6,378 research outputs found

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Tools and methods in participatory modeling: Selecting the right tool for the job

    Get PDF
    © 2018 Elsevier Ltd Various tools and methods are used in participatory modelling, at different stages of the process and for different purposes. The diversity of tools and methods can create challenges for stakeholders and modelers when selecting the ones most appropriate for their projects. We offer a systematic overview, assessment, and categorization of methods to assist modelers and stakeholders with their choices and decisions. Most available literature provides little justification or information on the reasons for the use of particular methods or tools in a given study. In most of the cases, it seems that the prior experience and skills of the modelers had a dominant effect on the selection of the methods used. While we have not found any real evidence of this approach being wrong, we do think that putting more thought into the method selection process and choosing the most appropriate method for the project can produce better results. Based on expert opinion and a survey of modelers engaged in participatory processes, we offer practical guidelines to improve decisions about method selection at different stages of the participatory modeling process

    University of Helsinki Department of Computer Science Annual Report 1998

    Get PDF

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Evaluation of a fuzzy-expert system for fault diagnosis in power systems

    Get PDF
    A major problem with alarm processing and fault diagnosis in power systems is the reliance on the circuit alarm status. If there is too much information available and the time of arrival of the information is random due to weather conditions etc., the alarm activity is not easily interpreted by system operators. In respect of these problems, this thesis sets out the work that has been carried out to design and evaluate a diagnostic tool which assists power system operators during a heavy period of alarm activity in condition monitoring. The aim of employing this diagnostic tool is to monitor and raise uncertain alarm information for the system operators, which serves a proposed solution for restoring such faults. The diagnostic system uses elements of AI namely expert systems, and fuzzy logic that incorporate abductive reasoning. The objective of employing abductive reasoning is to optimise an interpretation of Supervisory Control and Data Acquisition (SCADA) based uncertain messages when the SCADA based messages are not satisfied with simple logic alone. The method consists of object-oriented programming, which demonstrates reusability, polymorphism, and readability. The principle behind employing objectoriented techniques is to provide better insights and solutions compared to conventional artificial intelligence (Al) programming languages. The characteristics of this work involve the development and evaluation of a fuzzy-expert system which tries to optimise the uncertainty in the 16-lines 12-bus sample power system. The performance of employing this diagnostic tool is assessed based on consistent data acquisition, readability, adaptability, and maintainability on a PC. This diagnostic tool enables operators to control and present more appropriate interpretations effectively rather than a mathematical based precise fault identification when the mathematical modelling fails and the period of alarm activity is high. This research contributes to the field of power system control, in particular Scottish Hydro-Electric PLC has shown interest and supplied all the necessary information and data. The AI based power system is presented as a sample application of Scottish Hydro-Electric and KEPCO (Korea Electric Power Corporation)

    Towards an integrated vulnerability-based approach for evaluating, managing and mitigating earthquake risk in urban areas

    Get PDF
    Tese de doutoramento em Civil EngineeringSismos de grande intensidade, como aqueles que ocorreram na Turquía-Síria (2023) ou México (2017) deviam chamar a atenção para o projeto e implementação de ações proativas que conduzam à identificação de bens vulneráveis. A presente tese propõe um fluxo de trabalho relativamente simples para efetuar avaliações da vulnerabilidade sísmica à escala urbana mediante ferramentas digitais. Um modelo de vulnerabilidade baseado em parâmetros é adotado devido à afinidade que possui com o Catálogo Nacional de Monumentos Históricos mexicano. Uma primeira implementação do método (a grande escala) foi efetuada na cidade histórica de Atlixco (Puebla, México), demonstrando a sua aplicabilidade e algumas limitações, o que permitiu o desenvolvimento de uma estratégia para quantificar e considerar as incertezas epistémicas encontradas nos processos de aquisição de dados. Devido ao volume de dados tratado, foi preciso desenvolver meios robustos para obter, armazenar e gerir informações. O uso de Sistemas de Informação Geográfica, com programas à medida baseados em linguagem Python e a distribuição de ficheiros na ”nuvem”, facilitou a criação de bases de dados de escala urbana para facilitar a aquisição de dados em campo, os cálculos de vulnerabilidade e dano e, finalmente, a representação dos resultados. Este desenvolvimento foi a base para um segundo conjunto de trabalhos em municípios do estado de Morelos (México). A caracterização da vulnerabilidade sísmica de mais de 160 construções permitiu a avaliação da representatividade do método paramétrico pela comparação entre os níveis de dano teórico e os danos observados depois do terramoto de Puebla-Morelos (2017). Esta comparação foi a base para efetuar processos de calibração e ajuste assistidos por algoritmos de aprendizagem de máquina (Machine Learning), fornecendo bases para o desenvolvimento de modelos de vulnerabilidade à medida (mediante o uso de Inteligência Artificial), apoiados nas evidências de eventos sísmicos prévios.Strong seismic events like the ones of Türkiye-Syria (2023) or Mexico (2017) should guide our attention to the design and implementation of proactive actions aimed to identify vulnerable assets. This work is aimed to propose a suitable and easy-to-implement workflow for performing large-scale seismic vulnerability assessments in historic environments by means of digital tools. A vulnerability-oriented model based on parameters is adopted given its affinity with the Mexican Catalogue of Historical Monuments. A first large-scale implementation of this method in the historical city of Atlixco (Puebla, Mexico) demonstrated its suitability and some limitations, which lead to develop a strategy for quantifying and involving the epistemic uncertainties found during the data acquisition process. Given the volume of data that these analyses involve, it was necessary to develop robust data acquisition, storing and management strategies. The use of Geographical Information System environments together with customised Python-based programs and cloud-based distribution permitted to assemble urban databases for facilitating field data acquisition, performing vulnerability and damage calculations, and representing outcomes. This development was the base for performing a second large-scale assessment in selected municipalities of the state of Morelos (Mexico). The characterisation of the seismic vulnerability of more than 160 buildings permitted to assess the representativeness of the parametric vulnerability approach by comparing the theoretical damage estimations against the damages observed after the Puebla-Morelos 2017 Earthquakes. Such comparison is the base for performing a Machine Learning assisted process of calibration and adjustment, representing a feasible strategy for calibrating these vulnerability models by using Machine-Learning algorithms and the empirical evidence of damage in post-seismic scenarios.This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), reference UIDB/04029/2020. This research had financial support provided by the Portuguese Foundation of Science and Technology (FCT) through the Analysis and Mitigation of Risks in Infrastructures (InfraRisk) program under the PhD grant PD/BD/150385/2019

    A Spatial Agent-based Model for Volcanic Evacuation of Mt. Merapi

    Get PDF
    Natural disasters, especially volcanic eruptions, are hazardous events that frequently happen in Indonesia. As a country within the “Ring of Fire”, Indonesia has hundreds of volcanoes and Mount Merapi is the most active. Historical studies of this volcano have revealed that there is potential for a major eruption in the future. Therefore, long-term disaster management is needed. To support the disaster management, physical and socially-based research has been carried out, but there is still a gap in the development of evacuation models. This modelling is necessary to evaluate the possibility of unexpected problems in the evacuation process since the hazard occurrences and the population behaviour are uncertain. The aim of this research was to develop an agent-based model (ABM) of volcanic evacuation to improve the effectiveness of evacuation management in Merapi. Besides the potential use of the results locally in Merapi, the development process of this evacuation model contributes by advancing the knowledge of ABM development for large-scale evacuation simulation in other contexts. Its novelty lies in (1) integrating a hazard model derived from historical records of the spatial impact of eruptions, (2) formulating and validating an individual evacuation decision model in ABM based on various interrelated factors revealed from literature reviews and surveys that enable the modelling of reluctant people, (3) formulating the integration of multi-criteria evaluation (MCE) in ABM to model a spatio-temporal dynamic model of risk (STDMR) that enables representation of the changing of risk as a consequence of changing hazard level, hazard extent and movement of people, and (4) formulating an evacuation staging method based on MCE using geographic and demographic criteria. The volcanic evacuation model represents the relationships between physical and human agents, consisting of the volcano, stakeholders, the population at risk and the environment. The experimentation of several evacuation scenarios in Merapi using the developed ABM of evacuation shows that simultaneous strategy is superior in reducing the risk, but the staged scenario is the most effective in minimising the potential of road traffic problems during evacuation events in Merapi. Staged evacuation can be a good option when there is enough time to evacuate. However, if the evacuation time is limited, the simultaneous strategy is better to be implemented. Appropriate traffic management should be prepared to avoid traffic problems when the second option is chosen

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés
    corecore