685 research outputs found

    Models for logics and conditional constraints in automated proofs of termination

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs.Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3S920Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998)Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992)Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005)Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015)Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002)Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997

    Derivational Complexity and Context-Sensitive Rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of rewriting where reduction steps are allowed on specific arguments mu(f) subset of {1, ..., k} of k-ary function symbols f only. Terms which cannot be further rewritten in this way are called mu-normal forms. For left-linear term rewriting systems (TRSs), the so-called normalization via mu-normalization procedure provides a systematic way to obtain normal forms by the stepwise computation and combination of intermediate mu-normal forms. In this paper, we show how to obtain bounds on the derivational complexity of computations using this procedure by using bounds on the derivational complexity of context-sensitive rewriting. Two main applications are envisaged: Normalization via mu-normalization can be used with non-terminating TRSs where the procedure still terminates; on the other hand, it can be used to improve on bounds of derivational complexity of terminating TRSs as it discards many rewritings.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Derivational Complexity and Context-Sensitive Rewriting. Journal of Automated Reasoning. 65(8):1191-1229. https://doi.org/10.1007/s10817-021-09603-11191122965

    Towards a Framework for Proving Termination of Maude Programs

    Full text link
    Maude es un lenguaje de programación declarativo basado en la lógica de reescritura que incorpora muchas características que lo hacen muy potente. Sin embargo, a la hora de probar ciertas propiedades computacionales esto conlleva dificultades. La tarea de probar la terminación de sistemas de reesctritura es de hecho bastante dura, pero aplicada a lenguajes de programación reales se concierte en más complicada debido a estas características inherentes. Esto provoca que métodos para probar la terminación de este tipo de programas requieran técnicas específicas y un análisis cuidadoso. Varios trabajos han intentado probar terminación de (un subconjunto de) programas Maude. Sin embargo, todos ellos siguen una aproximación transformacional, donde el programa original es trasformado hasta alcanzar un sistema de reescritura capaz de ser manejado con las técnicas y herramientas de terminación existentes. En la práctica, el hecho de transformar los sistemas originales suele complicar la demostración de la terminación ya que esto introduce nuevos símbolos y reglas en el sistema. En esta tesis, llevamos a cabo el problema de probar terminación de (un subconjunto de) programas Maude mediante métodos directos. Por un lado, nos centramos en la estrategia de Maude. Maude es un lenguaje impaciente donde los argumentos de una función son evaluados siempre antes de la aplicación de la función que los usa. Esta estrategia (conocida como llamada por valor) puede provocar la no terminación si los programas no están escritos cuidadosamente. Por esta razón, Maude (en concreto) incorpora mecanismos para controlar la ejecución de programas como las anotaciones sintácticas que están asociadas a los argumentos de los símbolos. En reescritura, esta estrategia sería conocida como reescritura sensible al contexto innermost (RSCI). Por otro lado, Maude también incorpora la posibilidad de declarar atributos.Alarcón Jiménez, B. (2011). Towards a Framework for Proving Termination of Maude Programs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11003Palanci

    Solving polynomial constraints for proving termination of rewriting

    Full text link
    A termination problem can be transformed into a set of polynomial constraints. Up to now, several approaches have been studied to deal with these constraints as constraint solving problems. In this thesis, we study in depth some of these approaches, present some advances in each approach.Navarro Marset, RA. (2008). Solving polynomial constraints for proving termination of rewriting. http://hdl.handle.net/10251/13626Archivo delegad

    SAT Modulo Linear Arithmetic for Solving Polynomial

    Get PDF
    Polynomial constraint solving plays a prominent role in several areas of hardware and software analysis and verification, e.g., termination proving, program invariant generation and hybrid system verification, to name a few. In this paper we propose a new method for solving non-linear constraints based on encoding the problem into an SMT problem considering only linear arithmetic. Unlike other existing methods, our method focuses on proving satisfiability of the constraints rather than on proving unsatisfiability, which is more relevant in several applications as we illustrate with several examples. Nevertheless, we also present new techniques based on the analysis of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad class of problems. The power of our approach is demonstrated by means of extensive experiments comparing our prototype with state-of-the-art tools on benchmarks taken both from the academic and the industrial world

    Matrix Interpretations on Polyhedral Domains

    Get PDF
    We refine matrix interpretations for proving termination and complexity bounds of term rewrite systems we restricting them to domains that satisfy a system of linear inequalities. Admissibility of such a restriction is shown by certificates whose validity can be expressed as a constraint program. This refinement is orthogonal to other features of matrix interpretations (complexity bounds, dependency pairs), but can be used to improve complexity bounds, and we discuss its relation with the usable rules criterion. We present an implementation and experiments

    Context-Sensitive Dependency Pairs Framework

    Full text link
    We show how to develop a dependency pair framework for proving termination of context-sensitive rewriting.Gutiérrez Gil, R. (2008). Context-Sensitive Dependency Pairs Framework. http://hdl.handle.net/10251/13625Archivo delegad

    Lengths May Break Privacy – Or How to Check for Equivalences with Length

    Get PDF
    Security protocols have been successfully analyzed using symbolic models, where messages are represented by terms and protocols by processes. Privacy properties like anonymity or untraceability are typically expressed as equivalence between processes. While some decision procedures have been proposed for automatically deciding process equivalence, all existing approaches abstract away the information an attacker may get when observing the length of messages. In this paper, we study process equivalence with length tests. We first show that, in the static case, almost all existing decidability results (for static equivalence) can be extended to cope with length tests. In the active case, we prove decidability of trace equivalence with length tests, for a bounded number of sessions and for standard primitives. Our result relies on a previous decidability result from Cheval et al (without length tests). Our procedure has been implemented and we have discovered a new flaw against privacy in the biometric passport protocol
    • …
    corecore