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Matching under Preferences
Bettina Klausa, David F. Manloveb and Francesca Rossic

14.1 Introduction and discussion of applications

Matching theory studies how agents and/or objects from different sets can be

matched with each other while taking agents’ preferences into account. The theory

originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962),

in which they proposed the Stable Marriage Algorithm as a solution to the prob-

lem of two-sided matching. Since then, this theory has been successfully applied

to many real-world problems such as matching students to universities, doctors to

hospitals, kidney transplant patients to donors, and tenants to houses. This chapter

will focus on algorithmic as well as strategic issues of matching theory.

Many large-scale centralised allocation processes can be modelled by matching

problems where agents have preferences over one another. For example, in China,

over 10 million students apply for admission to higher education annually through

a centralised process. The inputs to the matching scheme include the students’

preferences over universities and vice versa, and the capacities of each university.1

The task is to construct a matching that is in some sense optimal with respect to

these inputs.

Economists have long understood the problems with decentralised matching mar-

kets, which can suffer from such undesirable properties as unravelling, congestion

and exploding offers (see Roth and Xing, 1994, for details). For centralised markets,

constructing allocations by hand for large problem instances is clearly infeasible.

Thus centralised mechanisms are required for automating the allocation process.

Given the large number of agents typically involved, the computational efficiency

of a mechanism’s underlying algorithm is of paramount importance. Thus we seek

polynomial-time algorithms for the underlying matching problems. Equally impor-

tant are considerations of strategy: an agent (or a coalition of agents) may ma-

nipulate their input to the matching scheme (e.g., by misrepresenting their true

a Faculty of Business and Economics, University of Lausanne, Switzerland.
b School of Computing Science, University of Glasgow, UK.
c Department of Mathematics, University of Padova, Italy.
1 In fact, students are first assigned to universities and then to their programme of study within the

university; see, e.g., Zhu, 2014.
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preferences, or under-reporting their capacity) in order to try to improve their out-

come. A desirable property of a mechanism is strategy-proofness, which ensures that

it is in the best interests of an agent to behave truthfully.

The study of matching problems involving preferences was begun in 1962 with the

seminal paper of Gale and Shapley (1962) who gave an efficient algorithm for the

so-called Stable Marriage problem (which involves matching men to women based

on each person having preferences over members of the opposite sex) and showed

how to extend it to the College Admissions problem, a many-to-one extension of

the Stable Marriage problem which involves allocating students to colleges based

on college capacities, and also on students’ preferences over colleges and vice versa.

Their algorithm has come to be known as the Gale–Shapley algorithm.

Since 1962, the study of matching problems involving preferences has grown

into a large and active research area, and numerous contributions have been made

by computer scientists, economists, and mathematicians, among others. Several

monographs exclusively dealing with this class of problems have been published

(Knuth, 1976; Gusfield and Irving, 1989; Roth and Sotomayor, 1990; Manlove,

2013).

A particularly appealing aspect of this research area is the range of practical

applications of matching problems, leading to real-life scenarios where efficient al-

gorithms can be deployed and issues of strategy can be overcome. One of the best-

known examples is the National Resident Matching Program (NRMP) in the US,

which handles the annual allocation of intending junior doctors (or residents) to

hospital posts. In 2014, 40,394 aspiring junior doctors applied via the NRMP for

29,671 available residency positions (NRMP website, 2014). The problem model is

very similar to Gale and Shapley’s College Admissions problem, and indeed an ex-

tension of the Gale–Shapley algorithm is used to construct the allocation each year

(Roth, 1984a; Roth and Peranson, 1997). Similar medical matching schemes exist

in Canada, Japan and the UK. As Roth argued, the key property for a matching

to satisfy in this context is stability, which ensures that a resident and hospital do

not have the incentive to deviate from their allocation and become matched to one

another.

Similar applications arise in the context of School Choice (Abdulkadiroğlu and

Sönmez, 2003). For example in Boston and New York, centralised matching schemes

are employed to assign pupils to schools on the basis of the preferences of pupils (or

more realistically their parents) over schools, and pupils’ priorities for assignment

to a given school (Abdulkadiroğlu et al., 2005a,b). A school’s priority for a pupil

might include issues such as geographical proximity and whether the pupil has a

sibling at the school already, among others.

Kidney exchange (Roth et al., 2004, 2005) is another application of matching

that has grown in importance in recent years. Sometimes, a kidney patient with a

willing but incompatible donor can swap their donor with that of another patient

in a similar position. Efficient algorithms are required to organise kidney “swaps”
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on the basis of information about donor and patient compatibilities. Such swaps

can involve two or more patient–donor pairs, but usually the maximum number of

pairs involved is three. Also altruistic donors can trigger “chains” involving swaps

between patient–donor pairs. These allow for a larger number of kidney transplants

(compared to those one could perform based on deceased donors only) and thus

more lives saved. Centralised clearinghouses for kidney exchange are in operation

on a nationwide scale in a number of countries including the US (Roth et al., 2004,

2005; Ashlagi and Roth, 2012), The Netherlands (Keizer et al., 2005) and the UK

(Johnson et al., 2008). The problem of maximising the number of kidney transplants

performed through cycles and chains is NP-hard (Abraham et al., 2007a), though

algorithms based on Mixed Integer Programming have been developed and are used

to solve this problem at scale in the countries mentioned (Abraham et al., 2007a;

Dickerson et al., 2013; Manlove and O’Malley, 2012; Glorie et al., 2014).

The importance of the research area in both theoretical and practical senses was

underlined in 2012 by the award of the Sveriges Riksbank Prize in Economic Sci-

ences in Memory of Alfred Nobel (commonly known as the Nobel Prize in Economic

Sciences) to Alvin Roth and Lloyd Shapley for their work in “the theory of stable

allocations and the practice of market design”. This reflects both Shapley’s con-

tribution to the Stable Marriage algorithm among other theoretical advances, and

Roth’s application of these results to matching markets involving the assignment

of junior doctors to hospitals, pupils to schools, and kidney patients to donors. The

Nobel prize rules state that the prize cannot be awarded posthumously and hence

David Gale (1921-2008) could not be honoured for his important contributions.

Matching problems involving preferences can be classified as being either bipartite

or non-bipartite. In the former case, the agents are partitioned into two disjoint sets

A and B, and the members of A have preferences over only the members of B (and

possibly vice versa). In the latter case we have one single set of agents, each of

whom ranks some or all of the others in order of preference. For space reasons we

will consider only bipartite matching problems involving preferences in this chapter.

Bipartite problems can be further categorised according to whether the prefer-

ences are two-sided or one-sided. In the former case, members of both of the sets A

and B have preferences over one another, whilst in the latter case only the mem-

bers of A have preferences (over the members of B). Bipartite matching problems

with two-sided preferences arise in the context of assigning junior doctors to hos-

pitals, for example, whilst one-sided preferences arise in applications including the

assignment of students to campus housing and reviewers to conference papers.

Our treatment covers ordinal preferences (where preferences are expressed in

terms of first choice, second choice, etc.) rather than cardinal utilities (where pref-

erences are expressed in terms of real-numbered valuations). In their simplest form,

models of kidney exchange problems can involve dichotomous preferences (a special

case of ordinal preferences, where an agent either finds another agent acceptable or

not, and is indifferent among those it does find acceptable), on the basis of whether
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a patient is compatible with a potential donor or not. However in practice models of

kidney exchange are more complex, typically involving cardinal utilities rather than

ordinal preferences, and therefore the matching problems defined in this chapter do

not encompass theoretical models of kidney exchange.

The problems considered in this chapter sit strongly within the field of compu-

tational social choice. This field lies at the interface of economics and computer

science, and our approach will involve interleaving key aspects that have hitherto

been considered by the two communities in bodies of literature that have largely

pertained to the two disciplines separately. Such key considerations involve the ex-

istence of structural results and efficient algorithms, and the derivation of strategy-

proof mechanisms. These topics will be reviewed in each of the cases of bipartite

matching problems with two-sided and one-sided preferences. Although space re-

strictions have necessarily limited our coverage, we have tried to include the results

that we feel will be of most importance to the readership of this handbook.

The structure of this chapter is as follows. In Section 14.2, we focus on bipartite

matching problems where both sides have preferences. Here the most important

property for a matching to satisfy is stability. In Section 14.2.1 we define the key

matching problems in this class, most notably the Hospitals / Residents problem,

and we also define stability in this context. We then state fundamental structural

and algorithmic results concerning the existence, computation, and structural prop-

erties of stable matchings, in Section 14.2.2. Issues of strategy, and in particular

the existence (or otherwise) of strategy-proof mechanisms, are dealt with in Section

14.2.3. Next, in Section 14.2.4, we outline some further algorithmic results, including

decentralised algorithms for computing stable matchings, variants of the Hospitals

/ Residents problem involving ties and couples, and many-to-many extensions.

Bipartite matching problems where only one side of the market has preferences

are considered in Section 14.3. The fundamental problems in this class are the

House Allocation problem and its extension to Housing Markets. We define these

problems together with key properties of matchings, including Pareto optimality

and membership of the core, in Section 14.3.1. Section 14.3.2 describes some im-

portant mechanisms that can be used to produce Pareto optimal matchings and

matchings in the core. Strategy-proofness is considered in Section 14.3.3, and then

further algorithmic results are described in Section 14.3.4, including the computa-

tion of maximum Pareto optimal, popular, and profile-based optimal matchings.

Finally, in Section 14.4 we give some concluding remarks and list some further

sources of reading.
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14.2 Two-sided preferences

14.2.1 Introduction and preliminary definitions

The Hospitals / Residents problem2 (hr) (Gale and Shapley, 1962; Gusfield and Irv-

ing, 1989; Roth and Sotomayor, 1990; Manlove, 2008) was first defined by Gale and

Shapley in their seminal paper “College Admissions and the Stability of Marriage”

(Gale and Shapley, 1962).

An instance I of hr involves a set R = {r1, . . . , rn1
} of residents and a set H =

{h1, . . . , hn2
} of hospitals. Each hospital hj ∈ H has a positive integral capacity,

denoted by cj , indicating the number of posts that hj has. Also there is a set

E ⊆ R×H of acceptable resident–hospital pairs. Let m = |E|. Each resident ri ∈ R
has an acceptable set of hospitals A(ri), where A(ri) = {hj ∈ H : (ri, hj) ∈ E}.
Similarly each hospital hj ∈ H has an acceptable set of residents A(hj), where

A(hj) = {ri ∈ R : (ri, hj) ∈ E}.
The agents in I are the residents and hospitals in R ∪ H. Each agent ak ∈

R ∪H has a preference list in which she/it ranks A(ak) in strict order. Given any

resident ri ∈ R, and given any hospitals hj , hk ∈ H, ri is said to prefer hj to hk if

{hj , hk} ⊆ A(ri) and hj precedes hk on ri’s preference list; the prefers relation is

defined similarly for a hospital.

An assignment M in I is a subset of E. If (ri, hj) ∈M , ri is said to be assigned

to hj , and hj is assigned ri. For each ak ∈ R ∪ H, the set of assignees of ak in

M is denoted by M(ak). If ri ∈ R and M(ri) = ∅, ri is said to be unassigned,

otherwise ri is assigned. Similarly, a hospital hj ∈ H is undersubscribed or full

according as |M(hj)| is less than or equal to cj , respectively. A matching M in I

is an assignment such that |M(ri)| ≤ 1 for each ri ∈ R and |M(hj)| ≤ cj for each

hj ∈ H. For notational convenience, given a matching M and a resident ri ∈ R

such that M(ri) 6= ∅, where there is no ambiguity the notation M(ri) is also used

to refer to the single member of the set M(ri).

Given an instance I of hr and a matching M , a pair (ri, hj) ∈ E\M blocks M

(or is a blocking pair for M) if (i) ri is unassigned or prefers hj to M(ri) and (ii)

hj is undersubscribed or prefers ri to at least one member of M(hj). M is said to

be stable if it admits no blocking pair. If a resident–hospital pair (ri, hj) belongs to

some stable matching in I, ri is called a stable partner of hj and vice versa.

Example 14.1 (hr instance) Consider the following hr instance:

r1 : h1 h2 h1 : 1 : r3 r2 r1 r4

r2 : h1 h2 h3 h2 : 2 : r2 r3 r1 r4

r3 : h2 h1 h3 h3 : 1 : r2 r3

r4 : h2 h1

Here, r1 prefers h1 to h2 and does not find h3 acceptable. Also, h1 has capacity 1

2 The Hospitals / Residents problem is sometimes referred to as the College (or University or Stable)
Admissions problem, or the Stable Assignment problem.
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and prefers r3 to r2, etc. M = {(r2, h1), (r3, h2), (r4, h2)} is a matching in which

each resident is assigned apart from r1, and each of h1 and h2 is full while h3 is

undersubscribed. M is not stable because (r1, h2) is a blocking pair.

The Stable Marriage problem with Incomplete lists (smi) (Gale and Shapley, 1962;

Knuth, 1976; Gusfield and Irving, 1989; Roth and Sotomayor, 1990; Irving, 2008)

is an important special case of hr in which cj = 1 for all hj ∈ H, and residents

and hospitals are more commonly referred to as men and women respectively. The

classical Stable Marriage problem (sm) is the restriction of smi in which n1 = n2

and E = R×H.

Finally, the School Choice problem (sc) (Balinski and Sönmez, 1999; Abdulka-

diroğlu and Sönmez, 2003) is a one-sided preference version of hr where students

and schools replace residents and hospitals respectively, and schools are endowed

with priorities over students instead of preferences. A school’s priority ranking over

students may reflect a school district’s policy choice (e.g., by giving students who

are within walking distance or have a sibling in the same school a higher priority)

or they may be based on other factors (e.g., grades in an entrance exam, time spent

on a waiting list, etc.). For sc, schools are not considered to be economic agents:

they neither strategise nor is their welfare measured and taken into account. Many

results can easily be translated from hr to sc, but often the interpretation changes.

For instance, the notion of stability can be interpreted as the elimination of justified

envy (Balinski and Sönmez, 1999): a student can justifiably envy the assignment of

another student to a school if he likes that school better than his own assignment

and he has a higher priority (with a lower priority, envy might be present as well

but is not justifiable). Two recent and exhaustive surveys on school choice have

been written by Abdulkadiroğlu (2013) and Pathak (2011).

14.2.2 Classical results: stability and Gale–Shapley algorithms

Gale and Shapley (1962) showed that every instance I of hr admits at least one

stable matching. Their proof of this result was constructive, i.e., they described a

linear-time algorithm for finding a stable matching in I. Their algorithm is known

as the resident-oriented Gale–Shapley algorithm (or RGS algorithm for short), since

it involves residents applying to hospitals. Given an instance of hr,

(1) at the first step of the RGS algorithm, every resident applies to her favourite

acceptable hospital. For each hospital hj , the cj acceptable applicants who have

the highest ranks according to hj ’s preference list (or all acceptable applicants

if there are fewer than cj) are placed on the waiting list of hj , and all others

are rejected;

(l) at the l-th step of the RGS algorithm, those applicants who were rejected at

step l−1 apply to their next best acceptable hospital. For each hospital hj , the

cj acceptable applicants among the new applicants and those on the waiting list
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who have the highest ranks according to hj ’s preference list (or all acceptable

applicants if there are fewer than cj) are placed on the waiting list of hj , and

all others are rejected.

Example 14.2 (RGS algorithm) We now illustrate an execution of the RGS

algorithm for the hr instance shown in Example 14.1. In the first step, each of r1

and r2 applies to h1, and each of r3 and r4 applies to h2. Whilst h2 accepts each of

r3 and r4, h1 can only accept r2 (from among r1 and r2). Thus r1 is rejected by h1

and applies to the next hospital in his preference list, namely h2, at the second step.

At this point, h2 accepts r1, keeps r3, and rejects r4. In the third step, r4 applies to

h1 and is rejected again. Now the algorithm terminates since each resident is either

assigned to a hospital or has applied to every hospital on his preference list. The

resulting matching is thus M ′ = {(r1, h2), (r2, h1), (r3, h2)}, and the reader may

verify that M ′ is stable.

The RGS algorithm is well-defined and terminates with the unique resident-optimal

stable matching Ma that assigns to each resident the best hospital that she could

achieve in any stable matching, whilst each unassigned resident is unassigned in

every stable matching (Gale and Shapley, 1962; Gusfield and Irving, 1989, Sec.

1.6.3).

It is instructive to give a short sketch of the proof illustrating why Ma is stable.

For, consider any resident ri and suppose that hj is any hospital that ri prefers

to Ma(ri) (if ri is assigned in Ma) or hj is any hospital that ri finds acceptable

(if ri is unassigned in Ma). Then ri applied to hj during the execution of the

RGS algorithm, and was rejected by hj . This could only happen if hj was full and

preferred its worst assignee to hj at that point. But hj cannot subsequently lose

any residents and indeed can only potentially gain better assignees. Hence in Ma,

hj is full and prefers its worst assigned resident to ri. Thus (ri, hj) cannot block

Ma, and since ri and hj were arbitrary, Ma is stable.

Furthermore, Ma is worst-possible for the hospitals in a precise sense: if M is any

other stable matching then every hospital hj ∈ H prefers each resident in M(hj)

to each resident in Ma(hj)\M(hj) (Gusfield and Irving, 1989, Sec. 1.6.5).

Theorem 14.3 (Gale and Shapley, 1962; Gusfield and Irving, 1989) Given an hr

instance, the RGS algorithm constructs, in O(m) time, the unique resident-optimal

stable matching, where m is the number of acceptable resident–hospital pairs.

A counterpart of the RGS algorithm, known as the hospital-oriented Gale–Shapley

algorithm, or HGS algorithm for short, involves hospitals offering posts to residents.

The HGS algorithm terminates with the unique hospital-optimal stable matching

Mz. In this matching, every full hospital hj ∈ H is assigned its cj best stable

partners, whilst every undersubscribed hospital is assigned the same set of residents

in every stable matching (Gusfield and Irving, 1989, Sec. 1.6.2). Furthermore, Mz

assigns to each resident the worst hospital that she could achieve in any stable
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matching, whilst each unassigned resident is unassigned in every stable matching

(Gusfield and Irving, 1989, Theorem 1.6.1).

Theorem 14.4 (Gusfield and Irving, 1989) Given an instance of hr, the HGS

algorithm constructs, in O(m) time, the unique hospital-optimal stable matching,

where m is the number of acceptable resident–hospital pairs.

Note that the RGS / HGS algorithms are often referred to as deferred acceptance

algorithms by economists (Roth, 2008).

It is easy to check that for Example 14.2,Ma = M ′ = Mz. In general there may be

other stable matchings — possibly exponentially many (Irving and Leather, 1986)

— between the two extremes given by Ma and Mz. However some key structural

properties hold regarding unassigned residents and undersubscribed hospitals with

respect to all stable matchings in I, as follows.

Theorem 14.5 (Rural Hospitals Theorem: Roth 1984a; Gale and Sotomayor 1985;

Roth 1986) For a given instance of hr, the following properties hold:

1. the same residents are assigned in all stable matchings;

2. each hospital is assigned the same number of residents in all stable matchings;

3. any hospital that is undersubscribed in one stable matching is assigned exactly

the same set of residents in all stable matchings.

The term “Rural Hospitals Theorem” stems from the tendency of rural hospitals

to have problems in recruiting residents to fill all available slots. The theorem’s

name then indicates the importance of the result to the rural hospitals’ recruitment

problem: under stability one can never choose matchings to help undersubscribed

rural hospitals to recruit more or better residents. Additional background to the

Rural Hospitals Theorem for hr is given by Gusfield and Irving (1989, Sec. 1.6.4).

A classical result in stable matching theory states that, for a given instance of

sm, the set of stable matchings forms a distributive lattice; Knuth (1976) attributed

this result to John Conway (see also Gusfield and Irving, 1989, Sec. 1.3.1). In fact

such a structure is also present for the set of stable matchings in a given instance

I of hr (Gusfield and Irving, 1989, Sec. 1.6.5). To describe this structure, we will

define some preliminary notation and terminology.

Let S denote the set of stable matchings in I and let M,M ′ ∈ S. We say that

ri ∈ R prefers M to M ′ if ri is assigned in both M and M ′, and ri prefers M(ri)

to M ′(ri). Also, we say that ri is indifferent between M and M ′ if either (i) ri
is unassigned in both M and M ′, or (ii) ri is assigned in both M and M ′, and

M(ri) = M ′(ri). Then, M dominates M ′, denoted M �M ′, if each resident either

prefers M to M ′, or is indifferent between them.

For M,M ′ ∈ S we denote by M ∧M ′ (respectively M ∨M ′) the set of resident-

hospital pairs in which either (i) ri is unassigned if she is unassigned in both M

and M ′, or (ii) ri is given the better (respectively poorer) of her partners in M and

M ′ if she is assigned in both stable matchings. It turns out that each of M ∧M ′
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and M ∨M ′ is a stable matching in I, representing the join and the meet of M

and M ′ respectively (Gusfield and Irving, 1989, Sec. 1.6.5). These operations give

rise to a lattice structure for S, as the following result indicates.

Theorem 14.6 (Gusfield and Irving, 1989) Let I be an instance of hr, and let

S be the set of stable matchings in I. Then (S,�) forms a distributive lattice, with

M ∧ M ′ representing the meet, and M ∨ M ′ the join, for two stable matchings

M,M ′ ∈ S, where � is the dominance partial order on S.

14.2.3 Strategic results: strategy-proofness

Note that both the RGS and HGS algorithms are described in terms of agents taking

actions based on their preference lists (one side proposes and the other side tenta-

tively accepts or rejects these proposals). However, unless agents have an incentive

to truthfully report their preferences, any preference-based requirement (such as

stability) might lose some of its meaning. The following theorem demonstrates that

in general, stability is not compatible with the requirement that for all agents truth

telling is a weakly dominant strategy (strategy-proofness).

To be more precise, we call a function that assigns a matching to each instance

of hr (or smi / sm) a mechanism. A mechanism that assigns only stable matchings

is called stable. The mechanism that always assigns the resident-optimal (hospital-

optimal) stable matching is called the RGS (HGS ) mechanism.

A mechanism for which no single agent can ever benefit from misrepresenting

her/its preferences is called strategy-proof , i.e., in game-theoretic terms, it is a

weakly dominant strategy for each agent to report her/its true preference list. If

we restrict preference misrepresentations to one type of agents only, we obtain the

one-sided versions of strategy-proofness: a mechanism for which no single resident

can ever benefit from misrepresenting her preferences is called strategy-proof for

residents. Strategy-proofness for hospitals is similarly defined.

Theorem 14.7 (Impossibility Theorem: Roth 1982a) There exists no mechanism

for smi that is stable and strategy-proof.

As smi is a special case of hr, Theorem 14.7 clearly extends to the hr case. The

proof of Theorem 14.7 can be shown with the following example.

Example 14.8 (Impossibility) Consider the following instance:

r1 : h1 h2 h1 : r2 r1

r2 : h2 h1 h2 : r1 r2

The two stable matchings for this instance are Ma = {(r1, h1), (r2, h2)} and Mz =

{(r1, h2), (r2, h1)}. Assume that the mechanism picks stable matching Ma. Then, if

h1 pretended that only r2 is acceptable, Ma is not stable anymore and the stable

mechanism would have to pick the only remaining stable matching Mz, which h1
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would prefer; a contradiction to strategy-proofness. Similarly, if the mechanism

picks stable matching Mz, r1 could manipulate by declaring h1 uniquely acceptable.

The intuition behind this impossibility result is that an agent who is assigned to

a stable partner that is not her/its best stable partner can improve her/its outcome

by truncating the preference list just below the best stable partner: this unilateral

manipulation will result in the assignment of the best stable partner to the agent

who misrepresented her/its preference list. Alcalde and Barberà (1994) and Takagi

and Serizawa (2010) further strengthened the impossibility result by considerably

weakening the stability requirement.

On the positive side, stable mechanisms that respect strategy-proofness for all

residents exist.

Theorem 14.9 (Roth, 1985) The RGS mechanism for hr is strategy-proof for

residents.

As hr is a generalisation of each of sm and smi, clearly Theorem 14.9 also holds in

these latter contexts. This theorem for hr is an extension of an earlier correspond-

ing theorem for sm (Dubins and Freedman, 1981; Roth, 1982b). Strategy-proofness

for all residents also turns out to be a key property in characterising the RGS

mechanism (Ehlers and Klaus, 2014): almost all real-life mechanisms used in vari-

ants of hr (including sc) — including the large classes of priority mechanisms and

linear programming mechanisms — satisfy a set of simple and intuitive properties,

but once strategy-proofness is added to these properties, the RGS mechanism is

the only one surviving (and characterised by the respective properties including

strategy-proofness). For sc, since residents (aka students) are the only economic

agents, Theorem 14.9 in fact establishes a possibility result. For hr, the negative

result of Theorem 14.7 persists even if restricting attention only to hospitals.

Theorem 14.10 (Roth, 1986) There exists no mechanism for hr that is stable

and strategy-proof for hospitals.

This result implies that even when the HGS mechanism is used, hospitals might

have an incentive to misrepresent their preferences.

Once the incompatibility of stability and strategy-proofness is established (The-

orems 14.7 and 14.10), the question arises as to whether we can at least find stable

mechanisms that are resistant to strategic behaviour, meaning that it is computa-

tionally difficult (i.e., NP-hard) for agents to behave strategically. This approach

is typical in voting theory, which is the subject of Chapter 6 (Conitzer and Walsh,

2015) on Barriers to Manipulation, since no voting rule is strategy-proof (Arrow

et al., 2002; Bartholdi et al., 1989). It is possible to exploit such results to define sta-

ble mechanisms that are resistant to strategic behaviour. Pini et al. (2011) showed

how to take voting rules that are resistant to strategic behaviour and use them to

define stable mechanisms with the same property.
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Besides worst-case analysis, we may also consider the occurrence and impact of

strategic behaviour when stable matching mechanisms are used in real-world in-

stances of hr. Roth and Peranson (1999) showed that, for data from the NRMP,

only a few participants could improve their outcomes by changing their preference

list. They also showed via simulations that the opportunities for manipulation di-

minish when the instances of hr grow larger in population. Since then, various

articles have provided theoretical explanations for this phenomenon for large pop-

ulation instances of smi or hr (Immorlica and Mahdian, 2005; Kojima and Pathak,

2009; Lee, 2014).

14.2.4 Further algorithmic results

Decentralised algorithms for smi

In Section 14.2.2 we described the Gale–Shapley algorithm, which can be regarded

as a centralised algorithm for hr. There has also been much interest in the study

of decentralised algorithms for finding stable matchings. In particular, Roth and

Vande Vate (1990) studied a mechanism for smi that involves starting from some

initial matching M0 (which need not be stable) and constructing a random sequence

of matchings M0,M1,M2 . . . , where for each i ≥ 1, Mi is obtained from Mi−1

by satisfying a blocking pair (m,w) of Mi−1 (that is, the partners of m and w

in Mi−1, if they exist, are both single in Mi, and (m,w) is added to Mi). The

blocking pair that is satisfied at each step is chosen at random, subject to the

constraint that there is a positive probability that any particular blocking pair

(from among those that exist at a given step) is chosen. Roth and Vande Vate

(1990) showed that this random sequence converges to a stable matching with

probability 1. The algorithm underlying their result became known as the Roth-

Vande Vate Mechanism. The special case of this mechanism in which M0 = ∅ (and

some other subtle modifications are made) has been referred to as the Random

Order Mechanism (Ma, 1996).

When satisfying a blocking pair (m,w), if the ‘divorcees’ (M(w) and M(m)) are

required to marry one another then the situation is very different. In this case there

are sm instances and initial matchings M0 such that it is not possible to transform

M0 to a stable matching by satisfying a sequence of blocking pairs (Tamura, 1993;

Tan and Su, 1995).

Ackermann et al. (2011) categorised decentralised algorithms for smi into better

response dynamics and best response dynamics. The former description applies to

mechanisms that are based on satisfying blocking pairs, whilst the latter refers

to a more specific mechanism where, should a blocking pair be satisfied, it is the

best blocking pair for the active agent (i.e., the agent who makes the proposal). The

authors also considered random better response dynamics and random best response

dynamics. In the former case, a blocking pair is chosen uniformly at random, whilst
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in the latter case, a blocking pair that corresponds to the best blocking pair for a

given proposer is selected uniformly at random. The authors gave exponential lower

bounds for the convergence time of both approaches in uncoordinated markets.

Hospitals / Residents problem with Ties

In the context of centralised clearinghouses for junior doctor allocation, often large

hospitals have many applicants and may find it difficult to produce a strict ranking

over all these residents. In practice a hospital may be indifferent between batches

of residents, represented by ties in its preference list. This naturally leads to the

Hospitals / Residents problem with Ties (hrt), the generalisation of hr in which

the preference lists of both residents and hospitals can contain ties.

In the hrt context, several stability definitions have been formulated in the

literature, with varying degrees of strength. A matching M is weakly stable if there

is no resident–hospital pair (r, h), such that by coming together, each would be

strictly better off than their current situation in M . In the case of strong stability,

in a blocking pair (r, h) it is enough for one of (r, h) to be strictly better off, whilst

the other must be no worse off, by forming a partnership. Finally, in the case of

super-stability, all we require is that each of (r, h) must be no worse off.

Example 14.11 (hrt instance) To illustrate these stability concepts, we insert

some ties into the preference lists in the hr instance shown in Example 14.1. The

resulting instance of hrt is

r1 : h1 h2 h1 : 1 : r3 (r2 r1) r4

r2 : h1 h2 h3 h2 : 2 : r2 (r3 r1 r4)

r3 : h2 (h1 h3) h3 : 1 : r2 r3

r4 : h2 h1

Here, parentheses indicate ties in the preference lists, so for example, r3 prefers h2 to

each of h1 and h3, and is indifferent between the latter two hospitals. The matchings

{(r1, h2), (r2, h1), (r3, h2)} and {(r1, h1), (r2, h2), (r3, h3), (r4, h2)} are both weakly

stable, but the instance admits no strongly-stable matching, and hence no super-

stable matching either.

We continue by considering algorithmic results for hrt under weak stability.

Firstly, an hrt instance is bound to admit a weakly stable matching, and such a

matching can be found in linear time (Irving et al., 2000). Recall from Theorem 14.5

that all stable matchings in an hr instance have the same size. However in the case

of hrt, weakly stable matchings may have different sizes, as illustrated by Example

14.11. Often in the case of centralised clearinghouses, an important consideration is

to match as many participants as possible. This motivates max hrt, the problem of

finding a maximum weakly stable matching, given an hrt instance. This problem is

NP-hard (Iwama et al., 1999; Manlove et al., 2002) even if each hospital has capacity

1, and also even under severe restrictions on the number, length and positions of
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the ties (Manlove et al., 2002). A succession of approximation algorithms has been

proposed in the literature for various restrictions of max hrt, culminating in the

best current bound of 3/2 for the general problem (McDermid, 2009; Király, 2013;

Paluch, 2014).

Although an hrt instance I is bound to admit a weakly stable matching as

mentioned above, by contrast a strongly stable matching or a super-stable matching

in I may not exist (Irving et al., 2000, 2003). However there is an efficient algorithm

to find a strongly stable matching or report that none exists (Kavitha et al., 2007).

A faster and simpler algorithm exists in the case of super-stability (Irving et al.,

2000). Moreover an analogue of Theorem 14.5 holds in hrt under each of the strong

stability and super-stability criteria (Scott, 2005; Irving et al., 2000).

Hospitals / Residents problem with Couples

Another variant of hr that is motivated by practical applications arises in the

presence of couples. These are pairs of residents who wish to be jointly assigned to

hospitals via a common preferences list over pairs of hospitals, typically in order

to be geographically close to one another. Each couple (ri, rj) has a preference list

over a subset of H × H, where each pair (hp, hq) on this list represents the joint

assignment of ri to hp and rj to hq. (There may be single residents in addition, as

before.) We thus obtain the Hospitals / Residents problem with Couples (hrc).

Relative to a suitable stability definition, Roth (1984a) showed that an hrc

instance need not admit a stable matching. Ng and Hirschberg (1988) and Ronn

(1990) independently showed that the problem of deciding whether an hrc instance

admits a stable matching is NP-complete, even if each hospital has capacity 1 and

there are no single residents.

McDermid and Manlove (2010) considered a variant of hrc in which each resident

(whether single or in a couple) has a preference list over individual hospitals, and

the joint preference list of each couple (ri, rj) is consistent with the individual

lists of ri and rj in a precise sense. Relative to Roth’s stability definition (Roth,

1984a), they showed that the problem of deciding whether a stable matching exists

is NP-complete. However if instead we enforce classical (Gale–Shapley) stability on

a given matching relative to the individual lists of residents, then the problem of

finding a stable matching or reporting that none exists is solvable in polynomial

time (McDermid and Manlove, 2010).

Biró et al. (2011) developed a range of heuristics for the problem of finding a

stable matching or reporting that none exists in a given hrc instance, and subjected

them to a detailed empirical evaluation based on randomly-generated data. They

found that a stable matching is very likely to exist for instances where the ratio of

couples to single residents is small and of the magnitude typically found in practical

applications.

Ashlagi et al. (2014) studied large random matching markets with couples. They

introduced a new matching algorithm and showed that if the number of couples
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grows slower than the size of the market, a stable matching will be found with high

probability. If however, the number of couples grows at a linear rate, with constant

probability (not depending on the market size), no stable matching exists.

Further results for hrc are described in the survey paper of Biró and Klijn (2013).

Many-to-many stable matching

Many-to-many extensions of sm (and by implication hr) have been considered in

the literature (Roth, 1984b; Roth and Sotomayor, 1990; Sotomayor, 1999; Bäıou and

Balinski, 2000; Fleiner, 2003; Mart́ınez et al., 2004; Echenique and Oviedo, 2006;

Bansal et al., 2007; Kojima and Ünver, 2008; Eirinakis et al., 2012, 2013; Klijn

and Yazıcı, 2014). These matching problems tend to be described in the context

of assigning workers to firms, where each agent can be multiply assigned (up to a

given capacity). We will discuss the two main models of many-to-many matching

in the literature.

The first version we consider, which we refer to as the Workers / Firms problem,

Version 1, denoted by wf-1, involves each worker ranking in strict order of prefer-

ence a set of individual acceptable firms, and vice versa for each firm. Bäıou and

Balinski (2000) generalised the stability definition for sm to the wf-1 case. They

showed that every instance I of wf-1 has a stable matching and such a matching

can be found in O(n2) time, where n = max{n1, n2}, n1 is the number of workers

and n2 is the number of firms in I. They also generalised Theorems 14.5 and 14.6

to the wf-1 context. Additional algorithms have been given for computing stable

matchings with various optimality properties in wf-1 (Bansal et al., 2007; Eirinakis

et al., 2012, 2013).

In the second version, which we refer to as the Workers / Firms problem, Version

2, denoted by wf-2, each worker ranks in strict order of preference acceptable

subsets of firms, and vice versa for each firm. Two main forms of stability have

been studied in the context of wf-2, namely pairwise stability and setwise stability.

A matching M in a wf-2 instance is pairwise stable (Roth, 1984b) if it can-

not be undermined by a single worker–firm pair acting together. A wf-2 instance

need not admit a pairwise stable matching (Roth and Sotomayor, 1990, Exam-

ple 2.7). However Roth (1984b) proved that, given an instance of wf-2 where every

agent’s preference list satisfies so-called substitutability (Kelso and Crawford, 1982),

a pairwise stable matching always exists, and he gave an algorithm for finding one.

Mart́ınez et al. (2004) gave an algorithm for finding all pairwise stable matchings.

A more powerful definition of stability is setwise stability. Informally, a matching

M is setwise stable (Sotomayor, 1999) if it cannot be undermined by a coalition

of workers and firms acting together. More precisely, several definitions of setwise

stability have been given in the literature (Sotomayor, 1999; Echenique and Oviedo,

2006; Konishi and Ünver, 2006); the various alternatives were formally defined and

analysed by Klaus and Walzl (2009).

Bansal et al. (2007) noted that, generally speaking, wf-1 has been studied mainly
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by the computer science community, whilst the economics community has mainly

focused on wf-2. One reason for this is that wf-2 suffers from the drawback that

the length of an agent’s preference list is in the worst case exponential in the number

of agents. A consequence of this is that the practical applicability of any algorithm

for wf-2 would be severely limited in general, however this problem does not arise

with wf-1.

14.3 One-sided preferences

14.3.1 Introduction and preliminary definitions

Many economists and game theorists, and increasingly computer scientists in recent

years, have studied the problem of allocating a set H of indivisible goods among a

set A of applicants (Shapley and Scarf, 1974; Hylland and Zeckhauser, 1979; Deng

et al., 2003; Fekete et al., 2003). Each applicant ai may have ordinal preferences

over a subset of H (the acceptable goods for ai). Many models have considered the

case where there is no monetary transfer. In the literature the situation in which

each applicant initially owns one good is known as a Housing Market (hm)3 (Shap-

ley and Scarf, 1974; Roth and Postlewaite, 1977; Roth, 1982a). When there are

no initial property rights, we obtain the House Allocation problem (ha) (Hylland

and Zeckhauser, 1979; Zhou, 1990; Abdulkadiroğlu and Sönmez, 1998). A mixed

model, in which a subset of applicants initially owns a good has also been studied

(Abdulkadiroğlu and Sönmez, 1999).

House Allocation problems

Formally, an instance I of the House Allocation problem (ha) comprises a set A =

{a1, a2, . . . , an1} of applicants and a set H = {h1, h2, . . . , hn2} of houses. The agents

in I are the applicants and houses in A∪H. There is a set E ⊆ A×H of acceptable

applicant–house pairs. Let m = |E|. Each applicant ai ∈ A has an acceptable set of

houses A(ai), where A(ai) = {hj ∈ H : (ai, hj) ∈ E}. Similarly each house hj ∈ H
has an acceptable set of applicants A(hj), where A(hj) = {ai ∈ A : (ai, hj) ∈ E}.

Each applicant ai ∈ A has a preference list in which she ranks A(ai) in strict

order. Given any applicant ai ∈ A, and given any houses hj , hk ∈ H, ai is said

to prefer hj to hk if {hj , hk} ⊆ A(ai), and hj precedes hk on ai’s preference list.

Houses do not have preference lists over applicants, and it is essentially this feature

that distinguishes ha from smi.

ha is a very general problem model and any application domain having an un-

derlying matching problem that is bipartite, where agents in only one of the sets

have preferences over the other, can be viewed as an instance of ha. These include

3 This problem is also referred to as the House-swapping Game in the literature.
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the problems of allocating graduates to trainee positions, students to projects, pro-

fessors to offices, clients to servers, etc. The literature concerning ha has largely

described this problem model in terms of assigning applicants to houses, so for

consistency we also adopt this terminology.

An assignment M in I is a subset of E. The definitions of the terms assigned

to, assigned, unassigned and assignees relative to M are analogous to the same

definitions in the hr case (see Section 14.2.1). A matching M in I is an assignment

such that, for each pk ∈ A∪H, the set of assignees of pk in M , denoted by M(pk),

satisfies |M(pk)| ≤ 1. For notational convenience, as in the hr case, if pk is assigned

in M then where there is no ambiguity the notation M(pk) is also used to refer to

the single member of the set M(pk). Let M denote the set of matchings in I.

Given two matchings M andM ′ inM, we say that an applicant ai ∈ A prefers M ′

to M if either (i) ai is assigned in M ′ and unassigned in M , or (ii) ai is assigned in

both M and M ′, and ai prefers M ′(ai) to M(ai). We say that M ′ Pareto dominates

M if (i) some applicant prefers M ′ to M and (ii) no applicant prefers M to M ′. A

matching M ∈ M is Pareto optimal if there is no matching M ′ ∈ M that Pareto

dominates M . Intuitively M is Pareto optimal if no applicant ai can be better

off without requiring another applicant aj to be worse off. For example, M is not

Pareto optimal if two applicants could improve by swapping the houses that they

are assigned to in M .

Housing Markets

An instance I of a Housing Market (hm) comprises an ha instance I where n1 = n2,

together with a matching M0 in I (the initial endowment) such that |M0| = n1.

A matching M in I is individually rational if, for each applicant ai ∈ A, either

ai prefers M(ai) to M0(ai), or M(ai) = M0(ai). Since we are only interested in

individually rational matchings, we assume that M0(ai) is the last house on ai’s

preference list, for each ai ∈ A. Clearly then, any individually rational matching

M in I satisfies |M | = n1.

The notion of Pareto optimality in ha is closely related to the concept of core

matchings in the hm context (Roth and Postlewaite, 1977): let I be an instance

of hm where M0 is the initial endowment, and let M be an individually rational

matching in I. Let M ′ be a matching in I, and let S be the set of applicants who

are assigned in M ′. Then M ′ weakly blocks M with respect to the coalition S if:

(i) the members of the coalition are only allowed to improve by exchanging their

own resources (via their initial endowment M0): {M ′(ai) : ai ∈ S} = {M0(ai) :

ai ∈ S};
(ii) some member of the coalition ai ∈ S is better off in M ′: some ai ∈ S prefers

M ′(ai) to M(ai);

(iii) no member of the coalition ai ∈ S is worse off in M ′ than in M : no ai ∈ S
prefers M(ai) to M ′(ai).
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M is a strict core matching , or M is in the strict core, if there is no other matching in

I that weakly blocksM . AlsoM ′ strongly blocks M with respect to S if Condition (i)

above is satisfied, and in addition, every ai ∈ S prefers M ′(ai) to M(ai). M is a

weak core matching , or M is in the weak core, if there is no other matching in I

that strongly blocks M .

Note that M is Pareto optimal if and only if M is not weakly blocked by any

matching M ′ such that |M ′| = n1 (here the coalition comprises all applicants and is

referred to as the grand coalition). Hence a strict core matching is Pareto optimal.

Example 14.12 (hm instance) Consider the following hm instance in which the

initial endowment is M0 = {(a1, h4), (a2, h3), (a3, h2), (a4, h1)}.

a1 : h1 h2 h3 h4

a2 : h1 h2 h4 h3

a3 : h4 h1 h3 h2

a4 : h4 h3 h2 h1

Now define the matchings M = {(a1, h4), (a2, h3), (a3, h1), (a4, h2)}, M ′ =

{(a1, h3), (a2, h2), (a3, h4), (a4, h1)} and M ′′ = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)}.
Then M ′ strongly blocks M with respect to the coalition S = {a1, a2, a3}, whilst

M ′′ is a strict core matching and hence Pareto optimal.

We call a function that assigns a matching to each instance of ha (or hm) a

mechanism. A mechanism that assigns only Pareto optimal matchings is called

Pareto optimal.

14.3.2 Classical structural and algorithmic results

House Allocation problems

All Pareto optimal matchings can be constructed using a classical algorithm called

the Serial (SD) Dictatorship Algorithm (see Theorem 14.14). For any fixed or-

der of applicants f = (i1, i2, ..., in1), the SD algorithm is a straightforward greedy

algorithm that takes each applicant in turn and assigns her to the most-preferred

available house on her preference list. The associated mechanism is called the Serial

Dictatorship (SD) mechanism. The order in which the applicants are processed will,

in general, affect the outcome. If a uniform lottery is used in order to determine the

applicant ordering, then we obtain a random mechanism called the Random Serial

Dictatorship Mechanism or RSD mechanism (Abdulkadiroğlu and Sönmez, 1998).

Often, the fixed order of applicants used for the SD mechanism is determined in

some objective way. Roth and Sotomayor (1990, Example 4.3) remark that when

the United States Naval Academy matches graduating students to their first posts

as Naval Officers using an approach based on the SD algorithm, students are con-

sidered in non-decreasing order of graduation results. Clearly the SD algorithm
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may be implemented to execute in O(m) time (m being the number of acceptable

applicant–house pairs).

Strictly speaking RSD produces a probability distribution over matchings, and its

output can be regarded as a bi-stochastic n1×n2 matrixM in which entry (i, j) gives

the probability of applicant ai receiving house hj . Independently, Aziz et al. (2013)

and Saban and Sethuraman (2013) proved that computing M is #P-complete.

Saban and Sethuraman (2013) also proved the surprising result that determining

whether a given entry (i, j) in M has positive probability is NP-complete. This im-

plies NP-completeness for the problem of determining whether, given an applicant

ai and house hj , there exists a Pareto optimal matching containing (ai, hj).

Krysta et al. (2014) gave an O(n2
1γ) strategy-proof adaptation of RSD to the

more general extension of ha in which preference lists may include ties, where γ is

the maximum length of a tie in any applicants preference list.

Housing Markets

For a somewhat more general housing market model that allows for indifferences

in preference lists, Shapley and Scarf (1974) showed that the weak core is always

non-empty by constructing a weak core matching using Gale’s Top Trading Cycles

or TTC algorithm (the authors attributed the now famous TTC algorithm to David

Gale). They also showed that the weak core matching constructed is a competitive

allocation,4 the strict core may be empty and the non-empty weak core may exceed

the (not necessarily singleton) set of competitive allocations. Note that for our

housing market model with strict preferences, the weak and the strict core coincide.

Given an instance of hm with initial endowment M0,

(1) at the first step of the TTC algorithm, every applicant points to the owner of her

favourite house (possibly to herself). Since there are finitely many applicants,

there is at least one cycle (where a cycle is an ordered list (i1, i2, ..., ik), 1 ≤
k ≤ n1, of applicants with each applicant pointing to the next applicant in

the list and applicant aik pointing to applicant ai1 ; k = 1 is the special case

of a self-loop where an applicant points to herself). In each cycle the implied

cyclical exchange of houses is implemented and the algorithm continues with

the remaining applicants and houses;

(l) at the l-th step of the TTC algorithm, every remaining applicant points to the

owner of her favourite remaining house (possibly to herself). Again, there is

at least one cycle and in each cycle the implied cyclical exchange of houses is

implemented and the algorithm continues with the remaining applicants and

houses, and terminates when no applicants remain.

4 While housing markets are modelled as pure exchange economies, a competitive allocation of a
housing market can be defined using fiat money. Then, an allocation is competitive if there exists a
price for each house such that, by selling his house at the given price, each agent can afford to buy
his most-preferred house (i.e., market clearance ensues).
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Note that there is an equivalent two-sided formulation of the TTC algorithm in

which agents point to houses as specified above and houses will always point to their

owners. The TTC algorithm can be implemented to run in O(m) time (m being

the number of acceptable applicant–house pairs) (Abraham et al., 2004). Roth and

Postlewaite (1977) demonstrated that the matching found by the TTC algorithm is

the unique strict core allocation as well as the unique competitive allocation. The

mechanism that assigns to each instance of hm the strict core matching obtained

by the TTC algorithm is called the Core Mechanism or sometimes simply the Core.

Example 14.13 We apply the TTC algorithm to the hm instance shown in Ex-

ample 14.12. The initial directed graph has four nodes (representing all applicants)

where each applicants points to the owner (in M0) of its most preferred house.

Hence there is a directed arc from a1 to a4, from a2 to a4, from a3 to a1, and from

a4 to a1. Since there is a cycle involving a1 and a4, we swap their houses, and thus

a1 receives h1 and a4 receives h4. Now we delete a1 and a4 from the graph, as well

as their houses from the hm instance. We are thus left with a2 and a3, with an arc

from a2 to a3 (since after having deleted h1, the most preferred house of a2 is h2,

owned by a3) and similarly an arc from a3 to a2. Thus we swap their houses and the

algorithm stops, returning the matching M ′′ = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)}
as in Example 14.12.

Recall that the only difference between an instance of ha and an instance of hm

is that in the latter case an initial endowment matching M0 is given as well. Hence,

we could define a mechanism for ha that fixes an initial endowment matching

Mf and then uses the Core mechanism for the obtained instance of hm. We call

such a mechanism a Core from Fixed Endowments or CFE mechanism. If now

a uniform lottery is used in order to determine the initial endowment matching,

then we obtain a random mechanism called the Core from Random Endowments or

CRE mechanism (Abdulkadiroğlu and Sönmez, 1998). Abdulkadiroğlu and Sönmez

(1998) proved that the two random mechanisms we have introduced are equivalent.

Theorem 14.14 (Abdulkadiroğlu and Sönmez, 1998) 1. All SD mechanisms for

ha are Pareto optimal. For each Pareto optimal matching M of an instance of

ha, there exists an order of applicants such that the corresponding SD mechanism

assigns M .

2. All Core mechanisms for hm are Pareto optimal. For each Pareto optimal match-

ing M of an instance of ha, there exists an initial endowment matching Mf such

that the CFE mechanism assigns M .

3. The CRE and the RSD mechanisms for ha are equivalent.

Hylland and Zeckhauser (1979) had already shown that the RSD mechanism is

ex-post Pareto optimal, i.e., the final matching that is chosen by the RSD lottery

is Pareto optimal. Bogomolnaia and Moulin (2001) showed that the RSD mecha-

nism, however, is not ex-ante or ordinally efficient (Pareto optimal), i.e., for some
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lotteries chosen by the RSD mechanism there exist Pareto dominating lotteries

(with stochastic dominance being used to formulate the dominance relation). They

also suggested a new random mechanism, the Probabilistic Serial mechanism, that

satisfies ex-ante efficiency.

14.3.3 Strategic results: strategy-proofness

As in Section 14.2.1, a mechanism for which no single applicant can ever benefit

from misrepresenting her preferences is called strategy-proof (i.e., in game-theoretic

terms, it is a weakly dominant strategy for each applicant to report her true pref-

erence list). All mechanisms introduced so far in this section are strategy-proof, as

the following results indicate.

Theorem 14.15 (Hylland and Zeckhauser, 1979) The SD mechanisms for ha are

strategy-proof.

Theorem 14.16 (Roth, 1982a) The Core mechanism for hm is strategy-proof.

Hence, all CFE mechanisms for ha are strategy-proof.

In addition, the Core and CFE mechanisms are group strategy-proof (i.e., no

coalition of applicants can jointly misrepresent their true preferences in order for at

least one member of the coalition to improve, whilst no other coalition member is

worse off; see, e.g., Svensson, 1999). Strategy-proofness is also one of the properties

that characterise the Core mechanism.

Theorem 14.17 (Ma, 1994) The Core mechanism for hm is the only mechanism

that is Pareto optimal, individually rational, and strategy-proof.

Abdulkadiroğlu and Sönmez (1999) extended Ma’s characterisation result to a

mixed model that combines ha and hm: in the House Allocation problem with

Existing Tenants, a subset of applicants initially owns a house. They defined mech-

anisms that combine elements of SD as well as Core mechanisms based on the

so-called YRMH-IGYT (You Request My House – I Get Your Turn) algorithm.

All YRMH-IGYT mechanisms are strategy-proof, Pareto optimal, and individually

rational (in the sense that no existing tenant receives a house inferior to his own).

In Section 14.2.1 we introduced sc as a one-sided preference variant of hr, but

we could also introduce this class of problems as a variant of ha with the addi-

tional properties that objects (i.e., houses/schools) have priorities over students,

and objects can be multiply assigned up to some capacity. Either way, the RGS

mechanism can be used to find a matching for each instance of sc. This mechanism

is then strategy-proof (by Theorem 14.9) and stable (Gale and Shapley, 1962), but

it is not Pareto optimal. In fact, no mechanism is both stable and Pareto optimal

(Balinski and Sönmez, 1999). However it turns out that no other stable mechanism

would do better in the following sense.
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a1 : h1 h2 a1 : h1 h2 h3 a1 : h1 h3

a2 : h1 a2 : h1 h2 h3 a2 : h2 h1

a3 : h1 h2 h3 a3 : h2

Figure 14.1 (a) ha instance I1 (b) ha instance I2 (c) ha instance I3

Theorem 14.18 (Balinski and Sönmez, 1999) The RGS mechanism for sc Pareto

dominates any other stable mechanism.

Finally, when focusing on strategy-proofness and Pareto optimality only, no bet-

ter mechanism than the RGS mechanism emerges.

Theorem 14.19 (Kesten, 2010) The RGS mechanism for sc is not Pareto-

dominated by any other Pareto optimal mechanism that is strategy-proof.

14.3.4 Further algorithmic results

Pareto optimal matchings

For a given instance of ha, Pareto optimal matchings may have different sizes, as

illustrated by Figure 14.1(a): for the instance I1 shown, matchings M1 = {(a1, h1)}
and M2 = {(a1, h2), (a2, h1)} are both Pareto optimal. In many applications we seek

to match as many applicants as possible. This motivates the problem of finding a

Pareto optimal matching of maximum size, which we refer to as a maximum Pareto

optimal matching.

Towards an algorithm for this problem, Abraham et al. (2004) gave a charac-

terisation of Pareto optimal matchings in a given ha instance I. A matching M

in I is maximal if there is no pair (ai, hj) ∈ E, both of which are unassigned in

M . Also M is trade-in-free if there is no pair (ai, hj) ∈ E such that hj is unas-

signed in M , and ai is assigned in M and prefers hj to M(ai). Finally M is cyclic

coalition-free if M admits no cyclic coalition, which is a sequence of applicants

C = 〈ai0 , ai1 , . . . , air−1
〉, for some r ≥ 2, all assigned in M , such that aij prefers

M(aij+1
) to M(aij ) (0 ≤ j ≤ r − 1) (with subscripts taken modulo r). Abraham

et al. gave the following necessary and sufficient conditions for a matching to be

Pareto optimal in terms of these concepts:

Proposition 14.20 (Abraham et al., 2004) Let I be an instance of ha and let

M be a matching in I. Then M is Pareto optimal if and only if M is maximal,

trade-in-free and coalition-free. Moreover there is an O(m) algorithm for testing M

for Pareto optimality, where m is the number of acceptable applicant–house pairs

in I.

Abraham et al. also gave a three-phase algorithm for finding a maximum Pareto

optimal matching in I, with each phase enforcing one of the conditions for Pareto
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optimality given in Proposition 14.20. In Phase 1 they construct a maximum match-

ing M in the underlying graph of I, which is the bipartite graph with vertex set

A∪H and edge set E. This step can be accomplished in O(
√
n1m) time and ensures

that M is maximal. Phase 2 is based on an O(m) algorithm in which assigned ap-

plicants repeatedly trade in their own house in M for any preferred vacant house.

Once this step terminates, M is trade-in-free. Finally, cyclic coalitions are elim-

inated during Phase 3, which is based on an O(m) implementation of the TTC

algorithm. Putting these three phases together, they obtained the following result.

Theorem 14.21 (Abraham et al., 2004) Let I be an instance of ha. A maximum

Pareto optimal matching in I can be found in O(
√
n1m) time, where n1 is the

number of applicants and m is the number of acceptable applicant–house pairs in I.

Popular matchings

Pareto optimality is a fundamental solution concept, but on its own it is a rela-

tively weak property. A stronger notion is that of a popular matching . Intuitively

a matching M in an ha instance I is popular if there is no other matching that

is preferred to M by a majority of the applicants who are not indifferent between

the two matchings. This concept was first defined by Gärdenfors (1975) (using the

term majority assignment) in the context of smi.

To define the popular matching concept more formally, let M,M ′ ∈ M, and let

P (M,M ′) denote the set of applicants who prefer M to M ′. We say that M ′ is

more popular than M , denoted M ′ � M , if |P (M ′,M)| > |P (M,M ′)|. Define a

matching M ∈ M to be popular (Abraham et al., 2007b) if M is �-maximal (i.e.,

there is no other matching M ′ ∈M such that M ′ �M).

Clearly a matching M is Pareto optimal if there is no other matching M ′ such

that |P (M,M ′)| = 0 and |P (M ′,M)| ≥ 1. Hence a popular matching is Pareto op-

timal. However in contrast to the case for Pareto optimal matchings, an ha instance

need not admit a popular matching. To see this, consider the ha instance I2 shown

in Figure 14.1(b). It is clear that a matching in I2 cannot be popular unless all ap-

plicants are assigned. The unique matching up to symmetry in which all applicants

are assigned is M = {(ai, hi) : 1 ≤ i ≤ 3}, however M ′ = {(a2, h1), (a3, h2)} is

preferred by two applicants, which is a majority. The relation � in this case cycles,

hence the absence of a �-maximal solution (therefore, in general, � is not a partial

order on M).

The potential absence of a popular matching in a given ha instance can be

related all the way back to the observation of Condorcet (1785) that, given k voters

who each rank n candidates in strict order of preference, there may not exist a

“winner”, namely a candidate who beats all others in a pairwise majority vote. See

also Chapter 2 (Zwicker, 2015).

Abraham et al. (2007b) derived a neat characterisation of popular matchings,

leading to an O(m) algorithm to check whether a given matching M in I is popular.
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The same characterisation also led naturally to an O(n+m) algorithm for finding

a popular matching or reporting that none exists, where n = n1 + n2. We remark

that popular matchings in I can have different sizes, and the authors showed how

to extend their algorithm in order to find a maximum popular matching without

altering the time complexity. This discussion can be summarised as follows.

Theorem 14.22 (Abraham et al., 2007b) Let I be an instance of ha. There is

an O(n+m) algorithm to find a maximum popular matching in I or report that no

popular matching exists, where n is the number of applicants and houses, and m is

the number of acceptable applicant–house pairs.

A more complex algorithm, with O(
√
nm) complexity, can be used to find a

maximum popular matching in I or report that no popular matching exists, in the

case that preference lists include ties (Abraham et al., 2007b).

McDermid and Irving (2011) showed that the set of popular matchings in an

ha instance can be characterised succinctly via a structure known as the switch-

ing graph. Using this representation they showed that a number of problems can be

solved efficiently, including counting popular matchings, sampling a popular match-

ing uniformly at random, listing all popular matchings and finding various types of

“optimal” popular matchings.

As a given ha instance need not admit a popular matching, it is natural to

weaken the notion of popularity, and seek matchings that are as popular as possible

in cases where a popular matching does not exist. To this end, McCutchen (2008)

defined two versions of near-popular matchings, namely a least unpopularity factor

matching and a least unpopularity margin matching. Also Kavitha et al. (2011)

studied the concept of a popular mixed matching, which is a probability distribution

over matchings that is popular in a precise sense.

Profile-based optimal matchings

Further notions of optimality are based on the profile p(M) of a matching M in an

ha instance I. Informally, p(M) is an r-tuple whose ith component is the number

of applicants who have their ith-choice house, where r is the maximum length of

an applicant’s preference list.

A matching M is rank-maximal (Irving et al., 2006) if p(M) is lexicographically

maximum, taken over all matchings inM. Intuitively, in such a matching, the max-

imum number of applicants are assigned to their first-choice house, and subject to

this condition, the maximum number of applicants are assigned to their second-

choice house, and so on. A rank-maximal matching need not be of maximum cardi-

nality. To see this, consider the ha instance I3 in Figure 14.1(c) and the following

matchings in I3: M1 = {(a1, h1), (a2, h2)} and M2 = {(a1, h3), (a2, h1), (a3, h2)}.
Clearly M1 is rank-maximal and |M1| = 2, whereas |M2| = 3.

In many applications we seek to assign as many applicants as possible. With this

in mind, consider M+, the set of maximum matchings in a given ha instance I.
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A greedy maximum matching is a matching M ∈ M+ such that p(M) is lexico-

graphically maximum, taken over all matchings in M+. Both rank-maximal and

greedy maximum matchings maximise the number of applicants with their sth-

choice house as a higher priority than maximising the number of those with their

tth-choice house, for any 1 ≤ s < t ≤ r. As a consequence, both of these types of

matchings could end up assigning applicants to houses relatively low down on their

preference lists.

Consequently, define a generous maximum matching to be a matching M ∈M+

such that pR(M) is lexicographically minimum, taken over all matchings in M+,

where pR(M) is the reverse of p(M). That is, M is a maximum cardinality matching

that assigns the minimum number of applicants to their rth-choice house, and

subject to this, the minimum number to their (r − 1)th-choice house, and so on.

We collectively refer to rank-maximal, greedy maximum and generous maximum

matchings as profile-based optimal matchings. Returning to instance I3 shown in

Figure 14.1(c), the matching M2 defined above is the unique maximum match-

ing and is therefore both a greedy maximum matching and a generous maximum

matching.

The following results indicate the complexity of the fastest current algorithms for

constructing rank-maximal, greedy maximum and generous maximum matchings

in a given ha instance.

Theorem 14.23 (Irving et al., 2006) Let I be an instance of ha. A rank-maximal

matching M in I can be constructed in O(min(n1 + r∗, r∗
√
n1)m) time, where n1

is the number of applicants, m is the number of acceptable applicant–house pairs,

and r∗ is the maximum rank of an applicant’s house in M .

Theorem 14.24 (Huang and Kavitha, 2012) Let I be an instance of ha. A greedy

maximum matching M in I can be constructed in O(r∗
√
nm log n) time, where n is

the number of applicants and houses, m is the number of acceptable applicant–house

pairs, and r∗ is the maximum rank of an applicant’s house in M . The same time

complexity holds for computing a generous maximum matching.

The algorithms referred to in Theorems 14.23 and 14.24 are also applicable in

the more general case that preference list contain ties.

14.4 Concluding remarks and further reading

In this chapter we have tried to cover some of the most important results on match-

ing problems with preferences. However the literature in this area is vast, and due to

space limitations, we could only cover a subset of the main results in a single survey

chapter. Chapter 11 (Thomson, 2015) introduces some of our matching problems

within the context of fair resource allocation, namely, object allocation problems
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(ha), priority-augmented object allocation problems (sc), and matching agents to

each other (smi and hr). The following non-exhaustive list of articles contains nor-

mative results for these problems and basic axioms of fair allocation as introduced in

Chapter 11 (Thomson, 2015) (e.g., resource-monotonicity, population-monotonicity,

consistency, converse consistency): Ehlers and Klaus (2004, 2007, 2011); Ehlers et al.

(2002); Ergin (2000); Kesten (2009); Sasaki and Toda (1992); Toda (2006).

One obvious omission has been the Stable Roommates problem (sr), a non-

bipartite generalisation of sm. However a wider class of matching problems, known

as hedonic games, which include sr as a special case, are explored in Chapter 15

(Aziz and Savani, 2015).

Looking ahead, it seems likely that the level of interest in matching under pref-

erences will show no sign of diminishing, and if anything we predict that this field

will continue to grow. This is due in no small part to the exposure that the research

area has had on a global stage following the award of the Nobel Prize in Economic

Sciences to Alvin Roth and Lloyd Shapley in 2012. Another contributing factor

is the increasing engagement by more and more elements of society in forms of

electronic communication, thereby easing preference elicitation and centralisation

of allocation processes.

To conclude, we give some sources for further reading. For more details on struc-

tural and algorithmic aspects of sm, hr and sr, we recommend Gusfield and Irving

(1989). The second author’s monograph (Manlove, 2013) provides an update to

Gusfield and Irving (1989) and also expands the coverage to include ha. It expands

on the algorithmic results presented in this chapter in particular. For more depth

from an economic and game-theoretic viewpoint, the reader is referred to Roth and

Sotomayor (1990), which considers issues of strategy in sm and hr in much more

detail, and also covers monetary transfer and the Assignment Game. Finally, more

recent results that also include economic applications (e.g., school choice and kidney

exchange) are reviewed by Sönmez and Ünver (2011) and Vulkan et al. (2013).
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A. Abdulkadiroğlu and T. Sönmez. School choice: a mechanism design approach.
American Economic Review, 93(3):729–747, 2003.
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M. Bäıou and M. Balinski. Many-to-many matching: Stable polyandrous polygamy
(or polygamous polyandry). Discrete Applied Mathematics, 101:1–12, 2000.

M. Balinski and T. Sönmez. A tale of two mechanisms: Student placement. Journal
of Economic Theory, 84(1):73–94, 1999.

V. Bansal, A. Agrawal, and V. S. Malhotra. Polynomial time algorithm for an opti-
mal stable assignment with multiple partners. Theoretical Computer Science,
379(3):317–328, 2007.

J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989.



Matching under Preferences 27
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P. Biró, R. W. Irving, and I. Schlotter. Stable matching with couples: An empirical
study. ACM Journal of Experimental Algorithmics, 16, 2011. Section 1, article
2, 27 pages.

A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem.
Journal of Economic Theory, 100:295–328, 2001.

V. Conitzer and T. Walsh. Barriers to manipulation in voting. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Com-
putational Social Choice, chapter 6. Cambridge University Press, 2015.

X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. Journal
of Computer and System Sciences, 67(2):311–324, 2003.

J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware kidney exchange.
In Proceedings of EC ’13: the 14th ACM Conference on Electronic Commerce,
pages 323–340. ACM, 2013.

L. E. Dubins and D. A. Freedman. Machiavelli and the Gale-Shapley algorithm.
American Mathematical Monthly, 88(7):485–494, 1981.

F. Echenique and J. Oviedo. A theory of stability in many-to-many matching
markets. Theoretical Economics, 1(2):233–273, 2006.

L. Ehlers and B. Klaus. Resource-monotonic house allocation. International Journal
of Game Theory, 32:545–560, 2004.

L. Ehlers and B. Klaus. Consistent house allocation. Economic Theory, 30:561–574,
2007.

L. Ehlers and B. Klaus. Corrigendum to “Resource-monotonicity for house alloca-
tion problems”. International Journal of Game Theory, 40:281–287, 2011.

L. Ehlers and B. Klaus. Strategy-proofness makes the difference: Deferred-
acceptance with responsive priorities. Mathematics of Operations Research
in press, 2014.

L. Ehlers, B. Klaus, and S. Pápai. Strategy-proofness and population-monotonicity
for house allocation problems. Journal of Mathematical Economics, 38(3):329–
339, 2002.

P. Eirinakis, D. Magos, I. Mourtos, and P. Miliotis. Finding all stable pairs and
solutions to the many-to-many stable matching problem. INFORMS Journal
on Computing, 24(2):245–259, 2012.

P. Eirinakis, D. Magos, I. Mourtos, and P. Miliotis. Finding a minimum-regret
many-to-many stable matching. Optimization, 62(8):1007–1018, 2013.

H. Ergin. Consistency in house allocation problems. Journal of Mathematical
Economics, 34(1):77–97, 2000.

S. P. Fekete, M. Skutella, and G. J. Woeginger. The complexity of economic equilib-
ria for house allocation markets. Information Processing Letters, 88:219–223,
2003.

T. Fleiner. On the stable b-matching polytope. Mathematical Social Sciences, 46
(2):149–158, 2003.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11:223–232, 1985.

P. Gärdenfors. Match making: Assignments based on bilateral preferences. Be-
havioural Science, 20:166–173, 1975.



28 B. Klaus, D.F. Manlove and F. Rossi

K. M. Glorie, J. J. van de Klundert, and A. P. M. Wagelmans. Kidney exchange
with long chains: An efficient pricing algorithm for clearing barter exchanges
with branch-and-price. Manufacturing & Service Operations Management, 16
(4):498–512, 2014.

D. Gusfield and R. W. Irving. The stable marriage problem: Structure and algo-
rithms. MIT Press, 1989.

C. C. Huang and T. Kavitha. Weight-maximal matchings. In Proceedings of
MATCH-UP ’12: the 2nd International Workshop on Matching Under Pref-
erences, pages 87–98, 2012.

A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

N. Immorlica and M. Mahdian. Marriage, honesty and stability. In Proceedings of
SODA ’05: the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 53–62. ACM-SIAM, 2005.

R. W. Irving. Stable marriage. In M. Y. Kao, editor, Encyclopedia of Algorithms,
pages 877–879. Springer, 2008.

R. W. Irving and P. Leather. The complexity of counting stable marriages. SIAM
Journal on Computing, 15(3):655–667, 1986.

R. W. Irving, D. F. Manlove, and S. Scott. The Hospitals/Residents problem
with Ties. In Proceedings of SWAT ’00: the 7th Scandinavian Workshop on
Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages
259–271. Springer, 2000.

R. W. Irving, D. F. Manlove, and S. Scott. Strong stability in the Hospi-
tals/Residents problem. In Proceedings of STACS ’03: the 20th Annual Sym-
posium on Theoretical Aspects of Computer Science, volume 2607 of Lecture
Notes in Computer Science, pages 439–450. Springer, 2003.

R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In Proceedings of ICALP ’99: the 26th International Col-
loquium on Automata, Languages, and Programming, volume 1644 of Lecture
Notes in Computer Science, pages 443–452. Springer, 1999.

R. J. Johnson, J. E. Allen, S. V. Fuggle, J. A. Bradley, and C. J. Rudge. Early
experience of paired living kidney donation in the United Kingdom. Trans-
plantation, 86:1672–1677, 2008.

T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. Strongly stable match-
ings in time O(nm) and extension to the Hospitals-Residents problem. ACM
Transactions on Algorithms, 3(2), 2007. Article number 15.

T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Com-
puter Science, 412:2679–2690, 2011.

K. M. Keizer, M. de Klerk, B. J. Haase-Kromwijk, and W. Weimar. The Dutch
algorithm for allocation in living donor kidney exchange. Transplantation Pro-
ceedings, 37:589–591, 2005.

A. S. Kelso and V. P. Crawford. Job matching, coalition formation and gross
substitutes. Econometrica, 50:1483–1504, 1982.

O. Kesten. Coalitional strategy-proofness and resource monotonicity for house
allocation problems. International Journal of Game Theory, 38:17–21, 2009.

O. Kesten. School choice with consent. Quarterly Journal of Economics, 125:
1297–1348, 2010.



Matching under Preferences 29
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