Popular Half-Integral Matchings

Telikepalli Kavitha*

Tata Institute of Fundamental Research, Mumbai, India
kavitha@tcs.tifr.res.in

Abstract

In an instance $G=(A \cup B, E)$ of the stable marriage problem with strict and possibly incomplete preference lists, a matching M is popular if there is no matching M^{\prime} where the vertices that prefer M^{\prime} to M outnumber those that prefer M to M^{\prime}. All stable matchings are popular and there is a simple linear time algorithm to compute a maximum-size popular matching. More generally, what we seek is a min-cost popular matching where we assume there is a cost function $c: E \rightarrow \mathbb{Q}$. However there is no polynomial time algorithm currently known for solving this problem. Here we consider the following generalization of a popular matching called a popular half-integral matching: this is a fractional matching $\vec{x}=\left(M_{1}+M_{2}\right) / 2$, where M_{1} and M_{2} are the 0-1 edge incidence vectors of matchings in G, such that \vec{x} satisfies popularity constraints. We show that every popular half-integral matching is equivalent to a stable matching in a larger graph G^{*}. This allows us to solve the min-cost popular half-integral matching problem in polynomial time.

1998 ACM Subject Classification G.2.2 Graph algorithms, G.1.6 Linear programming
Keywords and phrases bipartite graphs, stable matchings, fractional matchings, polytopes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.22

1 Introduction

Let $G=(A \cup B, E)$ be an instance of the stable marriage problem on n vertices and m edges. Each vertex has a strict preference list ranking its neighbors. A matching M is stable if M admits no blocking edge, i.e., an edge (a, b) such that both a and b prefer each other to their respective assignments in M. The existence of stable matchings in G and the Gale-Shapley algorithm [7] to find one are classical results in graph algorithms.

Stability is a very strict condition and here we consider a relaxation of this called popularity. This notion was introduced by Gärdenfors [9] in 1975. We say a vertex $u \in A \cup B$ prefers matching M to matching M^{\prime} if u is matched in M and unmatched in M^{\prime} or it is matched in both and $M(u)$ ranks better than $M^{\prime}(u)$ in u 's preference list. For any two matchings M and M^{\prime} in G, let $\phi\left(M, M^{\prime}\right)$ be the number of vertices that prefer M to M^{\prime}.

Definition 1. A matching M is popular if $\phi\left(M, M^{\prime}\right) \geq \phi\left(M^{\prime}, M\right)$ for every matching M^{\prime} in G, i.e., $\Delta\left(M, M^{\prime}\right) \geq 0$ where $\Delta\left(M, M^{\prime}\right)=\phi\left(M, M^{\prime}\right)-\phi\left(M^{\prime}, M\right)$.

Every stable matching is popular [9]. In fact, it is known that every stable matching is a minimum-size popular matching [10]. In applications such as matching students to projects or applicants to posts, it may be useful to consider a weaker notion (such as popularity) than the total absence of blocking edges for the sake of obtaining larger-sized matchings. Popularity provides "global stability" since a popular matching never loses an election to another matching; by relaxing stability to popularity, we have a larger pool of candidate matchings to choose from in such an application.

[^0]When there is a cost function $c: E \rightarrow \mathbb{Q}$, what we seek is a min-cost popular matching. There are several polynomial time algorithms known [11, 5, 6, 16, 14, 15] for computing a min-cost stable matching in G. However, while a maximum-size popular matching can be computed in linear time [12], no polynomial time algorithm is currently known for computing a min-cost popular matching in an instance $G=(A \cup B, E)$ with strict preference lists, except when preference lists are complete [4].

A fractional matching \vec{p} is a convex combination of matchings, i.e., $\vec{p}=\sum_{i} p_{i} \cdot I\left(M_{i}\right)$ where $\sum_{i} p_{i}=1, p_{i} \geq 0$ for all i, M_{i} 's are matchings in G, and $I(M)$ is the 0-1 edge incidence vector of M. The fractional matching \vec{p} is popular if $\Delta(\vec{p}, M) \geq 0$ for all matchings M in G where $\Delta(\vec{p}, M)=\sum_{i} p_{i} \cdot \Delta\left(M_{i}, M\right)$ (see Definition 1). It follows by linearity that if \vec{p} is a popular fractional matching then $\Delta(\vec{p}, \vec{q}) \geq 0$ for all fractional matchings \vec{q}.

Let \mathcal{P} be the polytope defined by the constraints that \vec{p} belongs to the matching polytope of G and $\Delta(\vec{p}, M) \geq 0$ for all matchings M in G. A simple description of \mathcal{P} was given in [13]. Thus a min-cost popular fractional matching can be computed in polynomial time.

Our results and techniques. Our main result is a polynomial time algorithm to compute a min-cost popular half-integral matching in G. A popular half-integral matching is a vector $\vec{x} \in\left\{0, \frac{1}{2}, 1\right\}^{m} \cap \mathcal{P}$. For any two popular matchings M_{1} and M_{2} in G, the half-integral matching $\left(I\left(M_{1}\right)+I\left(M_{2}\right)\right) / 2$ is popular. However not every popular half-integral matching is a convex combination of popular matchings - we show such an example in Section 2. Thus if \mathcal{Q} is the convex hull of popular half-integral matchings in G, then \mathcal{Q} need not be integral.

We show that every extreme point of \mathcal{Q} is a stable matching in a new (larger) graph G^{*} that we construct here. Thus the min-cost popular half-integral matching problem in G becomes the min-cost stable matching problem in G^{*} which can be solved in polynomial time. This also gives us a simple description of the polytope \mathcal{Q} via the stable matching polytope of G^{*} (i.e., the convex hull of stable matchings in G^{*}).

The main tool that we use here is the description of the polytope \mathcal{P} from [13]. We first show that every stable matching S in the new graph G^{*} can be mapped to a half-integral matching in G whose incidence vector belongs to \mathcal{P}. We then show that every extreme point \vec{p} of the convex hull \mathcal{Q} of popular half-integral matchings in G can be realized as a stable matching in G^{*}. We use the fact that $\vec{p} \in \mathcal{P}$ along with the fact that G is bipartite to show a "helpful witness" $\left(\alpha_{u}\right)_{u \in A \cup B} \in\{ \pm 1,0\}^{n}$. This witness will guide us in building a stable matching S in G^{*} that corresponds to \vec{p}.

A graph G^{\prime}, similar to the graph G^{*} used here, was recently used in [4] to show that any stable matching in G^{\prime} maps to a maximum-size popular matching M in G. However every maximum-size popular matching in G need not be obtained as a stable matching in G^{\prime}. In the special case when preference lists are complete (i.e., G is $K_{|A|,|B|}$), all popular matchings in G can be realized as stable matchings in G^{\prime}. The method used in [4] is similar to the method used in previous algorithms to compute maximum-size popular matchings [10, 12] these show that there is no popularity-improving alternating path or cycle with respect to the matching returned. In contrast, our technique here is based on linear programming.

A min-cost popular half-integral popular matching has applications - consider the problem of assigning projects to students where each project can be split into two half-projects. Each half-project can be assigned to a distinct student and a student can be assigned two halfprojects. A min-cost popular half-integral matching is a feasible assignment here that is popular and has the least cost. While fractional matchings, in general, may not be feasible in typical applications, half-integral matchings are more natural and suitable to applications.

Background. Algorithms for computing popular matchings [1] were first considered in the one-sided preference lists model where it is only vertices in A that have preferences and cast votes while vertices in B have no preferences. Popular matchings need not always exist in this model, however it was shown in [13] that popular fractional matchings always exist and using the description of \mathcal{P}, such a fractional matching can be found in polynomial time (via linear programming).

In the two-sided preference lists model, when preference lists have ties, $G=(A \cup B, E)$ need not always admit a popular matching and it is known that determining if G admits a popular matching or not is an NP-complete problem [2, 3]. When preference lists are strict, every stable matching is popular. The min-cost stable matching problem in an instance $G=(A \cup B, E)$ with strict preference lists is well-studied and descriptions of the stable matching polytope were given by Vande Vate [16], Rothblum [14], and Teo and Sethuraman [15].

We discuss preliminaries in Section 2. Section 3 describes the graph G^{*} and shows that every stable matching in G^{*} is a popular half-integral matching in G. Section 4 shows how every popular half-integral matching in G that is an extreme point of \mathcal{Q} (the popular half-integral matching polytope) can be obtained as a stable matching in G^{*}.

2 Preliminaries

For any vertex $u \in A \cup B$ and neighbors v and w, we will use the following function to show u 's preference for v vs w : vote $_{u}(v, w)=1$ if u prefers v to w, it is -1 if u prefers w to v, else (i.e., when $v=w$) it is 0 . We will be using this function in the description of the popular fractional matching polytope \mathcal{P}.

Recall that a popular fractional matching is a point $\vec{x}=\left(x_{e}\right)_{e \in E}$ in the matching polytope of G such that $\Delta(\vec{x}, M) \geq 0$ for all matchings M in G. It will be convenient to assume that each vertex $u \in A \cup B$ is completely matched in every fractional matching \vec{x} in G. So we will revise \vec{x} so that each vertex u gets matched to an artificial last-resort neighbor $\ell(u)$ (which is placed at the bottom of u 's preference list) with weight $\left(1-\sum_{e \in E(u)} x_{e}\right)$, where the sum is over all the edges e incident on u.

For convenience, we will continue to use \vec{x} to denote the revised \vec{x} in $[0,1]^{m+n}$. We use \tilde{E} to denote the edge set $E \cup\{(u, \ell(u)): u \in A \cup B\}$ and $\tilde{E}(u)$ is the set of edges in \tilde{E} that are incident on u. The following simple description of \mathcal{P} was given in [13]. In the constraints below, a variable α_{u} is associated with each $u \in A \cup B$ and not to last-resort neighbors.

$$
\begin{aligned}
\alpha_{a}+\alpha_{b} & \geq \sum_{\left(a, b^{\prime}\right) \in \tilde{E}(a)} x_{\left(a, b^{\prime}\right)} \cdot \operatorname{vote}_{a}\left(b, b^{\prime}\right)+\sum_{\left(a^{\prime}, b\right) \in \tilde{E}(b)} x_{\left(a^{\prime}, b\right)} \cdot \operatorname{vote}_{b}\left(a, a^{\prime}\right) \quad \forall(a, b) \in \tilde{E} \\
\sum_{u \in A \cup B} \alpha_{u} & =0 \quad \text { and } \quad \sum_{e \in \tilde{E}(u)} x_{e}=1 \quad \forall u \in A \cup B \quad \text { and } \quad x_{e} \geq 0 \quad \forall e \in \tilde{E} .
\end{aligned}
$$

The constraints above arise as the dual to the maximum weight matching problem in the graph \tilde{G}_{x} which is G augmented with last-resort neighbors and with edge set \tilde{E}, where the weight of an edge (a, b) is $\sum_{\left(a, b^{\prime}\right) \in \tilde{E}(a)} x_{\left(a, b^{\prime}\right)} \cdot \operatorname{vote}_{a}\left(b, b^{\prime}\right)+\sum_{\left(a^{\prime}, b\right) \in \tilde{E}(b)} x_{\left(a^{\prime}, b\right)} \cdot \operatorname{vote}_{b}\left(a, a^{\prime}\right)$. The constraint $\sum_{u \in A \cup B} \alpha_{u}=0$ is equivalent to saying that the maximum weight of a matching in \tilde{G}_{x} is 0 , in other words, \vec{x} is popular. We refer the reader to Section 3 of [13] for all the details.

For any fractional matching \vec{x}, if there exists $\vec{\alpha}=\left(\alpha_{u}\right)_{u \in A \cup B}$ such that \vec{x} and $\vec{\alpha}$ satisfy the above constraints, then we say $\vec{x} \in \mathcal{P}$. The vector $\vec{\alpha}$ will be called a witness to \vec{x} 's popularity.

a_{0}	v_{1}		
a_{1}	b_{1}	v_{1}	
a_{2}	b_{1}	b_{2}	
u_{1}	v_{1}	v_{2}	b_{0}
u_{2}	v_{2}	b_{2}	v_{1}

b_{0}	u_{1}			
b_{1}	a_{2}	a_{1}		
b_{2}	a_{2}	u_{2}		
v_{1}	u_{2}	a_{1}	u_{1}	a_{0}
v_{2}	u_{1}	u_{2}		

Figure 1 The above table describes the preference lists of all the men and women in G. Here a_{0} has a single neighbor v_{1} while a_{1} 's top choice is b_{1}, second choice is v_{1} and so on for each vertex.
\mathcal{P} is not integral. We now show an example of a graph G and a fractional matching $\vec{p} \in \mathcal{P}$, however \vec{p} is not a convex combination of popular matchings. Let $A=\left\{a_{0}, a_{1}, a_{2}, u_{1}, u_{2}\right\}$, $B=\left\{b_{0}, b_{1}, b_{2}, v_{1}, v_{2}\right\}$, and the preference lists of vertices are described in Figure 1.

Consider the half-integral matching \vec{p} which has $p_{\left(a_{1}, b_{1}\right)}=p_{\left(a_{2}, b_{2}\right)}=1$ and $p_{e}=\frac{1}{2}$ for $e \in\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right)\right\}$. For any other edge e, we have $p_{e}=0$. This fractional matching belongs to \mathcal{P} by using the following α values: $\alpha_{a_{0}}=\alpha_{b_{0}}=0 ; \alpha_{a_{2}}=\alpha_{b_{1}}=1$; $\alpha_{a_{1}}=\alpha_{b_{2}}=-1$; and $\alpha_{w}=0$ for $w \in\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$.

There is only one way to express \vec{p} as a convex combination of integral matchings, that is, $\vec{p}=\left(I\left(M_{1}\right)+I\left(M_{2}\right)\right) / 2$, where $M_{1}=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$ and $M_{2}=$ $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right)\right\}$. We show below that neither M_{1} nor M_{2} is popular.

The matching $M_{1}^{\prime}=\left\{\left(u_{1}, b_{0}\right),\left(a_{1}, v_{1}\right),\left(a_{2}, b_{1}\right),\left(u_{2}, v_{2}\right)\right\}$ is more popular than M_{1} and the matching $M_{2}^{\prime}=\left\{\left(a_{0}, v_{1}\right),\left(u_{2}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(u_{1}, v_{2}\right)\right\}$ is more popular than M_{2}. Thus \vec{p} is not in the convex hull of popular matchings in G.

The graph G^{\prime}. Our input is a graph $G=(A \cup B, E)$ on n vertices and m edges. Note that there are no last-resort neighbors here - they were added only for the formulation of the polytope \mathcal{P}. Vertices in A and in B are usually referred to as men and women, respectively, and we follow the same convention here.

The construction of the following graph $G^{\prime}=\left(A^{\prime} \cup B^{\prime}, E^{\prime}\right)$, based on G, was shown in [4]. The set A^{\prime} has two copies a_{0} and a_{1} of each man $a \in A$, the men in $\left\{a_{0}: a \in A\right\}$ are called level 0 men of G^{\prime} and those in $\left\{a_{1}: a \in A\right\}$ are called level 1 men of G^{\prime}. The set B^{\prime} consists of all the women in B along with dummy vertices $\cup_{a \in A}\{d(a)\}$, where there is one dummy vertex per man in A. The preference lists of the vertices are as follows:

- each level 0 man a_{0} has the same preference list as the corresponding man a in G except that the dummy vertex $d(a)$ occurs as his least preferred neighbor at the bottom of his preference list
- each level 1 man a_{1} has the same preference list as the corresponding man a in G except that the dummy vertex $d(a)$ occurs as his most preferred neighbor at the top of his preference list
- each dummy vertex $d(a)$ has a_{0} and a_{1} as its neighbors: top choice is a_{0}, followed by a_{1}
- every woman $b \in B$ has the following preference list in G^{\prime} : all her level 1 neighbors (in the same order of preference as in G) followed by all her level 0 neighbors (in the same order of preference as in G).

We will be using this graph G^{\prime} here; in fact, we will have two such graphs G^{\prime} and $G^{\prime \prime}$ combining to form our new graph G^{*}. The graph $G^{\prime \prime}$ is analogous to the graph G^{\prime} except that the roles of men and women (and also that of levels 0 and 1) are swapped here.

Figure 2 The graph G^{\prime} on the left and the graph $G^{\prime \prime}$ on the right in G^{*}. For $i=0,1$, we use A_{i}^{\prime} to refer to level i men in G^{\prime} and we use $B_{i}^{\prime \prime}$ to refer to level i women in $G^{\prime \prime}$.

3 The graph G^{*}

We define the graph G^{*} as follows: G^{*} consists of two vertex-disjoint subgraphs G^{\prime} and $G^{\prime \prime}$ (see Figure 2). The graph G^{\prime} was described in Section 2.

In the graph $G^{\prime \prime}=\left(B^{\prime \prime} \cup A^{\prime \prime}, E^{\prime \prime}\right)$, women are on the left side of $G^{\prime \prime}$ and men are on the right side - the set $B^{\prime \prime}$ has two copies b_{0} and b_{1} of each woman $b \in B$, the women in $\left\{b_{0}: b \in B\right\}$ are called level 0 women of $G^{\prime \prime}$ and those in $\left\{b_{1}: b \in B\right\}$ are called level 1 women of $G^{\prime \prime}$

The set $A^{\prime \prime}$ consists of all the men in A along with new dummy vertices $\cup_{b \in B}\{d(b)\}$, where there is one dummy vertex per woman in B. The preference lists of the vertices are as follows:

- each level 0 woman b_{0} has the same preference list as the corresponding woman b in G except that the dummy vertex $d(b)$ occurs as her most preferred neighbor at the top of her preference list
- each level 1 woman b_{1} has the same preference list as the corresponding woman b in G except that the dummy vertex $d(b)$ occurs as her least preferred neighbor at the bottom of her preference list
- each dummy vertex $d(b)$ has only b_{0} and b_{1} as its neighbors: its top choice is b_{1}, followed by b_{0}
- every man $a \in A$ has the following preference list in $G^{\prime \prime}$: all his level 0 neighbors (in the same order of preference as in G) followed by all his level 1 neighbors (in the same order of preference as in G).

We want all stable matchings in G^{*} to be perfect matchings - note that all level 0 men in G^{\prime} and all level 1 women in $G^{\prime \prime}$ will be matched in any stable matching in G^{*} since they are top-choice neighbors for their respective dummy neighbors. However the same cannot be said about level 1 men in G^{\prime} and level 0 women in $G^{\prime \prime}$.

In order to take care of these vertices, we add the following "self-loop" edges to G^{*} : the edge $\left(a_{1}, a\right)$ for each man a in A, where $a_{1} \in A_{1}^{\prime}$ and $a \in A^{\prime \prime}$, and the edge $\left(b_{0}, b\right)$ for each woman b in B, where $b_{0} \in B_{0}^{\prime \prime}$ and $b \in B^{\prime}$. The vertex $a_{1} \in A_{1}^{\prime}$ regards $a \in A^{\prime \prime}$ as his worst ranked neighbor and similarly, $b_{0} \in B_{0}^{\prime \prime}$ regards $b \in B^{\prime}$ as her worst ranked neighbor.

For any man $a \in A^{\prime \prime}$, the vertex a_{1} is in the middle of his preference list, sandwiched between all his level 0 neighbors and all his level 1 neighbors as shown in (1) below. More
precisely, a_{1} is sandwiched between $b_{0}^{\prime \prime}$ and b_{1}^{\prime}, where $b^{\prime}>\cdots>b^{\prime \prime}$ is a 's preference list in G. Thus $b_{0}^{\prime \prime}$ is a 's worst level 0 neighbor and b_{1}^{\prime} is a 's best level 1 neighbor.

$$
\begin{equation*}
a: b_{0}^{\prime}>\cdots>b_{0}^{\prime \prime}>\underline{a_{1}}>b_{1}^{\prime}>\cdots>b_{1}^{\prime \prime} ; \quad b: a_{1}^{\prime}>\cdots>a_{1}^{\prime \prime}>\underline{b_{0}}>a_{0}^{\prime}>\cdots>a_{0}^{\prime \prime} . \tag{1}
\end{equation*}
$$

Similarly, for any woman $b \in B^{\prime}$, the vertex b_{0} is in the middle of her preference list, sandwiched between all her level 1 neighbors and all her level 0 neighbors as shown in (1). More precisely, b_{0} is sandwiched between $a_{1}^{\prime \prime}$ and a_{0}^{\prime}, where $a^{\prime}>\cdots>a^{\prime \prime}$ is b 's preference list in G. Using the fact that all stable matchings in G^{*} match the same set of vertices [8], it can be shown that every stable matching in G^{*} is perfect.

The function \boldsymbol{f}. We now define a function $f:\left\{\right.$ stable matchings in $\left.G^{*}\right\} \rightarrow\{$ half-integral matchings in G \}. Observe that every stable matching in G^{*} has to match all dummy vertices since each of these is a top-choice neighbor for someone. Thus out of a_{0} and a_{1} in A^{\prime}, only one is matched to a non-dummy neighbor and similarly, out of b_{0} and b_{1} in $B^{\prime \prime}$, only one is matched to a non-dummy neighbor.

Let S be any stable matching in G^{*}. By removing all self-loops that occur in S and those edges in S that contain a dummy vertex, the resulting matching is the union of two matchings S^{\prime} and $S^{\prime \prime}$ in G. We define $f(S)$ to be $\left(I\left(S^{\prime}\right)+I\left(S^{\prime \prime}\right)\right) / 2$, where $I(M) \in\{0,1\}^{m}$ is the 0-1 edge incidence vector of M. So $f(S)$ is a valid half-integral matching in G.

- Theorem 2. For any stable matching S in G^{*}, the half-integral matching $f(S)$ is popular in G.

Proof. We are given a stable matching S in G^{*}. Recall that we pruned all edges that contain a dummy vertex and all self-loops from S to define $f(S)$. We now prune all dummy vertices, their partners in S, and self-loops from G^{*} also - let H^{*} denote the pruned graph G^{*}. Let H^{\prime} denote the pruned subgraph G^{\prime} and let $H^{\prime \prime}$ denote the pruned subgraph $G^{\prime \prime}$.

The men in the graph H^{\prime} consist of one copy of each $a \in A$ - some of these are in level 0 and the rest are in level 1. The women in H^{\prime} are exactly those in B. The women in $H^{\prime \prime}$ consist of one copy of each $b \in B$ - some of these are in level 0 and the rest are in level 1 . The men in $H^{\prime \prime}$ are exactly those in A. Thus H^{\prime} and $H^{\prime \prime}$ are two copies of the graph G.

Let S^{\prime} be the pruned matching (resulting from S) restricted to H^{\prime} and let $S^{\prime \prime}$ be the pruned matching (resulting from S) restricted to $H^{\prime \prime}$. Let \tilde{A}_{i}^{\prime} denote the set of level i men in H^{\prime}, for $i=0,1$ (see Figure 3). Let \tilde{B}_{i}^{\prime} consist of women matched in S^{\prime} to men in \tilde{A}_{i}^{\prime}, for $i=0,1$. Women unmatched in S^{\prime} are added to \tilde{B}_{1}^{\prime}.

Similarly, $\tilde{B}_{i}^{\prime \prime}$ consists of level i women in the $H^{\prime \prime}$ part of H^{*} and $\tilde{A}_{i}^{\prime \prime}$ denotes the set of men matched in $S^{\prime \prime}$ to women in $\tilde{B}_{i}^{\prime \prime}$, for $i=0,1$. Men unmatched in $S^{\prime \prime}$ are added to $\tilde{A}_{0}^{\prime \prime}$.

For each edge $e=(a, b) \in H^{\prime}$, define the function $w^{\prime}(e)$ as follows: $w^{\prime}(e)=\operatorname{vote}_{a}\left(b, S^{\prime}(a)\right)$ $+\operatorname{vote}_{b}\left(a, S^{\prime}(b)\right)$. If $S^{\prime}(u)$ is undefined for any vertex u, then $\operatorname{vote}_{u}\left(v, S^{\prime}(u)\right)=1$ for any neighbor v of u since every vertex prefers being matched to being unmatched. Note that if $(a, b) \in S^{\prime}$ then $w^{\prime}(e)=0$.

Similarly, for each edge $e=(a, b) \in H^{\prime \prime}$, define the function $w^{\prime \prime}(e)$ as follows: $w^{\prime \prime}(e)=$ $\operatorname{vote}_{a}\left(b, S^{\prime \prime}(a)\right)+\operatorname{vote}_{b}\left(a, S^{\prime \prime}(b)\right)$. For any vertex u that is unmatched in $S^{\prime \prime}$, we take $\operatorname{vote}_{u}\left(v, S^{\prime \prime}(u)\right)=1$, for any neighbor v of u. Note that $w^{\prime}(e)$ and $w^{\prime \prime}(e)$ always take values in $\{-2,0,2\}$. Due to the stability of the matching S in G^{*}, the following observations hold:

- Every edge $e \in \tilde{A}_{1}^{\prime} \times \tilde{B}_{0}^{\prime}$ has to satisfy $w^{\prime}(e)=-2$. Similarly, every edge $e \in \tilde{A}_{1}^{\prime \prime} \times \tilde{B}_{0}^{\prime \prime}$ has to satisfy $w^{\prime \prime}(e)=-2$.

Figure 3 The graph H^{\prime} on the left and the graph $H^{\prime \prime}$ on the right in the graph H^{*}.

Consider an edge $\left(a_{1}, b\right)$ in $\tilde{A}_{1}^{\prime} \times \tilde{B}_{0}^{\prime}$. It follows from the definition of preference lists of women in G^{\prime} that the woman b prefers a_{1} (a level 1 man) to her partner $S^{\prime}(b)$ (a level 0 man). Since S is stable, it follows that a_{1} prefers his partner $S^{\prime}\left(a_{1}\right)$ to b. Moreover, a_{0} prefers b to $S^{\prime}\left(a_{0}\right)=d(a)$, since $d(a)$ is a_{0} 's last choice. Thus b prefers her partner $S^{\prime}(b)$ to a_{0}. So $\operatorname{vote}_{a}\left(b, S^{\prime}(a)\right)=\operatorname{vote}_{b}\left(a, S^{\prime}(b)\right)=-1$. A similar proof holds for any edge $e \in \tilde{A}_{1}^{\prime \prime} \times \tilde{B}_{0}^{\prime \prime}$.

- Every edge e such that $w^{\prime}(e)=2$ has to be in $\tilde{A}_{0}^{\prime} \times \tilde{B}_{1}^{\prime}$. Similarly, every edge e such that $w^{\prime \prime}(e)=2$ has to be in $\tilde{A}_{0}^{\prime \prime} \times \tilde{B}_{1}^{\prime \prime}$.

If e is an edge in H^{\prime} such that $w^{\prime}(e)=2$, then $e \notin \tilde{A}_{i}^{\prime} \times \tilde{B}_{i}^{\prime}$ (for $i=0,1$) as such an edge would block S. We have already seen that any edge $e \in \tilde{A}_{1}^{\prime} \times \tilde{B}_{0}^{\prime}$ satisfies $w^{\prime}(e)=-2$. Thus any edge e such that $w^{\prime}(e)=2$ has to be in $\tilde{A}_{0}^{\prime} \times \tilde{B}_{1}^{\prime}$. We can similarly show that any edge e in $H^{\prime \prime}$ such that $w^{\prime \prime}(e)=2$ has to be in $\tilde{A}_{0}^{\prime \prime} \times \tilde{B}_{1}^{\prime \prime}$.

We will now show that $f(S) \in \mathcal{P}$ by assigning appropriate α_{u} values for all u in $A \cup B$. We first define α_{u}^{\prime} and $\alpha_{u}^{\prime \prime}$:

- let $\alpha_{u}^{\prime}=-1$ if $u \in \tilde{A}_{1}^{\prime} \cup \tilde{B}_{0}^{\prime}$ and let $\alpha_{u}^{\prime}=1$ if $u \in \tilde{A}_{0}^{\prime} \cup \tilde{B}_{1}^{\prime}$.
- let $\alpha_{u}^{\prime \prime}=-1$ if $u \in \tilde{A}_{1}^{\prime \prime} \cup \tilde{B}_{0}^{\prime \prime}$ and let $\alpha_{u}^{\prime \prime}=1$ if $u \in \tilde{A}_{0}^{\prime \prime} \cup \tilde{B}_{1}^{\prime \prime}$.

The following is an immediate corollary of the above observations and the definitions of α_{u}^{\prime} and $\alpha_{u}^{\prime \prime}: \alpha_{a}^{\prime}+\alpha_{b}^{\prime} \geq w^{\prime}(a, b)$ and $\alpha_{a}^{\prime \prime}+\alpha_{b}^{\prime \prime} \geq w^{\prime \prime}(a, b)$ for all edges (a, b). Also for any vertex u that is unmatched in S^{\prime} and $S^{\prime \prime}$, we have $\alpha_{u}^{\prime}+\alpha_{u}^{\prime \prime}=0$.

Define $\alpha_{u}=\left(\alpha_{u}^{\prime}+\alpha_{u}^{\prime \prime}\right) / 2$ for all $u \in A \cup B$. Observe that $\sum_{u: A \cup B} \alpha_{u}=0$. The above constraints imply that $\left(\alpha_{u}\right)_{u \in A \cup B}$ and the incidence vector of $f(S)$ satisfy the constraints of the polytope \mathcal{P}. Thus $f(S)$ is a popular half-integral matching.

4 Constructing a stable matching in G^{*}

We showed in the previous section that f maps stable matchings in G^{*} to popular half-integral matchings in G. In fact, $f(S)$ is what we will call a full half-integral matching, i.e., for every vertex $u \in A \cup B$, either u is fully matched in $f(S)$ or it is fully unmatched in $f(S)$. Let $\vec{p} \in\left\{0, \frac{1}{2}, 1\right\}^{m}$ be a full half-integral matching that is popular. Since $\vec{p} \in \mathcal{P}$, there exists a witness $\left(\alpha_{u}\right)_{u \in A \cup B}$ to \vec{p} s popularity. The following lemma will be useful to us.

- Lemma 3. There exists a witness $\left(\alpha_{u}\right)_{u \in A \cup B}$ to \vec{p} 's popularity such that $\alpha_{u} \in\{ \pm 1,0\}$, for each $u \in A \cup B$.

Proof. In order to show such a witness, we will consider the following linear program:

$$
\begin{equation*}
\operatorname{minimize} \sum_{u \in A \cup B} \alpha_{u} \tag{LP1}
\end{equation*}
$$

subject to

$$
\alpha_{a}+\alpha_{b} \geq \sum_{\left(a, b^{\prime}\right) \in \tilde{E}(a)} p_{\left(a, b^{\prime}\right)} \cdot \operatorname{vote}_{a}\left(b, b^{\prime}\right)+\sum_{\left(a^{\prime}, b\right) \in \tilde{E}(b)} p_{\left(a^{\prime}, b\right)} \cdot \operatorname{vote}_{b}\left(a, a^{\prime}\right) \forall(a, b) \in \tilde{E}
$$

Recall that \tilde{E} is the set $E \cup\{(u, \ell(u)): u \in A \cup B\}$, where $\ell(u)$ is the artificial last-resort neighbor of vertex u. In the above constraints, let us denote the right hand side quantity corresponding to edge e by value ${ }_{p}(e)$. Since \vec{p} is a full half-integral matching, it is easy to see that value $_{p}(e)$ is integral for all edges e.

Consider the polyhedron defined by the above constraints $N \cdot \vec{\alpha} \geq \vec{c}$, where N is the above $(m+n) \times n$ constraint matrix, $\vec{\alpha}$ is the column of unknowns α_{u}, for $u \in A \cup B$, and \vec{c} is the column vector of value (\cdot) values. The top $m \times n$ sub-matrix of N is the edge-vertex incidence matrix U of the graph G and the bottom $n \times n$ matrix is the identity matrix I. Since the graph G is bipartite, the matrix U is totally unimodular and hence the matrix N is totally unimodular. Since \vec{c} is an integral vector, it follows that all the vertices of $N \cdot \vec{\alpha} \geq \vec{c}$ are integral.

Thus there is an integral optimal solution to (LP1), call it $\vec{\alpha}^{*}$. We need to now show that $\vec{\alpha}^{*} \in\{ \pm 1,0\}^{n}$. It follows from the constraints corresponding to the edges $(u, \ell(u))$ that $\alpha_{u}^{*} \geq-1$ if u is matched in \vec{p} and $\alpha_{u}^{*} \geq 0$ for u unmatched in \vec{p}. We now show the following claim.

- Claim 4. Let $e=(a, b)$ be any edge such that $p_{e}>0$. Then the constraint in (LP1) corresponding to e is tight, i.e., $\alpha_{a}^{*}+\alpha_{b}^{*}=\operatorname{value}_{p}(e)$.

Proof. Consider the dual program of (LP1): it is the maximum weight matching problem in the graph G augmented with last-resort neighbors and with edge set \tilde{E}, where the weight of edge e is value ${ }_{p}(e)$. A maximum weight matching in this graph has weight 0 (because \vec{p} is popular). Since $\Delta(\vec{p}, \vec{p})=0$, the fractional matching \vec{p} is an optimal dual solution. It follows from complementary slackness conditions that if $p_{(a, b)}>0$, then the constraint in (LP1) for edge (a, b) is tight.

Observe that for any vertex u, there has to be an edge e incident on it with $p_{e}>0$ and either value ${ }_{p}(e)=0$ or value $(e)=-1$ (the edge e between u and its worse partner v in \vec{p}). Using Claim 4 and the fact that $\alpha_{v}^{*} \geq-1$, we can now conclude that $\alpha_{u}^{*} \leq 1$.

We will use the above lemma to show the following theorem in this section.

- Theorem 5. Let $\vec{p} \in\left\{0, \frac{1}{2}, 1\right\}^{m}$ be a full half-integral matching that is popular. Then $\vec{p}=f(S)$ for some stable matching S in G^{*}.

We will now build a stable matching S in the graph G^{*} such that $f(S)=\vec{p}$. For every edge $e=(a, b)$ such that $p_{e}>0$, we need to decide which of the edges $\left(a_{0}, b\right),\left(a_{1}, b\right),\left(b_{0}, a\right),\left(b_{1}, a\right)$ will get included in S. In order to make this decision, we will build a graph H^{*}. The graph H^{*} consists of two copies H^{\prime} and $H^{\prime \prime}$ of the input graph G.

Every vertex $u \in A \cup B$ gets assigned a level, denoted by level' (u), in H^{\prime}. For $a \in A$, $\operatorname{level}^{\prime}(a)=i$ fixes $a_{i} \in\left\{a_{0}, a_{1}\right\}$ to be the one that will be matched to a woman (i.e., a non-dummy vertex) in S. For $b \in B$, we say level ${ }^{\prime}(b)=i$ to fix b getting matched to some level i man in H^{\prime}. We will say u is in level i in H^{\prime} to mean level ${ }^{\prime}(u)=i$.

Figure 4 Since $\alpha_{a}^{*}=1$ and $\alpha_{b^{\prime}}^{*}=-1$, we have level $(a)=$ level $^{\prime}\left(b^{\prime}\right)=0$ and similarly, level ${ }^{\prime \prime}(a)=$ level' ${ }^{\prime \prime}\left(b^{\prime}\right)=0$. Since $\alpha_{b}^{*}=\alpha_{a^{\prime}}^{*}=0$, we have level' $(b)=$ level $^{\prime}\left(a^{\prime}\right)=1$ and similarly, level ${ }^{\prime \prime}(b)=$ level' ${ }^{\prime \prime}\left(a^{\prime}\right)=0$. So we place a and b^{\prime} in level 0 in both H and H^{\prime} and we place a^{\prime} and b in level 1 in H^{\prime} and in level 0 in $H^{\prime \prime}$.

Similarly, every vertex $u \in A \cup B$ gets assigned a level, denoted by level ${ }^{\prime \prime}(u)$, in $H^{\prime \prime}$. For $b \in B$, level" $(b)=j$ fixes $b_{j} \in\left\{b_{0}, b_{1}\right\}$ to be the one that will be matched to a man (i.e., a non-dummy vertex) in S. For $a \in A$, we say level" $(a)=j$ to fix a getting matched to some level j woman in $H^{\prime \prime}$. We will say u is in level j in $H^{\prime \prime}$ to mean level ${ }^{\prime \prime}(u)=j$.

Since \vec{p} is a full half-integral matching that is popular, we know from Lemma 3 that there exists a witness $\vec{\alpha}^{*}=\left(\alpha_{u}^{*}\right)_{u \in A \cup B}$ in $\{-1,0,1\}^{n}$ to the popularity of \vec{p}. We will use $\vec{\alpha}^{*}$ to fix level ${ }^{\prime}(u)$ and level' (u) for each vertex u as follows.

- $\alpha_{u}^{*}=-1$: If $u \in A$ then level ${ }^{\prime}(u)=$ level $^{\prime \prime}(u)=1$. If $u \in B$ then level ${ }^{\prime}(u)=$ level $^{\prime \prime}(u)=0$.
- $\alpha_{u}^{*}=1$: If $u \in A$ then level ${ }^{\prime}(u)=$ level $^{\prime \prime}(u)=0$. If $u \in B$ then $\operatorname{level}^{\prime}(u)=\operatorname{level}^{\prime \prime}(u)=1$.
- $\alpha_{u}^{*}=0$: For all $u \in A \cup B$, level ${ }^{\prime}(u)=1$ and $\operatorname{level}^{\prime \prime}(u)=0$.

As an example, consider the 4 -cycle G on 2 men a, a^{\prime} and 2 women b, b^{\prime} where both a and a^{\prime} prefer b to b^{\prime} and both b and b^{\prime} prefer a to a^{\prime}. Let \vec{p} be the half-integral matching with $p_{e}=1 / 2$ for each edge e. This is popular and $\alpha_{a}^{*}=1, \alpha_{b}^{*}=\alpha_{a^{\prime}}^{*}=0$, and $\alpha_{b^{\prime}}^{*}=-1$ is a witness to \vec{p} s popularity. Figure 4 shows how these vertices get placed in H^{\prime} and in $H^{\prime \prime}$.

For any vertex u, let v and v^{\prime} be its neighbors in G such that \vec{p} has positive support on (u, v) and $\left(u, v^{\prime}\right)$. We will refer to v and v^{\prime} as partners of u in \vec{p}. We need to show that either (i) level ${ }^{\prime}(u)=$ level $^{\prime}(v)$ and level' ${ }^{\prime \prime}(u)=$ level $^{\prime \prime}\left(v^{\prime}\right)$, or (ii) level ${ }^{\prime}(u)=$ level $^{\prime}\left(v^{\prime}\right)$ and level ${ }^{\prime \prime}(u)=$ level' ${ }^{\prime \prime}(v)$. In other words, we need to show that u, v are level-compatible in one of $H^{\prime}, H^{\prime \prime}$ and u, v^{\prime} are level-compatible in the other graph in $H^{\prime}, H^{\prime \prime}$.

We will now show that our allocation of levels to men and women based on their α^{*}-values ensures this. If $v=v^{\prime}$ then $p_{(u, v)}=1$ and the (tight) constraint for edge (u, v) in the description of \mathcal{P} is $\alpha_{u}^{*}+\alpha_{v}^{*}=0$. Thus $\left(\alpha_{u}^{*}, \alpha_{v}^{*}\right)$ has to be one of $(1,-1),(0,0),(-1,1)$: in all three cases we have level-compatibility in both H^{\prime} and $H^{\prime \prime}$. The following lemma shows that even when u has two distinct partners v and v^{\prime} in \vec{p}, there is level-compatibility.

Lemma 6. Every vertex that has two distinct partners in \vec{p} is level-compatible in H^{\prime} with one partner and is level-compatible in $H^{\prime \prime}$ with another partner.

Proof. We will show this lemma for any vertex $b \in B$. An analogous proof holds for any vertex in A. Let $a \neq a^{\prime}$ be the partners of b in \vec{p} and let b prefer a to a^{\prime}. We know that $p_{(a, b)}=p_{\left(a^{\prime}, b\right)}=1 / 2$. Since \vec{p} is a full half-integral matching, a (similarly, a^{\prime}) has another neighbor $r(a)$ (resp., $r\left(a^{\prime}\right)$) with positive support in \vec{p}. We have four cases depending on how a and a^{\prime} rank b versus $r(a)$ and $r\left(a^{\prime}\right)$, respectively.

1. If both a and a^{\prime} prefer $r(a)$ and $r\left(a^{\prime}\right)$ respectively to b, then value ${ }_{p}(a, b)=-\frac{1}{2}+\frac{1}{2}=0$ and value $_{p}\left(a^{\prime}, b\right)=-\frac{1}{2}-\frac{1}{2}=-1$. By Claim 4, we know that $\alpha_{a}^{*}+\alpha_{b}^{*}=0$ and $\alpha_{a^{\prime}}^{*}+\alpha_{b}^{*}=-1$. So $\left(\alpha_{a}^{*}, \alpha_{b}^{*}, \alpha_{a^{\prime}}^{*}\right)$ is either $(1,-1,0)$ or $(0,0,-1)$.

- In the former case level ${ }^{\prime}(a)=$ level $^{\prime}(b)=0$ and level ${ }^{\prime \prime}\left(a^{\prime}\right)=$ level ${ }^{\prime \prime}(b)=0$.
- In the latter case level ${ }^{\prime}\left(a^{\prime}\right)=$ level $^{\prime}(b)=1$ and level ${ }^{\prime \prime}(a)=$ level $^{\prime \prime}(b)=0$.

2. If both a and a^{\prime} prefer b to $r(a)$ and $r\left(a^{\prime}\right)$ respectively, then value ${ }_{p}(a, b)=\frac{1}{2}+\frac{1}{2}=1$ and value $_{p}\left(a^{\prime}, b\right)=\frac{1}{2}-\frac{1}{2}=0$. By Claim 4, we know that $\alpha_{a}^{*}+\alpha_{b}^{*}=1$ and $\alpha_{a^{\prime}}^{*}+\alpha_{b}^{*}=0$. So $\left(\alpha_{a}^{*}, \alpha_{b}^{*}, \alpha_{a^{\prime}}^{*}\right)$ is either $(0,1,-1)$ or $(1,0,0)$.

- In the former case level ${ }^{\prime}(a)=$ level $^{\prime}(b)=1$ and level ${ }^{\prime \prime}\left(a^{\prime}\right)=$ level $^{\prime \prime}(b)=1$.
- In the latter case level ${ }^{\prime}\left(a^{\prime}\right)=$ level $^{\prime}(b)=1$ and level' $(a)=$ level $^{\prime \prime}(b)=0$.

3. If a prefers b to $r(a)$ while a^{\prime} prefers $r\left(a^{\prime}\right)$ to b, then value $(a, b)=\frac{1}{2}+\frac{1}{2}=1$ and value $_{p}\left(a^{\prime}, b\right)=-\frac{1}{2}-\frac{1}{2}=-1$. By Claim 4, we know that $\alpha_{a}^{*}+\alpha_{b}^{*}=1$ and $\alpha_{a^{\prime}}^{*}+\alpha_{b}^{*}=-1$. So $\left(\alpha_{a}^{*}, \alpha_{b}^{*}, \alpha_{a^{\prime}}^{*}\right)$ is $(1,0,-1)$.

- $\operatorname{Here~level~}^{\prime}\left(a^{\prime}\right)=$ level $^{\prime}(b)=1$ and $\operatorname{level}^{\prime \prime}(a)=$ level $^{\prime \prime}(b)=0$.

4. If a prefers $r(a)$ to b while a^{\prime} prefers b to $r\left(a^{\prime}\right)$, then value $(a, b)=-\frac{1}{2}+\frac{1}{2}=0$ and value $_{p}\left(a^{\prime}, b\right)=\frac{1}{2}-\frac{1}{2}=0$. By Claim 4, we know that $\alpha_{a}^{*}+\alpha_{b}^{*}=0$ and $\alpha_{a^{\prime}}^{*}+\alpha_{b}^{*}=0$. So $\left(\alpha_{a}^{*}, \alpha_{b}^{*}, \alpha_{a^{\prime}}^{*}\right)$ is $(1,-1,1)$ or $(0,0,0)$ or $(-1,1,-1)$.

- In the first case, all three vertices a, b, and a^{\prime} are in level 0 in both H^{\prime} and $H^{\prime \prime}$.
- In the second case, all three vertices are in level 1 in H^{\prime} and in level 0 in $H^{\prime \prime}$.
- In the third case, all three vertices are in level 1 in both H^{\prime} and $H^{\prime \prime}$.

For any vertex u with partners v and v^{\prime} in \vec{p}, where u prefers v to v^{\prime}, we call v the better partner of u and v^{\prime} the worse partner of u. If $p_{(a, b)}=1$ for some edge (a, b), then we regard a as both the better partner and the worse partner of b.

We are now ready to describe the construction of our matching S. We give the following two pairing rules for any $b \in B$ (let a be b 's better partner and a^{\prime} be b 's worse partner):

1. if $\alpha_{b}^{*} \in\{ \pm 1\}$ then pair b with a in H^{\prime} and with a^{\prime} in $H^{\prime \prime}$.
2. if $\alpha_{b}^{*}=0$ then pair b with a^{\prime} in H^{\prime} and with a in $H^{\prime \prime}$.

More precisely, if $\alpha_{b}^{*}=-1$ then we include $\left(a_{0}, b\right)$ and $\left(b_{0}, a^{\prime}\right)$ in S; if $\alpha_{b}^{*}=1$ then we include $\left(a_{1}, b\right)$ and $\left(b_{1}, a^{\prime}\right)$ in S; and if $\alpha_{b}^{*}=0$ then we include $\left(a_{1}^{\prime}, b\right)$ and $\left(b_{0}, a\right)$ in S.

Note that the above rules for pairing vertices follow from the proof of Lemma 6. A woman b with $\alpha_{b}^{*}=-1$ (similarly, $\alpha_{b}^{*}=1$) is level-compatible with her better partner in level 0 (resp., level 1) in H^{\prime} and with her worse partner in level 0 (resp., level 1) in $H^{\prime \prime}$. Similarly, if $\alpha_{b}^{*}=0$ then b is level-compatible with her worse partner in level 1 in H^{\prime} and with her better partner in level 0 in $H^{\prime \prime}$.

Thus level-compatibility unambiguously fixes for us in which of H, H^{\prime} a vertex gets paired with which partner till we are left with a set T of vertices forming a cycle: each vertex in T has both its partners in T, and all these vertices are in the same level in both H^{\prime} and $H^{\prime \prime}$. We again know from the proof of Lemma 6 that this happens only when $\left(\alpha_{a}^{*}, \alpha_{b}^{*}\right) \in\{(1,-1),(0,0),(-1,1)\}$ for each edge (a, b) in this cycle. The cycle can be resolved as per the two rules above (which is what our algorithm for constructing S does). Thus rule 1 and rule 2 given above always work.

As the last step, we add the dummy vertices to H^{\prime} and $H^{\prime \prime}$. We also add the inactive men and women (the ones who will get matched to dummy vertices in S). We now add to S the edges $\left(a_{j}, d(a)\right)$ for all inactive men a_{j} and similarly, the edges $\left(b_{j}, d(b)\right)$ for all inactive women b_{j}. We also add self-loops to match each unmatched vertex with its copy on the other side, i.e., we add the edges $\left(a_{1}, a\right)$ for each $a \in A$ that is unmatched in \vec{p} and the edges $\left(b_{0}, b\right)$
for each $b \in B$ that is unmatched in \vec{p}. Thus the final matching S is a perfect matching in the graph G^{*} and it follows from the construction of S that $f(S)=\vec{p}$.

In order to prove that the matching S is stable in G^{*}, we show in Lemmas 7 and 8 that S has no blocking edge in G^{\prime}. We can similarly show that S admits no blocking edge in $G^{\prime \prime}$. Regarding the other edges in G^{*}, no self-loop $\left(a_{1}, a\right)$ or $\left(b_{0}, b\right)$ can be a blocking edge since a is the least preferred neighbor of a_{1} and similarly, b is the least preferred neighbor of b_{0}. Similarly, since the dummy vertex $d(a)$ is the least preferred neighbor of a_{0} and since a_{1} is the least preferred neighbor of $d(a)$, no edge $\left(a_{i}, d(a)\right)$ can block S. It is the same with edges $\left(b_{i}, d(b)\right)$, for $i=0,1$. Hence S is a stable matching in G^{*} and Theorem 5 follows.

- Lemma 7. Let $a \in A$ be in level 0 in H^{\prime} and b be any neighbor of a in G. Neither edge $\left(a_{0}, b\right)$ nor edge $\left(a_{1}, b\right)$ in G^{\prime} can block S.

Proof. The following are the three cases that we need to consider here and show that none is a blocking edge to S :

1. the edge $\left(a_{1}, b\right)$,
2. the edge $\left(a_{0}, b\right)$ where b is in level 1 in H^{\prime},
3. the edge $\left(a_{0}, b\right)$ where b is in level 0 in H^{\prime}.

Consider Case 1. Since a is in level 0 in H^{\prime}, the vertex a_{1} is matched to $d(a)$ in S. Since $d(a)$ is a_{1} 's most preferred neighbor, it follows that the edge $\left(a_{1}, b\right)$ cannot block S for any neighbor b.

Consider Case 2. The woman b is in level 1 and this implies that $S(b)$ is a level 1 vertex in H^{\prime}. Since b prefers any level 1 neighbor to a level 0 neighbor in G^{\prime}, it follows that b prefers $S(b)$ to a_{0}, thus $\left(a_{0}, b\right)$ cannot block S.

Consider Case 3. Since both a and b are in level 0 in H^{\prime}, we have $\alpha_{a}^{*}=1$ and $\alpha_{b}^{*}=-1$. These α^{*}-values and $p_{(a, b)}$ satisfy the constraint corresponding to edge (a, b) in the description of the popular matching polytope \mathcal{P}. Thus we have $0 \geq$ value $_{p}(a, b)$, where value ${ }_{p}(a, b)$ is the right hand side of the constraint for (a, b) in \mathcal{P}. The following sub-cases can occur here (since value ${ }_{p}(a, b) \leq 0$):
(i) both the partners of a are better than b or both the partners of b are better than a
(ii) $p_{(a, b)}=1 / 2$ and either a regards its other partner better than b or vice-versa
(iii) a has one partner better than b and the other worse than b and similarly, b has one partner better than a and the other worse than a
Sub-case (i) is straightforward and it is easy to see that $\left(a_{0}, b\right)$ does not block S here. In sub-cases (ii) and (iii), we know that a woman b with $\alpha_{b}^{*}=-1$ gets matched to her better partner in H^{\prime}. Thus in sub-case (ii) either b is matched to a (if a is b 's better partner) or to a partner that b prefers to a. Similarly, in sub-case (iii), b gets matched to a neighbor that she prefers to a, thus $\left(a_{0}, b\right)$ does not block S in any of these cases. This completes the proof of Lemma 7.

Lemma 8. Let $a \in A$ be in level 1 in H^{\prime} and b be any neighbor of a in G. Neither edge $\left(a_{0}, b\right)$ nor edge $\left(a_{1}, b\right)$ in G^{\prime} can block S.

Proof. The following are the three cases that we need to consider here and show that none is a blocking edge to S :

1. the edge $\left(a_{0}, b\right)$,
2. the edge $\left(a_{1}, b\right)$ where b is in level 0 in H^{\prime},
3. the edge $\left(a_{1}, b\right)$ where b is in level 1 in H^{\prime}.

Consider Case 1. When b is in level 1 in H^{\prime}, she is matched to a level 1 man; since b prefers any level 1 neighbor to a level 0 neighbor in G^{\prime}, it follows that b prefers $S(b)$ to a_{0}, thus $\left(a_{0}, b\right)$ cannot block S.

Let us consider the case when b is in level 0 in H^{\prime}. So $\alpha_{b}^{*}=-1$. Since a is in level 1 in H^{\prime}, we have either $\alpha_{a}^{*}=-1$ or $\alpha_{a}^{*}=0$. So value $(a, b) \leq-1$. Hence b prefers her better partner to a and since b satisfies $\alpha_{b}^{*}=-1$, she gets matched to her better partner in H^{\prime}. Thus $\left(a_{0}, b\right)$ does not block S.

Consider Case 2. We will show that a_{1} prefers his partner $S\left(a_{1}\right)$ to b. Either (i) $\alpha_{a}^{*}=-1$ in which case value $(a, b) \leq-2$ or (ii) $\alpha_{a}^{*}=0$ in which case value $e_{p}(a, b) \leq-1$.

In case (i), vote ${ }_{a}\left(b, S\left(a_{1}\right)\right)=-1$ and so a prefers $S\left(a_{1}\right)$ to b. In case (ii), vote ${ }_{a}\left(b, S\left(a_{1}\right)\right) \leq 0$ and so a prefers his better partner in \vec{p} to b. It follows from the proof of Lemma 6 that if $\alpha_{a}^{*}=0$, then the man a is matched to his better partner in H^{\prime}. Thus $\left(a_{1}, b\right)$ does not block S in either case.

Consider Case 3. There are four sub-cases here based on possible values of ($\alpha_{a}^{*}, \alpha_{b}^{*}$): (i) $\left(\alpha_{a}^{*}, \alpha_{b}^{*}\right)=(-1,1)$, (ii) $\left(\alpha_{a}^{*}, \alpha_{b}^{*}\right)=(-1,0)$, (iii) $\left(\alpha_{a}^{*}, \alpha_{b}^{*}\right)=(0,1)$, and (iv) $\left(\alpha_{a}^{*}, \alpha_{b}^{*}\right)=(0,0)$.

- Cases (i) and (iv) are analogous to case 3 in the proof of Lemma 7 since value ${ }_{p}(a, b)$ is at most 0 in both these cases and a similar proof holds here for both these cases.
- In case (ii) above, we have value ${ }_{p}(a, b) \leq-1$. So either (I) a prefers both his partners in \vec{p} to b or vice-versa, in which case $\left(a_{1}, b\right)$ does not block S or (II) $p_{(a, b)}=1 / 2$ and both a and b prefer their other partners in \vec{p} to each other, in which case $\left(a_{1}, b\right) \in S$.
- In case (iii) above, we know that both a and b get paired to their respective better partners in H^{\prime} (since $\alpha_{a}^{*}=0$ and $\alpha_{b}^{*}=1$). We have value $(a, b) \leq 1$ here. So either (I) a prefers its better partner in \vec{p} to b or vice-versa (in which case (a_{1}, b) does not block S) or (II) $p_{(a, b)}=1 / 2$ and both a and b prefer each other to their other partners in \vec{p}, in which case $\left(a_{1}, b\right) \in S$. Thus $\left(a_{1}, b\right)$ does not block S in any of these cases.

Thus we have shown that f is a surjective map from the set of stable matchings in G^{*} to the set of full half-integral matchings in G that are popular. It can be shown that if \vec{p} is a popular half-integral matching that is not full, then the edge incidence vector of \vec{p} is a convex combination of the edge incidence vectors of popular half-integral matchings that are full. Hence the extreme points of the convex hull \mathcal{Q} of popular half-integral matchings are the full ones. Thus the description of \mathcal{Q} can be obtained in a straightforward manner from the description of the stable matching polytope of G^{*}.

We have shown the following theorem.

- Theorem 9. A min-cost popular half-integral matching in $G=(A \cup B, E)$ with strict preference lists and cost function $c: E \rightarrow \mathbb{Q}$ can be computed in polynomial time.

Conclusions. We gave a simple description of the convex hull of popular half-integral matchings in a stable marriage instance $G=(A \cup B, E)$ with strict preference lists. This allowed us to solve the min-cost popular half-integral matching problem in G in polynomial time. The main open problem here is to settle the complexity of the min-cost popular matching in G.

Acknowledgments. Thanks to Naveen Garg for useful discussions on this problem. Thanks to the reviewers for their helpful comments.
— References
1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, 37(4):1030-1045, 2007.
2 P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates problems. In Proceedings of 7th International Conference on Algorithms and Complexity (CIAC), pages 97-108, 2010.
3 Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and one-sided ties. In Proceedings of 42 nd International Colloquium on Automata, Languages, and Programming (ICALP), pages 367-379, 2015.
4 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. To appear in the Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization (IPCO), 2016.
5 T. Feder. A new fixed point approach for stable networks and stable marriages. Journal of Computer and System Sciences, 45:233-284, 1992.
6 T. Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291-319, 1994.
7 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69:9-15, 1962.
8 D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Applied Mathematics, 11:223-232, 1985.
9 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Sciences, 20:166-173, 1975.
10 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information and Computation, 222:180-194, 2013.
11 R. W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the "optimal" stable marriage. Journal of the ACM, 38(3):532-543, 1987.
12 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on Computing, 43(1):52-71, 2014.
13 T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science, 412:2679-2690, 2011.
14 U. Rothblum. Characterization of stable matchings as extreme points of a polytope. Mathematical Programming, 54:57-67, 1992.
15 C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications. Mathematics of Operations Research, 23(4):874-891, 1998.
16 J. H. Vande Vate. Linear programming brings marital bliss. Operations Research Letters, 8(3):147-153, 1989.

[^0]: * Part of this work was done during a visit to IIT Delhi.

 © Telikepalli Kavitha;
 licensed under Creative Commons License CC-BY
 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi; Article No. 22; pp. 22:1-22:13

 Leibniz International Proceedings in Informatics
 LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

