let M be a popular matching in I. Then no agent ai ∈ A can be assigned

in M to a house worse than s(ai) on ai’s preference list.

Proof. Let hj = s(ai). If hj is undersubscribed, then we can promote ai to hj , a contra-

diction. Hence, hj is full. We consider two cases.

– Case (i): hj is an f -house. By definition of an s-house, fj < cj , so there exists some

ar ∈ M(hj)\f(hj). Let hk = f(ar). Then hk 6= hj . As ck ≥ 1 and fk ≥ 1, it follows by

Lemma 4.2.1 that M(hk) 6= ∅. Let as ∈ M(hk). Now, if ai = as, we can then promote ai

to hj and promote ar to hk to obtain a more popular matching than M , a contradiction.
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Otherwise, we can then promote ai to hj , promote ar to hk, and demote as to l(as) to

obtain a more popular matching than M , a contradiction.

– Case (ii): hj is not an f -house. Let ar ∈ M(hj). Then ar /∈ f(hj). The remainder

of the proof of this case proceeds as in Case (i).

Recall that G is the underlying graph of I. We form a subgraph G′ of G by letting G′

contain only two edges for each agent ai, that is, one to f(ai) and the other to s(ai). We

say that a matching M is agent-complete in a given graph if it assigns all agents in the

graph. It follows that, in view of last resort houses, all popular matchings must be agent-

complete in G′. However, G′ need not admit an agent-complete matching if s(ai) 6= l(ai)

for some agent ai. In conjunction with Lemmas 4.2.1-4.2.3, the graph G′ gives rise to the

following characterisation of popular matchings in I.

Theorem 4.2.1. A matching M is popular in I if and only if

1. for every f-house hj,

(a) if fj ≤ cj, then f(hj) ⊆ M(hj);

(b) if fj > cj, then |M(hj)| = cj and M(hj) ⊆ f(hj).

2. M is an agent-complete matching in the reduced graph G′.

Proof. By Lemmas 4.2.1-4.2.3, any popular matching necessarily satisfies Conditions 1

and 2. We now show that these conditions are sufficient.

Let M by any matching satisfying Conditions 1 and 2 and suppose for a contradiction

that M ′ is a matching that is more popular than M . Let ai be any agent that prefers

M ′ to M and let hk = M ′(ai). Since M is an agent-complete matching in G′, and since

G′ contains only edges from ai to f(ai) and s(ai), then M(ai) = s(ai). Hence either (i)

hk = f(ai) or (ii) hk is an f -house such that hk 6= f(ai) and fk ≥ ck, by definition of s(ai).

In Case (i), if fk < ck then by Condition 1(a), ai ∈ M(hk), a contradiction. Hence in

both Cases (i) and (ii), fk ≥ ck. In each of the cases that fk = ck and fk > ck, it follows

by Conditions 1(a) and 1(b) that |M(hk)| = ck and M(hk) ⊆ f(hk). Since hk is full in

M , it follows that |M(hk)\M ′(hk)| ≥ |M ′(hk)\M(hk)|. Hence for every ai who prefers

M ′(ai) = hk to M(ai), there is a unique aj ∈ M(hk)\M ′(hk). But as aj ∈ M(hk), it

follows that hk = f(aj). Hence aj prefers M(aj) to M ′(aj). Therefore, M is popular in

I.
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Algorithm 6 Algorithm Popular-CHA
1: M := ∅;

2: for each f -house hj do

3: c′j := cj ;

4: if fj ≤ cj then

5: for each ai ∈ f(hj) do

6: M := M ∪ {(ai, hj)};

7: delete ai and its incident edges from G′;

8: c′j := cj − fj ;

9: remove all isolated and full houses, and their incident edges, from G′;

10: compute a maximum matching M ′ in G′ using capacities c′j ;

11: if M ′ is not agent-complete in G′ then

12: output “no popular matching exists”

13: else

14: M := M ∪M ′;

15: for each ai ∈ A do

16: hj := f(ai);

17: if fj > cj and |M(hj)| < cj and hj 6= M(ai) then

18: promote ai from M(ai) to hj in M ;

4.2.2 Finding a popular matching

Theorem 4.2.1 leads to Algorithm Popular-CHA for finding a popular matching in a CHA

instance I, or reporting that none exists, as shown in Algorithm 6. The algorithm begins

by using a pre-processing step (lines 2-9) on G′ that assigns agents to their first-choice

house hj whenever fj ≤ cj , so as to satisfy Condition 1(a) of Theorem 4.2.1.

Our next step computes a maximum matching M ′ in G′, according to the adjusted

house capacities c′j that are defined following pre-processing. We use Gabow’s algorithm

[15] to compute M ′ in G′ and then test whether M ′ is agent-complete. The pre-allocations

are then added to M ′ to give M . As a last step, we ensure that M also meets Condition

1(b) of Theorem 4.2.1. For, suppose that hj ∈ H is an f -house such that fj > cj . Then

by definition, hj cannot be an s-house. Thus if ak ∈ M(hj) prior to the third for loop,

it follows that ak ∈ f(hj). At this stage, if hj is undersubscribed in M , we repeatedly

promote any agent ai ∈ f(hj)\M(hj) from M(ai) (note that M(ai) must be s(ai) and

hence cannot be an f -house hl such that fl > cl) to hj until hj is full, ensuring that

M(hj) ⊆ f(hj).
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It is clear that the reduced graph G′ of G can be constructed in O(m) time. The

graph G′ has O(n1) edges since each agent has degree 2 in G′. It is straightforward to see

that each of the pre- and post-processing steps involving the three for loop phases takes

O(n1 + n2) time. The complexity of Gabow’s algorithm [15] for computing M ′ in G′ is

O(
√

Cn1). Hence we obtain the following result concerning the complexity of Algorithm

Popular-CHA.

Lemma 4.2.4. Given an instance of CHA, we can find a popular matching, or determine

that none exists, in O(
√

Cn1 + m) time.

4.2.3 Finding a maximum popular matching

It remains to consider the problem of finding a maximum popular matching in I. We

begin by dividing the set of all agents into disjoint sets. Let A1 be the set of all agents

such that if ai is an agent in A1, then s(ai) = l(ai). Also, let A2 = A − A1. We aim to

find a matching M that satisfies the conditions of Theorem 4.2.1, and that minimises the

number of A1-agents who are assigned to their last resort house.

We begin by constructing G′, and carrying out the pre-processing step in lines 2-9

of Algorithm Popular-CHA on all agents in A1 ∪ A2. We then try to find a maximum

matching M ′ in G′ that only involves the A2-agents that remain after pre-processing

and their incident edges. If M ′ is not an agent-complete matching of the agents in A2

that remain after pre-processing, then G admits no popular matching by Theorem 4.2.1.

Otherwise, we remove all edges in G′ that are incident to a last resort house, and try to

assign A1-agents to their first-choice houses. At each step, we try to assign an additional

A1-agent to his first-choice house by finding an augmenting path with respect to M ′ using

Gabow’s algorithm [15], so that we have a maximum matching of agents in A1 ∪ A2 in

G′ at the end of this process. If any A1-agent remains unassigned, we simply assign him

to his last resort house, to obtain an agent-complete matching in G′. We also ensure

that Condition 1(b) of Theorem 4.2.1 is met by executing the third for loop in Algorithm

Popular-CHA. It follows that the matching so obtained, together with the pre-assignments

from earlier, is a maximum popular matching, giving the following theorem.

Theorem 4.2.2. Given an instance of CHA, we can find a maximum popular matching,

or determine that none exists, in O(
√

Cn1 + m) time.
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4.2.4 “Cloning” verus our direct approach

An alternative approach to our algorithm may be to use cloning. Given an instance I

of CHA, we may obtain an instance J of HAT by creating cj clones h1
j , h

2
j , ..., h

cj

j of

each house hj in I, where each clone has a capacity of 1. In addition, we replace each

occurrence of hj in a given agent’s preference list with the sequence h1
j , h

2
j , ..., h

cj

j , the

elements of which are listed in a single tie at the point where hj appears. We may then

apply the O(
√

nm) algorithm for HAT given by [4] to J in order to find a maximum

popular matching in I.

We now compare the worst-case complexity of the above cloning approach with that

of our direct algorithm. The underlying graph GJ of J contains n′ = n1 + C vertices.

Let cmin = min{cj : hj ∈ H}, and for ai ∈ A, let Ai denote the set of acceptable houses

for ai. Then the number of edges in GJ is m′ =
∑

ai∈A

∑
hj∈Ai

cj ≥ mcmin. Hence the

complexity of applying the algorithm given by [4] to J is Ω(
√

n1 + Cmcmin). Recall that

the complexity of Algorithm Popular-CHA is O(
√

Cn1 + m). It follows that the cloning

method is slower by a factor of Ω(
√

n1 + Ccmin) or Ω(mcmin/n1) (note that m ≥ n1 and

cmin ≥ 1) according as
√

Cn1 ≤ m or
√

Cn1 > m respectively.

4.3 Popular matchings in CHAT

In this section, we generalise the characterisation of popular matchings together with

Algorithm Popular-CHA as given in the previous section to the case where we are given

an instance of CHAT.

4.3.1 Characterising popular matchings

Let M be a popular matching in an instance I of CHAT. For each agent ai ∈ A, let

f(ai) denote the set of first-ranked houses on ai’s preference list (clearly it is possible that

|f(ai)| > 1 in view of ties in the preference lists). We refer to all such houses hj as f-houses

and we let f(hj) = {ai ∈ A : hj ∈ f(ai)}. Let G = (A,H, E) be the underlying graph of I.

Define E1 = {(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)} to be the set of first-choice edges. We define

the first-choice graph of G as G1 = (A,H, E1).

Given a CHAT instance I, since it is possible for an agent to have greater than one

f -house, Lemma 4.2.1 no longer holds in general. For example, it is possible for an f -house

hj such that fj = cj to not be assigned to all the agents in f(hj) in a popular matching
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if there are more f -houses than agents in I. This makes hj eligible to be the s-house

of some agent not in f(hj) in I whereas this would not have been possible in any given

CHA instance. Hence, we will work towards a new definition of s-houses in the context of

CHAT in this subsection. For instances with strict preference lists, Lemma 4.2.1 implies

that M ∩ E1 is a maximum matching in G1. As the next lemma indicates, this latter

condition also extends to the CHAT case.

Lemma 4.3.1. Let M be a popular matching in I. Then M ∩E1 is a maximum matching

in G1.

Proof. Let M1 = M∩E1. Suppose for a contradiction that M1 is not a maximum matching

in G1. Then M1 admits an augmenting path P = 〈a1, h1, ..., ak, hk〉 with respect to G1.

Now, in view of last resort houses, a1 must be assigned in M . It follows that M(a1) /∈ f(a1),

for otherwise M(a1) ∈ P . We let M ′ = M\ {(a1,M(a1))}. We consider the following cases

for hk.

– Case (i): hk is undersubscribed in M ′. As a1 is unassigned in M ′, h1 ∈ f(a1), and

|M ′(hk)| < ck, we can augment M ′ with P to obtain a new matching M ′′. Then, a1 is

assigned with h1 in M ′′. Furthermore, as all edges in G′ are first-choice edges, all other

agents in P become assigned in M ′′ to one of their other first-choice houses. However, M ′′

is more popular than M , a contradiction.

– Case (ii): |M ′(hk)| = ck. Choose any as ∈ M ′(hk)\f(hk). Note that such an as

must exist, for hk is full in M ′ but undersubscribed in M1. Clearly, as 6= ai for 1 ≤ i ≤ k.

Choose any ht ∈ f(as). Now, ht cannot be a house in P for suppose not. Without loss of

generality, let ht = hj where 1 ≤ j < k. Let C = 〈hj , aj+1, hj+1, ..., ak, hk, as〉. Let also

M ′′ = M ′ ⊕C. It follows that each agent ax 6= as in C becomes assigned in M ′′ to one of

their other first-choice houses while as improves by becoming assigned in M ′′ to one of his

first-choice house. However then, M ′′ is more popular than M , a contradiction. Hence,

ht does not belong to P . Now, if ht is undersubscribed in M ′, we can then augment M ′

with P so that a1 improves and the other agents in P are indifferent, and promote as to

ht to obtain a more popular matching than M , a contradiction. Otherwise, choose any

au ∈ M ′(ht). Since ht /∈ P and a1 is unassigned in M ′, au is a distinct agent from any

agent in P . However, we can then augment M ′ with P so that a1 improves and the other

agents in P are indifferent, promote as to ht and demote au to l(au) to obtain a more

popular matching than M , a contradiction.
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We now work towards a definition of s-houses by using the Edmonds-Gallai Decompo-

sition. Let M be a maximum matching in some bipartite graph G where all vertices have

capacity 1. According to Lemma 1.2.1, the vertices of G can be partitioned into three

disjoint sets: E , O and U . Vertices in E , O and U are called even, odd, and unreachable re-

spectively. A vertex v is even (odd) if there exists an alternating path of even (odd) length

from an unassigned vertex in G to v. If no such alternating path exists, v is unreachable.

As noted in Section 1.2, this vertex labelling is also known as the EOU labelling. Our aim

is to obtain an EOU labelling of G1 relative to a maximum matching M1 of G1 (as obtained

by Gabow’s algorithm [15], for example). However Lemma 1.2.1 applies directly only to

the case where each vertex in the given bipartite graph has capacity 1. We will show that

the Edmonds-Gallai Decomposition also holds in the case of a capacitated bipartite graph

as follows.

Let G = (U,W,E) be a capacitated bipartite graph. Also, let M be a maximum

matching of G. Let C(G) be a cloned graph of G by replacing every vertex wj ∈ W with

the clones w1
j , w

2
j , . . . , w

cj

j where cj is the capacity of wj . We then divide the capacity

of each vertex wj ∈ W among its clones by allowing each clone to have capacity 1. In

addition, if (ui, wj) belongs to G, then we add (ui, w
k
j ) to C(G) for all k (1 ≤ k ≤ cj).

We then adapt the maximum matching M in G to obtain a matching C(M) in C(G),

as follows. If a vertex wj ∈ W in G is assigned to xj vertices u1, ...uxj in M , then we

add (uk, w
k
j ) to C(M) for 1 ≤ k ≤ xj , so that |C(M)| = |M | and C(M) is a maximum

matching in C(G). It follows that C(G) is a bipartite graph in which all of its vertices on

the right hand side have capacity 1.

Let us now clone C(G) to obtain a bipartite graph C(G)′ in which all of its vertices

have capacity 1 by repeating the above steps for the vertices in U . That is, we replace

every vertex ui ∈ U with the clones u1
i , u

2
i , . . . , u

ci
i where ci is the capacity of ui. We then

divide the capacity of each vertex ui ∈ U among its clones by allowing each clone to have

capacity 1. In addition, if (ui, w
k
j ) belongs to C(G), then we add (ul

i, w
k
j ) to C(G) for all

l (1 ≤ l ≤ ci) where wk
j is a clone of wj ∈ W in C(G). We then adapt the maximum

matching C(M) in C(G) to obtain a matching C(M)′ in C(G)′ as follows. If a vertex

ui ∈ U in G is assigned to yi vertices w′
1, ...w

′
yi

in C(M), then we add (uk
i , w

′
k) to C(M)′

for 1 ≤ k ≤ yi where without loss of generality, w′
k is a clone of the vertex wk ∈ W in

C(G). It follows that |C(M)′| = |M | and C(M)′ is a maximum matching in C(G)′. It

also follows that C(G)′ is a bipartite graph in which all of its vertices have capacity 1.
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Suppose that we are given an EOU labelling of the vertices in C(G)′ with respect to

C(M)′ based on Lemma 1.2.1. The next lemma shows that the clones corresponding to

each vertex vj ∈ U ∪W in G have the same EOU label in C(G)′.

Lemma 4.3.2. Let G be a capacitated bipartite graph and let M be a maximum matching

in G. Define the cloned graph C(G)′ and its corresponding maximum matching C(M)′ as

above. Then, given any vertex vj ∈ U ∪W , any two clones of vj in C(G)′ have the same

EOU label.

Proof. Without loss of generality, let vj be a vertex wj belonging to the vertex set W ;

analogous results can be proven if vj ∈ U . Let wx
j and wy

j be two clones corresponding to

wj . We consider the cases where (1) wx
j is even, (2) wx

j is odd, and (3) wx
j is unreachable.

Case (1): If wx
j is even, then we consider the subcases where (a) wx

j is assigned in

C(M)′, and (b) wx
j is unassigned in C(M)′. In subcase (a), if wy

j is unassigned in C(M)′,

then it follows immediately that wy
j is also even. Hence, suppose that wy

j is also assigned

in C(M)′. As wx
j is even, there exists an even length alternating path P to wx

j in C(G)′

from an unassigned vertex clone belonging to W . Let up
i be the vertex that precedes wx

j

on P where up
i is a clone vertex of ui in C(G)′. It follows that (up

i , w
x
j ) ∈ C(M)′ from our

definition of the path P . As wy
j is also assigned in C(M)′, let (uq

k, w
y
j ) ∈ C(M)′ where uq

k

is a clone vertex of uk in C(G)′ and (uk, wj) ∈ M . Then, it follows that (uq
k, w

x
j ) must be

an edge in C(G)′. As wx
j is even, uq

k is odd. As a result, wy
j is even. In subcase (b), if

wy
j is also unassigned in C(M)′, then it is again immediate that wy

j is also even. Hence,

suppose that wy
j is assigned in C(M)′, to up

i say, where up
i is a clone vertex of ui in C(G)′

and (ui, wj) ∈ M . Now (up
i , w

x
j ) is also an edge in C(G)′. As wx

j is even, up
i is odd, and

hence wy
j is even.

Case (2): If wx
j is odd, then there must exist an odd-length alternating path from an

unassigned vertex up
i to wx

j where up
i is a clone of ui ∈ U in C(G)′. It follows that wx

j

cannot be unassigned for otherwise C(M)′ admits an augmenting path, a contradiction.

Hence, wx
j is assigned in C(M)′ to uq

k, say, where uq
k is a clone of uk ∈ U in C(G)′ and

(uk, wj) ∈ M . Then, uq
k is even. However, (uq

k, w
y
j ) is an edge in C(G)′, so it follows that

wy
j is odd.

Case (3): Now, wy
j must also be unreachable. For, suppose not. If wy

j is even, then wx
j

is also even by Case (1), a contradiction. If wy
j is odd, then wx

j is also odd by Case (2), a

contradiction.

53



Chapter 4. Popular matchings in CHAT

In view of Lemma 4.3.2, it follows that the clones corresponding to each vertex vj ∈

U∪W have the same EOU label in C(G)′, thereby giving us a well-defined characterisation

of EOU labels of all vertices in G. That is, if the clones of the vertex vj are even, odd or

unreachable in C(G)′, we can correspondingly label vj as even, odd or unreachable in G.

Suppose that we now have an EOU labelling of the vertices in G as described above. The

next result is a consequence of Lemma 4.3.2.

Lemma 4.3.3. Let G = (U,W,E) be a capacitated bipartite graph and let M be a

maximum matching in G. Then every odd or unreachable vertex vj ∈ U ∪ W satisfies

|M(vj)| = cj.

Proof. Let vj ∈ U ∪W be any vertex that is odd (or unreachable) in G. By Lemma 4.3.2,

all clones of vj will also be odd (or unreachable) in C(G)′. It follows that vj must be full

in M , for otherwise, at least one of its clones vx
j will be unassigned in C(M)′. However,

vx
j will then be even, a contradiction.

Hence, Lemma 4.3.2 and Lemma 4.3.3 give rise to the first extension of the Edmonds-

Gallai Decomposition to the capacitated bipartite graph as follows.

Lemma 4.3.4. Let G = (U,W,E) be a capacitated bipartite graph and let M be a maxi-

mum matching in G. Define E, O and U to be the vertex sets corresponding to even, odd

and unreachable vertices in an EOU labelling of G with respect to M . Then:

(a) The sets E, O and U are pairwise disjoint. Every maximum matching in G partitions

the vertices into the same sets of even, odd and unreachable vertices.

(b) Every maximum matching M in G satisfies the following properties:

(i) every vertex in O and every vertex in U is full in M ;

(ii) every vertex in O is assigned only to vertices in E in M ;

(iii) every vertex in U is assigned only to vertices in U in M ;

(iv) |M | =
∑

ui∈OU
ci +

∑
wj∈OW

cj +
∑

ui∈UU
ci where OU is the set of odd vertices

in U , OW is the set of odd vertices in W , and UU is the set of unreachable

vertices in U .

(c) No maximum matching in G contains an edge between two vertices in O or a vertex

in O with a vertex in U . There is no edge in G connecting a vertex in E with a

vertex in U , or between two vertices of E.
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It follows that Lemma 4.3.4 enables us to obtain an EOU labelling of G1 relative to a

maximum matching M1 of G1. The following corollary is a result of Lemma 4.3.4.

Corollary 4.3.1. Let M be a popular matching in I. Then every odd or unreachable

house hj ∈ H satisfies M(hj) ⊆ f(hj).

Proof. Let G1 = (A,H, E1) be the first-choice graph of I. Then, M1 = M ∩ E1 is a

maximum matching in G1 by Lemma 4.3.1. Let hj ∈ H be any house that is odd (or

unreachable) in G1. By Lemma 4.3.4, hj is full in M1. Since C(G1) contains only first-

choice edges, it follows that M1(hj) ⊆ f(hj), and hence M(hj) ⊆ f(hj).

We are now in a position to define s(ai), the set of houses such that, in a popular

matching M , if ai ∈ A is assigned in M and M(ai) /∈ f(ai), then M(ai) ∈ s(ai). We will

ensure that any odd or unreachable house hj is not a member of s(ai), since |M(hj)| = cj

and M(hj) ⊆ f(hj) by Lemma 4.3.4 and Corollary 4.3.1. Hence, we define s(ai) to be the

set of highest-ranking houses in ai’s preference list that are even in G1. Any such house is

called an s-house. Clearly, it is possible that |s(ai)| > 1, however, ai is indifferent between

all houses in s(ai). Furthermore, s(ai) 6= ∅ due to the existence of last resort houses which

are of degree 0 in G1 (and thus even). However, f(ai) and s(ai) need not be disjoint, i.e.

either f(ai) = s(ai) or ai prefers all members of f(ai) to s(ai). It turns out that Lemmas

4.2.2 and 4.2.3 also extend to CHAT as established by the following lemmas.

Lemma 4.3.5. Let M be a popular matching in I. Then no agent ai ∈ A can be assigned

in M to a house between f(ai) and s(ai) on ai’s preference list.

Proof. Suppose that ai is assigned to a house hj strictly between f(ai) and s(ai). Then,

ai must prefer hj to all houses in s(ai). Hence, hj must be an odd or unreachable house

in G1, as s(ai) contains the highest-ranking even houses in G1 in ai’s preference list. By

Corollary 4.3.1, M(hj) ⊆ f(hj). However, this is a contradiction as hj /∈ f(ai).

Lemma 4.3.6. Let M be a popular matching in I. Then no agent ai ∈ A can be assigned

in M to a house worse than s(ai) on ai’s preference list.

Proof. Suppose that ai is assigned to a house worse than s(ai). Let hj be any house in

s(ai). Now, if |M(hj)| < cj , we can promote ai to hj to obtain a more popular matching.

Hence, suppose that |M(hj)| = cj . Let ak ∈ M(hj). We consider two cases for hj .

– Case (i): hj /∈ f(ak). We then choose any hl ∈ f(ak). If |M(hl)| < cl, we promote
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ai to hj and promote ak to hl to obtain a more popular matching than M . Otherwise,

|M(hl)| = cl so we let am ∈ M(hl). If am = ai, we can promote ai to hj and promote

ak to hl. If am 6= ai, we promote ai to hj , promote ak to hl and demote am to l(am) to

obtain a more popular matching than M .

– Case (ii): hj ∈ f(ak). As hj ∈ s(ai), hj must be an even vertex by our definition of an

s-house. Let G1 be the first-choice graph of I as previously defined. Let M1 = M ∩ E1.

Then M1 is a maximum matching in G1 by Lemma 4.3.1. Furthermore, there exists an

alternating path P of even length to hj in G1, with respect to M1, from some (even)

house hl, which is undersubscribed in M1. Let M ′ = M\ {(ai,M(ai))}. We consider the

subcases that (a) hl is undersubscribed in M ′ or (b) hl is full in M ′. In subcase (a), we can

reuse the proof of Case (i) in Lemma 4.3.1 to obtain a matching M ′′ by matching ai with

hj , and then matching all other agents in P with one of their other first-choice houses in

P by augmenting along P . It follows that M ′′ is more popular than M , a contradiction.

In subcase (b), we can always find an agent am ∈ M ′(hl)\f(hl). The remainder of our

proof then follows a similar argument to that used in Case (ii) of Lemma 4.3.1 where we

can obtain a matching M ′′ that is more popular than M , a contradiction.

As was the case with CHA, we can also define a subgraph G′ for the CHAT instance

I by this time letting G′ contain only edges from each agent ai to houses in f(ai) ∪ s(ai).

Now, all popular matchings must be agent-complete in G′ in view of last resort houses.

However, an agent-complete matching need not exist if s(ai) 6= {l(ai)} for some agent

ai. Lemmas 4.3.1, 4.3.5 and 4.3.6 give rise to the following characterisation of popular

matchings in I.

Theorem 4.3.1. A matching M is popular in I if and only if

1. M ∩ E1 is a maximum matching in G1, and

2. M is an agent-complete matching in the subgraph G′.

Proof. By Lemmas 4.3.1, 4.3.5 and 4.3.6, any popular matching necessarily satisfies Con-

ditions 1 and 2. We now show that these conditions are sufficient.

Let M be any matching satisfying Conditions 1 and 2. Suppose for a contradiction

that M ′ is a matching that is more popular than M . Let ai be any agent that prefers M ′

to M . Since ai prefers M ′(ai) to M(ai), M is an agent-complete matching in G′, and G′

only contains edges from ai to f(ai) ∪ s(ai), it follows that M(ai) ∈ s(ai), and f(ai) and
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s(ai) are disjoint. Hence, M ′(ai) must be an odd or unreachable house in G1, as M(ai) is

an even house of highest rank in ai’s preference list.

Let hj1 = M ′(ai). Since hj1 is odd or unreachable, it follows by Condition 1 and Lemma

4.3.4(b) that |M(hj1)| = cj1 and M(hj1) ⊆ f(hj1). Now since ai ∈ M ′(hj1)\M(hj1), there

exists a distinct agent ak1 ∈ M(hj1)\M ′(hj1). If ak1 is unassigned in M ′ or M ′(ak1) /∈

f(ak1), then ak1 prefers M to M ′. Otherwise, suppose M ′(ak1) ∈ f(ak1). Let hj2 =

M ′(ak1). It follows that ak1 is even or unreachable so that hj2 must be odd or unreachable.

It then follows by Condition 1 and Lemma 4.3.4(b) that |M(hj2)| = cj2 and M(hj2) ⊆

f(hj2). Hence, there exists an agent ak2 6= ak1 such that ak2 ∈ M(hj2)\M ′(hj2) and

hj2 ∈ f(ak2). If ak2 is unassigned in M ′ or M ′(ak2) /∈ f(ak2), then ak2 prefers M to M ′.

Otherwise, suppose that M ′(ak2) ∈ f(ak2). Let hj3 = M ′(ak2). Then there exists an

agent ak3 ∈ M(hj3)\M ′(hj3) by a similar argument for ak2 . Note that possibly hj3 = hj1 ,

but we must be able to choose ak3 6= ak1 , for otherwise |M ′(hj1)| > |M(hj1)|, which is a

contradiction since |M(hj1)| = cj1 . Thus, ak3 is a distinct agent, so that we can repeat the

above argument to identify an alternating path P in which houses need not be distinct,

but agents are distinct. It follows that P must terminate at some agent akr as the number

of agents are finite. Furthermore, it must be the case that akr is unassigned in M ′ or

M ′(akr) /∈ f(akr) so that for every ai that prefers M ′ to M , there must exist a distinct

akr that prefers M to M ′.

Finally, we note the uniqueness of akr . If there exists another agent a′i who prefers M ′

to M , then we can build another alternating path – it is possible that some of the houses

are those already used in previous alternating paths such as P . However, it must be the

case (from our argument that ak3 is a distinct agent) that we are always able to identify

distinct agents not already used in previous alternating paths, as each house on the path

is odd or unreachable, and thus full in M . Hence, M is popular in I.

4.3.2 Finding a popular matching

Theorem 4.3.1 leads to Algorithm Popular-CHAT for finding a popular matching in an

instance I of CHAT or reporting that none exists, as shown in Algorithm 7. The next

lemma is an important step in establishing the correctness of the algorithm.

Lemma 4.3.7. Algorithm Popular-CHAT constructs a matching M such that M ∩ E1 is

a maximum matching of G1.
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Algorithm 7 Algorithm Popular-CHAT
1: Build subgraph G1=(A,H, E1), where E1={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai)}.

2: Compute a maximum matching M1 of first-choice edges in G1.

3: Obtain an EOU labelling of G1.

4: Build subgraph G′=(A,H, E′), where E′={(ai, hj) : ai ∈ A ∧ hj ∈ f(ai) ∪ s(ai)}.

5: Delete all edges in G′ connecting two odd vertices, or connecting an odd vertex with an un-

reachable vertex. (This step does not delete an edge of M1.)

6: Find a maximum matching M in the reduced graph G′ by augmenting M1.

7: if M is not agent-complete in G′ then

8: output “No popular matching exists”;

9: else

10: return M as a popular matching in I;

Proof. We firstly claim that G′ does not contain any edges of rank greater than 1 incident

to odd vertices and unreachable houses. Now, it follows by our definition of s-houses, for

any odd or unreachable house hj ∈ H, hj /∈ s(ai) for any agent ai ∈ A. Thus, there exist

only first-choice edges incident to any such hj . By Lemma 4.3.4(b), every odd agent ai in

G1 can only be assigned in any maximum matching of G1 to some even house hk. Since

(ai, hk) is a first-choice edge in G1 and s(ai) defines the highest-ranked even house in ai’s

preference list, it follows that s(ai) ⊆ f(ai). Hence, the claim is established.

Hence by the above claim, it follows that the edges removed from G′ during Step 5

of the algorithm, between two odd vertices or between an odd vertex and an unreachable

vertex, are first-choice edges in G′. However by Lemma 4.3.4(c), no maximum matching

in G1 can contain these edges. Thus, no popular matching can contain these edges by

Lemma 4.3.1. In particular, no edge of M1 is deleted by Step 5.

It also follows by Lemma 4.3.4(c) that there cannot exist any (first-choice) edges in G1

between two even vertices, or between an even and an unreachable vertex. As a result, the

only first-choice edges that remain in G′ after the edge deletions are those edges between

(i) odd agents and even houses, (ii) even agents and odd houses, and (iii) unreachable

agents and unreachable houses. Define a second-choice edge as belonging to the edge

set {(ai, hj) ∈ E′ : hj ∈ s(ai) ∧ s(ai) 6⊆ f(ai)}. Then by the above claim, the only second-

choice edges that remain in G′ are those between even agents and even houses, and between

unreachable agents and even houses.

The matching M is obtained from M1 through successive augmentation in Gabow’s

algorithm. We claim that there does not exist any augmenting path P in which an un-
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reachable agent ai (who is assigned in M1 to some house in f(ai)) becomes worse off, for

suppose otherwise. We trace the path P from the undersubscribed house endpoint. Let ai

be the first unreachable agent to become worse off after we augment along P . Let M b be

the matching before we augmented along P and let Ma be the matching obtained from

satisfying P . Assume that ai is assigned to hj1 in M b. Then, it follows that hj1 is unreach-

able. Furthermore, we can pick an agent ai1 6= ai assigned to hj1 in Ma but not in M b.

It follows that ai1 must be unreachable because any unreachable house has only incident

edges from unreachable agents in G′ and since any unreachable house does not have any

edge of rank greater than 1 incident to it as established above. If ai1 is unassigned in M b,

then we have finished tracing the path P . However, this gives a contradiction by Lemma

4.3.4(b). Hence, ai1 must be assigned to some first-choice house hj2 in M b or else ai cannot

be the first unreachable agent to become worse off. It thus follows that hj2 must also be

unreachable. We can repeat the above argument to trace the path P until we terminate

at some agent air who is assigned to the unreachable house hjr in Ma. It is evident that

air must be unassigned in M b. However, any such air must be unreachable, which is a

contradiction again by Lemma 4.3.4(b).

Now, since all odd agents have only first-choice edges incident to them in G′, they must

remain assigned to first-choice houses in M even if they participated in any augmenting

paths. Moreover, it must be the case that the odd houses, each of which is full in M1, must

be full in M and incident only to first-choice edges in M (since odd houses are incident

only to such edges in G′). Finally, by the above paragraph, unreachable agents cannot

become worse off in M than in M1. Hence, only even agents may become worse off in

M than in M1, but this means that at least |OA| +
∑

hj∈OH
cj + |UA| first-choice edges

assigned previously in M1 remain assigned in M . It thus follows by Lemma 4.3.4(b) that

M ∩ E1 is a maximum matching of G1.

Hence if Algorithm Popular-CHAT returns a matching M , then M is both an agent-

complete matching in G′ and M ∩ E1 is a maximum matching of G1 by Lemma 4.3.7.

Hence M is a popular matching in I by Theorem 4.3.1.

We now consider the complexity of Algorithm Popular-CHAT. Let F be the number

of first-choice edges in G. It is straightforward to see that G1 can be constructed in

O(F + n2) time. We use Gabow’s algorithm [15] to compute a maximum matching M1

in G1 in O(
√

CF ) time. We then obtain an EOU labelling of G1 as follows. We first use

a pre-processing step to label each unassigned agent and each undersubscribed house as
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even. This step takes O(n) time. Next, restricted breadth-first search may be used on

G1 to search for alternating paths with respect to M1, building up odd or even labels for

every vertex encountered. This step labels all odd and even (assigned) agents, and all

odd and even (full) houses and takes O(m) time. Any remaining unlabelled vertices must

be unreachable and we can directly label these vertices in G1 in O(n) time. Thus, the

total time complexity of this step is O(n + m). The EOU labelling of G1 is then used

to construct G′ and to delete certain edges from G′ at Steps 4 and 5 of the algorithm,

both of which take O(m) time overall. Finally, we then use Gabow’s algorithm again to

obtain the maximum matching M in G′ in O(
√

C(F + S)) time, where S is the number

of second-choice edges in G′. The following result gives the overall run-time of Algorithm

Popular-CHAT.

Lemma 4.3.8. Given an instance of CHAT, we can find a popular matching, or determine

that none exists, in O(
√

Cm) time.

4.3.3 Finding a maximum popular matching

It now remains to consider the problem of finding a maximum popular matching in I.

The aim is to find a matching that satisfies the conditions of Theorem 4.3.1 and that

minimises the number of agents who are assigned to their last resort houses. We begin by

firstly using Algorithm Popular-CHAT to compute a popular matching M in I, assuming

such a matching exists. Then M ∩E1 is a maximum matching in G1. We remove all edges

in G′ (and thus from M) that are incident to a last resort house. It follows that M still

satisfies the property that M ∩ E1 is a maximum matching in G1, but M need not be

maximum in G′ if agents become unassigned as a result of the edge removals. Thus, we

obtain a new maximum matching M ′ from M by using Gabow’s algorithm on G′ again.

If M ′ is not agent-complete in G′, we simply assign any agent who remains unassigned in

M ′ to their last resort house to obtain an agent-complete matching. Using an argument

similar to that in the proof of Lemma 4.3.7, it follows that M ′∩E1 is a maximum matching

of G1. Thus, M ′ is a maximum popular matching in I. Now, it is straightforward to see

that the overall complexity of this approach is as for Algorithm Popular-CHAT, giving the

following result.

Theorem 4.3.2. Given an instance of CHAT, we can find a maximum popular matching,

or report that no such matching exists, in O(
√

Cm) time.
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4.3.4 “Cloning versus our direct approach

We may compare the complexity of our direct approach for CHAT to that obtained using

cloning on I together with the algorithm of [4] on the cloned instance of I. As in Section

4.2, the latter approach takes Ω(
√

n1 + Cm′) time, where m′ =
∑

ai∈A

∑
hj∈Ai

cj . It

follows that this is slower than our direct algorithm by a factor of Ω(m′/m).

4.4 Open problem

We conclude this chapter with the following open problem.

Let I be an extension of CHA in which each agent now has a capacity to be assigned to

more than one house simultaneously in any matching M of I, i.e. a many-many mapping is

sought in any matching of agents to houses in I. We remark that it may be appropriate to

redefine an agent’s preference over matchings to Definition 1.4.1 in this setting. However,

the definition of a popular matching is unchanged. Is the problem of finding a popular

matching (or reporting that none exists) then solvable in polynomial time? It is not

immediately clear if cloning offers a straightforward solution in this context, since both

agents and houses have capacities, so that it would be hard to avoid assigning the same

agent to the same house more than once in any cloning approach. Hence, a direct algorithm

using an approach of the kind in this chapter is likely to be required. This then raises the

question: if a polynomial-time algorithm exists for solving this problem in CHA, can we

extend this to solve the analogous problem in CHAT?
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Popular matchings in WCHA

5.1 Introduction

In this chapter, we extend our study of popular matchings from Chapter 4 to the Weighted

Capacitated House Allocation problem with no ties (WCHA), a generalisation of CHA

in which each agent has an associated weight that indicates his priority. The assignment

of weights to agents allow us to build up a spectrum of priority levels for agents in the

competition for houses in situations where the total capacity of the houses is less than

the number of agents. In turn, this gives some agents a better chance of “doing well”.

For instance, the assignment of weights can enable DVD rental companies like Amazon

to give priority to those members who have paid more for privileged status whenever a

certain title is limited in stock. Alternatively, weights may be assigned to candidates in job

markets based on objective criteria such as academic results or relevant work experience.

The main results of this chapter, and their organisation are as follows. In Section 5.2,

we first develop necessary conditions for a matching to be popular in a WCHA instance

I. In Section 5.3, we identify a structure in the underlying graph of I that singles out

those edges that cannot belong to a popular matching. We then use these two results in

conjunction to construct a O(
√

Cn1 + m) time algorithm for finding a maximum popular

matching in I or reporting that none exists, where C is the total capacity of the houses,

n1 is the number of agents and m is the total length of preference lists in I. Finally, as for

the case of CHA, a straightforward solution to the problem of finding a maximum popular

matching in I may be to use “cloning”. Informally, this entails creating cj clones for each

house hj to obtain an instance J of WHAT, and then applying the algorithm of [43] to

J . However, we will show in Section 5.3.6 that this approach leads to a slower algorithm
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than the direct approach that we will be using, as was the case for CHA.

5.2 Characterising a popular matching

We remark that all the notations and terminology that were defined for CHA in Chapters

1, 2 and 4 carry over directly to WCHA. We also provide some additional definitions and

redefine certain concepts that we need to adapt to WCHA as follows.

Let I be an instance of WCHA, and let G = (A,H, E) be the underlying graph of I,

where A = {a1, a2, ..., an1} is the set of agents, H = {h1, h2, ..., hn2} is the set of houses

and E is the set of edges in G representing the acceptable houses of the agents. As was the

case in CHA, we also create a unique last resort house l(a) for each agent a and append

l(a) to a’s preference list. We henceforth assume that G contains the vertex l(a) and the

edge (a, l(a)) for each a ∈ A. Again, we let n = n1 + n2 and m = |E|.

Every agent a has a positive weight w(a) indicating the priority of the agent, and

we partition A into the sets P1, P2, ..., Pk, such that the weight of agents in Pz is wz,

and w1 > w2 > ... > wk > 0. For each agent a ∈ A, we say that a has priority z if

a ∈ Pz, and we use P (a) to denote the priority of a, that is P (a) = z. We assume that no

agent has an empty preference list and each house is acceptable to at least one agent, i.e.

m ≥ max {n1, n2}. We also assume that cj ≤ n1 for each hj ∈ H. Again, let C =
∑n2

j=1 cj

denote the sum of the capacities of the houses.

As with CHA, given two matchings M and M ′ in I, we say that an agent a prefers

M ′ to M if either (i) a is matched in M ′ and unmatched in M , or (ii) a is matched in

both M ′ and M and prefers M ′(a) to M(a). Let P (M ′,M) denote the set of agents who

prefer M ′ to M . Then, in view of the weights assigned to agents, it is appropriate to define

a popular matching in the context of WCHA as follows. Firstly, let the satisfaction of

M ′ with respect to M be defined as sat(M ′,M) =
∑

a∈P (M ′,M) w(a)−
∑

a∈P (M,M ′) w(a).

We then say that M ′ is more popular than M if sat(M ′,M) > 0. A matching M in I is

popular if there is no other matching in I that is more popular than M .

Let us now proceed to obtain a characterisation of popular matchings in I. For each

agent a ∈ A, we introduce the notion of a’s f-house and a’s s-house denoting these by

f(a) and s(a) respectively. Intuitively, f(a) is the most preferred house on a’s preference

list to which a could be assigned in a popular matching. We use Algorithm Label-f shown

in Algorithm 8 to define f(a) precisely.
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Algorithm 8 Algorithm Label-f
1: for each hj ∈ H do

2: for i in 1..k do

3: fi,j := 0;

4: for each a ∈ P1 do

5: f(a) := first-ranked house hj on a’s preference list;

6: f1,j ++;

7: for z in 2..k do

8: for each a ∈ Pz do

9: q := 1;

10: hj := house at position q on a’s preference list;

11: while (
∑z−1

p=1 fp,j ≥ cj) do

12: q ++;

13: hj := house at position q on a’s preference list;

14: f(a) := hj ;

15: fz,j ++;

Here, we will define the f -houses for all the agents in phases, with each phase corre-

sponding to a priority level Pz. Intuitively, during the course of the algorithm’s execution,

fi,j will denote the number of agents with priority i whose f -house is defined and equal

to hj . Initially, fi,j = 0 for all i (1 ≤ i ≤ k) and j (1 ≤ j ≤ n2). We then define the

f -house for each agent as follows. For every agent a ∈ P1, we let f(a) be the first-ranked

house hj on a’s preference list, and we call such a house an f1-house. Given 2 ≤ z ≤ k,

for every agent a ∈ Pz, we let f(a) be the most-preferred house hj on a’s preference list

such that
∑z−1

p=1 fp,j < cj – we call hj an fz-house. Clearly, the algorithm must terminate

due to the presence of a unique last resort house at the end of each agent’s preference

list. Once the algorithm has terminated, we let fi(hj) denote the set {a ∈ Pi : f(a) = hj}.

Then, fi,j = |fi(hj)| (possibly fi,j = 0). Here, and henceforth throughout this chapter,

any reference to fi,j refers to the value of this variable upon termination of Algorithm

Label-f.

It is straightforward to verify that Algorithm Label-f runs in O(m) time if we use

virtual initialisation (described in [9, p.149]) for the steps in lines 1-3. The example in

Figure 5.1 gives an illustration of the definition of f -houses. Here, the f -houses of the

agents are as follows: f(a1) = h1, f(a2) = h3, f(a3) = h3, f(a4) = h4, f(a5) = h4 and

f(a6) = h4.
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Agent Priority Weight Pref list House Capacity

a1: 1 7 h1 h2 h3 h1 1

a2: 2 4 h1 h3 h4 h2 2

a3: 2 4 h3 h5 h3 2

a4: 3 2 h3 h1 h4 h5 h4 2

a5: 3 2 h1 h4 h5 h5 1

a6: 3 2 h4 h1 h2

Figure 5.1: An instance I1 of WCHA

Now, for each hj ∈ H, let f(hj) = {a ∈ A : f(a) = hj} and fj = |f(hj)| (possibly

fj = 0), i.e. f(hj) =
⋃k

p=1 fp(hj). Clearly each hj may be an fz-house for more than one

priority level z. For every such hj , let us define dj to denote the priority level such that

dj =

 max {r : 0 ≤ r ≤ k ∧ fr,j 6= 0} , if fj ≤ cj ,

max {r : 0 ≤ r ≤ k ∧
∑r

i=1 fi,j < cj} , if fj > cj .

Note that for every hj such that fj > cj , clearly
⋃k

p=dj+1 fp(hj) 6= ∅. Hence, for every such

hj , we define gj to be the priority level such that gj = max {r : dj < r ≤ k ∧ fr,j 6= 0}. We

refer to Figure 5.1 for illustration. Here, d1 = 1, d3 = 2 and d4 = 2. Note that d2 and

d5 are not defined, for h2 and h5 are not f -houses for any agent. Also, since f4 > c4, it

follows that g4 = 3; however, h4 is the only f -house hj such that fj > cj . We now work

towards obtaining a characterisation of popular matchings in WCHA. We begin with the

following technical lemma.

Lemma 5.2.1. Let M be a matching in any WCHA instance I. Let hj ∈ H be a house,

and let 1 ≤ i ≤ dj. Let a ∈ A be an agent such that a ∈ Pi and a ∈ fi(hj)\M(hj). If hj is

full in M and
⋃i−1

p=1 fp(hj) ⊆ M(hj), then there exists some agent in M(hj)\
⋃i

p=1 fp(hj).

Proof. Let F =
⋃i

p=1 fp(hj). Then, it follows that F = (M(hj) ∩ F ) ∪ (F\M(hj)) and

M(hj) = (M(hj) ∩ F ) ∪ (M(hj)\F ). Hence, we have that |F | =
∑i

p=1 fp,j = |M(hj) ∩

F |+ |F\M(hj)| and |M(hj)| = |M(hj) ∩ F |+ |M(hj)\F |. Clearly, |F | ≤
∑dj

p=1 fp,j ≤ cj .

Since a ∈ fi(hj)\M(hj), it follows that |F\M(hj)| > 0. Hence, |M(hj)\F | = |M(hj)| −

|F |+ |F\M(hj)| > 0.

The next three lemmas contribute to the characterisation of popular matchings in

WCHA.
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Lemma 5.2.2. Let M be a popular matching in any given WCHA instance I and let

a ∈ A be any agent. Then, a cannot be assigned to a house better than f(a) in M .

Proof. Let a be the agent with lowest priority (i.e. greatest weight) such that a is assigned

to house hj in M and suppose that a prefers hj to f(a) = hl. Let a ∈ Pi so that∑i−1
p=1 fp,j ≥ cj by definition of f(a) as a’s f -house. Clearly, there must be no agent a′

such that a′ ∈ Pz where z ≥ i and f(a′) = hj , for otherwise
∑z−1

p=1 fp,j < cj , a contradiction.

Let a′ be any agent with priority level z < i such that a′ ∈ f(hj)\M(hj) – there must

exist such an agent since
⋃k

p=i fp(hj) = ∅ and
∑i−1

p=1 fp,j ≥ cj and a ∈ M(hj). Then, by

choice of a, a′ is assigned in M to a house worse than f(a′). However, this means that we

can promote a′ to f(a′) and demote a to l(a) to obtain a matching whose improvement in

satisfaction is wz − wi > 0, a contradiction.

Lemma 5.2.3. Let M be a popular matching in any given WCHA instance I. Then, for

each hj ∈ H,
⋃dj

i=1 fi(hj) ⊆ M(hj).

Proof. Given 1 ≤ i ≤ dj , we will prove by induction on i that fi(hj) ⊆ M(hj).

For the base case, let i = 1. Suppose that f1(hj) 6⊆ M(hj). Then, there exists some

agent ar ∈ f1(hj)\M(hj). By definition of an f1-house, hj must be the first house on

ar’s preference list. Hence, ar prefers to be assigned to hj than M(ar). Clearly, if hj is

undersubscribed in M , we can promote ar to hj to obtain a matching more popular than

M , a contradiction. Hence, hj is full in M . Choose any as ∈ M(hj)\f1(hj) (which must

exist by Lemma 5.2.1). Since as /∈ f1(hj), either (i) as has priority > 1, or (ii) as has

priority 1 but f(as) = hl 6= hj . In subcase (i), we can promote ar to hj and demote as to

l(as) to obtain a more popular matching. In subcase (ii), since f(as) = hl, it follows by

Lemma 5.2.2 that as prefers to be assigned to hl than hj . Now, if hl is undersubscribed

in M , we can promote ar to hj and promote as to hl to obtain a more popular matching.

Hence, hl is full in M . If hl = M(ar), then we can then promote ar to hj and promote

as to hl to obtain a more popular matching. Otherwise, choose any at ∈ M(hl). Clearly,

at 6= ar. We can then promote ar to hj , promote as to hl, and demote at to l(at) to obtain

a matching whose improvement in satisfaction is w1 + w1 − w(at) > 0.

For the inductive case, assume that 2 ≤ i ≤ dj , and if q < i, then fq(hj) ⊆ M(hj)

for all hj ∈ H. Suppose for a contradiction that fi(hj) 6⊆ M(hj). Then, there exists

some ar ∈ fi(hj)\M(hj). Now, since f(ar) = hj , it follows by Lemma 5.2.2 that ar must

prefer to be assigned to hj than M(ar). Thus, if hj is undersubscribed in M , we can
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promote ar to hj to obtain a more popular matching than M , a contradiction. Hence,

hj is full in M . Choose any as ∈ M(hj)\
⋃i

p=1 fp(hj) which must exist by Lemma 5.2.1.

Since as /∈
⋃i

p=1 fp(hj), either (i) as has priority > i, or (ii) as has priority ≤ i but

f(as) = hl 6= hj .

In subcase (i), we can promote ar to hj and demote as to l(as) to obtain a more

popular matching than M , a contradiction. In subcase (ii), suppose that as has priority

z < i. Then hl is an fz-house so that as ∈ fz(hl). However, this is a contradiction since

by the inductive hypothesis fz(hl) ⊆ M(hl), but M(as) 6= hl. Thus, as has priority i and

as ∈ fi(hl). Clearly, since f(as) = hl, it follows by Lemma 5.2.2 that as must prefer to

be assigned to hl than hj . Thus, if hl is undersubscribed, we can promote ar to hj and

promote as to hl to obtain a more popular matching than M , a contradiction. Hence hl is

full. If hl = M(ar), then we can promote ar to hj and promote as to hl to obtain a more

popular matching. Otherwise, hl 6= M(ar). We will show how to choose at ∈ M(hl). Since

f(as) = hl and 2 ≤ i ≤ k, by our definition of f -houses, hl must be the most preferred

house on as’s preference list such that
∑i−1

p=1 fp,l < cl.

Now, by the inductive hypothesis, it must be the case that
⋃i−1

p=1 fp(hl) ⊆ M(hl).

Since
∑i−1

p=1 fp,l < cl and hl is full, it follows that
⋃i−1

p=1 fp(hl) ⊂ M(hl). Hence, it must

be the case that M(hl)\
⋃i−1

p=1 fp(hl) 6= ∅. It follows that there exists some agent at ∈

M(hl)\
⋃i−1

p=1 fp(hl) and, either (i) at ∈
⋃k

p=i fp(hl) or (ii) at /∈ f(hl). Clearly, in case

(ii), at has priority ≥ i by a similar argument for as. For, if at has priority z < i, then

by the inductive hypothesis, since hm = f(at) is an fz-house and at ∈ fz(hm), it follows

that fz(hm) ⊆ M(hm). However, this gives a contradiction since M(at) 6= hm. Hence,

at has priority ≥ i in both cases (i) and (ii). We can then promote ar to hj , promote as

to hl and demote at to l(at) to obtain a matching whose improvement in satisfaction is

wi + wi − w(at) > 0, a contradiction.

Lemma 5.2.4. Let M be a popular matching in any given WCHA instance I. Then, for

each hj ∈ H, if fj > cj, then M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj).

Proof. Clearly, fgj ,j > cj−
∑dj

p=1 fp,j . It follows by Lemma 5.2.3 that
⋃dj

p=1 fp(hj) ⊆ M(hj)

so that no matter whether hj is full or undersubscribed, fgj (hj) 6⊆ M(hj). Hence, there

exists some agent ar such that ar ∈ fgj (hj)\M(hj). Note that ar has priority gj . Clearly,

since f(ar) = hj , ar must prefer to be assigned to hj than M(ar) by Lemma 5.2.2. Hence, if

hj is undersubscribed, we can promote ar to hj to obtain a more popular matching than M ,
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a contradiction. It follows that hj is full. We will show that M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj)

for all values of dj .

If dj = 0, then it must be the case that f1,j > cj and ar ∈ f1(hj)\M(hj). If M(hj) ⊆

f1(hj), then the result is immediate. Hence, suppose that M(hj) 6⊆ f1(hj). Choose any

as ∈ M(hj)\f1(hj). Clearly, either (i) as has priority 1 but f(as) = hl 6= hj or (ii) as has

priority > 1. In case (i), since f(as) = hl, as must prefer to be assigned to hl than hj

by Lemma 5.2.2. Hence, if hl is undersubscribed, we can promote ar to hj and as to hl

to obtain a more popular matching, a contradiction. Thus, hl is full. By Lemma 5.2.3,⋃dl
p=1 fp(hl) ⊆ M(hl). Since as ∈ f1(hl)\M(hl), it follows that dl = 0, i.e. f1,l > cl. Now,

if M(ar) = hl, then we can promote ar to hj and promote as to hl to obtain a more

popular matching. Hence, M(ar) 6= hl. Choose any at ∈ M(hl). We then promote ar to

hj , promote as to hl and demote at to l(at) to obtain a matching whose improvement in

satisfaction is w1 + w1 − w(at) > 0. In case (ii), we can promote ar to hj and demote as

to l(as) to obtain a more popular matching.

Hence, dj ≥ 1. Suppose for a contradiction that M(hj)\
⋃dj

p=1 fp(hj) 6⊆ fgj (hj). It

follows that there exists some agent as ∈ M(hj)\
⋃gj

p=1 fp(hj). Recall that ar has priority

gj . Clearly, either (i) as has priority ≤ gj but f(as) = hl 6= hj , or (ii) as has priority

> gj . It is immediate in case (ii) that we can promote ar to hj and demote as to l(as) to

obtain a more popular matching, a contradiction. Hence, case (i) applies. It follows by

Lemma 5.2.2 that as prefers to be assigned to hl than hj , and so, if hl is undersubscribed,

we can then obtain a more popular matching by promoting ar to hj and promoting as to

hl. Hence hl is full. Now, if M(ar) = hl, we can then promote ar to hj and promote as to

hl to obtain a more popular matching. Hence, M(ar) 6= hl.

Let as have priority z1 so that z1 ≤ gj . By our definition of f -houses, since hl = f(as),

if z1 = 1, then hl is the first house on as’s preference list. Since hl is full, then choose

any at ∈ M(hl) and let at have priority z2. We obtain an improvement in satisfaction

of w(ar) + w(as) − w(at) = wgj + w1 − wz2 > 0 by promoting ar to hj , promoting as

to hl and demoting at to l(at). Hence, it follows that z1 > 1. Then, hl must be the

most preferred house on as’s preference list such that
∑z1−1

p=1 fp,l < cl. By definition of

f(as) = hl, z1 ≤ gl. Now, by Lemma 5.2.3,
⋃dl

p=1 fp(hl) ⊆ M(hl). However, as /∈ M(hl).

Hence, it follows that z1 > dl, i.e. z1 = gl. Since
∑z1−1

p=1 fp,l < cl and hl is full, it follows

that
⋃z1−1

p=1 fp(hl) ⊂ M(hl). Hence, we have that M(hl)\
⋃z1−1

p=1 fp(hl) 6= ∅. It follows that

there exists some agent at ∈ M(hl)\
⋃z1−1

p=1 fp(hl). Clearly, either (i) at ∈
⋃k

p=z1
fp(hl) or
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(ii) at /∈ f(hl).

Note that since M(ar) 6= hl, at 6= ar. Now, in both case (i) and (ii), if at has priority

z2 ≥ z1, we can then promote ar to hj , promote as to hl and demote at to l(at) to obtain a

matching whose improvement in satisfaction is w(ar)+w(as)−w(at) = wgj +wz1−w(at) >

0, a contradiction. Hence z2 < z1, and so only case (ii) applies. Let hm = f(at). It is

obvious, by Lemma 5.2.2, that at prefers to be assigned to hm than hl. Furthermore,

hm 6= hj , for suppose not. As z2 < z1 ≤ gj and f(at) is defined, it follows that z2 ≤ dj .

By Lemma 5.2.3,
⋃z2

p=1 fp(hj) ⊆
⋃dj

p=1 fp(hj) ⊆ M(hj) so that at ∈ M(hj). However,

this gives a contradiction since at ∈ M(hl) and hj 6= hl. Clearly also, hm 6= M(ar) for

otherwise, we can promote ar to hj , promote as to hl and promote at to hm to obtain

a more popular matching, a contradiction. Hence, the houses hm, hl, hj and M(ar) are

distinct. Clearly too, the agents ar, as and at are distinct for z2 < z1 ≤ gj and ar 6= as.

We assume that hm is full, for otherwise we can obtain a contradiction by promoting

ar to hj , promoting as to hl and promoting at to hm. Let au ∈ M(hm). If z2 = 1, then

we can promote ar to hj , promote as to hl, promote at to hm and demote au to l(au) to

obtain a new matching with improvement in satisfaction w(ar)+w(as)+w(at)−w(au) =

wgj + wz1 + w1 −w(au) > 0. Hence, z2 > 1. If we let at and au take the roles of as and at

respectively, then it follows by the argument that we use to define at that we are able to

choose au such that au has priority < z2 and au /∈ f(hm). It follows that au is an agent

distinct from ar, as and at since P (au) < z2.

By continuing this argument, it follows that we obtain a sequence of distinct agents

a0, a1, a2, a3, ... where a0 = ar, a1 = as, a2 = at, and a3 = au. For i ≥ 4, the above

construction indicates that P (ai) < P (ai−1). If this sequence does not terminate as a

result of arriving at a contradiction due to any of the above cases, then we are bound to

ultimately generate an agent ax such that P (ax) < 1, which is impossible.

Lemmas 5.2.3 and 5.2.4 give rise to the following corollary concerning the relation of

f -houses to popular matchings.

Corollary 5.2.1. Let M be a popular matching in any WCHA instance I. Then, for

every f-house hj,

1. if fj ≤ cj, then f(hj) ⊆ M(hj);

2. if fj > cj, then |M(hj)| = cj,
⋃dj

p=1 fp(hj) ⊆ M(hj), and

M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj).
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Proof. In Case 1, if fj ≤ cj , it follows by definition of dj that
⋃k

p=dj+1 fp(hj) = ∅. Clearly

then, f(hj) =
⋃dj

p=1 fp(hj) ⊆ M(hj) by Lemma 5.2.3. In Case 2, it follows by Lemmas 5.2.3

and 5.2.4 that
⋃dj

p=1 fp(hj) ⊆ M(hj), M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj) and |M(hj)| = cj .

We now define the concept of an s-house for each agent. Given a popular matching

M , if M(a) 6= f(a), then as we shall show, M(a) = s(a). Given 1 ≤ z ≤ k, for every agent

a ∈ Pz, we define s(a) to be the most preferred house hj on a’s preference list such that

hj 6= f(a) and
∑z

i=1 fi,j < cj . Note that s(a) may not exist if f(a) = l(a). However, all

such agents will be assigned to their f -houses in any matching since last resort houses are

unique to individual agents.

To illustrate the s-house definition, let us look at Instance I1 in Figure 5.1 again.

We may verify from the definition of s-houses that s(a1) = h2, s(a2) = h4, s(a3) = h5,

s(a4) = h5, s(a5) = h5 and s(a6) = h2. Clearly, the set of fi-houses need not be disjoint

from the set of sj-houses for i 6= j as seen from this example. Now, since the process of

defining s-houses is analogous to the algorithm for defining f -houses, the time complexity

for defining s-houses is also O(m).

Now, it may be shown that a popular matching M will only assign an agent a to either

f(a) or s(a) as indicated by the next lemma.

Lemma 5.2.5. Let M be a popular matching in any WCHA instance I. Then, every

agent a ∈ A is assigned in M to either f(a) or s(a).

Proof. Let a ∈ Pi and let M(a) = hx. Suppose that the statement of this lemma is false.

By Lemma 5.2.2, a cannot be assigned to a house better than f(a). Then, besides f(a) or

s(a), hx can either be (i) a house between f(a) and s(a) or (ii) a house worse than s(a).

In case (i), it follows that hx is an f -house such that
∑i

p=1 fp,x ≥ cx, for otherwise

s(a) = hx. Hence, fx ≥ cx and M(hx) ⊆ f(hx) by Corollary 5.2.1. However, a ∈

M(hx)\f(hx), a contradiction.

In case (ii), let hj = s(a). It follows that a must prefer to be assigned to hj than

M(a) = hx. Clearly, hj is full, for otherwise we can promote a to hj , a contradiction.

It follows by our definition of s-houses that
∑i

p=1 fp,j < cj . Hence, by our definition

of dj , i ≤ dj . Since
⋃dj

p=1 fp(hj) ⊆ M(hj) (by Lemma 5.2.3) and hj is full, it follows

that
⋃i

p=1 fp(hj) ⊂ M(hj) so that M(hj)\
⋃i

p=1 fp(hj) 6= ∅. Hence, there exists some

as ∈ M(hj)\
⋃i

p=1 fp(hj). It is obvious that either (i) as ∈
⋃k

p=i+1 fp(hj), or (ii) as /∈ f(hj).

Clearly in case (i), as has priority > i, so we can promote a to hj and demote as to
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l(as) to obtain a matching whose improvement in satisfaction is wi − w(as) > 0. In case

(ii), let as have priority z1. It follows that z1 ≤ i, for otherwise, we can promote a to hj

and demote as to l(as) to obtain a new matching whose improvement in satisfaction is

wi − wz1 > 0. Let f(as) = hl. Clearly, as must prefer to be assigned to hl than hj by

Lemma 5.2.2. If hl is undersubscribed, we can then promote a to hj and promote as to hl

to obtain a more popular matching, a contradiction. Hence, suppose that hl is full. Let

at ∈ M(hl).

If z1 = 1, then we can promote a to hj , promote as to hl and demote at to l(at) to obtain

a matching with improvement in satisfaction w(a)+w(as)−w(at) = wi +w1−w(at) > 0.

Hence, suppose that z1 > 1. Clearly, hx 6= hl for suppose otherwise. By Corollary 5.2.1,

hl must be an f -house such that fl > cl by existence of as, for otherwise as ∈ M(hl).

It follows that M(hl) ⊆ f(hl). Now, if hl = hx, then this gives us a contradiction since

a ∈ M(hl) but hx 6= f(a) for a prefers s(a) to hx.

Hence, hl 6= hx. Then, at 6= a. It follows that we can reuse arguments from the proof

of Lemma 5.2.4 to obtain a sequence of distinct agents a0, a1, a2, ... where a0 = a, a1 = as,

and a2 = at. For j ≥ 3, the construction of the sequence indicates that P (ai) < P (ai−1).

If this sequence does not terminate as a result of arriving at a contradiction due to any of

the cases outlined in Lemma 5.2.4, then we are bound to ultimately generate an agent ax

such that P (ax) < 1, which is impossible.

Corollary 5.2.1 and Lemma 5.2.5 give rise to the following result.

Theorem 5.2.1. Let M be a popular matching in any given WCHA instance I.

1. For every f-house hj,

(a) if fj ≤ cj, then f(hj) ⊆ M(hj);

(b) if fj > cj, then |M(hj)| = cj,
⋃dj

p=1 fp(hj) ⊆ M(hj), and

M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj).

2. Every agent a is assigned to either f(a) or s(a).

5.3 Algorithm for finding a popular matching

Let us form a subgraph G′ of G by letting G′ contain only two edges for each agent a ∈ A,

that is, one to f(a) and the other to s(a). It follows that all popular matchings must
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be contained in G′ by Theorem 5.2.1. However, Theorem 5.2.1 only gives us necessary

conditions for a matching to be popular in an instance of WCHA, since not all matchings

in G′ satisfying these conditions are popular. For, let us consider the example WCHA

instance in Figure 5.1. We have at least two matchings which satisfy Conditions 1 and

2 of Theorem 5.2.1: M1 = {(a1, h1), (a2, h3), (a3, h3), (a4, h5), (a5, h4), (a6, h4)} and M2 =

{(a1, h1), (a2, h3), (a3, h3), (a4, h4), (a5, h5), (a6, h4)}. However, while M1 may be verified

to be a popular matching, M2 is not popular because there exists another matching M3 =

{(a2, h1), (a3, h3), (a4, h3), (a5, h4), (a6, h4)} which gives an improvement in satisfaction of

w(a2) + w(a4) + w(a5) − w(a1) = 4 + 2 + 2 − 7 > 0 over M2. Hence, we will “enforce”

the sufficiency of the conditions by removing certain edges in G′ that cannot form part of

any popular matching in I. We show how to do this by first introducing the notion of a

potential improvement path or PIP in short, which generalises the concept of a promotion

path from [43] to WCHA.

5.3.1 Potential improvement paths

Let us now define a matching M that satisfies Conditions 1 and 2 of Theorem 5.2.1 to be

well-formed. Then, a PIP leading out of some f -house h0 with respect to a well-formed

matching M is an alternating path Π = 〈h0, a0, h1, a1, ..., hx, ax〉 such that hi = f(ai) and

(ai, hi) ∈ M for 0 ≤ i ≤ x, and ai prefers hi+1 to hi for i < x. A PIP leading out of h0

always exists, which can be seen as follows. Since h0 is an f -house and c0 ≥ 1, there exists

some agent a′0 ∈ f(h0) ∩M(h0) by Theorem 5.2.1. Then, by definition, 〈h0, a
′
0〉 is a PIP

leading out of h0. The next lemma shows that any PIP leading out of h0 must contain a

sequence of agents with strictly decreasing priorities. Hence, the sequence of agents in Π

must be distinct since the priority of agents is strictly decreasing.

Lemma 5.3.1. Let M be a well-formed matching. Let Π = 〈h0, a0, ..., hx, ax〉 be a PIP

with respect to M leading out of h0 as defined above. Then, P (ai+1) < P (ai) for 0 ≤ i < x.

Proof. Let a0 have priority z1. If x = 0, then a0 is the last (only) agent in the path.

Otherwise, x > 0 and it follows by definition of Π that h0 is not the first house on a0’s

preference list as h1 is a house that a0 prefers to h0. Hence, it must be that h1 is an

f -house such that
∑z1−1

p=1 fp,1 ≥ c1 by definition of f(a0) = h0.

Since M is well-formed and f1 ≥ c1, it follows by Theorem 5.2.1 that |M(h1)| = c1

and M(h1) ⊆ f(h1). Now, if
∑z1−1

p=1 fp,1 = c1, then by definition of an f -house, fp,1 = 0
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for z1 ≤ p ≤ k. Hence, d1 ≤ z1 − 1. Since f1 = c1, it follows that M(h1) ⊆
⋃z1−1

p=1 fp(h1)

by Theorem 5.2.1. On the other hand, if
∑z1−1

p=1 fp,1 > c1, then f1 > c1 and g1 ≤ z1− 1. It

follows by Theorem 5.2.1 again that M(h1) ⊆
⋃z1−1

p=1 fp(h1). Clearly as a result, M(h1) ⊆⋃z1−1
p=1 fp(h1) in all cases.

Since a1 ∈ M(h1), it follows that f(a1) = h1 and a1 has priority strictly less than z1.

Moreover, we can repeat the argument to deduce the priority of each agent ai in Π. It is

then straightforward to see that the priority of any agent in Π must be strictly less than

its predecessor so that P (ai+1) < P (ai) for each i ≥ 0.

Let us define the cost of Π to be cost(Π) = w(ax)− w(ax−1)− ...− w(a0) if x > 0. Note

that cost(Π) = w(a0) if x = 0. We now motivate the notion of a PIP as follows. Let us

suppose that there exists some agent ar who prefers h0 to M(ar). The next lemma shows

that any such agent cannot belong to Π. Now, if cost(Π) < w(ar), we can conclude that

the well-formed matching M is not popular because we can promote ar to hj , and use

the PIP to promote each ai to hi+1 for all i < x and demote ax to l(ax) to obtain a new

matching that is more popular than M .

Lemma 5.3.2. Let M be a well-formed matching. Let Π = 〈h0, a0, ..., hx, ax〉 be a PIP

with respect to M leading out of h0 as defined above. Then, any agent a who prefers h0 to

M(a) does not belong to Π.

Proof. Let a have priority z. Since M is well-formed, either (i) M(a) = f(a) or (ii)

M(a) = s(a). It follows in case (i) that
∑z−1

p=1 fp,0 ≥ c0 by definition of f(a). In case

(ii), either (a) h0 = f(a) or (b) h0 is an f -house such that h0 6= f(a) and
∑z

p=1 fp,0 ≥

c0 by definition of s(a). Now, in subcase (a), if
∑z

p=1 fp,0 < c0, then z ≤ d0 so that⋃z
p=1 fp(h0) ⊆

⋃d0
p=1 fp(h0) ⊆ M(h0) since M is a well-formed matching. However, this

implies that a ∈ M(h0), a contradiction. It follows in all cases that
∑z

p=1 fp,0 ≥ c0.

Using a similar argument as in Lemma 5.3.1, we can establish that |M(h0)| = c0 and

M(h0) ⊆
⋃z

p=1 fp(h0). It follows that P (a) ≥ P (a0) and hence, the priority of a must be

greater than the priority of any other agent in Π by Lemma 5.3.1. Since a 6= a0, a cannot

be an agent in Π.

5.3.2 Pruning the graph

Let us now introduce Algorithm Prune-WCHA which will enable us to remove certain

edges in G′ that cannot be part of any popular matching. The algorithm is divided into two
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Algorithm 9 First stage of Algorithm Prune-WCHA
1: for each f -house h do

2: λ(h) := w1; {// a suitable upper bound}

3: for z in 1..k do

4: for each a ∈ Pz do

5: Let S contain the set of houses that a prefers to f(a);

6: if S 6= ∅ then

7: λmin(a, f(a)) := min {λ(h) : h ∈ S};

8: else

9: λmin(a, f(a)) := ∞; {// a suitable default value}

10: if λmin(a, f(a)) < wz then

11: return “No popular matching exists”;

12: for each fz-house hj do

13: f ′z(hj) := fz(hj);

14: if z ≤ dj then

15: for each a ∈ f ′z(hj) do

16: Remove (a, s(a)) from G′;

17: else {// z = gj > dj}

18: for each a ∈ f ′z(hj) such that λmin(a, hj) < 2wz do

19: Remove (a, hj) from G′;

20: Remove a from f ′z(hj);

21: if f ′z(hj) = ∅ then { // |f ′z(hj)| < cj −
∑dj

p=1 fp,j}

22: return “No popular matching exists.”;

23: λz(hj) := min(wz,min {λmin(a, hj)− wz : a ∈ f ′z(hj)});{ // λmin(a, hj) ≥ wz}

24: λ(hj) := min(λ(hj), λz(hj));

25: if z > dj and λ(hj) < wz then

26: return “No popular matching exists.”;

stages, with the first stage shown in Algorithm 9 and the second stage shown in Algorithm

10. The first stage is carried out in phases, with each phase corresponding to a priority

level Pz.

Intuitively, in each phase in the first stage, we compute the costs of PIPs and determine

the minimum of these for each f -house hj , and then use these values to identify and remove

certain edges incident to f -houses in G′ that cannot belong to any popular matching.

Based on the minimum values of PIPs calculated for f -houses in the first stage, we then

identify and remove in the second stage edges incident to s-houses in G′ that cannot belong

to any popular matching. Let G′′ denote the graph obtained from G′ once the algorithm
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Algorithm 10 Second stage of Algorithm Prune-WCHA
1: for each a ∈ A do

2: Let hl := s(a);

3: Let R contain the set of houses that a prefers to hl;

4: Let S contain the set of houses that a prefers to f(a);

5: R := R− (S ∪ {f(a)});

6: if R 6= ∅ then

7: λmin(a, hl) := min {λ(h) : h ∈ R};

8: else

9: λmin(a, hl) := ∞; {// a suitable default value}

10: if λmin(a, hl) < w(a) or fl ≥ cl then

11: Remove (a, hl) from G′;

terminates (following these edge removals). The removal of these edges will ensure that any

well-formed matching in G′′ is popular. Over the phases of execution, certain conditions

may arise which signal to the algorithm that no popular matching exists.

Recall that hj may be an f -house for more than one priority level, and hj may be

an f -house for more than one agent for each priority level. In the algorithm, we will use

λz(hj) as a variable and its value at the end of the algorithm equals the minimum cost

of a PIP leading out of hj taken over all well-formed matchings in G′′ such that (ar, hj)

is the first edge for some ar ∈ Pz. We will also use λ(hj) to compute the minimum cost

taken over all λz(hj). Note that we initialise λ(h) to w1 for every f -house h at the outset

of the first stage of Algorithm Prune-WCHA, for if Π is any PIP leading out of h, then

cost(Π) ≤ w(ax), where ax is the final agent on the path. However, w(ax) ≤ w1. Hence,

w1 is an upper bound for the final computed value of λ(h). Let Πmin(hj) denote a PIP

with minimum cost leading out of hj taken over all well-formed matchings in G′′. Let

cost(Πmin(hj)) denote the cost of this path. Then, as we shall show, the final value of

λ(hj) in the execution of the algorithm gives us the value of cost(Πmin(hj)).

For any agent as ∈ A, let S contain the set of houses on as’s preference list that as

prefers to f(as). Note that S will be empty if f(as) is the first house on as’s preference

list. If S 6= ∅, we will use λmin(as, f(as)) within the algorithm to compute the minimum

cost of a PIP out of hq, taken over all hq ∈ S, and over all well-formed matchings in G′′;

otherwise, the algorithm sets λmin(as, f(as)) to ∞ as a suitable default value. Similarly,

let R contain the set of houses on as’s preference list after f(as) that as prefers to s(as). If

R 6= ∅, we will use λmin(as, s(as)) within the algorithm to compute the minimum cost of a
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PIP out of hq, taken over all hq ∈ R, and over all well-formed matchings in G′′; otherwise,

the algorithm sets λmin(as, s(as)) to ∞ as a suitable default value.

5.3.3 Proof of correctness

The following lemma gives us an important technical result regarding the correctness of

the algorithm.

Lemma 5.3.3. Suppose that Algorithm Prune-WCHA does not terminate during the exe-

cution of its first stage by reporting that no popular matching exists. Let z be an iteration

of the for loop on line 3. Let hj ∈ H be any fz-house. Then, at the end of this iteration:

1. for each a ∈ Pz, if f(a) is not the first ranked house in a’s preference list, then

λmin(a, f(a)) equals the minimum cost of all PIPs among all houses that a prefers

to f(a) taken over all well-formed matchings in G′′; else, λmin(a, f(a)) = ∞.

2. λz(hj) stores the minimum cost among all PIPs taken over all well-formed matchings

in G′′ such that (a, hj) is the first edge for some a ∈ Pz.

3. λ(hj) stores the minimum cost among all PIPs taken over all well-formed matchings

in G′′ such that (a, hj) is the first edge for some a ∈ Pq where 1 ≤ q ≤ z.

4. if any edge has been removed from G′, then it cannot be part of any popular matching.

Proof. Given 1 ≤ z ≤ k, we will proceed by induction on z.

For the base case, let z = 1. If a ∈ P1, then clearly S = ∅ for a so that ∞ is assigned

to λmin(a, f(a)) as required in line 9. Now, any PIP leading out of hj and containing the

edge (a, hj) ends at a and has cost w1. Clearly, w1 is assigned to λz(hj) as required at line

23 since λmin(a′, hj) = ∞ for each a′ ∈ f ′1(hj). Also, w1 is assigned to λ(hj) at line 24 as

required, since this is the minimum of λz(hj) and the initialised value of λ(hj) which is

also w1. Finally, the only edges removed during this iteration are dealt with at lines 15-16

(as the condition in line 18 is not satisfied). For, clearly if a ∈ P1 and dj ≥ 1, a must

be assigned to f(a) = hj and not s(a) in any well-formed matching M by Condition 1 of

Theorem 5.2.1. Hence, the edge (a, s(a)) cannot belong to any popular matching.

For the inductive case, let us assume that 2 ≤ z ≤ k, and that the result is true for

z − 1. Let a ∈ Pz be any agent. Suppose that S 6= ∅. Choose any hl ∈ S. It follows

that
∑z−1

p=1 fp,l ≥ cl by definition of hj = f(a). Hence, it is impossible that hl can be
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an fp-house for any p ≥ z. By the inductive hypothesis, λ(hl) stores the minimum cost

among all PIPs leading out of hl where (a′, hl) is the first edge for some a′ ∈ Pq where

1 ≤ q ≤ z − 1. Hence, λ(hl) stores the minimum cost among all PIPs leading out of hl at

the end of the iteration z − 1. Thus, if S 6= ∅, then when λmin(a, f(a)) is defined during

iteration z in line 7, it contains the minimum cost of a PIP leading out of any house that

a prefers to f(a); otherwise, S = ∅ and λmin(a, f(a)) is assigned to be ∞ in line 9 as

required.

Now, it follows that the minimum cost of a PIP out of hj for which the first edge

is (a, hj) such that a ∈ fz(hj) either stops at a and has cost wz, or it continues. If it

continues, it must do so with some edge (a, hl) such that a prefers hl to hj . Hence, the

minimum cost of a PIP out of hj for which the first edge is (a, hj) is the minimum of wz

and λmin(a, hj) − wz. Clearly then, this is exactly the value assigned to λz(hj) on line

23 as required. Also, it follows by the inductive hypothesis that λ(hj) should be set at

iteration z to be the minimum of λz(hj) and the value of λ(hj) at the end of iteration

z − 1. This is precisely the value assigned to λ(hj) at line 24.

Finally, it remains to show that any edge removed during iteration z cannot belong

to part of any popular matching. Now, if z ≤ dj , then it follows by Theorem 5.2.1 that

a must be assigned to hj and not s(a) for any well-formed matching M . Hence, the edge

(a, s(a)) cannot belong to any well-formed matching and is deleted in line 16 as required.

Clearly, if fj ≤ cj , then it is bound to be the case that z ≤ dj .

On the other hand, if z > dj , then it follows that in any well-formed matching M ,⋃dj

p=1 fp(hj) ⊆ M(hj) but only a proper subset of fgj (hj) will be assigned to hj in M .

Now, suppose that a ∈ M(hj)∩ fgj (hj). It follows that z = gj . Let hl be any house that a

prefers to hj , supposing that such a house exists. Clearly, if there exists a minimum cost

PIP Π out of hl such that cost(Πmin(hl)) − wz < wz, then Π can be used to promote a

to hl, and in the process, free up a space in hj which can thus be assigned to any agent

a′ in fgj (hj)\M(hj). Clearly, M(a′) = s(a′) since M is well-formed so that a′ improves

as result. It follows that M cannot be popular since we can promote a′ to hj , promote

a to hl and promote along Π to obtain a more popular matching than M . Hence, if

λmin(a, hj) < 2wz, then M is not popular. Since M is arbitrary, the edge (a, hj) cannot

belong to any popular matching so that we delete it in line 19.

Note that Πmin(hl) must be a minimum cost PIP with respect to M . For, let us

consider the first edge (b, hl) in Πmin(hl). Note that fl ≥ cl and gl < z since hl is a house
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that a prefers to f(a) = hj .

Suppose firstly that b ∈ fgl
(hl). Let λdl

be the value of λ(hl) at the end of phase

gl − 1. Now, we have that the value of λ(hl) as computed in phase gl by lines 23-24

of the algorithm is equal to min(wgl
, λdl

,min
{
λmin(b′, hl)− wgl

: b′ ∈ f ′gl
(hl)

}
). Let us

suppose that min
{
λmin(b′, hl)− wgl

: b′ ∈ f ′gl
(hl)

}
< wgl

. Then, there exists some agent

b′ ∈ f ′gl
(hl) such that λmin(b′, hl)− wgl

< wgl
, i.e. λmin(b′, hl) < 2wgl

. However, such a b′

would have been removed from f ′gl
(hl) at line 20, a contradiction. Hence, λmin(b′, hl) −

wgl
≥ wgl

for all b′ ∈ f ′gl
(hl). It follows that any minimum cost PIP in G′′ (with respect

to any well-formed matching) with (b′, hl) as its first edge must have cost greater than

or equal to wgl
, i.e. cost(Πmin(hl)) ≥ wgl

. Now, suppose that λdl
< wgl

. Then, there

exists a PIP leading out of hl whose first edge is (c, hl) where P (c) ≤ dl, with cost less

than wgl
. However, this then contradicts the fact that the PIP with (b, hl) as its first

edge has minimum cost for hl as we supposed. Hence, wgl
is a lower bound for the final

computed value of λ(hl). Clearly then, λ(hl) = wgl
. Since (b, hl) is the first edge of

Πmin(hl) where b ∈ fgl
(hl), then as this path is defined with respect to some well-formed

matching, it follows that (b′, hl) ∈ M for some b′ ∈ fgl
(hl) (possibly b = b′), since M

is well-formed. Then, 〈hl, b
′〉 is a PIP of cost wgl

with respect to M . Moreover, since

wgl
= cost(Πmin(hl)) < 2wz as established in the previous paragraph, it follows that we

can promote a to hl, promote a′ to hj and demote b′ from hl so that M is not popular as

shown above.

Hence, b ∈
⋃dl

p=1 fp(hl). Clearly then, (b, hl) must belong to every well-formed matching

by Condition 1(a) of Theorem 5.2.1 so that (b, hl) must belong to M . It follows that we

can repeat the above argument to show that Πmin(hl) is a minimum cost PIP with respect

to M by considering the remaining alternate edges in Πmin(hl). If each alternate edge

(c, hx) satisfies the condition c ∈
⋃dx

p=1 fp(hx), then the result is immediate. Otherwise, it

must be the case that we encounter some edge (c′, hx′) in Πmin(hl) such that c′ ∈ fgx′ (hx′).

Clearly then, (c′, hx′) is the final edge in Πmin(hl) so that we must be able to promote a

to hl, promote a′ to hj and promote along Πmin(hl) to obtain a more popular matching

than M by a similar argument to that in the previous paragraph.

The next three lemmas establish the correctness of the algorithm.
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Lemma 5.3.4. Suppose that Algorithm Prune-WCHA does not terminate during the ex-

ecution of its first stage by reporting that no popular matching exists. Then, any edge

removed by Algorithm Prune-WCHA over both stages cannot belong to a popular match-

ing.

Proof. By Lemma 5.3.3, any edges removed by Algorithm Prune-WCHA in the first stage

cannot belong to any popular matching. We now show that any edges removed by the

algorithm in the second stage also cannot belong to any popular matching.

Let M be any well-formed matching. Let a be any agent and let P (a) = z. Also, let

R contain the set of houses between f(a) and s(a) on a’s preference list that a prefers to

s(a) (not including f(a) and s(a)). Let s(a) = hl. Suppose that M(a) = hl. Let hj ∈ R

and suppose that cost(Πmin(hj)) < wz. Clearly, Πmin(hj) must be a minimum cost PIP

with respect to M by a similar argument to that used in the proof of Lemma 5.3.3. Then,

Πmin(hj) can be used to free up hj and promote a to hj to obtain a more popular matching

than M . Hence, M cannot be popular. It follows that an edge pruned due to the first

condition in line 10 of the second stage of the algorithm cannot belong to any popular

matching.

Now, if fl ≥ cl and M(a) = hl, then M cannot be popular by Condition 1 of Theorem

5.2.1, since M(hl) 6⊆
⋃gl

p=1 fp(hl). This shows that the edge (a, hl) pruned due to the

second condition in line 10 of the second stage of the algorithm also cannot belong to any

popular matching.

It thus follows that any edges removed by the algorithm cannot belong to a popular

matching.

Lemma 5.3.5. If Algorithm Prune-WCHA reports that no popular matching exists, then

there does not exist any well-formed matching in G′ that is popular.

Proof. Let us consider the cases where Algorithm Prune-WCHA reports that no popular

matchings exist as a result of some condition being satisfied: (i) lines 10-11 ,(ii) lines 21-22

and (iii) lines 25-26 of the first stage respectively. Let a be any agent and let P (a) = z.

Also, let f(a) = hj .

In case (i), let us suppose that M(a) = hj for some well-formed matching M . Let hl be

a house that a prefers to hj such that λmin(a, hj) = cost(Πmin(hl)). It follows by a similar

argument to that used in the proof of Lemma 5.3.3 that Πmin(hl) must be a minimum

cost PIP with respect to M . Now, if λ(hl) < wz, then we can use Πmin(hl) to free hl and
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then promote a to hl to obtain a more popular matching than M . Hence, M cannot be

popular. Since M is arbitrary, it follows that no popular matching exists.

In case (ii), clearly fj > cj . Now, if f ′gj
(hj) = ∅ after the removal of edges in lines

18-20, then it follows that no well-formed matching can exist in G′′ since no matching can

satisfy Condition 1(b) of Theorem 5.2.1. Hence, no popular matching can exist.

In case (iii), let us suppose that z = gj . Clearly, only a proper subset of agents in

fgj (hj) can be assigned to hj in M since fj > cj . Let a ∈ fgj (hj)\M(hj). Note that

Πmin(hj) must be a minimum cost PIP with respect to M using a similar argument in the

proof of Lemma 5.3.3. Now, if λ(hj) < wgj , Πmin(hj) can be used to free up a place in hj

and then promote a (who must be assigned to s(a) in M) to hj to obtain a matching that

is more popular than M . Since M is arbitrary, no popular matching exists.

Lemma 5.3.6. Suppose that Algorithm Prune-WCHA does not state that no popular

matching exists. Let M be a well-formed matching in the pruned graph G′′. Then, M is

popular.

Proof. Now, if M is not popular, it follows that there exists another matching M ′ which

is more popular than M . Let us clone G′′ to obtain a cloned graph C(G′′) as follows. We

replace every house hj ∈ H with the clones h1
j , h

2
j , . . . , h

cj

j . We then divide the capacity

of each house among its clones by allowing each clone to have capacity 1. In addition, if

(a, hj) is an edge in G′′, then we add (a, hp
j ) to the edge set of C(G′′) for all p (1 ≤ p ≤ cj).

Let us then adapt the well-formed matching M in G′′ to obtain its clone C(M) in C(G′′)

as follows. If a house hj in G′′ is assigned to xj agents a1, ...axj in M , then we add (ap, h
p
j )

to C(M) for 1 ≤ p ≤ xj , so that |C(M)| = |M |. We repeat a similar process for M ′ to

obtain its clone C(M ′) in C(G′′).

Let us consider X = C(M) ⊕ C(M ′). Since sat(M ′,M) > 0, let a ∈ A be an agent

who prefers M ′ to M . Let P (a) = z and let M ′(a) = hj . We will show that there exists

a PIP Π leading out of hj with respect to M . Since M is well-formed, we can reuse a

similar argument to the proof of Lemma 5.3.2 to establish that hj is an f -house such that∑z
p=1 fp,j ≥ cj . It follows that hj is full in M and M(hj) ⊆ f(hj) by Theorem 5.2.1.

Let ar ∈ M(hj)\M ′(hj) (ar must exist since hj is full in M) and let P (ar) = z1. Then,

a 6= ar. Also, it follows that f(ar) = hj and z1 ≤ z. If ar does not prefer M ′ to M ,

then we finish tracing Π. Otherwise, we will extend Π to make sure that it ends with

some agent b who prefers M to M ′. It follows by definition of f(ar) that M ′(ar) = hl is
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an f -house that ar prefers to hj such that
∑z1−1

p=1 fp,l ≥ cl and hence by Theorem 5.2.1,

M(hl) ⊆ f(hl). Let as ∈ M(hl)\M ′(hl) and let P (as) = z2. Clearly then, z2 < z1. It

follows by the same argument as for ar that if as does not prefer M ′ to M , then we finish

tracing Π, i.e. Π = 〈hj , ar, hl, as〉. Otherwise, we repeat the argument until we encounter

an agent at who does not prefer M ′ to M so that Π terminates. Clearly, this will eventually

happen since all agents in Π are assigned in M to their f -house and the priority levels of

agents are strictly decreasing so that we must eventually reach some agent at ∈ P1 such

that M(at) = f(at). However, it is then impossible that at prefers M ′ to M . Finally, by

construction of Π, it follows that Π belongs to X since Π (with appropriate superscripts

for house clones) consists of alternate edges in C(M)\C(M ′) and C(M ′)\C(M).

We have established that for every a ∈ P (M ′,M), there exists a PIP Π(a) leading

out of hj , where hj = M ′(a). Let Γ = {Π(a) : a ∈ P (M ′,M)} and let Γ′ ⊆ Γ contain

only those maximal PIPs in Γ. We will show that there exists an agent d ∈ A such

that Π(d) ∈ Γ′ and cost(Π(d)) < w(d). For, suppose that cost(Π(a)) ≥ w(a) for every

Π(a) ∈ Γ′. Let Π(a) ∈ Γ′ and let Π(a) = 〈h0, a0, h1, a1, ..., hx, ax〉. We define l(Π(a)) = ax.

Also, cost(Π(a)) = w(ax)−w(ax−1)− ...−w(a0) ≥ w(a), i.e. w(a)+w(a0)+ ...+w(ax−1) ≤

w(ax). Now, {a, a0, ..., ax−1} ⊆ P (M ′,M) whilst ax ∈ P (M,M ′). Let D be the connected

component of X containing Π(a) (with appropriate superscripts for house clones). It

follows that D must be a path or cycle whose edges alternate between C(M) and C(M ′).

Clearly, D cannot be an even-length alternating path with more agents than houses, or

an odd-length alternating path whose end edges belong to C(M ′), for otherwise we have

an agent who is unassigned in C(M) and hence in M , a contradiction to the definition

of a well-formed matching. Hence, D is either an (i) even-length alternating path with

more houses than agents, or (ii) an odd-length alternating path whose end edges belong

to C(M), or (iii) a cycle. It is obvious that D contains distinct agents and so we cannot

have overlapping maximal PIPs. Hence, by construction of Γ′, the agents in Π(a), together

with a, but not including l(Π(a)), taken over all Π(a) ∈ Γ′, form a partition of P (M ′,M).

Moreover, for every such a, we have established the existence of some l(Π(a)) ∈ P (M,M ′).

Hence,
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∑
a∈P (M ′,M)

w(a) =
∑

Π(a)∈Γ′

w(a) +
∑

Π(a)∈Γ′

∑ {
w(a′) : a′ ∈ Π(a) ∧ a′ 6= l(Π(a)

}
≤

∑
Π(a)∈Γ′

{
w(a′) : a′ = l(Π(a))

}
≤

∑
a∈P (M,M ′)

w(a)

It follows that sat(M ′,M) ≤ 0, a contradiction. As a result, cost(Π(d)) < w(d) for

some Π(d) ∈ Γ′. Let hj = M ′(d). Now, if M(d) = f(d), then lines 10-11 of the first stage

of the algorithm would report that no popular matching exists since λmin(d, f(d)) < w(d),

a contradiction. Hence, M(d) = s(d) and hj is (i) better than f(d), or (ii) equal to f(d),

or (iii) between f(d) and s(d) on a’s preference list. In case (i), we obtain the same

contradiction as when M(d) = f(d) since λmin(d, f(d)) < w(d). In case (ii), f(d) = hj .

Since M(d) = s(d), it must be the case that d ∈ fgj (hj) for otherwise (d, s(d)) would have

been deleted by line 16 of the algorithm. Clearly though, lines 25-26 of the first stage of

the algorithm would report that no popular matching exists, a contradiction. In case (iii),

(d, s(d)) would have been deleted by lines 10-11 of the second stage of the algorithm since

λmin(d, s(d)) < w(d), a contradiction. It follows that we obtain a contradiction in all cases

so that M ′ is not more popular than M .

Finally, the next lemma shows that if there is no well-formed matching in the graph

G′′, then no popular matching exists.

Lemma 5.3.7. Let G′′ be the reduced graph of a given WCHA instance I. If there is no

well-formed matching in G′′, then no popular matching exists in I.

Proof. Suppose that there exists a popular matching M in I. Now, by Theorem 5.2.1, M

is a well-formed matching in G′. Moreover, all edges of M must belong to G′′ by Lemma

5.3.4. However, this implies that M is a well-formed matching in G′′, a contradiction.

We now use the example in Figure 5.1 to illustrate our algorithm. After the first

stage, we have λ(h1) = 7, λ(h3) = 3 and λ(h4) = 2. We remove the edges (a1, h2) in

phase 1, and (a2, h4) and (a3, h5) in phase 2 of the first stage (in line 16 of the first

stage) since a1 belongs to fd1(h1), and a2 and a3 belong to fd3(h3) respectively. We also

remove the edge (a4, h4) in phase 3 of the first stage (in lines 19-20 of the first stage) since

λmin(a4, h4) = 3 < 2w(a4). No further edges are removed in the second stage.
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5.3.4 Finding a popular matching

We are now left with the task of finding a well-formed matching M in G′′ in order to find

a popular matching if one exists. Note that the removal of edges from G′ by Algorithm

Prune-WCHA effectively reduces the problem to that of finding a popular matching in

an instance of CHA. For let us consider the problem of trying to assign agents to each

f -house hj so that hj satisfies Condition 1 of a well-formed matching.

Now, if fj ≤ cj , then ensuring that
⋃dj

p=1 fp(hj) ⊆ M(hj) is equivalent to ensuring

Condition 1(a) of Theorem 4.2.1 on page 47. This work is done by lines 2-8 of Algorithm

Popular-CHA. On the other hand, if fj > cj , we need to ensure that those agents with

the correct priorities are assigned to hj in M , i.e. there does not exist any agent a ∈⋃dj

p=1 fp(hj)\M(hj). Now, since line 16 in the first stage of Algorithm Prune-WCHA

ensures the removal of the edge (a, s(a)) of every such a where a ∈
⋃dj

p=1 fp(hj), a must

be assigned to f(a) if an agent-complete matching (i.e. a matching in which all agents

are assigned) is to exist. This is equivalent to the work done by lines 10-12 of Algorithm

Popular-CHA on page 48, which tries to find an agent-complete matching and reports that

no popular matching exists if unsuccessful. Furthermore, lines 15-18 of Algorithm Popular-

CHA also ensures that if fj > cj , then |M(hj)| = cj and M(hj)\
⋃dj

p=1 fp(hj) ⊆ fgj (hj).

Lastly, we need to ensure that each agent is assigned to either f(a) or s(a) and it is evident

that running Algorithm Popular-CHA on G′′ does this. Hence, we can find a popular

matching in WCHA, if one exists, by running Algorithm Popular-CHA on the reduced

graph G′′. As illustration, if we run Algorithm Popular-CHA on the example in Figure 5.1

after edge removals through Algorithm Prune-WCHA, then Algorithm Popular-CHA will

return the following matching M = {(a1, h1), (a2, h3), (a3, h3), (a4, h5), (a5, h4), (a6, h4)}

which may be verified to be popular.

Let us now consider the time taken to find a popular matching in an instance of

WCHA, or to report that no such matching exists. First of all, it takes O(m) time to

define the f - and s-houses. Let us then consider the time complexity of Algorithm Prune-

WCHA. It is clear that the subgraph G′ can be constructed in O(m) time and has O(n1)

edges since each agent has degree 2 in G′. Clearly, in the first stage of the algorithm,

initialising λ(hj) for each f -house takes O(n2) time. Next, we iterate over every agent a

to define λmin(a, f(a)). In order to do so, we traverse the preference list of a to find the

minimum cost of all PIPs among all houses that a prefers to f(a), if such houses exist.

Even though this occurs in phases, with the total number of phases equal to the number of
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priority levels, the computation time for this takes O(m) time overall by the total length of

preference lists. Hence, defining λmin(a, f(a)) for every agent a takes O(m) time overall.

In order to define λz(hj) (and hence λ(hj)) for each f -house hj , we need to iterate over

every agent a such that a ∈ fz(hj). Again, the time complexity for this is bounded by the

total length of preference lists so that it takes O(m) time overall to define λz(hj) (and hence

λ(hj)) for each f -house and to remove those edges which cannot belong to any popular

matching (in lines 16 and 19-20 of the first stage of the algorithm). By a similar argument,

the second stage of the algorithm also takes O(m) time so that Algorithm Prune-WCHA

takes O(m) time overall. Now, it takes O(
√

Cn1+m) time, using Algorithm Popular-CHA,

to find a well-formed matching (if one exists) in G′′, where C is the total capacity of the

houses. It follows that we obtain the following results for the time complexity of finding a

popular matching in WCHA.

Theorem 5.3.1. Let I be an instance of WCHA. Then, we can find a popular matching

in I, or determine that none exists, in O(
√

Cn1 + m) time.

5.3.5 Finding a maximum popular matching

It remains to consider the problem of finding a maximum popular matching in WCHA.

Let us run Algorithm Label-f and Algorithm Prune-WCHA as before to define f - and s-

houses and to delete certain edges which cannot belong to any popular matching. We then

adopt a similar algorithm to that in Section 4.2.3 on page 49 for the analogous problem

in CHA as follows.

That is, let A1 be the set of all agents a with s(a) = l(a), and let A2 = A\A1.

Our objective is to find a well-formed matching in G′′ which minimises the number

of A1-agents who are assigned to their last resort house. We let A′ denote the set{
a ∈

⋃dj

p=1 fp(hj) : hj ∈ H
}

. We begin by carrying out a pre-processing step on G′′ to

compute a matching M0 that assigns each agent in A′ to his f -house. We then try to find

a maximum matching M ′ in G′′ that only involves the A2\A′ agents and their incident

edges. If M ′ is not an agent-complete matching of A2\A′ agents, then clearly I admits

no popular matching. Otherwise, we remove all edges in G′′ that are incident to a last

resort house, and try to assign additional A1\A′-agents to their f -houses by repeatedly

finding an augmenting path with respect to M ′ using Gabow’s algorithm [15] in a similar

approach to that for CHA in Section 4.2.3. Let M ′′ be the matching obtained by aug-

menting M ′. If any A1-agent remains unassigned at the end of this step, we simply assign
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him to his last resort house, to obtain an agent-complete matching of A\A′ agents in G′′.

Let M = M0 ∪ M ′′. If any agent a belonging to A\A′ is not assigned to his f -house hj

but hj is undersubscribed in M , we promote a from M(a) to hj . Then, clearly M will be

a well-formed matching in G′′, and hence popular by Lemma 5.3.6. It follows that M is a

maximum popular matching, giving the following theorem.

Theorem 5.3.2. Given an instance of WCHA, we can find a maximum popular matching,

or determine that none exists, in O(
√

Cn1 + m) time.

5.3.6 “Cloning” versus our direct approach

A straightforward solution to finding a popular matching, given an instance I of WCHA,

may be to use “cloning” to create an instance J of WHAT, and then to apply the

O(min(k
√

n, n)m) algorithm of [43] to J . Firstly, we create cj clones h1
j , h

2
j , ..., h

cj

j of

each house hj in I, where each clone has a capacity of 1. In addition, we replace each

occurrence of hj in a given agent’s preference list with the sequence h1
j , h

2
j , ..., h

cj

j , the

elements of which are listed in a single tie at the point where hj appears. Let GJ denote

the underlying graph of J . Then, GJ contains n′ = n1 + C nodes. For each ai ∈ A, let

Ai denote the set of acceptable houses for ai, and let cmin = min {cj : hj ∈ H}. Then the

number of edges in GJ is m′ =
∑

ai∈A

∑
hj∈Ai

cj ≥ mcmin. Hence, the complexity of ap-

plying the algorithm of [43] to J is Ω(min(k
√

n1 + C, n1+C)mcmin). Now, the complexity

of our algorithm may be rewritten as O(
√

Cn1) or O(m) depending on which component

dominates the running time. If n1 + C ≥ k
√

n1 + C, then the cloning approach takes

Ω(k
√

n1 + Cmcmin)) time which is slower than our algorithm by a factor of Ω(kcmin).

Otherwise, if n1 + C < k
√

n1 + C, then the cloning approach takes Ω(mcmin(n1 + C))

time which is slower than our algorithm by a factor of Ω(
√

n1 + Ccmin). It follows that

the cloning method is slower than our direct approach for all possible cases.

5.4 Open problem

We conclude with the following open problem. Suppose that we are presented with an

instance J of WCHA in which the preference lists of agents are allowed to contain ties,

i.e. an instance of WCHAT. Is the problem of finding a popular matching (or reporting

that none exists) in J then solvable in polynomial time?
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Popular matchings in SMTI-SYM

6.1 Chapter overview

The classical Stable Marriage problem and its variants involving ties and incomplete pref-

erence lists were introduced in Section 1.4.1. In this chapter, we study popular matchings

in a special case of SMTI in which preference lists are symmetric (SMTI-SYM). An in-

stance I of SMTI is said to have symmetric preferences when the rank (to be defined

formally later) of each man u on a woman w’s preference list is equal to that of w on u’s

preference list for any (man,woman) pair (u, w). Little is known about how to find max-

imum popular matchings in matching problems where all participants have preferences

(i.e. all participants are agents). This chapter presents the first known characterisation

of popular matchings in the bipartite setting with preferences on both sides. We remark

that our characterisation could form the basis of a polynomial-time algorithm for finding

a maximum popular matching in the context of SMTI-SYM as well as other matching

problems in which all the participating agents involved have preferences, e.g. SMTI and

SRTI.

The main results of this chapter, and their organisation are as follows. We give some

terminology and preliminary results on popular matchings in SMTI-SYM in Section 6.2.

We next present necessary conditions for a matching to be popular given a SMTI-SYM

instance I in Section 6.3. We then develop an insight into the underlying structure of

the problem in Section 6.4 where we introduce what are known as mutually exclusive

edge pairs. Together with the results of Section 6.3, we obtain necessary and sufficient

conditions for a matching to be popular in a given SMTI-SYM instance. Finally, we

show how to use this characterisation to provide an efficient means of testing if a given
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matching is popular in O(
√

nm) time where n is the total number of men and women and

m is the total length of preference lists in I.

6.2 Basic terminology and preliminary results

An instance I of SMTI-SYM comprises two disjoint sets U and W , where U = {u1, ..., un1}

is the set of men and W = {w1, ..., wn2} is the set of women. Each man u ∈ U ranks

(strictly or with ties) a subset of W (the acceptable women for u) represented by his

preference list and vice versa. Let a ∈ U ∪W be any agent. If a’s preference list contains

the agent a′, then we say that a′ is an acceptable partner for a. Let the bipartite graph

G = (U,W,E) be the underlying graph of I, where we let the edge set E of G represent

the acceptable partners of the agents.

Given a man u ∈ U and an acceptable woman w ∈ W for u, we define ranku(w) to be

the number of agents that u prefers to w plus 1, and vice versa. If ranku(w) = k, we say

that w is a kth choice of u. Moreover, if ranku(w) = k, then rankw(u) = k, and we say

that the preference lists are symmetric.

We create a unique last resort partner l(a) for each a and append l(a) to a’s preference

list. We let every last resort agent l(a) have a preference list that contains only a. We also

let z be the maximum length taken over all preference lists, including last resorts. Note

that to enforce the symmetry of the preference lists with the introduction of last resort

partners, we let rankl(a)(a) = ranka(l(a)) for each agent a even though the preference list

of l(a) has only size one. We also henceforth assume that G contains the vertex l(a) and

the edge (a, l(a)) for each a ∈ U ∪W , and that U and W contain the respective last resort

men and women. We let n = n1 + n2 and m = |E|.

We assume the definition of a matching in I as defined for a given instance of SM in

Section 1.4.1. Given two matchings M and M ′ in I, we say that an agent a prefers M

to M ′ if either (i) a is assigned in M and unassigned in M ′, or (ii) a is assigned in both

M and M ′ and prefers M(a) to M ′(a). Let P (M,M ′) denote the set of non last-resort

agents1 who prefer M to M ′. Then, the satisfaction of M with respect to M ′ is defined as

sat(M,M ′) = P (M,M ′)− P (M ′,M). We say that M is more popular than M ′, denoted

by M � M ′, if sat(M,M ′) > 0. Furthermore, a matching M in I is popular if there is no

other matching in I that is more popular than M .
1We do not allow last resort agents to contribute to P (M, M ′) for any two matchings M and M ′.
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Men’s pref list Women’s pref list

u1: w1 w2 w3 w1: (u1 u2 u3)

u2: w1 w2 w3 w2: u4 (u1 u2 u3)

u3: w1 w2 w3 w3: u4 u5 (u1 u2 u3)

u4: (w2 w3 w4) w4: u4

u5: w5 w3 w5: u5

Figure 6.1: An instance I1 of SMTI-SYM

For the remainder of this section, we make several preliminary observations concerning

popular matchings in SMTI-SYM.

First of all, an instance of SMTI-SYM need not admit a popular matching. For,

consider instance I1 in Figure 6.1. In any popular matching M in I1, it must be the case

that (u5, w5) ∈M. For, suppose not. Then, we can promote u5 and w5 to each other (and

demote M(u5) to l(M(u5)) if M(u5) 6= l(M(u5))) to obtain a more popular matching than

M , a contradiction. It must also be the case that (u4, w4) ∈ M . For, otherwise suppose

that (u4, w3) ∈ M . Then, it follows that (ui, l(ui)) ∈ M for some i(1 ≤ i ≤ 3). However,

we can then unassign u4 from w3 and promote ui to w3, and promote w4 to u4 to obtain

a more popular matching than M , a contradiction. Note that a similar contradiction is

obtained if (u4, w2) ∈ M instead. Hence, it must be the case that (u5, w5) and (u4, w4)

belong to M . It follows that M can only be one of the following matchings:

M1 = {(u1, w1), (u2, w2), (u3, w3), (u4, w4), (u5, w5)}

M2 = {(u1, w2), (u2, w3), (u3, w1), (u4, w4), (u5, w5)}

M3 = {(u1, w3), (u2, w1), (u3, w2), (u4, w4), (u5, w5)}

However, it is straightforward to verify that none of these matchings is popular since

M1 � M2 � M3 � M1, the problem being that the more popular than relation is not

acyclic. We next note that popular matchings in SMTI-SYM can have different car-

dinalities, as seen in instance I2 in Figure 6.2. Here, M4 = {(u2, w1), (u3, w2)} is a

popular matching of cardinality 2. However, the unique maximum popular matching

is M5 = {(u1, w1), (u2, w2), (u3, w3)} which has cardinality 3.

We also observe that the cardinality of a maximum popular matching can be smaller

than that of a maximum matching. For, consider instance I3 in Figure 6.3. Here, M6 =

{(u1, w1), (u2, w2), (u3, w3), (u4, w4)} is the unique maximum matching in I3 which has
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Men’s pref list Women’s pref list

u1: w1 w1: (u1 u2)

u2: w1 w2 w2: u3 u2

u3: (w2 w3) w3: u3

Figure 6.2: An instance I2 of SMTI-SYM

cardinality 4. However, M6 is not popular because M7 = {(u1, w2), (u2, w3), (u3, w4)} is a

matching that is more popular than M6.

Men’s pref list Women’s pref list

u1: (w1 w2) w1: u1

u2: w3 w2 w2: u1 u2

u3: w4 w3 w3: u2 u3

u4: w4 w4: (u3 u4)

Figure 6.3: An instance I3 of SMTI-SYM

Finally, we remark that in the context of SMI, it may be shown that a stable matching

is also popular [31]. Recall from Section 1.4.1.1 that the extended Gale-Shapley algorithm

always finds a stable matching in any given SMI instance. Hence, the algorithm also

provides a way for finding a popular matching in any given SMI instance I. However,

this is not true in the case of SMTI. First of all, recall from Section 1.4.1.3 that only

weakly stable matchings are guaranteed to exist in any given SMTI instance (as opposed

to strongly stable or super-stable matchings). However, weak stability need not imply

popularity in the context of SMTI. For, consider instance I4 in Figure 6.4. Then, it

may be verified that the matching M8 = {(u1, w2), (u2, w1)} is a weakly stable matching.

However, M8 is not popular because M9 = {(u1, w1), (u2, w2)} is more popular than M8.

Furthermore, weakly stable matchings can have different cardinalities, and a given weakly

stable matching could be smaller than the size of a maximum popular matching. Indeed, as

mentioned in Section 1.4.1.3, the problem of finding a maximum weakly stable matching

given an SMTI instance is NP-hard. These two issues motivate the need to find an

alternative algorithm if we want to find a popular matching of maximum cardinality given

any SMTI instance.

This chapter provides the first step towards finding an algorithm that will construct

a maximum popular matching given an SMTI instance, if one exists, by providing a
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Men’s pref list Women’s pref list

u1: w1 w2 w1: (u1 u2)

u2: (w1 w2) w2: u2 u1

Figure 6.4: An instance I4 of SMTI-SYM

characterisation of popular matchings that could be used by any approach to solve the

problem in the restricted case of SMTI-SYM.

6.3 Characterising popular matchings

For each agent a ∈ U ∪ W , let f(a) denote the highest ranking set of agents on a’s

preference list. We call any agent belonging to f(a) an f-partner of a. Define E1 =

{(u, w) : u ∈ U ∧ w ∈ f(u)} to be the set of first-choice edges of G. Define also the first-

choice graph of G as G1 = (U,W,E1). Note that it is trivial to find the unique popular

matching given any instance of the Stable Marriage problem with Incomplete lists and

Symmetric Preferences with no ties (SMI-SYM), as shown by the following lemma.

Lemma 6.3.1. Let J be an instance of SMI-SYM. Let M be the matching obtained by

assigning each man u to the first woman on his preference list. Then, M is the unique

popular matching in J .

Proof. By symmetry of the preference lists, it is straightforward to see that each woman

also obtains her first-choice man in M . Hence, M is popular.

We now show that M is unique. For, suppose not. Then, let M ′ be another popular

matching. Clearly, there exists some man ui such that M(ui) 6= M ′(ui). Let M ′(ui) = wj

and let M(ui) = wk. It is straightforward to see that wj 6= f(ui) and ui 6= f(wj). Now,

if wj = l(ui), then the matching obtained by (M ′\ {(ui, wj), (M ′(wk), wk)}) ∪ {(ui, wk)}

is more popular than M ′. Hence, wj 6= l(ui). Let M ′(wk) = ux. Now, it must be

the case that either ux 6= l(wk) and ux /∈ f(wk) or ux = l(wk). Let M(wj) = ul and

let M ′(ul) = wy. Similarly, it must be the case that either wy 6= l(ul) and wy /∈ f(ul) or

wy = l(ul). Suppose that ux and wy are both last resort agents. Then, it is straightforward

to verify that the matching obtained by

(M ′\ {(ui, wj), (ux, wk), (ul, wy)}) ∪ {(ui, wk), (ul, wj)}

is more popular than M ′. Suppose that a ∈ {ux, wy} is not a last resort agent. Then, it
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is straightforward to verify that the matching obtained by

(M ′\ {(ui, wj), (ux, wk), (ul, wy)}) ∪ {(ui, wk), (ul, wj), (a, l(a))}

is more popular than M ′. Otherwise, suppose that ux and wy are not last resort agents.

Then, it is straightforward to verify that the matching obtained by

(M ′\ {(ui, wj), (ux, wk), (ul, wy)}) ∪ {(ui, wk), (ul, wj), (ux, l(ux)), (l(wy), wy)}

is more popular than M ′. In all cases, we obtain a contradiction.

The following lemma is a vital first step in characterising popular matchings in any

given SMTI-SYM instance I.

Lemma 6.3.2. Let M be a popular matching in I. Then M ∩E1 is a maximum matching

in G1.

Proof. Let M1 = M∩E1. Suppose for a contradiction that M1 is not a maximum matching

in G1. Then M1 admits an augmenting path P = 〈u1, w1, ..., uk, wk〉 with respect to G1.

Clearly, in view of last resort agents, u1 and wk must be assigned in M . Let w0 = M(u1)

and let uk+1 = M(wk). Now, if both of w0 and uk+1 are last resort agents, then it follows

that M ⊕ P gives us a new matching that is more popular than M , a contradiction. On

the other hand, if only one of w0 and uk+1 is not a last resort agent, then we can demote

this agent to his/her last resort partner and use M ⊕ P again to obtain a new matching

that is more popular than M , a contradiction.

Hence, w0 and uk+1 are not the last resort partners of u1 and wk respectively. Further-

more, since w0 /∈ f(u1) and uk+1 /∈ f(wk), it follows that u1 /∈ f(w0) and wk /∈ f(uk+1)

respectively. It is clear to see that w0 6= wi (1 ≤ i ≤ k − 1) since each wi is as-

signed in M to a first-choice man but (u1, w0) ∈ M\E1. Furthermore, w0 6= wk, or

else M ′ = (M\ {(u1, wk)})⊕P gives us a more popular matching than M , a contradiction.

By symmetry of the above argument, it is easy to see that uk+1 6= ui (1 ≤ i ≤ k).

Let wk+1 be any woman in f(uk+1). Then, uk+1 ∈ f(wk+1). Suppose firstly that

wk+1 = w0. Then, it is straightforward to verify that the matching obtained by

((M\ {(u1, w0), (uk+1, wk)})⊕ P ) ∪ {(uk+1, w0)}

is more popular than M , a contradiction. On the other hand, if wk+1 = wi (1 ≤ i ≤ k−1),

let C = 〈wi, ui+1, wi+1, ..., uk, wk, uk+1〉. It is straightforward to verify that the matching

M ′ = M ⊕ C is more popular than M , a contradiction. Hence, wk+1 6= wi (0 ≤ i ≤ k).
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Now, let u0 ∈ f(w0). Then, w0 ∈ f(u0). By symmetry of the above argument, it is

straightforward to show that u0 6= ui (1 ≤ i ≤ k + 1).

Now, let u′ = M(wk+1). If u′ = u0, it is straightforward to verify that the matching

obtained by

((M\ {(u1, w0), (uk+1, wk), (u0, wk+1)})⊕ P ) ∪ {(u0, w0), (uk+1, wk+1)}

is more popular than M , a contradiction. On the other hand, if u′ = ui (1 ≤ i ≤ k),

then (ui, wk+1) ∈ M but since (ui, wi−1) ∈ M , this implies that wk+1 = wi−1, which

contradicts the fact that wk+1 6= wj (0 ≤ j ≤ k) as established above. Hence, the men

vertices u0, u1, ..., uk+1, u
′ are all distinct. Let w′ = M(u0). Again, we can reuse the

symmetry of the argument to establish that the women vertices w′, w0, w1, ..., wk+1 are all

distinct. However, it is straightforward to verify that the matching M ′ obtained by

((M\
{
(u0, w

′), (u1, w0), (uk+1, wk), (u′, wk+1)
}
)⊕ P ) ∪ {(u0, w0), (uk+1, wk+1)}

is more popular than M which is a contradiction. (Note that either one of or both w′

and u′ could possibly be non last resort agents but we can reuse arguments from above to

establish that M ′ is more popular than M .)

Let I be an instance of SMTI-SYM. Clearly, the underlying bipartite graph is un-

capacitated. Recall the Edmonds-Gallai Decomposition for the case of an uncapacitated

bipartite graph (i.e. Lemma 1.2.1 in Section 1.2). It follows that we can obtain the

following corollary by using the Decomposition in conjunction with Lemma 6.3.2.

Corollary 6.3.1. Let M be a popular matching in an instance I of SMTI-SYM. Then,

every odd or unreachable agent a ∈ U ∪W satisfies M(a) ∈ f(a).

Let M be a popular matching in an instance I of SMTI-SYM. Then, M1 = M ∩E1 is

a maximum matching in G1 by Lemma 6.3.2. Suppose that we are given an EOU labelling

of the vertices in G1 using M1. Note that all last resort agents must be even. Now, if

an agent a is not assigned to an agent from f(a) in a popular matching M , then we will

show that a can only be assigned to an agent from his/her set of s-partner(s) denoted by

s(a), which is a set of agents on a’s preference list that is disjoint from f(a). Note that it

is easy to see from Corollary 6.3.1 that only even agents should have s-partners. We use

Algorithm Label-s as shown in Algorithm 11 to define s(a) precisely for every even agent

a.
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Algorithm 11 Algorithm Label-s
1: U ′ := {u ∈ U : u is even} and W ′ := {w ∈ W : w is even};

2: E′
i := {(u, w) ∈ E : u ∈ U ′ ∧ w ∈ W ′ ∧ ranku(w) = i};

3: for each a ∈ U ′ ∪W ′ do

4: s(a) := ∅;

5: for i in 2..z do

6: for each edge (u, w) ∈ E′
i do

7: s(u) := s(u) ∪ {w};

8: s(w) := s(w) ∪ {u};

9: for each agent a ∈ {u, w} do

10: for each agent b after s(a) from a’s preference list do

11: k := ranka(b);

12: delete (a, b) from E′
k;

The algorithm begins by defining U ′ and W ′ to be the respective subsets of U and

W containing only even agents. Then, subsets of E are defined, where each subset E′
i

contains only EE edges2 such that if (u, w) ∈ E′
i, then u and w are both even agents and

ranku(w) = i. For each even agent a, s(a) is initialised to be the emptyset. The algorithm

then iterates over each i in turn from 2 to z and for each value of i, the algorithm iterates

over the edges in E′
i. Now, if (u, w) is an edge belonging to E′

i, then w is added to s(u)

and vice versa. As with f -partner(s), all s-partner(s) of each agent a are tied with the

same rank in a’s preference list. Hence, when defining s(a), whenever the algorithm has

identified a member c of s(a), it will only consider other candidate agents in a’s preference

list with the same rank as c. As a result, if lines 7-8 are executed in iteration i, the

algorithm removes from consideration certain agents that cannot be a s-partner of a in

lines 9-12. It does this by deleting (a, b) from E′
k where ranka(b) = k and k > i. Note that

lines 9-12 can be executed only once for each edge e ∈ E. Since the number of edges in G

are finite, it is clear that the algorithm terminates. When this happens, the s-partner(s)

of each even agent is defined. Note that s(a) can never become empty for any agent a

because of l(a), and in view of the fact that if a′ is added to s(a), then this agent cannot

be deleted from s(a) subsequently.

Instance I5 in Figure 6.5 gives an illustration of the definition of f - and s-partners.

It is straightforward to verify the f -partners for each man and woman. The agents

u1, u2, u3, u8, w2, w5, w9 and w10 can be verified to be even agents in G1 and their s-partners
2Recall that these are edges between any two even vertices
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Men’s pref list Women’s pref list

u1: w1 w6 w5 w1: (u1 u2)

u2: w1 w7 w10 w2 w2: u9 u6 u7 u2 u3

u3: w8 w3 w6 w7 w2 w3: u4 (u3 u8)

u4: (w3 w4) w4: (u4 u5)

u5: w4 (w5 w9) w5: u10 u5 u1

u6: w6 w2 w9 w6: u6 u1 u3 u8

u7: w7 w10 w2 w9 w7: u7 u2 u8 u3

u8: w8 w3 w7 w6 w8: (u3 u8)

u9: (w2 w9) w9: u9 u5 u6 u7

u10: (w5 w10) w10: u10 u7 u2

Figure 6.5: An instance I5 of SMTI-SYM.

are defined by Algorithm Label-s as follows. In iteration 2, E′
2 = ∅ so no s-partners are

defined. In iteration 3, E′
3 contains the edges (u1, w5) and (u2, w10) so that s(u1) = w5

and s(w5) = u1, and s(u2) = w10 and s(w10) = u2. Note that the edges (u1, l(u1)),

(w5, l(w5)), (u2, w2) and (w10, l(w10)) are deleted from E′
4 by lines 10-12 of the algorithm

in this iteration so that E′
4 = ∅ and no s-partners are defined in iteration 4. The edge

(u2, l(u2)) is also deleted from E′
5 in iteration 3. In iteration 5, E′

5 contains the edges

(u3, w2), (u8, l(u8)) and (w9, l(w9)). Hence, s(u3) = w2 and s(w2) = u3, s(u8) = l(u8) and

s(w9) = l(w9). The edges (u3, l(u3)) and (w2, l(w2)) are deleted from E′
6 by lines 10-12 of

the algorithm so that E′
6 = ∅ and no s-partners are defined in the final iteration.

Let M be a popular matching in an instance I of SMTI-SYM. Then, the next two

lemmas show that each agent a can only be assigned to a partner from f(a) ∪ s(a).

Lemma 6.3.3. Let M be a popular matching in I. Then no agent a ∈ U ∪ W can be

assigned in M to a partner between f(a) and s(a) on a’s preference list.

Proof. Without loss of generality, let us suppose that the agent a is a man u; similar

results for the women can be obtained by reversing the roles of the sexes in the following

proof. Now, suppose that u is assigned to a woman w strictly between f(u) and s(u). If w

is odd or unreachable, then by Corollary 6.3.1, w must be assigned to a member of f(w)

in M , a contradiction. Hence, w is even. By the same argument, u is even. Furthermore,

u must be strictly lower than any member of s(w) in w’s preference list. For, suppose

not. Choose any u′ ∈ s(w). Then, u either (a) precedes u′ or (b) is tied with u′ in w’s
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preference list. Let ranku(w) = i = rankw(u), and let rankw(u′) = k. Now, if case (a)

holds, then we have an immediate contradiction since this implies that i < k. For, by

definition of s(w) according to Algorithm Label-s, there cannot have existed an EE edge

(u′′, w) such that rankw(u′′) = i < k, or else all members of s(w) would have been deleted

from consideration by lines 9-12 of the algorithm in iteration i of the for loop in line 5.

On the other hand, if case (b) holds, then i = k so that (u, w) is an edge belonging to E′
k,

and hence lines 7-8 of Algorithm Label-s would have resulted in u ∈ s(w) and w ∈ s(u),

a contradiction. Hence, w lies strictly between f(u) and s(u) in u’s preference list, and u

lies after s(w) in w’s preference list. Let us form a new matching M ′ from M by letting

M ′ = M\ {(u, w)}.

Let w′ ∈ f(u). Since u is even, it follows that w′ is odd and hence, it follows by

Corollary 6.3.1 that w′ is assigned in M ′ ∩ E1 to some u′. Clearly, u′ ∈ f(w′) and vice

versa. Let us now consider w and let u0 ∈ s(w). Since w prefers u0 to u, it follows

that u0 cannot be a last resort agent. Clearly, u0 cannot be u′ or else the matching

obtained by (M ′\ {(u′, w′)}) ∪ {(u, w′), (u′, w)} is more popular than M , a contradiction.

Let M ′(u0) = w0. It follows that w0 6= w′, for if so then u0 = u′, a contradiction.

Furthermore, w0 cannot be worse than s(u0) in u0’s preference list, or else let M ′′ =

(M ′\ {(u′, w′), (u0, w0)})∪{(u, w′), (u0, w), (u′, l(u′))} where we demote w0 to l(w0) in M ′′

if w0 6= l(u0) (or unassign w0 from u0 otherwise). It follows that M ′′ is more popular than

M , a contradiction. Hence, it follows that either (i) w0 has the same rank as any member

of s(u0) in u0’s preference list, (ii) w0 ∈ f(u0), or (iii) w0 lies strictly between f(u0) and

s(u0) in u0’s preference list.

In case (i), let u1 ∈ f(w0). It follows that w0 prefers u1 to u0 since u0 /∈ f(w0). It

is straightforward to verify that u1 cannot be u nor u′ or else M cannot be a popular

matching. Let M ′(u1) = w1. Then, let M ′′ be the matching obtained by

(M ′\
{
(u′, w′), (u0, w0), (u1, w1)

}
) ∪

{
(u, w′), (u0, w), (u1, w0), (u′, l(u′))

}
where we demote w1 to l(w1) in M ′′ if w1 6= l(u1) (or unassign w1 from u1 otherwise). It

follows that M ′′ is more popular than M , a contradiction.

In case (ii), since u0 ∈ s(w), it is clear that u0 is even and hence, since w0 ∈ f(u0),

it follows that w0 is odd. Thus, there exists an odd length alternating path P ′ =

〈uj , wj−1, uj−1, ..., w1, u1, w0〉 in G1 to w0 from a man uj who is unassigned in M ′ ∩ E1.

Clearly, uj 6= u0 and uj 6= u′ since these men are assigned to their first-choice women in

M ′. Now, if uj = u, then let M ′′ = ((M ′\ {(u0, w0)}) ∪ {(u0, w)}) ⊕ P ′. It is straightfor-
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ward to verify that M ′′ is more popular than M , a contradiction. Hence, uj is distinct

from all the men agents considered so far. Let M ′(uj) = wj . It follows that wj is also

distinct from all the women agents. Clearly, wj is worse than any member of f(uj) in uj ’s

preference list. Now, if wj = l(uj), then the matching obtained by

((M ′\
{
(u′, w′), (u0, w0), (uj , wj)

}
) ∪

{
(u, w′), (u0, w), (u′, l(u′))

}
)⊕ P ′

can be verified to be more popular than M , a contradiction. Hence, wj 6= l(uj) and by

symmetry, uj /∈ f(wj). Let uj+1 ∈ f(wj) instead. Let also M ′(uj+1) = wj+1. Now,

if uj+1 is not distinct from any of the above men agents, then we have a cycle C. Let

M ′′ = M ′⊕C. Then, M ′′ is more popular than M , a contradiction. Hence, uj+1 (and thus

wj+1) are distinct agents from those considered so far. However, let M ′′ be the matching

obtained by

((M ′\ {(u′, w′), (u0, w0), (uj , wj), (uj+1, wj+1)})⊕ P ′)

∪{(u, w′), (u0, w), (uj+1, wj), (u′, l(u′))}

where we demote wj+1 to l(wj+1) in M ′′ if wj+1 6= l(uj+1) (or unassign wj+1 from uj+1

otherwise). It follows that M ′′ is more popular than M , a contradiction.

In case (iii), by analogy with u and w, it follows that w0 lies strictly between f(u0) and

s(u0) in u0’s preference list, and u0 lies after s(w0) in w0’s preference list. Let u1 ∈ s(w0).

It follows by a similar argument to the above that u1 6= u′, or else M cannot be a popular

matching. Furthermore, u1 6= u. For, suppose otherwise. Then, we have the following

chain of inequalities:

rankw(u) > rankw(u0) = ranku0(w)

> ranku0(w0) = rankw0(u0)

> rankw0(u) = ranku(w0)

> ranku(w) = rankw(u)

which is a contradiction. It follows that we can reuse arguments from the previous cases to

build a path P = 〈w, u0, w0, ..., uy, wy〉 starting from w. If case (iii) continues to apply, then

P will not terminate, a contradiction to the finiteness of the number of agents. Otherwise,

either case (i) or (ii) apply and we can obtain a similar contradiction as shown above.

Lemma 6.3.4. Let M be a popular matching in I. Then no agent a ∈ U ∪ W can be

assigned in M to a partner worse than s(a) on a’s preference list.
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Proof. Without loss of generality, suppose that a man u is assigned to a woman w strictly

worse than s(u). Clearly, u /∈ f(w). By Lemma 6.3.3, u cannot be between f(w) and s(w)

on w’s preference list. Hence, either (i) u has the same rank as any member of s(w) in w’s

preference list, or (ii) u is also worse than s(w) on w’s preference list. Let us form a new

matching M ′ from M by letting M ′ = M\ {(u,w)}.

In case (i), let us consider w first. Let u′ ∈ f(w). Clearly, w must be even in G1, for

if w is odd or unreachable, then M(w) ∈ f(w), a contradiction. It follows that u′ must

be odd in G1, and hence, by Corollary 6.3.1, u′ must be assigned in M ′ to some woman

w′ ∈ f(u′).

Let w0 ∈ s(u). Since u prefers any member of s(u) to w, it follows that w0 6= l(u).

Clearly, w0 6= w′, for otherwise the matching obtained by (M ′\ {(u′, w′)})∪{(u, w′), (u′, w)}

is more popular than M , a contradiction. Let u0 = M ′(w0). It follows that u0 6= u′. Now,

it must be the case that either (a) u0 is worse that any member of s(w0) in w0’s preference

list, or (b) u0 has the same rank as any member of s(w0) in w0’s preference list, or (c)

u0 ∈ f(w0).

In subcase (a), let M ′′ = (M ′\ {(u′, w′), (u0, w0)})∪{(u′, w), (u, w0), (l(w′), w′)} where

we demote u0 to l(u0) in M ′′ if u0 6= l(w0) (or unassign u0 from w0 otherwise). It follows

that M ′′ is more popular than M , a contradiction.

In subcase (b), let w1 ∈ f(u0). It is straightforward to verify through similar arguments

to those used in Lemma 6.3.3 that w1 /∈ {w,w′}, for otherwise M is not popular. By

Corollary 6.3.1, it follows that u0 must be even or otherwise w0 ∈ f(u0), a contradiction.

Hence, w1 is odd and M ′(w1) ∈ f(w1). Let M ′(w1) = u1. Also, let M ′′ be the matching

obtained by

(M ′\
{
(u′, w′), (u0, w0), (u1, w1)

}
) ∪

{
(u′, w), (u, w0), (u0, w1), (u1, l(u1)), (l(w′), w′)

}
It follows that M ′′ is more popular than M , a contradiction.

In subcase (c), clearly w0 must be even (as w0 ∈ s(u)) so that u0 must be odd. Hence,

there exists an odd length alternating path P = 〈wj , ..., u0〉 in G1 from some woman wj

who is unassigned in M ′∩E1 to u0. We can reuse arguments from case (ii) of Lemma 6.3.3

to show that wj must be a distinct woman from those considered so far. Let uj = M ′(wj).

Now, if uj = l(wj), then let M ′′ be the matching obtained by

((M ′\
{
(u′, w′), (u0, w0), (uj , wj)

}
) ∪

{
(u′, w), (u, w0), (l(w′), w′)

}
)⊕ P

It follows that M ′′ is more popular than M , a contradiction. Hence, uj 6= l(wj) and clearly,
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wj /∈ f(uj). Hence, let wj+1 ∈ f(uj) and let M ′(wj+1) = uj+1. It again follows that we

can reuse arguments from case (ii) of Lemma 6.3.3 to show that these agents are distinct

from all agents considered so far. However, this implies that we can then obtain a new

matching M ′′ by

((M ′\ {(u′, w′), (u0, w0), (uj , wj), (uj+1, wj+1})⊕ P )

∪{(u′, w), (u, w0), (uj , wj+1), (l(w′), w′)})

where we demote uj+1 to l(uj+1) in M ′′ if uj+1 6= l(wj+1) (or unassign uj+1 from wj+1

otherwise). It follows that M ′′ is more popular than M , a contradiction.

In case (ii), it is straightforward to verify that we can reuse the proof for case (i) to

show that M must be a popular matching.

Lemmas 6.3.2-6.3.4 give rise to the following characterisation of popular matchings in

any instance I of SMTI-SYM.

Theorem 6.3.1. Let M be a popular matching in any given SMTI-SYM instance I.

Then,

1. M ∩ E1 is a maximum matching in G1, and

2. Every non last-resort agent a is assigned in M to a partner either from f(a) or s(a).

6.4 Structure of popular matchings

Let G = (U,W,E) be the underlying graph of an instance I of SMTI-SYM. We form a

subgraph G′ of G by letting G′ contain only edges from each agent a ∈ U ∪W to those

agents in f(a) ∪ s(a). We say that a matching M is agent-complete in G′ if all those

agents that are not last resort agents are assigned in M . Clearly, G′ need not admit an

agent-complete matching if s(a) 6= {l(a)} for some agent a. It follows by Theorem 6.3.1

that all popular matchings must be contained in G′ . However, Theorem 6.3.1 only gives

us necessary conditions for a matching to be popular in I, since not all matchings in G′

satisfying these conditions are popular. For, let us consider the instance I5 in Figure 6.5.

Then, we can find at least two matchings which satisfy Conditions 1 and 2 of Theorem
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6.3.1, namely

M =

 (u1, w1), (u2, w10), (u3, w8), (u4, w3), (u5, w4),

(u6, w6), (u7, w7), (u9, w2), (u10, w5)


and

M ′ =

 (u1, w5), (u2, w1), (u3, w2), (u4, w3), (u5, w4),

(u6, w6), (u7, w7), (u8, w8), (u9, w9), (u10, w10)


However, while M may be verified to be a popular matching as we shall show, M ′ is

not popular because of the cycle C = 〈u1, w1, u2, w2, u3, w3, u4, w4, u5, w5〉. It is straight-

forward to check that M ′ ⊕C gives a more popular matching than M ′. We work towards

a necessary and sufficient condition for a matching in SMTI-SYM to be popular in the

following subsection.

6.4.1 Mutually exclusive edge pairs

Let us define any matching that satisfies Conditions 1 and 2 of Theorem 6.3.1 to be well-

formed. Clearly, all well-formed matchings must be contained in G′. Let a be any even

agent in I, and let b be any even agent that precedes the members of s(a) in a’s preference

list. Clearly, b /∈ f(a) for otherwise we have an EE edge in G1, a contradiction by Lemma

1.2.1(c). Then, we define the edge pair {(b, b′), (a′, a)} to be a mutually exclusive edge

pair, or mutex edge pair for short, if b′ ∈ f(b) and a′ ∈ s(a). The next theorem gives us an

important characterisation of popular matchings in SMTI-SYM with respect to mutex

edge pairs.

Theorem 6.4.1. Let M be a well-formed matching in any given SMTI-SYM instance I.

Then, M is popular if and only if M does not contain any mutex edge pairs.

Proof. We first show that if M is popular, then M contains no mutex edge pairs. Suppose

for a contradiction that M contains the mutex edge pair {(ul, wj), (ui, wp)} such that ui is

an even agent, wp ∈ s(ui) and wj is an even agent preceding wp in ui’s preference list and

ul ∈ f(wj). We have that ui prefers wj to wp but wj prefers ul to ui. Since wj is an even

agent and wj is assigned in M , it follows by the definitions of a well-formed matching and

an even vertex that there exists an even length alternating path P in G1 to wj from an

even agent wk who must be unassigned in M ∩E1, i.e. M(wk) ∈ s(wk). Now, if wp = wk,
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it follows that the sequence of agents 〈ui, wj , ..., wk〉 then forms a cycle C such that M⊕C

gives us a more popular matching than M , a contradiction.

Hence, suppose that wk 6= wp. Let M(wk) = ua. Now, if wp = l(ui) and ua = l(wk),

then we can unassign ui and wk from their last resort partners, and use (M⊕P )∪{(ui, wj)}

to give us a more popular matching than M . Let us thus suppose that wp = l(ui) and

ua 6= l(wk). Let wb ∈ f(ua) and let M(wb) = uc. Now, if wb ∈ P , then the sequence of

agents 〈wb,M(wb), ..., wk, ua〉 form a cycle C such that M ⊕ C gives us a more popular

matching than M . Hence, wb /∈ P . Since wk ∈ s(ua), it follows that ua is an even agent

so that wb is odd. By Corollary 6.3.1, it must then be the case that uc 6= l(wb). Let M ′

be the matching obtained by

((M\ {(ui, wp), (ua, wk), (uc, wb)})⊕ P ) ∪ {(ui, wj), (ua, wb), (uc, l(uc))}

It follows that M ′ is more popular than M . On the other hand, if wp 6= l(ui) and

ua = l(wk), then let uq ∈ f(wp) and let M(uq) = wr. Now, if uq ∈ P , then the sequence of

agents 〈wp, ui, wj , ..., uq〉 form a cycle C such that M⊕C gives us a more popular matching

than M , a contradiction. Hence, uq /∈ P . Reusing a similar argument to the above, we

have that wr 6= l(uq). However, let M ′ be the matching obtained by

((M\ {(uq, wr), (ui, wp), (ua, wk)})⊕ P ) ∪ {(uq, wp), (ui, wj), (l(wr), wr)}

It follows that M ′ is more popular than M . Hence, suppose that neither wp nor ua

is a last resort agent. Then, let uq, wr, wb and uc be defined as before. Let P ′ =

〈l(wr), wr, uq, wp, ui, wj , ..., wk, ua, wb, uc, l(uc)〉. Then, M ⊕ P ′ gives us a more popular

matching than M . It follows that we obtain a contradiction in all cases so that if M

contains a mutex edge pair, then M cannot be popular.

Conversely, let M be a well-formed matching that contains no mutex edge pairs. Sup-

pose for a contradiction that there exists another matching M ′ = {(u1, w1), ..., (ur, wr)}

such that M ′ is more popular than M . We firstly observe that if, for every agent ai who

prefers M ′ to M (1 ≤ i ≤ r), his partner in M ′ prefers M to M ′, then M ′ cannot be more

popular than M . Hence, there exists at least one ai who prefers M ′ to M and his partner

in M ′ either (i) also prefers M ′ to M or (ii) is indifferent between the two matchings.

Without loss of generality, let ai be a man whom we denote by ui and hence, M ′(ui) = wi

by definition of M ′. By Theorem 6.3.1 and the definition of a well-formed matching, we

can partition the set of agents who are assigned in M into the disjoint sets F and S, where

agents in F are assigned to their f -partners in M , and agents in S are assigned to their
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s-partners in M respectively. It is clear to see that agents in F cannot improve in M ′

relative to M but can either become worse off or remain indifferent. On the other hand,

agents in S can either improve, become worse off in M ′ relative to M or remain indifferent.

In case (i), it must be the case that each of ui and wi can only belong to S. It follows

that ui and wi are both even agents because only even agents have s-partners defined.

However, this gives a contradiction since Algorithm Label-s would have defined ui and wi

to be one of each other’s s-partners because (ui, wi) is then an EE edge such that ui prefers

wi to any member of s(ui) and vice versa.

Hence, it remains to consider case (ii). It is clear that ui ∈ S. Now, if wi ∈ S and

wi is indifferent between ui and M(wi), we obtain a contradiction as in case (i). Hence,

wi ∈ F . Consider H ′ = (M ′ ⊕M) ∩ E1. It follows that the only connected components

of H ′ where an agent in S can become assigned to an agent in F who remains indifferent

between M and M ′ are even length alternating paths. Let ui and wi belong to such a

component P . Since ui improves to wi ∈ F , and wi is indifferent between ui and M(wi),

it follows that ui is the end vertex of the end edge of P that is in M ′. It also follows that

we have a uj who is the end vertex of the end edge of P that is in M . Clearly, uj becomes

worse off in M ′ relative to M . Now, suppose that wj , who is uj ’s partner in M ′, prefers

M ′ to M . By the structure of P , wj /∈ f(uj). Now, if wj also improves in M ′ by becoming

assigned to uj , it follows that wj ∈ S and uj is an even agent who lies between f(wj)

and s(wj) in wj ’s preference list. However then, it follows that {(uj ,M(uj)), (M(wj), wj)}

constitutes a mutex edge pair in M , a contradiction. Hence, wj either becomes worse off

in M ′ relative to M or is indifferent between the two matchings. However, it then follows

that for every edge (ui, wi) where one of the agents improves in M ′ relative to M , exactly

one of these agents prefer M ′ relative to M and the other remains indifferent. Moreover,

we have a unique corresponding edge (uj , wj) in which at least one of the agents prefers

M relative to M ′ and neither agents prefers M ′ to M . It cannot then be the case that M ′

is more popular than M .

What Theorem 6.4.1 thus implies is that a well-formed matching M in G′ is popular if

and only if M contains only one or none of the edges in any mutex edge pair. To illustrate

this concept, let us return to instance I5 in Figure 6.5. Let G′
I5

be the underlying graph

of I5 which contain edges incident to only f - and s-partners. Then, it may be verified

that G′
I5

contains one mutex edge pair, namely {(u2, w1), (u3, w2)}. Here, w2 and u2 are

even agents, u2 precedes s(w2) = u3 in w2’s preference list, and w1 = f(u2). It is thus
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straightforward to see that the matching M is popular in I5 because it contains no edges

of this mutex edge pair, while M ′ is not popular because it contains both edges of the

mutex edge pair.

6.4.2 Testing a matching for popularity

We remark that Theorem 6.4.1 gives us an O(
√

nm) time algorithm for testing if a given

matching M in an SMTI-SYM instance I is popular by checking whether M is a well-

formed matching that admits no mutex edge pairs as follows.

First of all, we construct the first-choice graph G1 of I containing only edges incident

to f -partners in O(m) time. We then find a maximum matching M1 in G1 using the

Hopcroft-Karp algorithm in O(
√

nm) time. We next use M1 to obtain an EOU labelling

of the vertices in G in O(m) time through a similar approach outlined in Chapter 4 for

the same task in the context of CHAT. It follows that we are then able to identify E , the

set of even agents in I. Now, the f -partners are straightforward to identify. We can then

use Algorithm Label-s, as given on page 93, to identify the s-partners of each agent in

O(m) time (with a suitable choice of data structures such as those described in Section

2.4.3). The search for mutex edge pairs in M can then be done by checking whether the

preference list of each even agent a ∈ E contains an even agent b preceding any member

of s(a) such that M(b) ∈ f(b) whenever M(a) ∈ s(a). Clearly, the complexity of this step

is bounded by the time required for a traversal of all the preference lists. Hence, we have

the following result.

Lemma 6.4.1. Let M be a matching in a given instance of SMTI-SYM. Then we may

test whether M is popular in O(
√

nm) time.

6.4.3 Concluding remarks

We conclude with the following observations on mutex edge pairs with respect to popular

matchings.

Let I be an instance of SMTI-SYM and let G′ be the subgraph of G containing only

edges incident to f - and s-partners constructed as above. Then, it follows by Theorems

6.3.1 and 6.4.1 that the problem of finding a popular matching in I, or reporting that

none exists, becomes the equivalent problem of finding a well-formed matching in G′ that

contains no mutex edge pairs, or reporting that none exists.
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Men’s pref list Women’s pref list

u1: w1 w1: u1 u2 u5

u2: w2 (w1 w4 w5) w2: u2 u5

u3: w3 w3: (u3 u5)

u4: (w4 w5) w4: u4 u2 u6

u5: w3 w2 w1 w5 w5: u4 u2 u6 u5

u6: w6 w7 (w4 w5) w6: (u6 u7)

u7: w6 w7: u8 u6

u8: (w7 w8) w8: u8

Figure 6.6: An instance I6 of SMTI-SYM.

Now, a straightforward approach that identifies and deletes all mutex edge pairs from

G′, and then proceeds to find a well-formed matching in the reduced G′ would not work

as may be seen from Instance I6 as shown in Figure 6.6. Here, as with instance I5, it

is straightforward to identify the f -partners. Using Algorithm Label-s, the s-partners,

where defined, are as follows: s(u3) = l(u3), s(u5) = w5, s(u6) = w7, s(u7) = l(u7),

s(w4) = l(w4), s(w5) = u5, s(w7) = u6, and s(w8) = l(w8). It is straightforward to verify

that we have two mutex edge pairs as follows:

{(u6, w6), (l(w4), w4)} and {(u6, w6), (u5, w5)}

Let us assume that we delete the above edges from G′. Observe that the only edges

incident to w4 and w5 in the reduced G′ are then (u4, w4) and (u4, w5). It follows then

that no agent-complete matching can exist in the reduced G′, causing any such approach

to report that no popular matching exists in I6. However, it may be verified that the

following is a well-formed matching in G′ that contains no mutex edge pairs, and hence is

popular in I6 by Theorem 6.4.1:

M =

 (u1, w1), (u2, w2), (u3, w3), (u4, w4), (u5, w5),

(u6, w7), (u7, w6), (u8, w8)


Another possible solution may be to use a similar approach to that for finding a popular

matching in the context of CHA as follows. First, form the subgraph G1 and find a

maximum matching M1 of G1. Then, add the edges that are incident to s-partners in
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G1 to form G′, and augment M1 to find an agent-complete matching M of G′, if such a

matching exists. The objective of these steps are to ensure that M is well-formed. Note

that it is straightforward to identify any mutex edge pair(s) once the f - and s-partners

are defined for all agents as described in Section 6.4.2. Let Mi be the matching that is

obtained from M1 during a particular iteration i of the augmenting step. We could then

try to ensure that M does not contain any mutex edge pair {e1, e2} by forbidding Mi to

be augmented with e2 during iteration i + 1 of the augmenting step if e1 already belongs

to Mi. However, it is unlikely that such a strategy could be successful in general. In fact,

the problem of deciding whether there exists an agent-complete matching in a bipartite

graph G′ without forbidden edge pairs is known to be NP-complete [32].

It therefore remains open as to whether a polynomial-time algorithm can be found to

determine whether an instance of SMTI-SYM admits a popular matching. In particular,

can we find an efficient way of constructing a well-formed matching without mutex edge

pairs, if such a matching exists? If such an algorithm can be found, then it could form

the basis of an approach to solve the analogous problem in the general SMTI and SRTI

cases.
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Chapter 7

Profile-based optimal matchings in

CHAT

7.1 Introduction

As discussed in Section 1.3.2, given any matching M in a bipartite matching problem,

various optimality criteria based on the profile of M may be used to determine the quality

of M with respect to other matchings in the same problem instance. In this chapter, we

study several optimality concepts for bipartite matching problems based on the profile

of matchings in the context of CHAT. The three optimality criteria that we study in

this chapter are the notions of a greedy maximum matching, a rank-maximal matching,

and a generous maximum matching, as introduced in Section 1.3.2. We remark that

these concepts are particularly useful in many practical matching applications where the

foremost goal of the matching scheme is to maximise the number of participating agents

who are assigned, and then subject to this constraint, to optimise the satisfaction of the

agents with respect to their preferences.

The main results of this chapter, and their organisation are as follows. First of all,

Section 7.2 introduces the terminology and notations that will be used for the rest of this

chapter. Next, Section 7.3 presents an O(C2mz) time algorithm (based on a variant of

the Bellman-Ford algorithm [28]) to find a greedy maximum matching given an CHAT

instance, where C is the total capacity of houses, m is the total length of preference lists

and z is the maximum rank respectively in the problem instance. Section 7.4 presents

an O(min(z∗
√

C, C + z∗)m) time algorithm that uses the Edmonds-Gallai Decomposition

to find a rank-maximal matching given an CHAT instance, where z∗ is the maximal
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rank in an optimal solution. In that section, we also present a number of straightforward

alternative algorithms to solve the problem and show how our direct approach based on

the Edmonds-Gallai Decomposition is faster than each of these. Finally, Section 7.5 shows

how the algorithms for finding a greedy maximum matching for a given CHAT instance

can be adapted for finding a generous maximum matching in the same problem instance.

7.2 Basic terminology

Let I be an instance of CHAT as defined in Chapters 1, 2 and 4. Let z be the maximum

rank of a house taken over all agents’ preference lists in I. LetM be the set of all matchings

of A to H. The following definition gives a property of matchings given an instance of

CHAT.

Definition 7.2.1. The profile ρ(M) of a matching M ∈ M is defined to be the z-tuple

(x1, x2, ..., xz) where for each i (1 ≤ i ≤ z), xi is the number of agents who are assigned

in M with one of their ith choice houses.

For a given CHAT instance I, a feasible s-profile is a profile X = (x1, ..., xz) such

that there is a matching M for I with profile X where |M | = s. It is immediate that∑
xi = s. To simplify matters, we abbreviate a profile (x1, ..., xz) by (x1, ..., xd) if xd > 0

and xi = 0 for i = d+1, ..., z. We let the empty matching have profile (0). We may define

a total order �L on profiles as follows: let Y = (y1, ..., yz) and X = (x1, ..., xz) be any two

profiles. Then, Y �L X if there exists some k (1 ≤ k ≤ z) such that xi = yi for 1 ≤ i < k

and yk > xk. We say that y left-dominates x. Let O = (o1, ..., oz) be the z-tuple such

that oi = 0 for 1 ≤ i ≤ z. It follows that the profile of any non-empty matching must

left-dominate O.

Alternatively, we may define a second total order ≺R on profiles as follows: X ≺R Y

if there exists some k (1 ≤ k ≤ z) such that xi = yi for k < i ≤ z and xk < yk. We

say that the profile X right-dominates profile Y . Let O′ = (o′1, ..., o
′
z) be the z-tuple such

that o′i = 0 for 1 ≤ i ≤ z − 1 and o′z = C + 1. Then, it follows that the profile of any

non-empty matching must right-dominate O′. It is straightforward to see that each of �L

and ≺R is transitive. Let G be the underlying graph of I. Then, we define the profile

of a connected component C in G with respect to a matching M in G to be the z-tuple

ρC(M) = (α1, ..., αz) where for each i (1 ≤ i ≤ z), αi is the number of agents in C who

obtain their ith-choice house (in I) in M . Given any two profiles ρ1 = (β1, ..., βz) and
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Algorithm 12 Algorithm Greedy-Max
1: M := ∅;

2: s := 0; {// s is the cardinality of M}

3: loop

4: P := a maximum profile augmenting path for M ;

5: if P exists then

6: M := M ⊕ P ;

7: else

8: exit;

9: s := s + 1;

10: return M ; {// a greedy maximum matching}

ρ2 = (γ1, ...γz), we define the sum of ρ1 + ρ2 to be (β1 + γ1, ..., βz + γz). Furthermore,

ρ1 = ρ2 if βi = γi for all i (1 ≤ i ≤ z).

7.3 Greedy maximum matchings

For a given instance I of CHAT, we say that a feasible s-profile X is s-left-maximal if

there is no other s-profile that left-dominates X. We define a matching M whose profile

is s-left-maximal to be a greedy s-matching. When s is the cardinality of a maximum

matching, we say that a greedy s-matching is a greedy maximum matching. Note that

there may be more than one greedy s-matching for any value of s, but it must be the case

that all greedy s-matchings have the same profile, and we call this the greedy s-profile for

the problem instance. When s is the cardinality of a maximum matching, we call this the

greedy maximum profile. Let M+ denote the set of maximum matchings in M. Then,

we may formalise the definition of a greedy maximum matching in a CHAT instance as

follows.

Definition 7.3.1. Given an instance of CHAT, a greedy maximum matching is a maxi-

mum matching that has maximum profile under the order �L taken over all matchings in

M+.

7.3.1 Finding a greedy maximum matching

We now introduce our algorithm to find a greedy maximum matching in any given

CHAT instance I. Our algorithm extends an existing approach for finding a greedy

maximum matching, given an instance of the House Allocation problem with Ties, and is
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Agent Pref list House Capacity

a1: h1 h2 h1 : 1

a2: h1 h2 h2 : 1

a3: h4 h3 h3 : 1

a4: h4 h4 : 1

Figure 7.1: An instance I1 of CHAT

based on a variant of the Bellman-Ford algorithm [28]. A pseudocode description of the

main loop of the algorithm is given in Algorithm 12. This adapts the classical augmenting

path algorithm for finding a maximum matching in a graph. That is, we start from the

empty matching, and then repeatedly increase the cardinality of the current matching via

an augmenting path until no such path can be found. In our algorithm, however, we aim to

satisfy the greedy maximum condition by looking for greedy s-matchings, and augmenting

the current (greedy) matching at any stage of the algorithm by using only an augmenting

path which leads to a greedy (s + 1) matching, provided s is not the cardinality of a

maximum matching.

We would like to show that it always suffices to use a single augmenting path at

each stage s of the algorithm to obtain a greedy (s + 1)-matching from a greedy s-

matching. For instance, consider the CHAT example in Figure 7.1. Then, the matching

M1 = {(a1, h1), (a2, h2), (a3, h4)} is a greedy 3-matching. Now, the matchings M2 =

{(a1, h2), (a2, h1), (a3, h3), (a4, h4)} and M3 = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)} are two

possible greedy 4-matchings that could be obtained from M1. However, while it takes an

augmenting path and an alternating cycle to move from M1 to M2, it takes only an aug-

menting path to move from M1 to M3. The next lemma proves that a single augmenting

path always suffices to obtain a greedy (s + 1)-matching from a greedy s-matching.

Lemma 7.3.1. Let M be a greedy s-matching in I. Then either M is a greedy maximum

matching or there is a greedy (s + 1)-matching M ′ that can be obtained from M via an

augmenting path.

Proof. Let G be the underlying bipartite graph of I. Suppose that M is not a greedy

maximum matching. Hence, there exists a greedy (s + 1)-matching M1. We clone G to

obtain a cloned graph C(G) as follows. We replace every house hj ∈ H with the clones

h1
j , h

2
j , . . . , h

cj

j . We then divide the capacity of each house among its clones by allowing

each clone to have capacity 1. In addition, if (ai, hj) ∈ E, then we add (ai, h
p
j ) to the
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edge set of C(G) for all p (1 ≤ p ≤ cj). Furthermore, if rankai(hj) = k, then we let

rankai(h
p
j ) = k for all p (1 ≤ p ≤ cj), so that hp

j is a kth-choice house for ai in C(G) for

all p (1 ≤ p ≤ cj). Let us then adapt the matching M in G to obtain its clone C(M) in

C(G) as follows. If a house hj in G is assigned to xj agents a1, ...axj in M , then we add

(ap, h
p
j ) to C(M) for 1 ≤ p ≤ xj , so that |C(M)| = |M |. We use a similar process for M1

to obtain its clone C(M1) in C(G). Hence, C(M) is a greedy s-matching and C(M1) is a

greedy (s + 1)-matching in C(G).

Let us consider X = C(M)⊕C(M1). Then, it follows that each connected component

of X is either (i) an alternating cycle, (ii) an even length alternating path, or (iii) an odd

length alternating path. We will show that there exists a greedy (s+1)-matching M ′ such

that we require only a connected component of type (iii) in order to obtain M ′ from M .

Let D be a connected component of X that is either (i) or (ii). Let ρD(C(M)) =

(a1, ..., az), and let ρD(C(M1)) = (b1, ..., bz). Suppose that ρD(C(M1)) �L ρD(C(M)).

Then, we can create a new matching C1 of cardinality s in C(G) by replacing the C(M)-

edges in D by the C(M1)-edges in D, giving ρ(C1) �L ρ(C(M)), which is a contradiction

since C(M) is a greedy s-matching in C(G). A similar contradiction arises if ρD(C(M)) �L

ρD(C(M1)). Hence, ρD(C(M)) = ρD(C(M1)).

Now, let us form another greedy (s+1)-matching C2 in C(G) from C(M1) by replacing

every C(M1)-edge by the corresponding C(M)-edge in each connected component. Con-

sider each connected component F of Y = C(M)⊕C2. Then, it follows that F can only be

an odd length alternating path. By the existence of C2, there must exist an odd number

of such paths in Y in order for us to be able to augment C(M) to C2. Now, if only one

such path P ′ exists, then it follows that P ′ is an augmenting path and C(M) ⊕ P ′ gives

us the greedy (s + 1)-matching C2.

Otherwise, there is more than one such path. Let P1 and P2 be any two such paths

which together have the same number of C(M)- and C2-edges; it must be possible to find

such a pair of paths. Let ρP1(C(M)) + ρP2(C(M)) = (α1, ..., αz) and ρP1(C2) + ρP2(C2) =

(β1, ..., βz). Suppose that (β1, ..., βz) �L (α1, ..., αz). Then, we can create a new matching

C3 of cardinality s in C(G) by replacing the C(M)-edges by the C2-edges in P1 and P2

respectively, giving ρ(C3) �L ρ(C(M)), which contradicts the fact that C(M) is a greedy s-

matching in C(G). We obtain a similar contradiction if (α1, ..., αz) �L (β1, ..., βz). Hence,

ρP1(C(M))+ρP2(C(M)) = ρP1(C2)+ρP2(C2). Let us form another greedy (s+1)-matching

C4 in C(G) from C2 by replacing every C2-edge by the corresponding C(M)-edge in every
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such pair of odd length alternating paths. Then, it follows that C(M) ⊕ C4 contains

only a single alternating path P ′ of odd length. Moreover, P ′ is an augmenting path and

C(M)⊕ P ′ gives us the greedy (s + 1)-matching C4.

Consider the path P ′. Let C ′ = C(M) ⊕ P ′. Replace each cloned edge (ai, h
p
j ) in

P ′ by the original edge (ai, hj) in G from which it was derived, where 1 ≤ p ≤ cj . It

follows that P ′ becomes an augmenting path P with respect to M . Perform the same edge

replacements for C ′ to obtain a matching M ′ in G. It follows that M ⊕ P = M ′. Since

ρ(M ′) = ρ(C ′), it must be the case that M ′ is a greedy (s + 1)-matching in G. Hence, the

result follows.

Given any greedy s-matching M in I that is not a greedy maximum matching, the task

at hand now is to be able to identify an augmenting path which will lead us to a greedy

(s + 1)-matching. To do so, let us introduce the notion of a maximum profile augmenting

path. Let α be an integer such that 1 ≤ α ≤ z. We define X + α to be

X + α = (x1, ..., xα−1, xα + 1, xα+1, ..., xz)

and we define X − α to be

X − α = (x1, ..., xα−1, xα − 1, xα+1, ..., xz)

Let P = 〈a0, h0, a1, h1, ..., ax, hx〉 be an alternating path from an exposed agent vertex

a0 to a house vertex hx, such that (ai, hi−1) ∈ M for 1 ≤ i ≤ x. We then define the profile

of P to be

ρ(P ) = O + r(a0, h0) + r(a1, h1) + ... + r(ax, hx)

– r(a1, h0)− r(a2, h1)− ...− r(ax, hx−1)

It follows that if P is an augmenting path, then ρ(P ) corresponds to the net change in

the profile of M if we augment M along P . For every house vertex hj ∈ H, we define the

L-value of hj relative to M , denoted by L(hj), to be the maximum profile taken over all

alternating paths from an exposed agent vertex ending at hj , where a vertex is defined to be

exposed if it is unmatched in M . We say that an alternating path P is a maximum profile

augmenting path for M if P is an augmenting path, and ρ(P ) = max {L(hj) : hj ∈ H}

where max is with respect to the �L order on profiles.

The following lemma shows that we can use the notion of a maximum profile aug-

menting path in tandem with the classical augmenting path algorithm to find a greedy

maximum matching in CHAT.
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Algorithm 13 Algorithm Max-Aug
1: Initialise l(hj) and pred(hj) for each house vertex hj ;

2: for p in 1..s do

3: for each agent vertex ai assigned in M do { // M is the current greedy s-matching}

4: for each edge (ai, hj) /∈ M do

5: σ := l(M(ai)) + r(ai, hj)− r(ai,M(ai));

6: if σ �L l(hj) then

7: l(hj) := σ;

8: pred(hj) := ai;

Lemma 7.3.2. Suppose that M is a greedy s-matching which is not maximum. Let P

be a maximum profile augmenting path. Then, augmenting M along P gives a greedy

(s + 1)-matching.

Proof. Suppose for a contradiction that M ′ = M ⊕ P does not give us a greedy (s + 1)-

matching. Now, by Lemma 7.3.1, there exists a matching M ′′ of cardinality s + 1 such

that M ′′ �L M ′ and M ′′ = M ⊕ P ′ for an augmenting path P ′. Since M ′′ �L M ′, it

follows that M ⊕P ′ �L M ⊕P , i.e. P ′ �L P . However, this gives a contradiction since P

is an augmenting path of maximum profile for M .

Let M be any greedy s-matching that is not a greedy maximum matching for a given

CHAT instance I. It now remains to show how to find a maximum profile augmenting

path with respect to M . We do this using the algorithm shown in Algorithm 13, which is a

variant of the Bellman-Ford algorithm for finding shortest paths. In the algorithm, we will

use l(hj) as described below to compute L(hj) for each house vertex hj . We will also use a

predecessor value pred(hj) to store the agent vertex preceding hj in the alternating path

which has maximum profile among all alternating paths from an exposed agent vertex to

hj found so far by the algorithm. At the start of the algorithm, we initialise l(hj) and

pred(hj) for each house vertex hj as follows. If there is an edge (ai, hj) incident to hj such

that ai is currently exposed, let t be the minimum value of r(ai, hj) taken over all such

edges, where recall that r(ai, hj) = rankai(hj). We then initialise l(hj) to be the t-tuple

(x1, ..., xt) where xp = 0 (1 ≤ p < t) and xt = 1. Furthermore, we initialise pred(hj)

to be ai. If no such edge exists, we initialise l(hj) to be (0) and pred(hj) is undefined.

Intuitively, l(hj) gives the maximum profile of any alternating path of length 1 from an

exposed agent vertex ai to hj at the start of the algorithm, and so pred(hj) is set to be

ai, if such a path exists.

111



Chapter 7. Profile-based optimal matchings in CHAT

The algorithm runs in s iterations, where s is the cardinality of the current matching

as constructed by Algorithm Greedy-Max (see Algorithm 12). It uses an edge relaxation

operation similar to that of the Bellman-Ford algorithm, but bases this operation in terms

of the order �L on L-values. The edge relaxation operation is defined in line 5 of the

algorithm. Let ai be any agent vertex assigned in the current greedy s-matching M

with (ai, hj) /∈ M . Also, let P = 〈v, ..., M(ai)〉 be an alternating path, starting from an

exposed agent vertex v and ending at M(ai), whose profile is equal to l(M(ai)). The

essence of the edge relaxation operation is the following: if the profile of the alternating

path P ′ = 〈v, ..., M(ai), ai, hj〉 left-dominates l(hj), i.e. P ′ gives a “better profile” than

the alternating path whose profile is equal to l(hj), then we update l(hj) to be the profile

of P ′ and similarly update the predecessor of hj to be ai.

Now, if l(h) = (0) for every house vertex h after execution of Algorithm Max-Aug,

then there is no augmenting path, and M is a greedy maximum matching. Otherwise, we

find an exposed house vertex hj such that l(hj) left-dominates the L-values of all exposed

house vertices. The correctness proof in the next section shows that we can obtain the

maximum profile augmenting path P by alternately tracing the predecessor values and

matched edges starting from pred(hj).

7.3.2 Proof of correctness

Let Y = (y1, ..., yz) and X = (x1, ..., xz) be any two profiles. We introduce a new notation

as follows, that is, Y �L X if there exists some k (1 ≤ k ≤ z) such that xi = yi for

1 ≤ i < k and yk ≥ xk. Intuitively, this implies that either Y = X or Y �L X. The

following lemma shows us that Algorithm Max-Aug correctly computes the L-value of each

house vertex.

Lemma 7.3.3. When Algorithm Max-Aug terminates, l(hj) = L(hj) for each house vertex

hj ∈ H.

Proof. Let hj be an arbitrary house vertex in G. Let also L2p+1(hj) denote the maximum

profile of any alternating path of length ≤ 2p + 1 from an exposed agent vertex to hj .

We will prove the following loop invariant: after iteration p of the main for loop, l(hj) is

equal to or left-dominates the maximum profile taken over all alternating paths of length

≤ 2p + 1 from an exposed agent vertex to hj , i.e. l(hj) �L L2p+1(hj).

For the base case, let p = 0. Now, L1(hj) is the maximum profile of any alternating

path of length ≤ 1 from an exposed agent vertex to hj . This is precisely the value that
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l(hj) is initialised to in line 1 of the algorithm as discussed on the previous page. Hence,

the base case holds.

For the induction step, we assume that 1 ≤ p ≤ s and that the loop invariant is true

for p−1, i.e. lprev(h) �L L2p−1(h) after the (p−1)th iteration for all h ∈ H, where lprev(h)

denotes the value of l(h) as computed after the (p− 1)th iteration. We will show that the

loop invariant holds after iteration p, that is l(hj) �L L2p+1(hj) where l(hj) is computed

after the pth iteration. Let A′
j = {ai ∈ A : (ai, hj) ∈ E\M and ai is assigned in M} where

E is the edge set in G. During each iteration, we perform a relaxation step for every edge

(ai, hj) such that ai ∈ A′
j .

By definition, L2p+1(hj) denotes the maximum profile of any alternating path of length

≤ 2p+1 from an exposed agent vertex to hj . Now, if (i) there does not exist any alternating

path from an exposed agent vertex of length ≤ 2p + 1 which gives a better profile than

L2p−1(hj), then it follows that L2p+1(hj) = L2p−1(hj). Otherwise, it must be the case

that (ii) an alternating path of length ≤ 2p + 1 from an exposed agent vertex to hj with

profile L2p+1(hj) must contain an alternating path from an exposed agent vertex to h′j

with profile L2p−1(h′j) for some house vertex h′j , together with the edges (M(h′j), hj) and

(M(h′j), h
′
j). In such a case, it follows that

L2p+1(hj) = max
{
L2p−1(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}
Now, by inspection of the algorithm, we have that

l(hj) = max
{
lprev(hj),

{
l′(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}}
where l′(M(ai)) is the most recent L-value of M(ai) when l(hj) is updated by the algo-

rithm; it must be the case that lprev(M(ai)) �L l′(M(ai)). By definition of L2p+1(hj), it

follows that

L2p+1(hj)

= max
{
L2p−1(hj),max

{
L2p−1(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}}
�L max

{
lprev(hj),max

{
L2p−1(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}}
(by the inductive hypothesis)

�L max
{
lprev(hj),max

{
lprev(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}}
(by the inductive hypothesis)

�L max
{
lprev(hj),max

{
l′(M(ai)) + r(ai, hj)− r(ai,M(ai)) : ai ∈ A′

j

}}
= l(hj)
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completing the inductive step.

Thus, after iteration s, we have that l(hj) �L L2s+1(hj). However, any alternating

path from an exposed agent vertex to hj with respect to the greedy s-matching can have

length at most 2s + 1. Hence, we have that l(hj) = L(hj) after iteration s, i.e. l(hj)

is equal to the maximum profile taken over all alternating paths from an exposed agent

vertex to hj as required.

Let M be a greedy s-matching that is not a maximum matching. Let hr be an exposed

house vertex whose L-value left-dominates the L−values of all exposed house vertices after

execution of Algorithm Max-Aug. Let P be the sequence of agents and houses obtained

by alternately tracing the predecessor values and matched edges in M starting from hr.

The next lemma shows that P must terminate at some exposed agent vertex.

Lemma 7.3.4. Let P be the sequence of agents and houses obtained by alternately tracing

the predecessor values and matched edges in M starting from hr where hr is defined as

above. Then, P terminates at some exposed agent vertex.

Proof. We wish to show that P cannot cycle, so let us suppose the contrary for a contra-

diction, i.e. P contains some cycle C. Hence, there must have been some point during the

execution of Algorithm Max-Aug when C appeared for the first time. Call this step X.

Suppose that this happened when some house hj ∈ P had its predecessor assigned to the

agent ai ∈ P .

We firstly observe that hj must itself be in C, for otherwise, since none of the other

house vertices had its predecessor changed at step X, and none of the agents had his

assigned house changed at step X, C must have existed before step X, a contradiction to

the fact that C appears for the first time. It follows that we can trace an alternating path

from each of the other house vertices h in C to hj by following the predecessor values and

matched edges in M from pred(h). Hence, immediately prior to step X, hj must itself

have had a defined predecessor, and an existing value for l(hj).

Since pred(hj) was assigned to ai, it must have been the case that σ �L l(hj), where

l(hj) was the existing L-value for hj and σ = l(M(ai))+r(ai, hj)−r(ai,M(ai)). However,

it is also the case that σ = l(hj) − ρC(M) + ρC(M ′) where we let M ′ = M ⊕ C. Hence,

we have that ρC(M ′) �L ρC(M). However, this implies that M ′ is a matching such that

|M ′| = |M | and M ′ �L M , a contradiction.

By Lemma 7.3.4, it follows that we can use the predecessor values to successfully trace
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an augmenting path P with respect to M where P ends at the house vertex hr. By Lemma

7.3.3 and the definition of L(hr), P must be a maximum profile augmenting path with

respect to M if l(hr) left-dominates the L-values over all exposed house vertices. This

gives us the following result.

Theorem 7.3.1. Let M be a greedy s-matching that is not greedy maximum. Then,

executing Algorithm Max-Aug finds a maximum profile augmenting path with respect to

M .

7.3.3 Time complexity analysis

The time complexity for finding a greedy maximum matching in an instance I of CHAT

may be derived as follows.

Algorithm Greedy-Max performs S calls to Algorithm Max-Aug to find maximum

profile augmenting paths where S is the cardinality of a maximum matching in I. The main

for loop of Algorithm Max-Aug itself is performed O(s) times, where s is the cardinality of

the current matching. Each iteration of the innermost for loop in line 6 makes a comparison

of l-values which takes O(z) time. There can be O(m) such iterations altogether during

a single execution of Algorithm Max-Aug. At the end of Algorithm Max-Aug, O(n2)

comparisons of L-values, each of which takes O(z) time, are made to identify a maximum

profile augmenting path. Hence, each execution of Algorithm Max-Aug takes O(smz +

n2z) = O(smz) time. It follows that the overall time complexity of Algorithm Greedy-

Max is O(C2mz) since the maximum cardinality of a matching in an instance of CHAT

is O(C). In practice, the actual runtime of Algorithm Greedy-Max can be speeded up

through the observation that if no house h that is assigned in the current matching had

l(h) updated in the last iteration of Algorithm Max-Aug, then no further improvement to

an l(h′) for all h′ ∈ H can happen. Hence, we may choose to halt Algorithm Max-Aug at

that point.

7.4 Rank-maximal matchings

Let I be a given instance of CHAT. We formalise the definition of a rank-maximal match-

ing in I as follows.

Definition 7.4.1. Given an instance of CHAT, a rank-maximal matching is a matching

that has maximum profile under the order �L, taken over all matchings in M.
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Agent Pref list House Capacity

a1: h1 h2 h1 : 1

a2: h1 h2 : 2

Figure 7.2: An instance I2 of CHAT

For a given CHAT instance, there may be more than one rank-maximal matching, but

all rank-maximal matchings must have the same profile, and hence the same cardinality.

Now, it is straightforward to see that a simple greedy algorithm in which we assign the

maximum number of agents to their first choice house, then the maximum number to their

second choice house, and so on, does not guarantee to find a rank-maximal matching. For

example, Figure 7.2 shows a given CHAT instance I2 in which the greedy algorithm

may either return matching M1 = {(a1, h1)} given the agent ordering 〈a1, a2〉, or M2 =

{(a1, h2), (a2, h1)} given the agent ordering 〈a2, a1〉, each of which maximises the number

of agents assigned to their first choice house. However, M2 is rank-maximal but M1 is not,

since ρ(M1) = (1), but ρ(M2) = (1, 1).

7.4.1 Finding a rank-maximal matching

For the special case where every house has unitary capacity, i.e. the House Allocation

problem with Ties (HAT), Irving et al. [29] give an O(min(z∗
√

n, n + z∗)m) (direct)

combinatorial algorithm for solving the analogous problem, where z∗ ≤ z is the maximal

rank of an edge used in a rank-maximal matching. We will show how to extend this

algorithm to the CHAT case.

Let G be the underlying graph of I. Let Ei denote the set of edges having rank i for

any i (1 ≤ i ≤ z). Then, the edge set of G may be expressed as E = E1 ∪ E2 ∪ ... ∪ Ez.

Our algorithm works in phases. In each phase i (1 ≤ i < z), it constructs a rank-maximal

matching Mi+1 of the subgraph Gi+1 = (A ∪H,E1 ∪E2 ∪ ... ∪Ei ∪Ei+1) so that when it

terminates at the end of phase z − 1, a rank-maximal matching Mz of the subgraph Gz

is a rank-maximal matching for I. Our algorithm begins at the outset by constructing a

maximum matching M1 in G1 = (A ∪H,E1). Note that M1 is a rank-maximal matching

of G1 since it is a maximum matching of E1 edges. For each phase i where i ≥ 1, our

algorithm then constructs a modified subgraph G′
i+1 of Gi+1, which reduces the problem

of finding a rank-maximal matching in Gi+1 to the problem of computing a maximum

matching of G′
i+1. The modified subgraph G′

i+1 is constructed from G′
i by adding only
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Algorithm 14 Algorithm Rank-Max
1: Start with G′

1 = G1 and let M1 be a maximum matching in G′
1.

2: for i = 1 to z − 1 do

3: Obtain an EOU labelling of G′
i.

4: Delete all edges in G′
i connecting two odd vertices, or connecting an odd vertex with an

unreachable vertex (this step does not delete any edge of Mi).

5: Delete from Ej , for all j > i, all edges incident to an odd or unreachable vertex in G′
i.

6: Build subgraph G′
i+1 by adding the edges in Ei+1 to G′

i.

7: Find a maximum matching Mi+1 in G′
i+1 by augmenting Mi.

8: return Mz as a rank-maximal matching.

those edges from Ei+1 that can potentially belong to a rank-maximal matching of I.

To help us identify those edges that can potentially belong to a rank-maximal matching

of I, we make use of the Edmonds-Gallai Decomposition as extended to the capacitated

bipartite graph in Chapter 4. Recall that Lemma 4.3.4 shows that fundamental properties

of the Edmonds-Gallai Decomposition, as introduced by Lemma 1.2.1 in Section 1.2, also

hold in the capacitated bipartite graph case. Hence, we can reuse Lemma 4.3.4 here for

each subgraph Gi of G, which is essentially a CHAT instance. A pseudocode description

of the algorithm is given in Algorithm 14.

7.4.2 Proof of correctness

Recall that Algorithm Rank-Max constructs a maximum matching Mi for each subgraph

G′
i. In order to show the correctness of our algorithm, we require the following technical

results.

Lemma 7.4.1. Suppose that every rank-maximal matching of Gi is a maximum matching

of G′
i. Then every rank-maximal matching of Gi+1 is contained in G′

i+1.

Lemma 7.4.2. For every phase i and j where j > i, the number of edges of rank at most

i is the same in Mi and Mj.

Note that the proofs of the lemmas have been omitted since they may be established

by straightforward extension of the corresponding results for HAT (i.e. Lemmas 2.2 and

2.3 of [29] respectively). What Lemmas 7.4.1 and 7.4.2 show are the following:

(i) suppose that the hypothesis of Lemma 7.4.1 is true. Then, any edge deleted during

phase i of the algorithm does not belong to any rank-maximal matching of Gi+1 so

that every rank-maximal matching in Gi+1 has all of its edges in G′
i+1;
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(ii) the algorithm maintains the same number of edges of rank i in each matching Mj

for all i < j.

The above results lead us to the following correctness result for our algorithm, for

which we again omit the proof since it is a straightforward extension of the corresponding

result for HAT (i.e. Theorem 2.4 of [29]).

Theorem 7.4.1. For every 1 ≤ k ≤ z, the following statements hold:

(i) Every rank-maximal matching in Gk is a maximum matching in G′
k;

(ii) Every maximum matching Mk in G′
k is a rank-maximal matching in Gk.

7.4.3 Time complexity analysis

The following theorem gives us the time complexity of our algorithm.

Theorem 7.4.2. Given a CHAT instance I, a rank-maximal matching can be computed

in O(min(z∗
√

C, C + z∗)m) time, where z∗ is the maximal rank of an edge in an optimal

solution and C is the total capacity of the houses in I.

Proof. Consider phase i of the algorithm. It is straightforward to see that each subgraph

Gi can be constructed in O(m) time. We use Gabow’s algorithm [15] to compute a

maximum matching Mi in Gi in O(
√

Cm) time. Now, Gabow’s algorithm uses successive

augmentation steps to find a maximum matching for each Gi. It must be the case that

the number of augmentation steps cannot exceed |Mi| − |Mi−1|+ 1, since each step either

increases the cardinality of the matching by at least 1, or establishes that no further

steps are needed. Hence, the time complexity for Gabow’s algorithm is also bounded by

O((|Mi| − |Mi−1|+ 1)m), giving an overall bound of O(min(
√

C, |Mi| − |Mi−1|+ 1)m).

After finding the maximum matching Mi, it follows that we can obtain an EOU la-

belling by using a similar approach to that described in Section 4.3.2 for CHAT. We first

use a pre-processing step to label each unassigned agent and each undersubscribed house

as even. Clearly, this step takes O(n) time. Next, restricted breadth-first search may be

used on Gi to search for alternating paths with respect to Mi, building up odd or even

labels for every vertex encountered. This step labels all odd and even (assigned) agents,

and all odd and even (full) houses and takes O(m) time. Any remaining unlabelled vertices

must be unreachable and we can directly label these vertices in Gi in O(n) time. Thus,
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the total time complexity of EOU labelling of Gi is O(n + m). The EOU labelling of Gi

is then used to delete certain edges from Ej where j > i which takes O(m) time.

Hence, the time complexity for each phase is O((min(
√

C, |Mi| − |Mi−1| + 1)m). By

summing, we see that the overall running time is O(min(z
√

C, C + z)m).

Now, we show how to replace z by z∗. At the beginning of each phase i, we first check

if Mi is already a maximum matching in G′ which consists of all edges (of all ranks) that

have not been deleted at the start of phase i. This takes O(m) time. If Mi is a maximum

matching in G′, then we stop. Otherwise, we continue as described above. This ensures

that only z∗ phases are executed.

7.4.4 Alternative approaches to finding a rank-maximal matching

Given any CHAT instance I, we give here several alternative approaches for computing

a rank-maximal matching in I. However, we will show that Algorithm Rank-Max, based

on using the Edmonds-Gallai Decomposition, offers the fastest algorithm for all cases.

7.4.4.1 Reduction to the Assignment problem

One method for finding a rank-maximal matching in I would be by reduction to the

Assignment problem through the allocation of a suitably steeply decreasing sequence of

weights to the edges of G as follows. For each (agent,house) edge (ai, hj) in the underlying

graph of I, let wt(ai, hj) = (n + 1)z−k where n is the total number of agents and houses,

z is the maximum length of an agent’s preference list, and rankai(hj) = k. We then find

a maximum weight matching in this weighted graph G′. The following lemma shows that

such a maximum weight matching must be a rank-maximal matching in I.

Lemma 7.4.3. Let M be a maximum weight matching in G′. Then, M is a rank-maximal

matching of I.

Proof. Suppose not. Then, there exists some matching M ′ such that M ′ �L M . Let

ρM = (x1, ..., , xz) and ρM ′ = (y1, ..., yz). It follows that for some s(1 ≤ s ≤ z), xi = yi for

each i (1 ≤ i < s) and ys > xs. Now, let wt(M∗) denote the weight of any matching M∗.

Then, it follows that the weight of M is
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wt(M) =
z∑

i=1

xi(n + 1)z−i

=
s∑

i=1

xi(n + 1)z−i +
z∑

i=s+1

xi(n + 1)z−i

≤
s∑

i=1

xi(n + 1)z−i + (xs+1 + xs+2 + ... + xz)(n + 1)z−s−1

<
s∑

i=1

xi(n + 1)z−i + n · (n + 1)z−s−1

<
s∑

i=1

xi(n + 1)z−i + (n + 1)z−s

However, we may derive the following inequality relation for the weight of M ′:

wt(M ′) ≥
s−1∑
i=1

yi(n + 1)z−i + ys(n + 1)z−s

≥
s−1∑
i=1

xi(n + 1)z−i + (xs + 1)(n + 1)z−s

(since ys ≥ xs + 1)

=
s∑

i=1

xi(n + 1)z−i + (n + 1)z−s

> wt(M)

which contradicts the fact that M is a maximum weight matching in G′.

Hence, Lemma 7.4.3 shows that we can find a rank-maximal matching in I by reduc-

tion to the Assignment problem in the manner described above. Recall (from Section 1.2)

that Gabow’s algorithm for maximum weight DCS [15] solves the Assignment problem

in the capacitated graph in O(C min(m log n, n2)) time. In view of the time required to

perform arithmetic operations on steeply decreasing weights [42], the resulting running

time of the algorithm is O(zC min(m log n, n2)). Recall also that Algorithm Rank-Max

takes O(min(z∗
√

C, z∗ + C)m) time. Now, if m log n ≤ n2, then finding a rank-maximal

matching via reduction to the Assignment problem takes (i) Ω(zCm log n) time. Other-

wise, this takes (ii) Ω(zCn2) time. In case (i), Algorithm Rank-Max is faster by a factor

of Ω(min(
√

C log n, (zC log n)/(z∗ + C))). In case (ii), Algorithm Rank-Max is faster by a

factor of Ω(min(
√

C, (zC)/(z∗ +C))) under the standard assumption that m ≤ n2 [46]. It
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follows in all cases that Algorithm Rank-Max is faster than by reduction to the Assignment

problem.

We remark that a similar reduction to the Assignment problem can also be used to find

greedy maximum matchings. Here, it is required to adjust the edge weights to ensure that

a maximum weight matching in the weighted graph G′ described above also has maximum

cardinality. In order to do so, we modify the previous reduction by adding a sufficiently

large constant C to each edge weight. This is to ensure that every matching of size s has

weight greater than every matching of size s− 1. Since the largest edge weight we might

have is (n + 1)z−1, adding a constant of C = (n + 1)z is sufficient. Hence, we assign the

weight of each edge (ai, hj) to be wt(ai, hj) = (n+1)z−k +(n+1)z. Let M be a maximum

weight matching in the revised weighted graph G′. Then, the second component of the

edge weights (as created by adding C to the weight of every edge) ensures that M will

have maximum cardinality. Among all such matchings, the first component will ensure

that a matching with maximum weight is a greedy maximum matching using a similar

proof to Lemma 7.4.3.

It follows that such an approach would also take O(zC min(m log n, n2)) time. Recall

that Algorithm Greedy-Max takes O(C2mz) time to find a greedy maximum matching

given a CHAT instance. For most practical applications, it is reasonable to assume that

C/ log n ≥ 1. For example, from the 2006-07 Scottish Foundation Allocation Scheme

(SFAS) data [38], there were 781 students, 53 hospitals and the total capacity of the

hospitals was 789, i.e. n = 781 + 53 = 834 and C = 789 so that C/ log n ≈ 117 ≥ 1.

By comparing the time complexities of both approaches, it is straightforward to see that

the reduction method is faster by a factor of Ω(C max(1/ log n, m/n2)) for most practical

cases.

7.4.4.2 Adapting Algorithm Greedy-Max

Note that a rank-maximal matching and a greedy maximum matching are conceptually

similar except that the former need not be of maximum cardinality. Now, a rank-maximal

matching M ′ must be a greedy |M ′|-matching. The next lemma shows how to extend the

results of Lemmas 7.3.1 and 7.3.2 to yield an alternative method for finding a rank-maximal

matching in any instance of CHAT.

Lemma 7.4.4. For each i, let Mi be a greedy i-matching with profile ρi. If ρi+1 �L ρi

for i = 1, 2, ..., k − 1 and ρk �L ρk+1, then Mk is a rank-maximal matching, and ρk is the
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Algorithm 15 Algorithm Greedy-Rank-Max
1: M := ∅;

2: M ′ := ∅;

3: s := 0;

4: loop

5: P := a maximum profile augmenting path for M ;

6: if P exists then

7: M := M ⊕ P ;

8: if ρ(M) �L ρ(M ′) then

9: M ′ := M ;

10: else {//ρ(M) ≺L ρ(M ′) must hold}

11: break;

12: else

13: break;

14: s := s + 1;

15: M ′ is a rank-maximal matching;

rank-maximal profile.

Proof. Let ρk = (x1, ..., xz) and suppose that Mk is not rank-maximal. Then, there is a

matching M such that M �L Mk and M has profile ρ = (x1, ..., xi−1, yi, ..., yz) for some i

wih yi > xi. It follows that M contains a matching M ′ with profile ρ′ = (x1, ..., xi−1, xi+1).

Clearly, M ′ �L Mk. Since ρk = (x1, ..., xz), it follows that x1 + ... + xz = k, so that

x1 + ... + xi ≤ k. We then have that |M ′| = x1 + ... + xi + 1 ≤ k + 1. This implies

that we have a matching of cardinality at most k + 1 whose profile left-dominates ρ(Mk).

However, this gives a contradiction since ρk must left-dominate the profiles of all matchings

of cardinality up to k + 1 by the statement of the lemma.

We now introduce Algorithm Greedy-Rank-Max which offers an alternative approach

to finding a rank-maximal matching in any given CHAT instance J . A pseudocode de-

scription of the algorithm is given in Algorithm 15. Algorithm Greedy-Rank-Max basically

repeats the approach used by Algorithm Greedy-Max. However, the algorithm halts when

it obtains a greedy s-matching that is also rank-maximal. That is, it does so when it finds

a greedy s-matching M which satisfies the condition in the statement of Lemma 7.4.4. It is

straightforward to verify that Algorithm Greedy-Rank-Max has the same time complexity

as Algorithm Greedy-Max, i.e. O(C2mz).

Lemma 7.4.4 shows that we can obtain a rank-maximal matching as a by-product
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of finding a greedy maximum matching in I, and Algorithm Greedy-Rank-Max gives an

algorithm for doing this. Let us compare the time complexities of Algorithm Rank-Max

and Algorithm Greedy-Rank-Max. Recall Algorithm Rank-Max takes O(min(z∗
√

C, C +

z∗)m) time. It follows that Algorithm Rank-Max is faster than Algorithm Greedy-Rank-

Max by a factor of Ω(min(C3/2, C2z/(C + z∗)).

7.4.4.3 “Cloning”

Another straightforward solution to finding a rank-maximal matching for a CHAT in-

stance I may be to use “cloning” to create an instance J of HAT, and then to apply the

O(min(z∗
√

n, n+ z∗)m) algorithm of [29] to J . Firstly, we create cj clones h1
j , h

2
j , ..., h

cj

j of

each house hj in I, where each clone has a capacity of 1. In addition, we replace each oc-

currence of hj in a given agent’s preference list by the sequence h1
j , h

2
j , ..., h

cj

j , the elements

of which are listed in a single tie at the point where hj appears.

Let us now compare the complexity of our direct approach using Algorithm Rank-Max

to that of the cloning approach. Let GJ denote the underlying graph of J . Then, GJ

contains n′ = n1 + C vertices. For each ai ∈ A, let Ai denote the set of acceptable houses

for ai. Then, the number of edges in GJ is m′ =
∑

ai∈A

∑
hj∈Ai

cj . Hence, the complexity

of applying the algorithm of [29] to J is Ω(min(z∗
√

n1 + C, n1 + C + z∗)m′). It follows

that the cloning approach is slower by a factor of Ω(m′/m).

7.5 Generous Maximum Matchings

For a given CHAT instance I, we say that a feasible s-profile X is s-right-minimal if there

is no other feasible s-profile that right-dominates X. In addition, we define a matching M

whose profile is s-right-minimal to be a generous s-matching. When s is the cardinality of a

maximum matching, we say that a generous s-matching is a generous maximum matching.

As in the case of greedy s-matchings, there may be more than one generous s-matching

for a given value of s, but it is clear that all generous s-matchings have the same profile,

and we call this the generous s-profile for the problem instance. When s is the cardinality

of a maximum matching, the generous s-profile is called the generous maximum profile.

We formalise the definition of a generous maximum matching as follows.

Definition 7.5.1. Given an instance of CHAT, a generous maximum matching is a

maximum matching that has minimum profile under the order ≺R taken over all matchings
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in M+.

7.5.1 Finding a generous maximum matching

We may adapt Algorithm Greedy-Max, designed to find a greedy maximum matching

in I, into an analogous algorithm for finding a generous maximum matching in I. The

remainder of this section will work towards showing this. First of all, we introduce the

following lemma, which is a counterpart to Lemma 7.3.1 for finding generous matchings.

Lemma 7.5.1. Let M be a generous s-matching in I. Then either M is a generous

maximum matching or there is a generous (s + 1)-matching M ′ that can be obtained from

M via an augmenting path.

Proof. It is straightforward to verify that if we replace all concepts relating to left-

domination and greedy in the proof of Lemma 7.3.1 by their counterparts for right-

domination and generous respectively, then this establishes the proof for this lemma.

As with finding a greedy maximum matching in CHAT, given any generous s-matching

M , we want to be able to identify an augmenting path with respect to M that will lead

us to a generous (s + 1)-matching. To do so, let us introduce the notion of a minimum

profile augmenting path. Let i be an integer such that 1 ≤ i ≤ z. We assume X + i and

X − i to be those operations on z-tuples and i that were defined previously in the context

of greedy maximum matchings. Then, for every house vertex hj , we define the R-value

of hj with respect to M , denoted by R(hj), to be the minimum profile taken over all

alternating paths from an exposed agent vertex ending at hj . We say that an alternating

path P is a minimum profile augmenting path for M if P is an augmenting path, and

ρ(P ) = min {R(hj) : hj ∈ H} where min is with respect to the ≺R order on profiles.

The following lemma, analogous to Lemma 7.3.2, shows that we can use the notion of a

minimum profile augmenting path in tandem with the classical augmenting path algorithm

to find a generous maximum matching in CHAT.

Lemma 7.5.2. Suppose that M is a generous s-matching which is not maximum. Let P

be a minimum profile augmenting path. Then, augmenting M along P gives a generous

(s + 1)-matching.

Proof. It is straightforward to verify that if we replace all concepts relating to left-

domination and greedy in the proof of Lemma 7.3.2 by their counterparts for right-

domination and generous respectively, then this establishes the proof for this lemma.
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Hence, we are able to reuse Algorithm Greedy-Max to find a generous maximum match-

ing for a given CHAT instance I. The difference, in this context, is that we are interested

in finding a minimum profile augmenting path in each iteration of the algorithm instead.

Let M be any generous s-matching that is not a generous maximum matching for a given

CHAT instance I. If we replace all occurrences of L-values in Algorithm Max-Aug by

R-values, and replace the left-domination comparison �L by the right-domination com-

parison ≺R in line 6 of the algorithm, then we can reuse Algorithm Max-Aug to find a

minimum profile augmenting path with respect to M . Note that if there does not exist

any alternating path of length 1 from an exposed agent vertex to a house hj in the ini-

tialisation step, then we set r(hj) to be O′ where r(hj) is used to compute R(hj) in the

algorithm. Let us rename Algorithm Max-Aug, after the above transformations, to be

Algorithm Min-Aug. Then, if every house vertex has an R-value that is equal to O′ after

execution of Algorithm Min-Aug, then there is no augmenting path, and M is a generous

maximum matching. Otherwise, we find the house vertex hj with minimum R-value, and

obtain the minimum profile augmenting path P by alternately tracing the predecessor

values and matched edges in M starting from pred(hj).

7.5.2 Proof of correctness

As in the greedy maximum case, we want to show that the augmenting path P obtained

by executing Algorithm Min-Aug is a minimum profile augmenting path with respect to

the current generous s-matching M . The next two lemmas prove results analogous to the

greedy maximum case in the generous maximum context.

Lemma 7.5.3. When Algorithm Min-Aug terminates, r(hj) = R(hj) for each house vertex

hj ∈ H.

Proof. We replace all concepts relating to left-domination and greedy by their counterparts

for right-domination and generous respectively in the proof of Lemma 7.3.3 to obtain our

proof for this lemma.

Lemma 7.5.4. Let P be the sequence of agents and houses obtained by alternately tracing

predecessor values and matched edges in M starting from pred(hj) where the R-value of hj

right-dominates the R-values of all exposed house vertices. Then, P terminates at some

exposed agent vertex.
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Proof. We again replace all concepts relating to left-domination and greedy by their coun-

terparts for right-domination and generous respectively in the proof of Lemma 7.3.4 to

obtain our proof for this lemma.

This gives us the following result with respect to generous maximum matchings in

CHAT.

Theorem 7.5.1. Let M be a generous s-matching M that is not generous maximum.

Then, executing Algorithm Min-Aug (adapted from Algorithm Max-Aug as described above)

finds a minimum profile augmenting path with respect to M .

7.5.3 Time complexity analysis

It is straightforward to verify that it takes O(C2mz) time to find a generous maximum

matching using the same arguments as in the greedy maximum case. In practice, as in the

generous maximum case, we can speed up the running time by halting Algorithm Min-Aug

when no house h that is assigned in the current matching had r(h) updated in the last

iteration of the algorithm.

Finally, we remark that we can find a generous maximum matching given an instance I

of CHAT by a reduction to the Assignment problem in a similar way to that for the greedy

maximum case. In the generous maximum case, however, the appropriate weight to assign

to each edge (ai, hj) should be wt(ai, hj) = ((n + 1)z−1− (n + 1)k−1 + 1) + (n + 1)z where

(n + 1)z is again the large constant added to ensure that any maximum weight matching

in the underlying weighted graph has maximum cardinality. As with the greedy maximum

case, such an approach would take O(zC min(m log n, n2)) time. Furthermore, we can

assume that C/ log n ≥ 1 for most practical applications. Hence, the reduction method is

again faster than an augmenting path approach using the Bellman-Ford algorithm by a

factor of Ω(C max(1/ log n, m/n2)) for most practical cases.

7.6 Open Problems

We conclude this chapter with the following open problems.

• In this chapter, we have given different efficient algorithms for the individual prob-

lems of finding a greedy maximum, a rank-maximal and a generous maximum match-

ing given an CHAT instance. It was observed in Section 7.4 that an approach util-
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ising the Edmonds-Gallai Decomposition gives us a faster algorithm for finding a

rank-maximal matching than several straightforward alternatives such as by an aug-

menting path approach utilising the Bellman-Ford algorithm or by reduction to the

Assignment problem. We have also shown that the reduction approach gives a faster

algorithm than the augmenting path approach utilising the Bellman-Ford algorithm

for constructing greedy and generous maximum matchings for most practical cases.

Hence, the question arises as to whether we can find direct, more efficient algo-

rithms for constructing greedy and generous maximum matchings, given an instance

of CHAT, by also making use of the Edmonds-Gallai Decomposition.

• For a given instance I of CHAT, and a given profile, can we determine whether I

admits a matching with that profile in polynomial time?
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Chapter 8

Profile-based optimal matchings in

HRT

8.1 Introduction

In Chapter 7, we studied three different types of profile-based optimal matchings in the

context of CHAT. These are the concepts of a greedy maximum matching, a rank-maximal

matching and a generous maximum matching. In this chapter, we extend these results

to the bipartite matching problem model with two-sided preference lists, focusing on the

Hospital-Residents problems with Ties (HRT). The definitions of a greedy maximum,

rank-maximal and generous maximum matching respectively are the same as those given

in Chapter 7. Furthermore, we reuse most of the terminology and notation as defined in

Chapter 7, and we explicitly define here the relevant concepts only where we need to adapt

them to HRT.

The main results of this chapter, and their organisation are as follows. First of all,

Section 8.2 introduces the terminology and notations that will be used for the rest of

this chapter. We then show how to find a greedy maximum matching, a rank-maximal

matching and a generous maximum matching given an instance of HRT in Sections 8.3,

8.4 and 8.5 respectively. In each of these sections, we give two algorithms, one based on the

augmenting path approach utilising the Bellman-Ford algorithm, and the other through

reduction to the Assignment problem (both as described in Chapter 7), to give efficient

solutions to the problem. Finally, since SMTI is a special case of HRT, we remark that

the algorithms described in this chapter can also be used to solve the analogous problems

in SMTI.
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8.2 Basic terminology

Let I be an instance of the Hospitals-Residents problem with Ties (HRT). This comprises

two disjoint sets R and H, where R = {r1, r2, ..., rn1} is the set of residents and H =

{h1, h2, ..., hn2} is the set of hospitals. We assume all the terminology and definitions that

were introduced for HR in Chapter 1. Moreover, we now allow the preference list of each

agent to contain ties. Let G = (R,H, E) be the underlying graph of I where E is the

set of edges in G representing the acceptable hospitals of the residents (and vice versa).

Recall that C =
∑n2

j=1 cj denotes the sum of the capacities of the hospitals. We assume

that no resident or hospital has an empty preference list so that m = |E| ≥ max {n1, n2}.

Given a resident ri ∈ R and an acceptable partner hj for ri, we define rankri(hj)

to be the number of hospitals that ri prefers to hj plus 1. If rankri(hj) = k, we say

that hj is a kth choice of ri. In a similar way, we define rankhj
(ri) and a kth choice

of hj . Let z be the largest rank of a resident or hospital taken over all preference lists

in I. Let (ri, hj) ∈ E be any edge. Then, we define the rank of (ri, hj) to be the pair

r(ri, hj) = (min
{
rankhj

(ri), rankri(hj)
}

,max
{
rankhj

(ri), rankri(hj)
}
).

Given a matching M for an instance I of HRT, we define a vertex v in the underlying

graph G of I to be exposed with respect to M , if v is a resident vertex that is unassigned

in M , or if v is a hospital vertex that is undersubscribed in M . An augmenting path in G

is an alternating path both of whose end vertices are exposed.

For a given HRT instance I, the definition of a feasible s-profile X = (x1, ..., xz) is

analogous to that in CHAT. However, in HRT,
∑

xi = 2s. Let M be the set of all

matchings in I. Furthermore, let M+ denote the set of maximum matchings in M.

8.3 Greedy Maximum matchings

Let �L be the total order defined on profiles of matchings as in Section 7.2. The following

formalises the definition of a greedy maximum matching with respect to HRT.

Definition 8.3.1. Given an instance of HRT, a greedy maximum matching is a maximum

matching that has maximum profile under the order �L taken over all matchings in M+.

8.3.1 Finding a greedy maximum matching

Given any instance I of HRT, we may find a greedy maximum matching in I by using

Algorithm Greedy-Max, which was used to solve the analogous problem in CHAT. We
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first introduce the following lemma, which is analogous to Lemma 7.3.1 for finding greedy

matchings in the CHAT case.

Lemma 8.3.1. Let M be a greedy s-matching in I. Then either M is a greedy maximum

matching or there is a greedy (s + 1)-matching M ′ that can be obtained from M via an

augmenting path.

Proof. The proof of Lemma 7.3.1 may be adapted to prove this lemma.

As with finding a greedy maximum matching in CHAT, given any greedy s-matching

M in I, we want to be able to identify an augmenting path with respect to M that will

lead us to a greedy (s+1)-matching. To do so, we extend the notion of a maximum profile

augmenting path from CHAT to HRT. Recall the concept of left-domination on z-tuples

as defined in Chapter 7. That is, given the z-tuples X = (x1, ..., xz) and Y = (y1, ..., yz),

we say that Y �L X, or Y left-dominates X, if there exists some k (1 ≤ k ≤ z) such that

xi = yi for 1 ≤ i < k and yk > xk. Let (a, b) be a pair of integers such that 1 ≤ a ≤ b ≤ z.

We then define the following operations on z-tuples and (a, b). That is, if a < b, we then

define X + (a, b) to be

X + (a, b) = (x1, ..., xa−1, xa + 1, xa+1, ..., xb−1, xb + 1, xb+1, ..., xz)

and we define X − (a, b) to be

X − (a, b) = (x1, ..., xa−1, xa − 1, xa+1, ..., xb−1, xb − 1, xb+1, ..., xz)

Otherwise, a = b, and we define X + (a, b) to be

X + (a, b) = (x1, ..., xa−1, xa + 2, xa+1, ..., xz)

and we define X − (a, b) to be

X − (a, b) = (x1, ..., xa−1, xa − 2, xa+1, ..., xz)

Let P = 〈r0, h0, r1, h1, ..., rx, hx〉 be an alternating path from an exposed resident vertex

r0 to a hospital vertex hx, such that (ri, hi−1) ∈ M for 1 ≤ i ≤ x. We then define the

profile of P to be

ρ(P ) = O + r(r0, h0) + r(r1, h1) + ... + r(rx, hx)

– r(r1, h0)− r(r2, h1)− ...− r(rx, hx−1)
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where O = (o1, ..., oz) is the z-tuple such that oi = 0 for 1 ≤ i ≤ z. It follows that if

P is an augmenting path, then ρ(P ) corresponds to the net change in the profile of M

if we augment M along P . For every hospital vertex hj , we define the L-value of hj

relative to M , denoted by L(hj), to be the maximum profile taken over all alternating

paths from an exposed resident vertex ending at hj . We say that an alternating path P

is a maximum profile augmenting path for M if P is an augmenting path, and ρ(P ) =

max {L(hj) : hj ∈ H} where max is with respect to the �L order on profiles.

Let M be any greedy s-matching that is not a greedy maximum matching for a given

HRT instance I. The following lemma, analogous to Lemma 7.3.2, shows us that we can

use a maximum profile augmenting path to obtain a greedy (s + 1)-matching from M .

Lemma 8.3.2. Suppose that M is a greedy s-matching which is not maximum. Let P

be a maximum profile augmenting path. Then, augmenting M along P gives a greedy

(s + 1)-matching.

Proof. The proof of Lemma 7.3.2 may be adapted here.

It now remains to show how to find a maximum profile augmenting path with respect

to M . We remark that we may reuse Algorithm Max-Aug from Chapter 7 for this by

making the following changes to the algorithm:

• replace the agent vertices and house vertices in Algorithm Max-Aug by resident and

hospital vertices respectively; and

• replace the arithmetic operations used by the edge relaxtion operation in line 5 of

Algorithm Max-Aug by those defined with respect to z-tuples and integer pairs in

this chapter, instead of those defined in Chapter 7.

As in CHAT, if every hospital vertex has a L-value that is (0) after execution of

Algorithm Max-Aug, then there is no augmenting path, and M is a greedy maximum

matching.

8.3.2 Proof of correctness

Let I be an instance of HRT. Let P be the sequence of residents and hospitals obtained

by alternately tracing predecessor values and matched edges in M starting from pred(hr)

where the hospital vertex hr has left-maximum L-value over all exposed hospital vertices
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after an execution of Algorithm Max-Aug (as modified above). As in the CHAT case, we

want to show that the augmenting path P is a maximum profile augmenting path with

respect to the current greedy s-matching M . The next two lemmas prove the analogous

results for the CHAT case in the context of HRT.

Lemma 8.3.3. Let Algorithm Max-Aug (as modified above) be executed. When Algorithm

Max-Aug terminates, l(hj) = L(hj) for each hospital vertex hj ∈ H.

Proof. The proof of Lemma 7.3.3 may be adapted here.

Lemma 8.3.4. Let P be the sequence of residents and hospitals obtained by alternately

tracing predecessor values and matched edges in M starting from pred(hr) where the hos-

pital vertex hr has left-maximum L-value over all exposed hospital vertices. Then, P

terminates at some exposed resident vertex.

Proof. The proof of Lemma 7.3.4 may be adapted here.

Lemmas 8.3.3 and 8.3.4 give us the following result.

Theorem 8.3.1. Let M be a greedy s-matching M that is not greedy maximum. Let

Algorithm Max-Aug (as modified above) be executed. Then, the algorithm finds a maximum

profile augmenting path with respect to M .

8.3.3 Time complexity analysis

The time complexity for finding a greedy maximum matching in an instance I of HRT

may be easily verified to be the same as that for solving the same problem in any instance

of CHAT, that is O(C2mz), where C is the total capacity of the hospitals, m is the total

length of preference lists and z is the maximum length of any preference list respectively

in I. As with CHAT, we can speed up the actual runtime of Algorithm Greedy-Max

through the observation that if no hospital had its L-value updated in the last iteration

of Algorithm Max-Aug, then no further improvement to an L-value can happen. Hence,

we may choose to halt Algorithm Max-Aug at that point.

Recall that a straightforward approach to constructing a greedy maximum matching

in the setting of CHAT was by reduction to the Assignment problem. We remark that

it is possible to reuse a similar reduction to that described in Section 7.4.4.1 to also find

a greedy maximum matching in the context of HRT as follows. Let (ri, hj) be an edge

where rankri(hj) = k and rankhj
(ri) = l. Then, we let wt(ri, hj) = (n+1)z−k +(n+1)z−l.
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We are then interested in finding a maximum weight matching M in this weighted graph

G′ that has maximum cardinality. To ensure that M has maximum cardinality, we add

a sufficiently large constant to the edge weights as in the context of CHAT. Here, the

largest edge weight that we might have is 2(n + 1)z−1, so adding a constant of 2(n + 1)z

is sufficient. Then, it is straightforward to reuse the arguments for the analogous case

in CHAT to verify that a maximum weight matching M in G′ must be a maximum

cardinality matching, and is a greedy maximum matching for I. Since the underlying

graph of I is capacitated, we require to use Gabow’s algorithm for maximum weight DCS

again to find a maximum weight matching in G′. Hence, we can find a greedy maximum

matching in I in O(zC min(m log n, n2)) time by reduction to the Assignment problem.

Comparing this to the approach using Algorithm Greedy-Max, it is straightforward to see

that the reduction approach is again faster by a factor of Ω(C max(1/ log n, m/n2)) for

most practical cases.

8.4 Rank-maximal matchings

Let I be an instance of HRT. We formalise the definition of a rank-maximal matching in

I as follows.

Definition 8.4.1. Given an instance of HRT, a rank-maximal matching is a matching

that has maximum profile under the order �L taken over all matchings in M.

8.4.1 Finding a rank-maximal matching

As in the case of greedy maximum matchings, we can find a rank-maximal matching in

a given HRT instance I either by constructing an algorithm based on the augmenting

path approach utilising the Bellman-Ford algorithm or by reduction to the Assignment

problem. In the former case, the next lemma shows that we can use this approach by

extending the results of Lemmas 8.3.1 and 8.3.2 in a subtle way to obtain the analogue of

Lemma 7.4.4.

Lemma 8.4.1. For each i, let Mi be a greedy i-matching with profile ρi. If ρi+1 �L ρi

for i = 1, 2, ..., k − 1 and ρk �L ρk+1, then Mk is a rank-maximal matching, and ρk is the

rank-maximal profile.

Proof. Let ρk = (x1, ..., xz) and suppose that Mk is not rank-maximal. Then, there is a

matching M such that M �L Mk. Let ρ = (x1, ..., xi−1, yi, ..., yz) be the profile of M . It
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follows that yi > xi for some i. Now, it must be the case that k + 2 ≤ |M | ≤ C since

M �L Mk but ρk left-dominates the profiles of all matchings of cardinality 1 to k +1. Let

G be the underlying bipartite graph of I. Let us consider X = Mk ⊕M . Then, it follows

that each connected component of X is either (i) an odd length alternating path, (ii) an

even length alternating path or (iii) an alternating cycle. Since M �L Mk, there must

exist at least one connected component C of X such that ρC(M) �L ρC(Mk).

Suppose that C is of type (i). Let M ′ = Mk ⊕ C. Clearly, M ′ �L Mk. Now, the end

edges of C cannot be in Mk, for otherwise M ′ is a (k − 1)-matching which left-dominates

Mk, a contradiction. Hence, the end edges of C must be in M . It follows that C is then an

augmenting path with respect to Mk. However, this implies that M ′ is a (k +1)-matching

which left-dominates Mk, which is a contradiction by the statement of the lemma.

Hence, suppose that C is of either type (ii) or (iii). Since ρC(M) �L ρC(Mk), we

can create a new matching M ′ of cardinality k by replacing the Mk-edges in C by the

M -edges in C, giving ρ(M ′) �L ρ(Mk), which is a contradiction since Mk is a greedy

k-matching.

What Lemma 8.4.1 thus implies is that we can reuse the approach of Algorithm Greedy-

Rank-Max to find a rank-maximal matching in O(C2mz) time given an instance I of HRT.

As mentioned above, an alternative approach to find a rank-maximal matching in I may

be by reduction to the Assignment problem. To do so, we reuse the reduction as described

in Section 8.3 for finding a greedy maximum matching by making just one change. Since

we do not require to find a maximum weight matching in the underlying graph that must

be of maximum cardinality, we remove the large constant that was added to the weight

of each edge. Then, it is straightforward to verify that Lemma 7.4.3 also holds in the

HRT case. Hence, any maximum weight matching M in the weighted graph is also a

rank-maximal matching for I. As with the greedy maximum case, it follows that we can

find a rank-maximal matching in I in O(zC min(m log n, n2)) time by reduction to the

Assignment problem.

By comparing the time complexities of the augmenting path approach based on the

Bellman-Ford approach and the reduction to the Assignment problem, it is straightforward

to see that the latter is faster than the former by a factor of Ω(C max(1/ log n, m/n2)) for

most practical cases.
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8.5 Generous Maximum Matchings

Given an instance I of HRT, an alternative optimality criteria as opposed to looking

for greedy maximum matchings or rank-maximal matchings may be to look for generous

maximum matchings. Let ≺R be the total order defined on profiles of matchings as in

Section 7.2. We formalise the definition of a generous maximum matching as follows.

Definition 8.5.1. Given an instance of HRT, a generous maximum matching is a maxi-

mum matching that has minimum profile under the order ≺R taken over all matchings in

M+.

8.5.1 Finding a generous maximum matching

Now, as with the greedy maximum and rank-maximal case, we have two possible algorithms

for constructing a generous maximum matching based on the augmenting path approach

utilising the Bellman-Ford algorithm and reduction to the Assignment problem.

In the former case, it may be verified that the results of Lemmas 7.5.1-7.5.4 and

Theorem 7.5.1 can be extended from CHAT to HRT using the same proofs that established

these results in the CHAT case. What this shows is that we can reuse the algorithm for

finding a generous maximum matching in CHAT for the analogous problem in HRT.

That is, we start from the empty matching, and then use Algorithm Greedy-Max, as

transformed for finding a generous maximum matching in CHAT, to repeatedly increase

the cardinality of the current generous matching in stages. In each stage, we use Algorithm

Min-Aug, as transformed for finding a minimum profile augmenting path in CHAT, for

finding a similar type of augmenting path to augment the current generous matching M

in I until no such path can be found. When this happens, M is a generous maximum

matching for I. Since the algorithm for finding a generous maximum matching in HRT is

then the same as that for solving the analogous problem in CHAT, the time complexity

for this is also O(C2mz). As in the CHAT case, we can speed up the runtime by halting

Algorithm Min-Aug when no hospital which is assigned in the current generous matching

had its R-value updated in the last iteration of the algorithm.

To reduce the problem of finding a generous maximum matching to the Assignment

problem, the correct edge weight1 to use for each edge (ri, hj) should be wt(ri, hj) =

(2(n+1)z−1−(n+1)k−1−(n+1)l−1 +1)+2(n+1)z. We can then easily extend the results
1The term +1 is to ensure that all edge weights are positive.
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for generous maximum matchings in the CHAT case to show that a maximum weight

matching in the weighted graph as constructed above also gives a generous maximum

matching in O(zC min(m log n, n2)) time in the context of HRT.

Finally, it is straightforward to verify that the reduction approach is again faster by a

factor of Ω(C max(1/ log n, m/n2)) for most practical cases.

8.6 Profile-based optimal matchings in SMTI

Since SMTI is a special case of HRT, we observe that each of the algorithms described

above for finding a greedy maximum matching, a rank-maximal matching and a generous

maximum matching can also be used to find a matching of the same kind given an SMTI

instance I. We remark that in the case of the augmenting path approach based on the

Bellman-Ford algorithm, since the maximum cardinality of a matching in I is O(n), we

only need to replace the C factor in the time complexity of the algorithm in order to obtain

its respective running times in I, i.e. O(n2mz). In the case of reduction to the Assignment

problem, it follows that we can use the fastest algorithm for finding a maximum weight

matching in an uncapacitated bipartite graph since all agents in I have capacity 1. Recall

from Section 1.2 that this takes O(nm + n2 log n) time [14]. In view of the time required

to perform arithmetic operations on steeply decreasing weights [42], the resulting running

time of the algorithm is Oz(nm + n2 log n). It follows that if nm ≤ n2 log n, then the

reduction gives a faster solution by a factor of Ω(m/ log n). Otherwise, the reduction is

faster by a factor of Ω(n). Hence, as in the case of HRT, reduction to the Assignment

problem gives a faster solution to the problem than an augmenting path approach based

on the Bellman-Ford algorithm in SMTI.

8.7 Open Problems

We conclude this chapter with the following open problems.

• It was observed in Chapter 7 that an approach utilising the Edmonds-Gallai De-

composition led to a faster algorithm for finding a rank-maximal matching given a

CHAT instance than alternatives such as using an augmenting path approach based

on the Bellman-Ford algorithm or by reduction to the Assignment problem. This

raises the question as to whether we can also obtain similar results for the case of

HRT.
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• Each of the open problems posed for CHAT at the end of Chapter 7 could be

naturally extended to HRT. Can we then find solutions to these problems in the

context of HRT?
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Conclusion

9.1 Summary of thesis contribution

The contribution of this thesis can be divided into three main classes based on three

different types of optimality criteria that can be applied to a matching in the context of a

bipartite matching problem with preferences. These are the concepts of

1. a Pareto optimal matching

2. a popular matching

3. a profile-based optimal matching, which may be sub-divided into the concepts of

(a) a rank-maximal matching

(b) a greedy maximum matching

(c) a generous maximum matching

For each optimality criterion, we first studied the concept in the setting where pref-

erences are only one-sided (i.e. the cases of CHA, WCHA or CHAT as appropriate),

and then extended the results to allow preferences to be two-sided (i.e. the cases of HR,

SMI, HRT or SMTI as appropriate). Figure 9.1 sumarises the main contributions of

this thesis according to this classification by giving the fastest algorithm for computing

an optimal matching in each case. In the table, the second column indicates the type of

preference lists in the problem instance, by using a ‘s’ to indicate strict preferences and a

‘t’ to indicate that ties are allowed. In addition, we indicate the chapter number of this

thesis in square brackets, where the results of each algorithm can be found. We remark
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that all the results mentioned in Figure 9.1 are new and contained in this thesis. With

reference to this figure, we now present some conclusions regarding the results contained

in this thesis.

9.2 Pareto optimal matchings

1. Figure 9.1 indicates that a maximum Pareto optimal matching can be found in

polynomial time given an instance of CHA, SMI or HR. The time complexities of our

algorithms are each bounded above by the time taken to find a maximum matching

in the underlying graph of the problem instance. Hence, these algorithms may be

considered efficient in the sense that any improvement to their time complexities

would imply an improved algorithm for finding a maximum matching in a bipartite

graph (capacitated or uncapacitated as appropriate).

2. As can be seen from Figure 9.1, the ties case in HR is still open. Given that a com-

binatorial approach gave a faster solution for finding a maximum Pareto optimal

matching in each of the listed problems where preferences are strict, and given the

close relationship of these problems to one another, it is likely that a combinator-

ial approach to one of the problems in the presence of ties would also yield faster

solutions to each of these problems.

9.3 Popular matchings

1. The problem of finding a maximum popular matching, or determining that none

exists, can be solved in polynomial time given an instance of CHAT or WCHA.

2. We remark that it is likely that a polynomial-time algorithm for finding a maximum

popular matching, or determining that none exists, given an instance of WCHAT,

can be obtained by extending in a natural way the algorithm for WCHA, in much

the same way as our algorithm for CHAT was extended from that for CHA.

3. Finding an algorithm to construct a maximum popular matching in a given bipartite

matching problem with two-sided preferences remains open. However, we can test

whether any matching in a given SMTI-SYM instance is popular using the O
√

nm)

time algorithm described in Chapter 6. Furthermore, it is likely that any combina-
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torial solution to the problem would be required to use our characterisation results

for popular matchings in SMTI-SYM as presented in Chapter 6.

9.4 Profile-based optimal matchings

1. Each of a rank-maximal, a greedy maximum and a generous maximum matching can

be found in polynomial time given an instance of CHAT, HRT or SMTI.

2. It is faster to find a rank-maximal matching given an instance of CHAT if the

underlying approach makes use of the Edmonds-Gallai Decomposition rather than

straightforward alternatives such as an augmenting path approach based on the

Bellman-Ford algorithm or by reduction to the Assignment problem. Hence, it is

likely that any combinatorial approach utilising the Edmonds-Gallai Decomposition

would also offer a faster algorithm for each of the problems of finding a greedy

maximum and a generous maximum matching in an instance of CHAT. Indeed, the

viability of the augmenting path approach based on the Bellman-Ford algorithm sug-

gests such a possibility since the approach using the Edmonds-Gallai Decomposition

is also inherently based on augmenting paths.

3. The above observations and results are also likely to extend naturally to the problems

of finding a rank-maximal, a greedy maximum and a generous maximum matching

in an instance of HRT or SMTI.

9.5 General observations

We make some conclusions here on the results of this thesis in general, in addition to those

specific to each of the optimality criterion studied as above.

1. All the problems that were studied in this thesis turned out to be solvable in polyno-

mial time. The existence of a polynomial-time algorithm is often inherently associ-

ated with establishing some kind of underlying structure for the problem concerned.

For instance, the solution to finding a maximum Pareto optimal matching requires

the identifying and then satisfying of certain types of coalitions in the underlying

graph of the problem instance. To find a maximum popular matching, the identifi-

cation of the f - and s-partners of each participating agent in the problem instance

allows us to restrict our attention to only a subgraph of the underlying graph to
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generate an efficient solution to the problem. In addition, the fastest algorithm for

finding a rank-maximal matching is reliant on utilising the Edmonds-Gallai Decom-

position to label vertices and then identify only those edges that can belong to any

solution.

2. The optimality criteria studied in this thesis can be considered to be superficially

similar in some respects but a simple change to the problem definition often requires

a significant change to the algorithm.

3. The problem of finding a matching of maximum cardinality in the underlying graph

of the problem instance often seems to influence the time complexity of the resulting

algorithm for its solution. This is the case even if the underlying problem seems on

the surface not to be associated with maximum matchings, e.g. popular matchings.

9.6 Future work

There is a wide range of possibilities for future study beyond the problems considered in

this thesis. These include the open problems listed at the end of each of the preceding

chapters, as well as the following.

1. Can we establish any further structural results for the sets of Pareto optimal match-

ings for a given instance of CHA or HR? The same question arises for each of the

other optimality criteria studied in this thesis.

2. For a given bipartite matching problem, there may be many different matchings

of a certain type, e.g. Pareto optimal, popular, rank-maximal etc. However, it is

open as to whether we can find algorithms to efficiently generate all matchings of a

given kind. Towards this, we note that Uno [62] has given algorithms for generating

all the perfect, maximum and maximal matchings in a bipartite graph, so that

any efficient algorithm could possibly extend his approach. As a first step, given

a bipartite matching problem and an optimality criterion to satisfy for a matching

in the problem instance, it would be useful to find efficient algorithms to determine

whether the problem instance admits a unique matching of the required type, and if

not to find a second such matching.

3. From a practical point of view, perform empirical analyses of the algorithms pre-

sented in this thesis in order to gain a greater degree of understanding of their
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behaviour in real-life situations, e.g. how “good” are these different kinds of match-

ings likely to be for a given instance of CHA, HR etc. derived from some practical

application?
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