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Abstract
Geospatial information science (GI science) is concerned with the development and application of geodetic and information 
science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating 
data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on develop-
ing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect 
and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the 
Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, rep-
resenting geodetic research and university teaching in Germany – have prepared this paper as a means to point out future 
research questions and directions in geospatial information science. For the different facets of geospatial information science, 
the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the 
German GI community makes and which research perspectives arise in geospatial information science. The paper further 
demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and manage-
ment, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing 
society today and in the future.

Keywords Geospatial information sciences · Geographic information systems (GIS) · Research perspectives · Grand 
challenges

Zusammenfassung
Geoinformationsforschung: Stand der Technik, Fallstudien und Zukunftsperspektiven. Die Geoinformationswissenschaft 
(GI-Wissenschaft) befasst sich mit der Entwicklung und Anwendung geodätischer und informationswissenschaftlicher Metho-
den zur Modellierung, Erfassung, gemeinsamen Nutzung, Verwaltung, Erkundung, Analyse, Synthese, Visualisierung und 
Bewertung von Daten über raum-zeitliche Phänomene im Zusammenhang mit der Erde. Als interdisziplinäre wissenschaft-
liche Disziplin konzentriert sie sich auf die Entwicklung und Anpassung von Informationstechnologien, um Prozesse auf 
der Erde und Interaktionen zwischen Mensch und Raum zu verstehen, Trends und Muster in den beobachteten Daten zu 
erkennen und vorherzusagen sowie die Entscheidungsfindung zu unterstützen. Die Autoren – Mitglieder der Abteilung 
Geoinformatik im Ausschuss für Geodäsie der Bayerischen Akademie der Wissenschaften, die die geodätische Forschung 
und die universitäre Lehre in Deutschland vertreten – haben diesen Beitrag erstellt, um zukünftige Forschungsfragen und 
-richtungen in der Geoinformationswissenschaft aufzuzeigen. Für die verschiedenen Facetten der GI-Wissenschaft wird der 
Stand der Technik dargestellt und mit meist eigenen Fallbeispielen untermauert. Der Aufsatz verdeutlicht damit, welche 
Beiträge die deutsche GI-Community leistet und welche Forschungsperspektiven sich in der GI-Wissenschaft ergeben. 
Darüber hinaus wird gezeigt, dass die GI-Wissenschaft mit ihrer Expertise in der Datenerfassung und -interpretation, der 
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Informationsmodellierung und dem Informationsmanagement zur Lösung vieler der großen gesellschaftlichen Heraus-
forderungen von heute und morgen beitragen kann.

Schlüsselworte Geoinformationswissenschaft · Geo-Informationssysteme (GIS) · Forschungsperspektiven · Große 
gesellschaftliche Herausforderungen

Abbreviations
4As  Anytime, anywhere, for anyone, and anything
AAN  Appearance adaptation network
AI  Artificial intelligence
ALS  Airborne laser scanning
AMQP  Advanced message queuing protocol
API  Application programming interfaces
AR  Augmented reality
ATKIS  Amtliches Topographisch-Kartographisches 

Informations system
BIM  Building information model
B-Rep  Boundary representations
CAD  Computer-aided design
CNN  Convolutional neural networks
CP  Computational photography
CRF  Conditional random fields
CSG  Constructed solid geometry
DE  Desktop environment
DFG  Deutsche Forschungsgemeinschaft
DGK  Deutsche Geodätische Kommission
DIY  Do it yourself
DL  Deep learning
DSMS  Data stream management systems
EO  Earth observation
ESA  European space agency
GAN  Generative adversarial networks
GC  Grand challenges
GDF  Geographic data files
GI  Geospatial information
GIM  Geospatial information modeling
GIS  Geographic information system
GML  Geography markup language
GNSS  Global navigation satellite systems
GSD  Ground sampling distance
HD  High definition
ICA  International cartographic association
ICT  Information and communication technologies
IMU  Inertial measuring unit
IFC  Industry foundation class
INS  Inertial navigation system
InSAR  Interferometric synthetic aperture radar
INSPIRE  Infrastructure for spatial information in 

Europe
IoC  Internet-of-construction
IoP  Internet-of-production
IoT  Internet of things
IoUAV  Internet of UAVs

ISO  International Organization of Standardization
ISPRS  International Society for Photogrammetry 

and Remote Sensing
LADM  Land administration domain model
LandInfra  Land and infrastructure conceptual model
LBS  Location-based services
LCZ  Local climate zones
LoD  Level of detail
LOD  Linked open data
LSTM  Long short-term memory
MCDA  Multi criteria decision analysis
MCMC  Markov Chain Monte Carlo
MR  Mixed reality
MRF  Markov random fields
NASA  National aeronautics and space 

administration
NFDI  Nationale Forschungsdateninfrastruktur
OGC  Open geospatial consortium
OODBMS  Object-oriented database management 

systems
ORDBMS  Object-relational database management 

systems
POI  Point-of-interest
PSI  Public sector information
RADAR  RAdio detection and ranging
RANSAC  Random sample consensus
RDBMS  Relational database management systems
RDF  Resource description framework
RNN  Recurrent neural networks
SDBMS  Spatial database management systems
SDG  Sustainable development goals
SDI  Spatial data infrastructures
SDSS  Spatial decision support system
SHM  Structural health monitoring
SOAP  Simple object access protocol
SOS  Sensor observation service
SQL  Structured query language
SRS  Spatial reference system
SSDI  Sensor and spatial data infrastructure
STDBMS  Spatio-temporal database management 

systems
SWE  Sensor web enablement
UAV  Unmanned aerial vehicles
UML  Unified modelling language
UN  United Nations
V2I  Vehicle-to-infrastructure
V2V  Vehicle-to-vehicle
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VGI  Volunteered geographic information
VR  Virtual reality
WMS  Web map service
WFS  Web feature service
WPS  Web processing service
XML  Extensible markup language

1  Introduction and Motivation

Geospatial information science (in German mostly called 
Geoinformatik) is concerned with the development and 
application of geodetic and computer science methods 
for the modeling and acquisition, exchange, management, 
exploration, analysis, synthesis, visualization, and evaluation 
of data concerning space–time-variant phenomena related to 
the Earth. As a scientific discipline, it focuses on developing 
and adapting information technologies to understand places 
and processes on the Earth, to support human behavior and 
decision making, and to detect and predict trends and pat-
terns in the observed data. Geospatial information technolo-
gies contribute to the mapping and analysis of the Earth 
and the grand challenges facing human societies such as 
climate change, demographic change, sustainable agriculture 
and forestry, environmental degradation, energy security, 
resource efficiency, mobility.

Geospatial information processing integrates research 
issues and information products of many scientific disci-
plines, such as photogrammetry, remote sensing, cartogra-
phy, engineering geodesy, and spatial observations in geog-
raphy and environmental sciences, and transforms them into 
structured information as well as into maps and other com-
munication media suitable for humans. To solve these tasks, 
besides concepts from mathematics and physics, various 
subareas of computer science are adapted and extended in an 
engineering-oriented manner, such as computational geom-
etry, artificial intelligence and machine learning, semantic 
technologies, databases, and computer graphics (see also 
Kutterer et al. 2020).

Advances in sensor and positioning technologies in recent 
years have facilitated unprecedented growth in the collection 
of spatially and temporally referenced data. Classical exam-
ples of big spatial data sources include aerial and terrestrial 
laser scanning, remote sensing imagery, and weather data. 
In addition, gigantic amounts of (in many cases low-cost 
miniaturized) sensors generate real-time data streams in eve-
ryday life in the context of the Internet of Things (IoT) (for 
geospatial-IoT see Sect. 8). Millions of people voluntarily 
contribute to the collection of geoinformation (for example 
in OpenStreetMap (OSM) or in citizen science projects) or 
share posts with a spatial reference in the social networks 
and thus create so-called volunteered geographic informa-
tion (VGI). Tracks of various objects moving by land, sea, 

and air will become more and more available in the context 
of digital earth, smart cities, humans as sensors, citizen sci-
ence, location-based services (LBS),”in-situ” geocomputing, 
social media, etc. VGI data encompasses many specific types 
of data, such as geotagged social media (Twitter, Instagram, 
etc.), geotagged Wikipedia pages, news articles, historical 
archives, location-focused online reviews, geotagged hous-
ing posts, and others that contain links between locations 
and interpretable information.

Location is always an available and important common 
property of all of these new types of information. As Good-
child (2009) already stated: “it will be possible to know 
where everything is, at all times.” This will result in new 
research topics and challenges, as Andrienko et al. (2017) 
predicted: “The massive volumes of collected data contain 
complex, yet implicit spatial, temporal, and semantic interre-
lations that are waiting to be uncovered and made explicit.” 
Craglia et al. (2012) described the concept of the “Observa-
tion Web” with observations originating from humans, sen-
sors or numerical (environmental) simulations, and others, 
moving from an essentially static representation of the Earth 
to one that is dynamic and interactive, and more responsive 
to the grand challenges (see Sect. 10).

With the advent of the IoT and big data, citizens have 
increasingly been involved in producing and using a new 
type of information useful for analyzing spatial problems, 
and researchers and practitioners increasingly have been con-
fronted with the task of developing methods and approaches 
for massive data collection, integration, and analysis in spa-
tially explicit formats (Malczewski and Jankowski 2020). 
The fundamental (i.e. special) properties of spatial data—
spatial dependence, spatial heterogeneity, and concepts such 
as location, distance, direction, connectivity, adjacency, 
neighborhood, proximity—need to be rethought consider-
ing IoT and big data issues. New solutions for data storage 
and data processing, for example for semi-structured data, 
or technologies for parallelization and distributed computing 
are gaining importance. The problem of semantic heteroge-
neity caused by different meanings of data, terminologies, 
and models needs to be solved. The analysis of these het-
erogeneous data and the preparation of decision-supporting 
statements represent an important task for geoinformatics 
(Kutterer et al. 2020). The investigation of methods to vali-
date these huge amounts of data against each other as well 
as against official authoritative data, knowledge bases, and 
simulation results is necessary. The integration of these geo-
observation webs with common earth observation infrastruc-
tures, and the dynamic and interactive, as well as automatic 
exploitation of spatio-temporal mass data variety and flows 
from sensors and people is a future challenge.

In the context of mobility, data from permanently meas-
uring sensors (e.g. floating car data) plays an increasingly 
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important role alongside 3D city models. In smart cities, 
measures are to be derived and implemented automatically 
from sensor data and social and behavioral implications need 
to be taken into account (see also Huang et al. 2018).

The Committee on Geodesy of the Bavarian Academy of 
Sciences and Humanities (formerly Deutsche Geodätische 
Kommission, abbreviated "DGK", https:// dgk. badw. de/) 
represents geodetic research and university teaching in 
Germany. The DGK division “Geoinformatik” (https:// 
dgk. badw. de/ abtei lung- geoin forma tik. html) initiates and 
coordinates research projects, discusses future trends and 
scientific perspectives in geospatial information science, 
and maintains professional exchange. The division focuses 
on topics such as the acquisition of geospatial data and the 
derivation of digital descriptions of environmental objects 
at different scales and as fully automated as possible. The 
aim is not only to record geometric properties but also to 
provide descriptions of a range of different object properties 
(e.g. building function, terrain shapes, movement patterns, 
land use types, human behavior) and temporal information 
by automated merging and integration of geodata from dif-
ferent sources. The development of common data models to 
create (semantic) reference systems and the establishment of 
modern geodata infrastructures based on spatial information 
theory is another topic of DGK. The digital geodata collec-
tions that are emerging in large numbers and growing in size 
with modern sensor technologies require automatic spatial 
analysis methods, for example, to derive heat and energy 
losses in construction planning, to recognize movement 
patterns in mobility, or to determine damages for disaster 
management.

Members of the DGK division “Geoinformatik” have pre-
pared this paper to assess the current situation and to point 
out future research questions and directions in geospatial sci-
ence, building upon previous efforts by ISPRS (International 
Society for Photogrammetry and Remote Sensing) (Chen 
et al. 2016), ICA (International Cartographic Association) 
(Virrantaus et al. 2009; Meng et al. 2020), and others. We 
identify the scientific research challenges for the next decade 
and describe how we will contribute our expertise along 
the whole information processing chain in GI technology 
to tackle them.

The structure of the article is as follows: Sects. 2, 3, 4, 
5, 6, 7, 8 treat research aspects of GI science in information 
acquisition and geometric processing, information interpre-
tation, information modeling and management, information 
integration, decision support, geospatial visualization, and 
information dissemination. Each step along this process-
ing chain is reflected with a brief description of the status 
quo and underlined by a few selected case studies, mainly 
from the authors. Then, we look ahead to the most impor-
tant research trends of the next decade. Section 9 briefly 
considers relevant infrastructures and research funding to 

support these research issues. Finally, we address the grand 
challenges, from the point of view of geospatial informa-
tion processing, to reach a certain consensus in the scientific 
community about the contributions of the GI community to 
these major societal challenges.

2  Geospatial information acquisition 
and geometric processing

2.1  Developments in data acquisition and new 
applications

Recent developments in sensor technology have led to a 
tremendous increase in spatially and temporally referenced 
data. Examples include aerial, satellite, but also terrestrial 
images, 3D point clouds from laser scanners and interfer-
ometric synthetic aperture radar (InSAR), trajectory data 
using e.g. portable GNSS receivers, and volunteered geo-
graphic information. Sensors are mounted on satellites, 
airplanes, unmanned aerial vehicles (UAVs), and static as 
well as mobile terrestrial platforms such as mobile mapping 
systems. Increasingly, multisensor systems and geosensor 
networks are being used for cooperative data acquisition.

In this section, we give a short description of develop-
ments in geospatial data acquisition. Since our focus is on 
data handling and not on sensor hardware development, 
we only point out major trends, without going into detail, 
primarily to illustrate the fact that geospatial data are big 
data—with the related challenges of an enormous increase 
in volume, variety, velocity, and veracity. In addition, while 
we note the tremendous importance of ubiquitous location 
and localization (according to Goodchild, 2019 “it will be 
possible to know where everything is, at all times”) we will 
not discuss developments of how to determine sensor posi-
tion for the sakes of positioning and navigation in this sec-
tion, but only to georeference geospatial data captured by 
the sensor in question.

Over the years, many national and supranational agen-
cies, e.g., NASA, ESA, CNES, DLR, ISRO, JAXA, CNSA, 
developed civil satellite remote sensing systems. The US 
Landsat program, dating back to 1972, was the first source 
of seamless optical Earth Observation (EO) imagery suit-
able for certain resource mapping purposes. Since 2014, 
the European Copernicus program (Sentinel fleet) provides 
free-of-charge multispectral imagery with a very high revisit 
frequency and a ground sampling distance (GSD) of up to 
10 m; it will continue to do so for the next decades. Other 
countries such as India and China have similar programs. 
In addition, constellations like the Pléiades Neo satellites 
with a GSD of 0,3 m (the first two of which were launched 
in April and August 2021), and the Planet constellation with 
more than a hundred operational satellites in orbit with a 

https://dgk.badw.de/
https://dgk.badw.de/abteilung-geoinformatik.html
https://dgk.badw.de/abteilung-geoinformatik.html
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GSD in the meter range, are currently being launched, partly 
by private companies. Some of these satellites can capture 
motion in short high-resolution videos. The meter range is 
also the resolution of currently established radar constella-
tions, most of which, however, seems to target the defense 
market (e.g., Iceye, Umbra Lab, Capella Space). For all these 
constellations the main goal is a high temporal resolution. 
In addition to the constellations, new high-resolution opti-
cal satellites have been announced, e.g., Maxar Legion with 
a resolution in the range of a quarter of a meter and up to 
15 images of the same location per day, which increasingly 
blurs the separation between satellite and aerial imagery. 
Novel SAR missions particularly suitable for SAR inter-
ferometry like TanDEM-L (https:// www. dlr. de/ hr/ tdml) as 
well as hyperspectral sensors such as the recently launched 
EnMAP (https:// www. enmap. org/) will produce more data.

In aerial data acquisition, one observes an ongoing inte-
gration of nadir-looking sensors with image sizes of up to 
400 Megapixel using oblique cameras, and partly also with 
laser scanners leading to colored 3D point clouds. Current 
laser scanning systems increasingly employ full-waveform 
digitization or single-photon counting techniques (Mandl-
burger et al. 2019), enabling them, for instance, to generate 
vertical vegetation density profiles in forests as a basis for 
biomass change quantification and to capture terrain model 
data at a rate of several million points per second. Aerial 
radar for civil applications is still a niche market.

While for a long time unmanned aerial vehicles in most 
cases only carried cameras, recently, laser scanners with 
sufficient range have become smaller and lighter and, most 
importantly, have been integrated with sufficiently high-
precision lightweight GNSS and INS sensors. In addition, 
thermal and hyperspectral sensors for UAVs are available, 
although the geometric resolution is still limited. Concern-
ing the availability of suitable carrier systems, one has to 
note that the (semi)-professional area is growing rapidly, 
e.g., for taking video footage of sports events or for surveil-
lance purposes.

For several years there has been a trend towards Compu-
tational Photography (CP, Nayar 2007) in terrestrial data 
acquisition. These cameras often have multiple lenses: 
images are taken with different settings and are combined 
computationally. An example is plenoptic cameras, also 
called light-field cameras, the concept of which has been 
investigated for some time already (Adelson et al. 1992). 
Computational photography is particularly being employed 
in recent mobile phones. High-speed cameras at frequencies, 
ranging up to 1 MHz and above, are used to acquire dynamic 
scenes in areas such as sports, traffic monitoring, surveil-
lance, robotics, autonomous driving, crash tests, material 
testing, and fluid dynamics. For terrestrial sensing the same 
thermal and hyperspectral sensors can be used as those 
mounted on UAVs, meaning that the geometric resolution 

is rather limited. In many cases, sensors are combined into 
a multisensor platform with various different cameras, laser 
scanners, and positioning devices carried by humans or cars; 
mobile mapping systems traveling in normal traffic are a par-
ticular example of this development. While mobile mapping 
has become a standard tool for the detailed acquisition of 
urban areas, the scope has been considerably widened by the 
interest in HD (High Definition) maps for autonomous driv-
ing. In this context, the automatic acquisition of information 
about the surroundings of a vehicle using sensors such as 
(stereo-) cameras and laser scanners is of vital importance.

For moving objects, trajectory data (3D position and 3D 
rotation as a function of time) are an additional data source. 
They are typically captured using GNSS receivers and 
GNSS/IMU systems, but also using cameras or laser scan-
ners. Trajectories can be used to analyze and predict object 
behavior. They can also serve as an additional information 
source for the interpretation of scenes in which these objects 
are depicted, e.g. using a camera or laser scanner.

Given all these developments in data acquisition, one 
can expect more detail concerning geometry, semantics, 
extent and time in the future. For instance, city models will 
be fully 3D and will contain window and door objects for 
the façades, possibly with mullions and transoms (horizon-
tal and vertical bars), but also objects for stairs, balconies, 
dormers, chimneys, air conditioners, and more generally, 
street furniture and vegetation objects. Data from all plat-
forms mentioned before will be fused and used in combined 
approaches to reach these goals.

Reconstruction for Building Information Models (BIMs) 
(see Sect. 4) goes further by considering, besides the interior 
of buildings, the semantics and the geometry of the parts 
they are constructed of, and possibly, also the construction 
process. Models of interior spaces will become common for 
shopping centers, but also for large public buildings such as 
railway stations, town halls, or museums. Smooth naviga-
tion from indoors to outdoors and vice-versa is a particular 
problem in this regard.

In addition to the more detailed geometry and semantics, 
scenes to be observed and models to describe these varying 
scenes will be more and more dynamic, opening up possi-
bilities to also model, observe and understand processes of 
all kinds, e.g. landslides and other geomorphologic changes 
on the Earth surface, but also in sports or when observing 
public places. This pertains to the interior spaces of shop-
ping malls but even more so to information related to traffic 
and other applications in which image sequences are com-
monly used.

Land use is another area where temporal dynamics are 
important. Utilizing the capabilities of the satellite constel-
lations, a much higher acquisition frequency and, thus, a 
much more detailed analysis of the temporal dynamics is 
possible, also leading to higher update rates. Such results 

https://www.dlr.de/hr/tdml
https://www.enmap.org/
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are required not only by agriculture and forestry but in par-
ticular, also for determining indicators to monitor progress 
in achieving the UN Sustainable Development Goals (SDG, 
https:// sdgs. un. org/ goals). Concerning land use, additional 
radar missions will be helpful, particularly for areas that are 
often clouded such as rain forests. In addition, advanced 
radar capabilities will be particularly useful for surveillance 
applications where all-weather capabilities are essential and 
higher geometric and temporal resolutions allow for a more 
detailed analysis.

An emerging field is a perception of autonomous driving. 
Besides ego-motion, the detection and pose estimation of 
other road users such as cars, cyclists, and pedestrians are 
essential for path planning and accident avoidance and sup-
port collaborative positioning of vehicles in GNSS-denied 
areas (Coenen and Rottensteiner 2019). It is also important 
to generate this information over time by analyzing time 
series, which involves tracking based on physical models of 
the movement of these objects over time, potentially con-
sidering interactions between different road users in a scene 
(Leal-Taixé et al. 2017).

2.2  State of the Art and Case Studies in Geometric 
Processing

Geometric processing comprises calibration and synchro-
nization of single sensors and sensor systems, the deter-
mination of sensor orientation (pose), the determination 
of (potentially highly accurate) 3D point coordinates, the 
3D reconstruction of scenes, and object rendering includ-
ing orthoprojection. In our context, we also consider motion 
models, both for sensor movement (e.g. when dealing with 
line sensors) and for temporal changes in object space (e.g., 
when determining scene flow), as part of geometric process-
ing. Note that the determination of ego-motion, as a core 
requirement in navigation (e.g., using GNSS/IMU systems 
as the only sensor), is not treated in this section.

Optical 3D measurement techniques (in the past often 
referred to as close-range photogrammetry) have found a 
huge market potential in industrial measurement tasks, 
where they are applied in manifold design, manufacturing, 
and quality control processes. Herein, photogrammetry pro-
vides, among others, sensor modeling and self-calibration 
techniques allowing to achieve measurement accuracies 
beyond 1:100,000 of the object dimensions using off-the-
shelf cameras. Image engineering techniques such as struc-
tured light approaches allow for real-time 3D measurement 
systems with high spatial and temporal resolution.

2.2.1  Case Study “3D Surface Reconstruction Using Images 
from the Ground and UAVs”

Images from different sources (see Fig. 1) such as from the 
ground and small UAVs allow for a detailed 3D reconstruc-
tion of the roof as well as the façades of buildings. Michelini 
and Mayer (2020) present an approach for the automatic 
orientation of unsorted images which can deal with the 
wide baselines occurring in this study. The orientations are 
the basis for pairwise image matching leading to per-pixel 
depth maps. These maps are combined based on their esti-
mated accuracy using a probabilistic volumetric approach 
(Kuhn et al. 2017) leading to a scalable high-quality 3D 
reconstruction.

2.2.2  Case Study “Uncertainty Estimation of 3D Surfaces”

While dense stereo matching methods have made great 
progress over the last few years, there is a need for self-
diagnosis, i.e. to identify erroneous disparity estimates in 
the results. Based on probabilistic convolutional neural net-
works, Mehltretter (2021) presents a new method for the 
estimation of aleatoric and epistemic uncertainty (corre-
sponding to stochastic and systematic uncertainty). Instead 
of relying on features learned from disparity maps only, the 
corresponding 3D cost volumes are employed. For alea-
toric uncertainty estimation, a novel convolutional neural 
network architecture is presented that is trained with differ-
ent stochastic models that follow the concept of Bayesian 
deep learning. The quantification of epistemic uncertainty is 
realized using a Bayesian neural network trained with vari-
ational inference. Figure 2 shows the design of the employed 
network. The results demonstrate that the models used to 
estimate aleatoric uncertainty outperform state-of-the-art 
methods. Moreover, the usage of a Bayesian neural network 
not only allows for epistemic uncertainty estimation but also 
supports the task of dense stereo matching itself, reducing 
the number of errors contained in the disparity maps.

Fig. 1  Images from the ground and from a UAV (top), orientations 
(projection centers are linked if the images overlap; left), and 3D 
model in the form of a mesh with (center) and without texture (right)

https://sdgs.un.org/goals
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2.2.3  Case Study “Material Testing”

The detection of cracks in probes and the quantitative deter-
mination of crack patterns is an important task in material 
testing. Compared to conventional techniques such as induc-
tive displacement transducers, inclinometers, and strain 
gauges, which deliver only pointwise measurements, cam-
eras offer the crucial advantage of allowing simultaneous 
measurements at many locations in an image. Cracks can be 
detected in monocular image sequences by applying a cas-
caded image sequence processing chain (Hampel and Maas 
2009). Herein, a dense pattern of feature points is tracked 
by least-squares image matching, yielding subpixel accu-
racy motion vector fields. These vector fields are analyzed 
for significant discrepancies, depicting locations of cracks. 
Metric crack width information can be derived from the 
discrepancies by a thorough geometric analysis of triangle 
meshes with the matching points as vertices (Liebold and 
Maas 2020). The technique can detect cracks with a width in 
the order of a tenth of a pixel, and it delivers full-field meas-
urements of complete complex crack patterns (see Fig. 3).

The spatial resolution of the technique is mainly defined 
by the sensor size of the camera, allowing for the detection 
of complex crack patterns with ca. 100 cracks when using a 
high-resolution camera. The temporal resolution may reach 
100 kHz and beyond. Liebold et al. (2020) applied the tech-
nique for the determination of crack propagation velocities 

in a concrete probe. Image sequences were taken by a high-
speed camera at a frame rate of 160,000 images per sec-
ond. By applying the cascaded image sequence processing 
procedure to these datasets, crack propagation velocities of 
about 800 m/s could be determined with a precision in the 
order of 50 m/s.

A logical future extension of the crack detection and 
crack characterization techniques shown here is in a transi-
tion from 2D image sequences to multi-temporal 3D micro-
tomography data. As soon as suitable instruments are avail-
able, tomography voxel data acquisition may be integrated 
into the material testing process.

2.3  Research Perspectives

This section focuses on problems for which the process of 
solving a problem and finding a solution is not only dif-
ficult but also conceptually unclear. This is true for images 
produced by computational photography, which are usually 
generated for visual inspection by black-box algorithms. It 
is currently not known how and even if they can be used for 
higher accuracy photogrammetric reconstruction, especially 
if different viewpoints are used. Another challenge is the 
combination of low-resolution data such as hyperspectral 
images with high-resolution data in the form of images or 
3D point clouds. This is already done for satellite data, but 
much more high-resolution data from UAVs or the ground 
lead to additional complications due to the detailed 3D 
geometry with the associated occlusions.

While traditional flight planning for aerial acquisition 
is based on regular structures such as grids, a number of 
challenges come with automating detailed 3D acquisition 
by means of UAVs in urban areas: as data are more and 
more acquired in fully autonomous mode, they can be pro-
cessed in real-time and on-board, opening up possibilities 
for a more flexible, yet physically feasible, planning of flight 
paths considering obstacle avoidance, and for online check-
ing of the completeness of the resulting 3D models despite 
occlusions, incl. instantaneous acquisition of missing image 

Fig. 2  Deep learning network 
for the joint estimation of 
aleatoric and epistemic uncer-
tainty in dense stereo matching 
(Mehltretter 2021)

Fig. 3  Crack pattern of a strain-hardening cement-based composite 
probe in a tension test, visualized by color-coding and height of the 
prism cells for better visual interpretability (Liebold and Maas, 2020)
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data. A related topic is that of parallel geometric processing, 
e.g. for bundle adjustment (Mayer 2019).

A particular challenge arises in the overlap between pho-
togrammetry and robotics, i.e., when results are required 
in real-time, e.g., for docking maneuvers, in autonomous 
driving, in traffic monitoring, or surveillance. Here, coopera-
tive approaches (Molina et al. 2017; Schön et al. 2018) and 
swarm processing are considered promising.

Finally, finding robust solutions from image and sensor 
orientation, as well as dense 3D reconstruction, also as a 
function of time, remains difficult in scenes with poor or 
repetitive texture, critical geometric configurations, and/or 
large depth discontinuities. Examples for challenges in image 
orientation include the determination of image overlap, e.g., 
for image sets downloaded from the internet, images taken 
with a significant temporal difference, or in different parts 
of the electromagnetic spectrum (e.g., optical and thermal 
data). Progress has been made for orientation (Kendall et al. 
2015) as well as 3D reconstruction (Kendall et al. 2017) by 
learning matching functions for points (Jin et al. 2021) and 
shape priors for surfaces. One can expect that the separa-
tion between geometry and interpretation (discussed in the 
next section) will be slowly eroding and at least implicitly 
more and more information about the specific situation and, 
therefore, semantics will be included in the up-to-now purely 
geometric part of photogrammetric image processing. This 
could be particularly helpful for dynamic scenes and very 
different viewing directions, whereas for fast-moving objects 
it might be difficult to track and/or match individual points 
or patches due to distortions and (self-)occlusions while the 
objects stay the same. In this respect, also the introduction 
of motion models to regularize the solution will be helpful.

3  Geospatial Information Interpretation

3.1  State of the Art and Case Studies

The core task of automating interpretation lies in the math-
ematical modeling of topographic or, more generally speak-
ing, scene information, as well as its behavior over time, in 
combination with its appearance in the data. Topographic 
information comprises objects such as buildings, roads, and 
vegetation but also broader categories like land use. Con-
sidering other applications, all kinds of objects such as cars, 
bicycles, pipelines in industrial plants, animals, and persons 
are of concern. Data range from color to thermal and hyper-
spectral images to LiDAR and Radar acquired by any of the 
platforms mentioned before.

While object and scene knowledge necessary for auto-
matic interpretation has been directly encoded by humans 
for a long time, in recent years there is a strong tendency 
towards employing methods based on learning by examples. 

It should be noted that in satellite image classification such 
machine learning approaches have been used from the begin-
ning; the examples to learn from are training data, which 
encode the main body of object and scene knowledge, albeit 
in implicit form. The main advantage of this strategy is that 
by providing new training samples these methods can be 
transferred to new datasets or new geographic areas rela-
tively easily.

Concerning methodologies and strategies for learning, 
there is a strong trend from traditional statistical methods, 
particularly, graphical models such as Markov Random 
Fields (MRF) and Conditional Random Fields (CRF), which 
are now often only used for post-processing, towards all 
kinds of neural networks. Having been initiated by the large 
success of convolutional neural networks (CNN) for clas-
sifying images just showing one object of relevance (Kriz-
hevsky et al. 2012), they have also been demonstrated to 
outperform other classifiers in remote sensing applications, 
partly by a large margin, if a sufficient amount of representa-
tive training data is available (Zhu et al. 2017b).

For data with a regular topology such as images, differ-
ent variants of CNN have been devised, leading to strongly 
improved results for certain areas. Multiple general ways 
to improve learning and, particularly, to make better use of 
the training data have been proposed. For instance, one can 
focus the acquisition of training data with reinforcement 
learning, making clear where deficits exist in the results. 
While this can be efficient, the success depends on the avail-
ability of the human operator generating additional intended 
results, and such approaches are hard to benchmark as the 
performance can always be improved by another round of 
training.

3.1.1  Case Study “Generation of LoD3 3D Shell Model”

Images from the ground and small UAVs, as well as the 
derived orientations and 3D mesh (see Fig. 1), allow for a 
consistent reconstruction of whole buildings on the Level 
of Detail 3 (LoD3): The roof is reconstructed from images 
from the UAV and the façades including windows and doors 

Fig. 4  Untextured 3D mesh model (left; see also Fig. 1) and derived 
LoD3 shell model with roof overhang and holes for windows and 
doors (right)
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from images from the ground. The shell model (Huang et al. 
2019) consists of surfaces with a thickness and integrates the 
roof including overhang and the façades semantically and 
geometrically (see Fig. 4). This description is derived from 
the 3D mesh; windows and doors are added as holes. The 
former is determined from images from the ground projected 
on the façade planes using a CNN. While the 3D mesh con-
sists of half a gigabyte of data, the shell model just needs a 
couple of tens of kilobytes.

3.1.2  Case study “Scene Flow”

Scene flow estimation provides valuable information about 
the dynamic nature of our 3D environment. In particular, 
the 3D scene flow field comprises all 3D motion vectors of 
a densely reconstructed 3D surface model, which is moving 
with respect to the camera. In their method termed object 
scene flow, Menze et al. (2018) propose a unified random 
field model which reasons jointly about 3D scene flow as 
well as the location, shape, and motion of vehicles in the 
observed scene. The problem is formulated as the task of 
decomposing the scene into a small number of rigidly mov-
ing objects with attached motion parameters. The inference 
algorithm then estimates the association of image segments 
and object hypotheses together with their 3D shape and 
motion. Figure 5 depicts a sample result of the work.

3.1.3  Case Study “Domain Adaptation for Image 
Classification”

Wittich and Rottensteiner (2021) address domain adapta-
tion for the pixel-wise classification of remotely sensed data 
using CNNs as a strategy to reduce the requirements with 
respect to the availability of training data. The method is 
based on adversarial training of an appearance adaptation 
network (AAN) that transforms images from the source 
domain such that they look like images from the target 
domain. A joint training strategy is proposed for the AAN 
and the classifier, which constrains the AAN to transform 
the images such that they are correctly classified. A specific 

regularization term for the discriminator network required 
for adversarial training helps to prevent the AAN from learn-
ing trivial solutions. Using high-resolution digital orthopho-
tos and height data the method on average improved the 
performance in the target domain by 4.3% in mean F1 score. 
Sample results of this method are shown in Fig. 6.

3.1.4  Case Study “Urban Tree Recognition in Airborne Laser 
Scanning Point Clouds with Deep 3D Single‑Shot 
Detectors”

To apply CNN for airborne laser scanning (ALS) data pro-
cessing, often in the first step the irregularly spaced 3D point 
coordinates and their features are mapped into a voxel grid. 
However, usually, large parts of the volume are occupied 
by free space. In addition, due to the sensor principle, ALS 
data are restricted to capture echoes of those object bounda-
ries which can be reached by the laser signal, whereas the 
interior volume cannot be accessed. Consequently, such a 
voxel space is in general only sparsely populated. Therefore, 
standard convolution schemes are not efficient and lead to a 
blurring of details, because each 3D point is spread by the 
filter’s impulse response. Remedy are so-called 3D submani-
fold sparse convolutional networks that avoid such undesired 
widening by omitting certain parts of the input (Graham 
et al. 2018). Schmohl et al. 2021 use such a network as a 
sparse 3D backbone for feature extraction in a framework 
tailored to detect single urban trees (see Fig. 7). This veg-
etation class enjoys steadily rising interest, for example, for 
purposes like improvement of locale climate or enrichment 
of biodiversity. Unfortunately, official tree cadasters are 
often limited to the public ground only, ignoring the large 
share of urban trees in backyards and private gardens. To 
detect as many trees as possible, the mentioned 3D back-
bone is followed by a detection approach, which eventually 
delivers the height and crown diameter of individual trees.

3.2  Research Perspectives

Geospatial data interpretation has recently profited signifi-
cantly from artificial intelligence methods in general, and 
deep learning methods in particular. This development has 

Fig. 5  Result for object scene flow (Menze et al. 2018). The reference 
image is superimposed with optical flow results and the reconstructed 
objects

Fig. 6  Result of deep domain adaptation using the method of (Wittich 
and Rottensteiner 2021). From left to right: Classification of source 
domain image, source domain image, source images transformed to 
the target domain by the AAN, target domain image, classification of 
target domain image
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opened up unprecedented possibilities for new applications, 
e.g. in combining human interaction and computing per-
formance for active learning, in fusing drastically different 
images such as terrestrial and aerial views and integrating 
deterministic physical models with neural networks (Tuia 
et al. 2021). At the same time, several problems which await 
sound solutions have become apparent.

A general issue is that the internal decision-making pro-
cess of deep learning methods is not well understood; they 
behave very much like black boxes, and there is no theoreti-
cally sound strategy for designing deep learning methods for 
specific applications; instead, mostly adhoc design methods 
are employed today, starting from some existing architecture 
that has proven to work well for similar problems. How to 
explain the behavior of deep learning methods is, thus, an 
important research question (Roscher et al. 2020).

Another question is how to infer causality from corre-
lation (Pérez-Suay and Camps-Valls 2019). The challenge 
consists of combining advanced learning methodologies and 
strategies with a good understanding of the objects, spatial 
and semantic relations as well as interactions over time, to 
provide a capable but also ideally provably robust system for 
interpretation. The problem is aggravated in remote sensing 
applications due to the large variability of sensors that are 
used.

A major challenge for the approaches based on learning 
by example is to provide knowledge via training data, which 
is suitable for the problem. To improve the generalization 
capabilities, one has to make sure that the major aspects 
necessary for interpretation are included in the training data, 
e.g., the complete spectrum of objects to be interpreted. This 
all means that there is a new basic challenge: How can one 
provide training data which contains the relevant variation 
of the objects and their interactions?

There are large databases of annotated terrestrial RGB 
images such as ImageNet (Russakovsky et al. 2015) which 
form a good basis for training classifiers that generalize well 
for a large variety of applications but are restricted to the 
object types shown in these images and to the type of sen-
sor used for acquiring them. No datasets of a comparable 
size exist for remote sensing data, let alone for sensors such 
as airborne laser scanners or hyperspectral cameras. A new 
ISPRS benchmark sheds some light on this matter (https:// 

ifpwww. ifp. uni- stutt gart. de/ bench mark/ hessi gheim/ defau lt. 
aspx).

Recent research, therefore, focuses on making better use 
of self-supervising approaches. A particularly promising 
way is to employ generative adversarial networks (GANs) 
for the generation of realistic training data to extend the cov-
erage of the natural variations of objects or scenes. GANs 
can also be used to learn from non-matching input and out-
put. For instance, mappings between maps and images of 
the same region can be learned without one-to-one relations.

In particular, in topographic applications, one can make 
use of existing maps to generate the training labels for new 
images. In this context, the training technique has to cope 
with erroneous labels (e.g., due to changes in land cover), 
so-called “label noise”. Kaiser et al. 2017 have shown that 
using large amounts of such partly wrong training samples 
can reduce the requirements for high-quality hand-labeled 
data in training a CNN. For label noise, robust methods for 
training can provide good results even without any hand-
labeled data, which has been shown for random forest classi-
fiers (Maas et al. 2019). These principles are currently being 
transferred to the domain of deep learning (Voelsen et al. 
2021).

Another very promising strategy is multitask learning 
(Kendall et al. 2018), where several tasks of possibly differ-
ent complexity can support each other. In transfer learning 
and domain adaptation, one learns from previous applica-
tions, even when these are only weakly related (Tuia et al. 
2016); one of the challenges is to understand how similar 
the different domains must be for a successful application of 
domain adaptation, and how this similarity can be measured. 
In this context, GANs can also be applied to learn a repre-
sentation of the images so that the resultant features have 
similar distributions for images from different domains (Wit-
tich and Rottensteiner 2019), or to learn how to adapt the 
appearance of images from one domain so that they look like 
images from the other domain (Wittich and Rottensteiner 
2021; cf. Sect. 3.1).

The availability of satellite data with high revisit times, 
e.g. Sentinel-2, has triggered interest in the processing of 
time series. In this context, recurrent neural networks (RNN) 
have been used, e.g. for building detection (Maggiori et al. 
2017). Long short-term memory (LSTM) architectures 

Fig. 7  Deep learning network 
for scene classification and 
subsequent single tree detection 
(Schmohl et al. 2021)

https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
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were developed to avoid common problems in training, e.g. 
vanishing gradients (Hochreiter and Schmidhuber 1997), 
and they have been adopted for the classification of remote 
sensing data from multiple epochs, e.g. for change detec-
tion (Mou et al. 2019) or for crop classification based on 
time series (Rußwurm and Körner 2018). An alternative is 
to employ self-attention mechanisms, typically embedded 
in transformer architectures (Vaswani et al. 2017), which is 
a more general representation than convolutional network 
layers (Cordonnier et al. 2020). Such architectures can help 
to suppress irrelevant observations in time series, as was 
shown by Rußwurm and Körner (2020): They also reach 
competitive results in other computer vision tasks (Dosovit-
skiy et al. 2021; Liu et al. 2022). The achievable geometric 
accuracy and the amount of supervision required for learning 
such models, in particular if a pixel-wise classification is to 
be determined for every time step, still seems to be unclear.

An additional basic question consists in how far geomet-
ric and physical modeling is still appropriate. In principle, 
everything could be learned by just linking the acquired 
input data to the intended result. While this could be helpful 
in certain areas with a weak understanding of the problem, 
such as how to model a tree as seen from the ground with 
different levels of mutually occluding branches and leaves 
with a very complex reflection function, experience shows 
that using proven models as priors tends to improve and sta-
bilize results (see Tuia et al. 2021 and the references therein 
for examples).

It also has to be noted that learning approaches focus on 
a semantic interpretation of the input data, but in general 
do not aim at a 3D reconstruction of the geometric shape 
of the objects. Some recent examples have tried to support 
3D reconstruction by machine learning, e.g., for roof recon-
struction (Wichmann et al. 2018) or cars (Coenen and Rot-
tensteiner 2019). It is anticipated that this common treatment 
of semantics and geometry will increasingly be used and will 
yield better results.

Similar arguments hold true for dynamic scenes. A gen-
eral question relates to the usefulness of explicit motion 
models for objects to be detected and tracked, incl. models 
for object behavior, which are necessary to predict future sit-
uations, e.g. in traffic scenarios, and the interaction between 
different objects. Also, it is unclear, what the benefits are of 
modeling not only the behavior of individual objects but the 
whole scene, in general, as a function of time.

In contrast to raster images, 3D point clouds are irregu-
larly distributed spatial data. To extract implicit neighbor-
hood relations for each point, usually, local features are cal-
culated to enable subsequent segmentation or classification 
(Weinmann et al. 2015). In addition, for point clouds, sub-
stantial progress has been achieved based on deep learning 
(Griffith and Boehm 2019) employing one of the following 
processing strategies: (i) use of hand-crafted features in a 

single- or multi-branch 1D CNN, (ii) projection of the point 
cloud onto planes which are fed into a standard 2D CNN 
for images, and (iii) discretization of the point cloud to 3D 
voxel space, where 3D convolutions take place. A general 
bottleneck is the lack of sufficient labeled ground truth data 
for training and validation of such approaches. Furthermore, 
there is also progress for neuronal networks based on gen-
eral graph structures (Nassar et al. 2020), also for the direct 
segmentation of 3D point clouds.

Finally, it will always be necessary to optimize func-
tions. While classical least-squares adjustment or Kalman 
and Particle Filters allow for a high precision, sampling 
strategies such as RANdom SAmple Consensus (RANSAC) 
or Markov Chain Monte Carlo (MCMC) and their many 
variations are more robust but need to be chosen in a way 
reflecting the error structure of the problem. The training of 
CNNs requires the minimization of a loss function. For that 
purpose, variants of stochastic gradient descent are usually 
applied. The impact of the chosen optimization procedure 
on the results has hardly been investigated so far. More work 
has been spent on designing task-specific loss functions to 
be optimized, but problems remain, for instance, the way to 
deal with extremely unbalanced class distributions of the 
training data, which frequently occur in land cover classi-
fication or the development and application of appropriate 
strategies for regularization to avoid overfitting. Finally, the 
question arises if and how a combination of robust sampling 
strategies and CNNs could lead to considerably more robust 
approaches for automatic interpretation.

4  Geospatial information modeling 
and management

Goodchild (2009) already formulated the goal “imagine the 
possibility of a world of real-time geographic information”. 
Today, due to IT and sensor developments during the last 
decade, we are on the way towards realizing this vision. The 
challenges presented in the former sections and their con-
sequences to geospatial information modeling and manage-
ment – driven by expected more data and extremely detailed 
representations concerning geometry, semantics, extent and 
time for all kinds of sensors – will lead to new challenges 
for information modeling and management. In the coming 
decade, geospatial information modeling and management 
will have to be adapted to these new requirements.

4.1  State of the Art

A common approach in geographic data science is the inte-
gration of multiple data sets characterized by different spa-
tial and temporal references, at multiple scales and resolu-
tions (Andrienko et al. 2017). This means that information 
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integration is a central issue bringing together different 
“dimensions” such as space dimension (2D, 2.5D, full 3D 
objects: maps and digital terrain models as well as full 3D 
geological subsurface models and full 3D city models), 
spatial scale (resolution), and temporal scale (resolution). 
We will focus on different levels of information integra-
tion in Sect. 5. Before integrating data, however, data has 
to be modeled and managed in a formalized way. A typi-
cal example, showing two different ways of spatial data 
modeling which have been established for decades, are the 
domains of geographic information systems and Computer 
Aided Design (CAD). In the following, these are generally 
referred to as geospatial information modeling (GIM) and 
Building Information Modeling.

Geospatial information modeling denotes the digital 
modeling method for space-related phenomena of the real 
world. It is characterized by multidimensional descriptions 
of geospatial features by location and orientation in a spa-
tial reference system (SRS), object model, and field model 
(implemented as vector and raster data formats), and has 
been extended to spatio-temporal models (Erwig et al. 
1999; Güting and Schneider 2005). Seen from a historical 
point of view, in GIM geometric, topologic, and semantic 
modeling of objects have always been treated as one unit. 
GIM is used as digital documentation of real-world states 
and can be applied to a variety of spatially related ques-
tions (Herle et al. 2020). Due to the rapid development 
of information and communication technology as well as 
advances in the methods and degrees of automation of data 
acquisition, it has become possible to capture geodata in 
their 3D or 4D extent and thus to create a very realistic 
virtual image of the real world in digital form.

Organizations such as the International Organization of 
Standardization (ISO), with the ISO 191xx family, and the 
Open Geospatial Consortium (OGC), promote standards 
for better interoperability, including data models (from 
simple feature model to CityGML, IndoorGML, Land 
Administration Domain Model (LADM), and Land and 
Infrastructure Conceptual Model (LandInfra)), exchange 
formats and languages (such as Geography Markup Lan-
guage GML) and service specifications (the OGC Web 
Services such as Web Map Service (WMS), Web Feature 
Service (WFS), Web Processing Service (WPS), etc.). The 
resource-centric OGC API family of standards are being 
developed to make it easy, especially for machines as well 
as for anyone, to provide geospatial data to the web.

GIS research, development, and implementation are 
largely based on CityGML, first adopted as version 1 in 
2008 and recently released as version 3.0 (https:// docs. ogc. 
org/ is/ 20- 010/ 20- 010. html) in September 2021. CityGML 
3.0 is an OGC international standard for modeling, storing, 
and exchanging semantic 3D city models. In CityGML, 
buildings, terrain, vegetation, street furniture, urban object 

groups, water bodies, roads, tunnels, bridges, and land 
use can be represented semantically and geometrically, 
with the construction module being new (see Fig. 8). In 
addition to these eleven thematic modules, six modules 
are defined that are applicable to all thematic modules. 
Besides the CityGMLCore, Appearance and Generics, 
which were already available in earlier CityGML versions, 
the modules Dynamizer, Versioning and PointCloud have 
been added.

The conceptual schema of CityGML specifies how and 
into which parts and pieces physical objects of the real world 
should be decomposed and classified. All objects can be 
represented with their semantics, 3D geometry, 3D topol-
ogy, and appearances information. The objects can further 
be represented using five predefined levels of details (LoD 
0–4 with increasing accuracy and structural complexity). 
The relevant city objects are defined using the Unified Mod-
eling Language (UML); CityGML 3.0 GML Encodings 
specify an XML schema for the file exchange format. With 
the construction of large statewide or municipal city mod-
els, CityGML has found an important role in the orchestra 
of OGC standards and is a good base for GI research and 
development.

BIM and GIM technologies have different origins and 
come from different domains. In civil engineering and archi-
tecture, a shift from purely constructional data handled by 
computer-aided design software towards BIM is currently 
taking place. This means that the realization of the joint 
modeling of geometry and semantics has arrived in BIM 
two decades later than in GIM, still not considering topology 

Fig. 8  CityGML 3.0 module overview. The vertical boxes show the 
different thematic modules. Horizontal modules specify concepts that 
are applicable to all thematic modules (Kutzner et al. 2020)

https://docs.ogc.org/is/20-010/20-010.html
https://docs.ogc.org/is/20-010/20-010.html
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as an independent concept besides geometry. BIM (using 
Industry Foundation Class (IFC) (ISO 16739 2013) by 
OpenBIM) supports consistent and integrated modeling of 
all data for specific construction and during its life cycle 
(Borrmann et al. 2015). BIM and GIM modeling views are 
complementary to each other. BIM geometry modeling is 
based on constructed solid geometry (CSG) (Mäntylä 1988), 
GIM – for instance, CityGML as one of the most relevant 
standards of OGC for city models—uses boundary repre-
sentations (B-Rep). Whereas BIM is applied in planning 
processes for constructing buildings and other structures, 
GIM is used to model geospatial features of the real world 
with an application-dependent accuracy (Fig. 9). GIM usu-
ally is applied for applications such as heat spread modeling 
in cities whereas BIM focuses on applications such as facil-
ity or energy (heating/cooling) simulations in single build-
ings which can be up-scaled to urban scale (Geiger et al. 
2019). Both concepts are mature and are applied by various 
industries. Different approaches are investigated to achieve 
interoperability between GIM and BIM models (Herle et al. 
2020).

Information modeling also deals with the development of 
ontologies at different levels of generality and formality, tai-
lored to various needs and uses (Kokla and Guilbert 2020). 
Kuhn (2005) defined geospatial semantics as “understanding 
GIS contents, and capturing this understanding in formal 
theories.” Geospatial semantic modeling and ontologies 
refer to the meaning of things (Hu 2018).

In the realm of spatial data, linked data and GIS are two 
separate paradigms, representing different approaches for 
data representation and exchange. Recently, the volume of 
data with spatial reference in the Linked Open Data (LOD) 
cloud has been on the rise. Whereas in GIS the main focus 
is on data for analysis by humans, LOD is structuring infor-
mation in a format meant for machines. If all datasets were 

openly published and used the same format for structuring 
information, it would be possible to interrogate all of these 
datasets at once. Analyzing huge volumes of data is poten-
tially much more powerful than everyone using their datasets 
dotted around the web in what is known as information silos. 
These interoperable datasets are what LOD practitioners are 
working towards (Iwaniack et al. 2016). Time and space ref-
erencing are the simplest methods for structuring such data 
and providing the context for interpretation. This is one of 
the reasons for perceiving linked open data as one of the 
most important approaches for geographic information pub-
lication and consumption on the web. It provides new means 
for sharing, accessing, and integrating geoinformation and 
holds a promise of changing ways, in which GI developers 
and analysts solve their problems.

According to Andrienko et al. (2017) “one of the most 
challenging problems in geographic data science is the 
need to assess the data quality, suitability, and distribution 
of the data available for analysis.” The heterogeneity of the 
real world, different technologies for data acquisition and 
processing, database management tools and platforms lead 
to a large amount of duplicated, inconsistent, ambiguous, 
and incomplete spatial data. Thus, spatial data quality and 
uncertainty is an increasingly important issue in geographic 
information science. Uncertainty and data quality modeling 
is an unavoidable part of spatial data due to an approxima-
tion of real-world phenomena. The influence of uncertainty 
may be visible in the form of original data and measurement, 
assumptions, or in the model structure (Bielecka and Burek 
2019).

To allow persistent use of data and objects modeled 
according to GIM and BIM, geospatial information is main-
tained in spatial database management systems (SDBMS). 
SDBMS are optimized to store and query data that represent 
objects defined in a geometric space. They define special 

Fig. 9  BIM and GIM and their 
common objects (Herle et al. 
2020, adapted from Hutsell and 
Bush 2016)
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data types for geometric objects and allow geometric data 
(usually of a geographic nature) to be stored either in regular 
database tables or in non-tabular databases. Besides spatial 
data types, SDBMS provide special functions and indexes 
for efficient querying (Güting 1994) and manipulating that 
data using declarative query languages such as the Struc-
tured Query Language (SQL) or others. In the beginning, 
attribute data were stored separately from the geometry in 
relational database management systems (RDBMS). With 
the emergence of object-oriented thinking, complex data 
types and relations between geometry and topology as 
well as attributes were treated in object-oriented database 
management systems (OODBMS) (Balovnev et al. 2004). 
Object-relational database management systems (ORD-
BMS) combine both approaches, the relational world, and 
the object world, and are standard today (Thirunavukkarasu 
and Wadhwa 2016). These spatial database management 
systems support at a minimum complex data types, spatial 
data within related tables—feature classes, feature datasets, 
validation rules—subtypes and domains, spatial metadata, 
spatial reference systems and transformations, topologies 
and methods for analyzing spatial relationships, a spatial 
query language for query and search, and spatial indexing 
to improve the performance (Jitkajornwanich et al. 2020).

More types of databases are approaching the market for 
specific purposes, which are also of interest for geospatial 
problems: NoSQL databases (not only SQL—more than 
tables, document-oriented, graph databases) and XML data-
bases (semi-structured data described in XML) are used in 
many disciplines beyond GIM and BIM (Lee et al. 2012). 
Furthermore, Content Management Systems (non-structured 
data, e.g. documents, arbitrary texts, graphics) and multime-
dia databases (imagery/video/mass data etc.), are well suited 
to manage the context of geospatial data. Finally, in-memory 
databases (running in the RAM of the computer, Continu-
ous Query Language), data stream management systems 
(DSMS) (streams of sensor data, video, audio), and array 
databases (Baumann 1994) are seeing a revival (Baumann 
et al. 2021) as there is an increasing need of providing anal-
ysis-ready data (Baumann et al. 2018).

4.2  Case Study and Research Perspectives

4.2.1  Case Study “Urban Digital Twins”

Based on the most recent ICT and its protocols a huge vari-
ety of 3D/4D and real-time data sources need to be inte-
grated to model our environment. These data, collected 
by means of both, physical and social sensing, together 
with modern remote sensing technologies, define what is 
increasingly called the “digital twin” of a city, available 
for real-time geoinformation processing. Urban situations 
should be simulated and analyzed with highly sophisticated 

mathematical methods for different purposes. Huge amounts 
of different data need to be stored, maintained and processed 
in a distributed and parallelized manner. Decision makers, 
government and the public should be involved, which asks 
for advanced methods of information visualization and dis-
semination (see Sects. 7 and 8). It facilitates the integration 
of urban geodata for a variety of applications for smart cities 
and urban digital twins, including urban and landscape plan-
ning, smart energy, transport and mobility, infrastructure, 
and others. Li et al. (2020) integrate these research issues 
in an emerging real-time GIS platform for smart cities that 
is designed for the acquisition, storage, analysis, and visu-
alization of geospatial data in real time (see Fig. 10). This 
real-time GIS needs to support high throughput and high-
speed processing of large GIS data streams, being location-
sensitive, of high temporal granularity, and being generated 
continuously from sensing devices that collectively comprise 
the IoT.

4.2.2  Research perspectives

Picking up the challenges introduced in the former sections, 
we now outline the consequences for geospatial information 
modeling and management in detail. Obviously, new chal-
lenges arise such as:

(i) Modeling and management of big geospatial and spa-
tio-temporal data from data-intensive sensors incl. a 
change from images to videos.

(ii) Representations of buildings, cities, and infrastructures 
in different space and time scales.

(iii) Modeling and management of full 3D spaces for Geo-
BIM, i.e. the integration of GIM and BIM.

(iv) Real-time dynamic scenes and moving objects.
(v) Topology in 2D, 3D, 4D, and nD space.
(vi) Ontologies and semantics: Modeling spatial and seman-

tic relations and interactions as well as knowledge 
about objects and scenes.

(vii) Data quality and uncertainty modeling and maintenance 
in the whole GI processing chain.

(viii) 4As (anytime, anywhere, for anyone, and anything).
(ix) Database support for big geospatial data analysis.
(x) Artificial intelligence (AI) supporting spatial informa-

tion modeling and management.

Challenge (i) opens “a new chapter of the book” in geo-
informatics: Real-time and highly dynamic scenarios will 
arise in remote sensing and other geo-applications with a 
high demand to retrieve and to mine knowledge out of the 
objects and the scene in (near) real-time. New data stream 
management systems and array databases, respectively, 
should be used and adapted to the special requirements of 
spatio-temporal data streams.
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The challenges (ii) to (v) indicate that future DBMS will 
have to be extended to enable the management of multi-
scale, full 3D, and topologic objects in spatio-temporal 
database management systems (STDBMS) supporting dis-
crete and continuous time. Full 3D space representations 
of objects will be also necessary for GeoBIM to combine 
the data management for GIM and BIM applications e.g. to 
integrate 3D geological underground models with 3D city 
models. Besides geometric data types representing point 
clouds, lines, surfaces, and solids, also topologic data types 
representing nodes, edges, meshes, and solids should be 
provided. This means that not only the x, y, z-coordinates 
of points, lines, and surfaces of solid objects will be repre-
sented and ready for export, but also the internal topology 
of the objects. Furthermore, the semantic properties of these 
objects can be attached to their geometries and topologies. 
The topologic representation will make it possible to distin-
guish between the interior, the boundary, and the exterior 
of the objects and to navigate through the topologic repre-
sentations. Furthermore, topologic concepts are well suited 
to model the relationships between spatial entities such as 
neighborhoods and intersections. Also, the number of con-
nected components and the number of their holes can be 
explicitly determined by topologic concepts such as Betty 
numbers. Concerning time, GIM will require to model not 

only discrete time (objects only represented in predefined 
time steps), but also continuous time to model geographic 
or geoscientific processes such as volcanic eruptions, land-
slides, or tsunamis, whereas in BIM discrete time steps will 
be sufficient e.g. to model the progress of a construction site. 
4D data representations (3D space plus time) are mandatory 
to maintain the dynamics of features in the real world. The 
history and future of objects should be considered equally in 
future 3D information modeling and management. Doing so, 
historical data are helpful to model the future by extrapolat-
ing the past and simulating the future (Breunig et al. 2020). 
How important it will be to extend 3D city modeling for 
archiving the past and planning the future of cities has been 
portrayed impressively by Matthys et al. (2021).

Big geospatial information, especially the large amount 
of unstructured text data on the web, and the fast develop-
ment of natural language processing methods enable new 
research directions in geospatial semantics (challenge vi). 
Six major areas are identified and discussed by Hu (2017, 
2018), including semantic interoperability by developing 
ontologies, digital gazetteers as structured dictionaries for 
named places, geographic information retrieval, geospatial 
semantic web, linked data, place semantics, and cognitive 
geographic concepts. Elicitation approaches will involve a 
set of processes that aim at extracting latent knowledge from 

Fig. 10  A smart city enabled by real-time GIS (adapted and extended from Li et al. 2020)
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unstructured or semi-structured content. Future research will 
be dealing with semantic-based extraction, enrichment, 
search, and analysis of big geospatial data, places, regions, 
events, trajectories, and topics as well as geospatial concepts 
and relations (Kokla and Guilbert 2020).

GI research approaches will integrate imprecise geospa-
tial data models (challenge vii) such as fuzzy models and 
rough sets and multiple representations (Virrauntas et al. 
2009). Quality models should be able to propagate errors 
throughout the whole GI processing chain because data 
imperfections propagated through spatial analysis affect the 
decision-making process. Thus, error modeling and quality 
descriptions will be shifted from location uncertainties of 
geographic features and phenomena, towards fitness for use 
data evaluation, to uncertainty in decision making (Bielecka 
and Burek 2019).

Challenge (viii) refers to mobility: “With the integra-
tion of information and communication technologies (ICT), 
especially mobile ICT in every aspect of our daily lives, the 
4As (anytime, anywhere, for anyone and anything) ‘services’ 
are being developed to benefit our human society and envi-
ronment. This new generation of 4A technologies brings 
convenience and improves our quality of life, but also leads 
to surveillance, privacy, and ethical issues, unknown, and 
unimagined before” (Huang et al. 2018).

The massive use of geospatial raster data requires efficient 
database support for big geospatial data analysis (Challenge 
ix). Therefore, array databases (Baumann 1994) such as 
rasdaman (Baumann et al. 1998) will allow the provision 
of analysis-ready data as Data Cubes (Baumann et al. 2018; 
Baumann, 2018) or Earth Cubes (Mahecha et al. 2020).

Artificial intelligence (AI) methods will be included in 
DSMS, SDBMS, STDBMS, and array databases (challenge 
x) to support data analysis. Machine learning will likely 
influence geospatial information modeling and manage-
ment in a revolutionary way: Future database platforms 
should be able to deal with the input, models, and output of 
machine learning approaches to simplify data preprocess-
ing. Furthermore, AI may support data cleansing to detect 
and correct errors in big data and time series (Breunig et al. 
2020). Examples are the tileless spatial and temporal selec-
tion of examination areas and the automatic detection of 
data interpretation errors such as the unwrapping error in 
Sentinel-1 SAR data (Mazroob Semnani et al. 2020). As a 
consequence, future scientists will be able to repeat their 
experiments as often as they like by just retrieving arbitrary 
spatial and spatio-temporal data from the STDBMS to check 
and compare the last runs of their experiments or of other 
researchers who carried out similar data analysis experi-
ments. Combined data analysis and data management tools 
will thus increase the reproducibility of data analysis results 
significantly.

Furthermore, the use of parallel data management 
architectures (MapReduce-based systems) such as 
 SpatialHadoop® (Eldawy and Mokbel 2015), ST-Hadoop® 
(Alarabi et al. 2018), and Hadoop-GIS® (Aji et al. 2013) and 
new developments will support fast query processing. New 
directions in geospatial data management focusing on the 
interface between different fields of research such as inter-
facing data management and visualization, data management 
and data analysis, etc. have been discussed by Breunig et al. 
(2020).

5  Geospatial Information Integration

Geospatial information integration faces a set of challenges 
related to the high variety of available data in the geospatial 
domain. While it has similarities with general data integra-
tion, data augmentation, and data cleaning, it differs a lot as 
different conceptualizations and resolutions lead to funda-
mentally different representations of the same thing in real-
ity. This can lead to situations, where spatial data integration 
is simpler as opposed to general data integration: When two 
different objects are in a very similar location, they likely 
have a strong relationship and the existence of the relation-
ship can be inferred just from geometry and topology. How-
ever, fully correct and plausible representations of the same 
object can be significantly different in terms of geometry: do 
we identify a house with its perimeter or its cadastral poly-
gon or maybe just with the entrance of the property? Does 
the garage belong to the house or is it a separate object?

5.1  State of the Art

Data, models, information, and knowledge are scattered 
across different communities and disciplines, causing severe 
limitations to current geosciences research (Gil et al. 2019). 
Geospatial data is captured for different purposes, with dif-
ferent sensors, based on different data models. This leads 
to a huge variability of available data sets. This variety not 
only concerns the semantic contents of the data but also 
to data modeling, formats and representation. As data sets 
often relate to the same physical reality—or the same spa-
tial and temporal extent of the reality—there is a need for 
data and information integration to fully exploit the richness 
of available data. Examples are topographic data sets and 
special branch data, e.g. ATKIS and GDF; GML and BIM 
formats, e.g. CityGML and IFC; structured data sets and 
raw data, e.g. CityGML buildings and 3D building surface 
models from point clouds.

The goal of data integration is to
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• provide a consistent view of a set of datasets from differ-
ent regimes, schemata, and conceptualizations,

• allow an integrated analysis of data from different sources 
and

• enrich data sets with information from another one.

Data integration is typically tackled on different levels 
and with different mechanisms:

• Syntactic integration ensures that comparable data for-
mats are used so that the data can be represented in the 
same system and e.g. visually overlaid. Such a process 
can be dealt with using standards (e.g. OGC simple fea-
ture specification, CityGML, GeoTIFF).

• Semantic integration relates to the contents of the data 
and the meaning and aims at identifying corresponding 
object categories in both data sets. This process pre-
sumes that those correspondences are revealed and made 
explicit. Often, ontologies are used to describe the mean-
ing of objects. An ontology is a shared conceptualization 
of objects and relations of a specific knowledge domain 
(Gruber 1995). This means that it is typically a negotia-
tion process among different stakeholders to define and 
describe what constitutes an object.

• Instance-based integration: Given two datasets with 
different representations of possibly identical objects, 
the construction of correspondence of objects in terms 
of relations like “identity” or “is-part-of” can be used 
to derive a joint object catalog combining information 
from both datasets. In geospatial data, such correspond-
ences are typically derived using semantic and geometric 
matching, i.e. taking similar object characteristics and 
similar form, shape, and location into account.

• Latent Space Integration: Given a family of independent 
datasets, learn representations of each of the datasets like 
a feature transformation (Bengio et al. 2013) and align 
the resulting feature spaces into a joint space in which 
the joint geometry captures similarity.

Due to these very different schemes of data integration, 
the results of the integration are manifold: one option is to 
derive a consistent, homogeneous object catalog, which 
integrates and consolidates the properties and attributes of 
the objects it was derived from. This includes steps such as 
entity resolution, entity matching, geometric fusion—e.g. 
deriving an intermediate geometry—and harmonization of 
the attributes. As all of these steps can be challenging, a 
fundamentally different approach is to first propagate all the 
objects from the data sources into a large set, maybe adding 
the source dataset to the name, or otherwise making possibly 
identical objects from different datasets to different objects. 
In this intermediate representation, semantic links between 
objects are computed via data mining. A good introduction 

on this topic is given by Getoor and Diehl (2005). These 
links can be semantic relations such as neighboring, “is-part-
of” or “belongs to”. In addition, the “identity” can be mined 
as a relation “is-same-as”. Furthermore, the certainty of such 
links can be assigned as a property to the link such that clear 
relations (e.g., “is-part-of” if the geometric footprints over-
lap) can be distinguished from weak relations (e.g., “is-part-
of” with a weight of 0.5 for two different objects, because 
the geometry intersects both objects). While this approach 
avoids errors introduced by conflating two datasets into a 
new one forcing all information to be merged, it introduces a 
much more complicated topologic data space as the result of 
the integration, and it becomes more difficult to implement 
applications on top of such a data space.

The semantic web aims at making the links and rela-
tions between data explicit by defining resource description 
framework (RDF) triples; the field also provides tooling and 
query languages for the resulting data spaces. However, it 
is still an area under development and further research is 
needed to fully unlock the potential of these approaches, 
especially under the uncertainty inherent to spatial data 
objects.

In general, data integration in the spatial community is 
often a process in which at least input and output datasets 
have a spatial interpretation. An important exception to 
this rule is the case of latent space methods in which an 
artificial space (geometric space, topologic space, or differ-
ently structured data space) is generated in which a certain 
problem (e.g., object detection, change detection) can be 
solved although the original geospatial attributes are (partly) 
lost in this step. In many such cases, this loss of spatial-
ness as part of the method is compensated by an additional 
data integration step with the original data. State-of-the-art 
computer vision algorithms for object detection, like Yolo, 
are a good illustration of this principle. In these algorithms, 
the spatial space (e.g., the image) is decomposed into many 
small patches which are individually processed. For each of 
those patches, without the location information in the origi-
nal image, the system assigns a probability that the patch is 
part of an object to be detected. Then, these partial results 
are recombined into a spatial object representation like a 
bounding box. In this case, spatial information is removed 
in the splitting phase to small patches, and the spatial nature 
is reintroduced when combining neighboring patches to 
bounding boxes after classification in a non-spatial image 
classification setting.

5.2  Case Studies

5.2.1  Case Study “Data‑driven schema matching”

An approach to achieve semantic integration is proposed 
by Kieler (2020). It is a data-driven approach to determine 
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correspondences between two ontologies and starts from 
the assumption that objects which share the same geometry 
and spatial footprint also have something in common on a 
semantic level (see Fig. 11). An example is a forest, which is 
called „A4107 (Wald, Forst)“ in ATKIS and “G7120 (Land 
Cover: Forest (Woodland))” in GDF, and which in both data 
sets is represented at the same location and with a similar 
geometric delineation. If there are many examples of such 
correspondences, then it is fair to infer that “A4107” and 
“G7120” belong to the same semantic class. Based on this 
principle, Kieler developed an optimization approach using 
integer programming to determine the best correspondences 
between two data sets. The challenges are that typically the 
correspondences between objects are not unique (i.e. not 
1:1 but 1:n or n:m) and there are geometric inaccuracies. In 
addition, when objects are represented in different scales, the 
identification of correspondences has to be refined and has 
to go beyond geometric matching, taking the changes into 
account that result from generalization.

5.2.2  Case Study “Data Enrichment Based on Information 
Fusion”

Crowdsourcing based on ubiquitous sensors has a huge 
potential for collecting dynamic environmental information. 
An approach exploiting smartphone sensors mounted on 
bicycles to determine road roughness is described by Wage 

and Sester (2021). The approach is based on the intuitive 
principle, that roughness can be measured using the accel-
eration sensors of a smartphone. In this way, the roughness 
of a road segment is observed by different bicycles.

However, due to different influences such as the type 
of bike and setup, the observations will not yield the same 
roughness values. To incorporate parameters describing 
the context of measurements, the authors set up an adjust-
ment model and jointly optimize the unknown roughness 
and the unknown context variables (describing for example 
the damping of the bike) exploiting the measurements and 
knowledge from the map. In this way, all the observations of 
the same road segment contribute to the unknown roughness 
value of a segment, under the constraint that all observations 
must yield the same value. The problem is solved by a least-
squares adjustment, so in parallel to the segment roughness 
also parameters representing the main varying influencing 
factors are estimated. In the first step, the trajectories of the 
cyclists are matched to a road network; then for each road 
segment, the trajectories are treated as an observation. After 
the adjustment, roughness values for all road segments are 
estimated (see Fig. 12 left). The approach assumes that the 
roughness is constant for each segment—which, however, is 
not necessarily true over time, due to degradation or renewal. 
Thus, it is possible to analyze the adjusted roughness obser-
vations over time and automatically check for temporal dis-
continuities (see Fig. 12 right).

Fig. 11  A survey of approaches 
to automatic schema matching 
(Kieler 2020)

Fig. 12  Result of joint esti-
mation of roughness (left); 
detection of temporal changes 
in roughness (right) (Wage and 
Sester (2021))
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5.2.3  Case Study “Integration of Spatial Feature Maps 
Extracted from Social Media with Remote Sensing 
Images for Urban Heat analysis”

This is an example of the combination of spatial information 
of various types into a single deep learning model learning a 
joint representation of the input datasets suitable for classify-
ing urban regions in a certain resolution (Leichter et al. 2018). 
The underlying model of local climate zones (LCZ) describes 
urban settlements in several classes including aspects such as 
the density (compact, open, sparse) and the height (low-rise, 
mid-rise, high-rise) of the buildings as well as some addi-
tional classes for the non-built area (dense trees, scattered 
trees, soil, water). Combinations of these features lead to a 
classification scheme with 17 classes (Steward and Oke 2012). 
This classification scheme, however, also defines a scale and 
proposes to assess these classes on a scale comparable to a 
100 m × 100 m grid. In this example, the authors combine 
social media data from the Twitter social networks (e.g., geo-
referenced objects with metadata from the user account and 
spatial information from the spatial distribution of tweets) 
with satellite imagery from the Sentinel-2 mission, which 
includes various spectral bands and different resolutions. 
In terms of information integration, the authors start with a 
spatial input dataset represented by Sentinel-2 layers for red, 
green blue, and near-infrared (R.G.B.IR.). These are all given 
in 10 m resolution in a certain UTM projection. Then, the 
authors applied elements of typical CNNs like pooling and 
inject all given information in their natural resolution. For the 
misalignment in terms of projection, nearest-neighbor inter-
polation is used for Twitter data and bicubic interpolation for 
images. Figure 13 depicts the architecture: After considering 
the first layers (R.G.B.IR.) at 10 m resolution, pooling is done 
to generate 20 m resolution and band 11 and band 12 (which 
have this resolution) are injected by stacking them onto the 
feature maps already extracted. A further pooling brings us 
to 100 m x 100 m in which the authors sample the average 
number of friends and comparable features from all Twitter 
messages observed in this area for a three-month interval. 
Then, some convolutional steps allow the model to transform 
until the output shall be the LCZ map for the given patch. As 
the initial patch size, the authors use 250 × 250 pixels, that is 
patches of 2.5 km × 2.5 km (see also Fig. 13).

This is an example of data fusion in which a single deep 
learning model (feature learning) is used and data of differ-
ent nature (features extracted from Twitter, different resolu-
tion image bands, etc.) are combined in a joint model learn-
ing to predict the local climate zones. In total, this approach 
increased the performance as measured by the F1-score (a 
measure of a test's accuracy ranging between 0 and 1) by 

0.05 across all classes with significant margins of up to 20% 
for some of the classes.

5.2.4  Case Study “Model Fusion as a General Data 
Integration Technique”

The previous example has shown that deep learning and 
other machine learning techniques based on learning rep-
resentations are helpful because these representations can 
be combined (by stacking information into feature maps, 
for example) in the context of a problem to generate spatial 
output combining various non-integrated data sources. As 
a final case study, Hoffmann et al. (2019) show the case 
of ground-aerial fusion. Given a machine learning problem 
(e.g., building function classification in residential vs. com-
mercial or similar), aerial imagery of the area of interest and 

Fig. 13  Local Climate Zone Data Example and Deep Data Integra-
tion Architecture: Different data sources are integrated into their “nat-
ural” resolution by adding the information in the correct “location” of 
a typical CNN (Leichter et al. 2018)
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street view information, how can one predict the function 
of a building (or detect damages, or generate map informa-
tion)? In this situation, even the feature spaces that one can 
generate during deep learning do not align well with each 
other as aerial images show information that is significantly 
different from street-level information (e.g., roof shape vs. 

façade), but still informative for the result (e.g., building 
function). In this situation, the authors showed that com-
bining features in a single end-to-end learning paradigm 
does not work well. Instead, the authors solve the problem 
for each input dataset separately and treat the output not as 
deterministic information, but as probabilistic votes. That 

Fig. 14  Decision-level fusion 
for multimodal data integration: 
As Streetview and aerial images 
do not share any geometric fea-
tures, they are treated indepen-
dently and combined systemati-
cally by decision-level fusion 
(Hoffmann et al. 2019)
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is, the authors train a probabilistic classifier independently 
on each of our non-integrated input datasets trying to solve 
the problem directly. The resulting probabilities can then 
be combined, in the simplest case by taking the mean, and 
the joint classifier outperforms classifiers based on a single 
optimization in most cases.

Figure 14 (top) depicts the non-integrated dataset on the 
left-hand side: three resolutions of overhead information and 
a Streetview image of the same location are combined. In 
Fig. 14 (middle), one sees the performance of individual 
models combined with other models through a mean of the 
output function.

That is, the distribution depicted in each row of this figure 
is the distribution of performance of combining the named 
model with any other model in our experiments. The model 
name consists of the architecture (Inception, VGG), the pre-
training dataset (ImageNet or Places365 for Streetview mod-
els), and a counter as the authors trained different models 
for each combination. One sees that all these combinations 
are not extremely powerful, that high-resolution (A19) over-
head imagery is the strongest feature, but that Streetview 
can help as well. Finally, Fig. 14 (bottom) shows the reach-
able performances of taking the mean of up to eight models. 
Increasing the number of (different) models, the average per-
formance increases and the variance decreases. This leads 
to a better overall classification and another example of that 
diverse teams can be stronger than well-trained teams lack-
ing diversity.

However, this strategy relies on the fact that each model 
contributes independent information, that is, when apply-
ing it to data that is more correlated than Streetview and 
overhead imagery or scaling the number of models to even 
higher numbers will not necessarily lead to better results.

5.3  Research Perspectives

The ultimate goal is to automatically integrate informa-
tion of any two data geospatial sets into a joint framework, 
which allows for integrated data analysis. This implies that 
correspondences on an instance and schema level are auto-
matically detected, deviations between the data sets (e.g. 
differences in geometry and/or in semantics, e.g. higher 
granularity, level of detail) are identified. This enables future 
systems to automatically select the correct data source (or 
combination of data sources) for any problem at hand.

According to Gil et al. (2019), open issues include cross-
domain concept mapping, entity resolution, scientifically 
valid data linking, and effective tools for finding, integrating, 
and reusing data. In the following, a few of these research 
challenges are briefly addressed.

5.3.1  Analysis Ready Data

This concept assumes that all relevant information about 
individual data is available in terms of metadata descrip-
tions. An object “knows” about its properties and also for 
which processes it can be used. Such knowledge can, e.g., 
be modeled in terms of knowledge graphs (Auer and Mann 
2019). In this way, it is also possible to leave data in their 
raw form until they are needed in a different representation. 
An example is 3D point clouds, which are an adequate repre-
sentation for many applications, e.g. for visualization, deter-
mination of clearance in buildings or roads. For other appli-
cations, however, a detailed and rich semantic and geometric 
model might be required, e.g. for planning an extension of 
a building. Under the paradigm of analysis-ready data, such 
models could be derived on-demand and on the fly.

5.3.2  Information Integration and Information Quality

In general, when applying data integration over spatial data 
sources, one consequence is that the data quality will change. 
Unfortunately, it is very difficult in practice to quantify such 
information losses or gains in advance and independent of a 
concrete application. This is why data integration is usually 
performed for each application individually from a set of 
base datasets which are rather pure observations. By provid-
ing information products together with their “lineage”, that 
is, how they have been created and how parameters have 
been chosen and tradeoffs have been resolved, information 
products could be designed that have a more universal appli-
cability in data fusion.

5.3.3  Scale and Generalization

When information of different spatial scales is integrated, 
the aggregation effect of generalization has to be considered: 
through generalization, objects are combined, simplified, 
and they might change their topologic relations with other 
objects. Thus, typically the data has to be transformed to 
a comparable generalization level before they can be inte-
grated (and possibly generalized further jointly) (Hampe 
et al. 2004).

Furthermore, problems of scale and also round-off errors 
can have effects such that even the coordinate transformation 
between two different datasets or the integration of two datasets 
of different spatial scales can have an influence on the outcome 
of very simple operations such as point-in-polygon filtering. 
Keeping track of these errors in all processing stages and espe-
cially keeping track of the error propagation is crucial for reli-
able complex workflows based on data integration. However, 
tool support for such quality-oriented data integration is still 
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largely lacking and it relies mainly on the experience and care 
of the data scientists performing the data integration.

5.3.4  Linking Data and Processes

Traditional geoinformatics often concentrate on data and its 
automatic analysis. On the way to more and more automa-
tion, however, methods for linking the data with applica-
tions and tasks are needed. This can be achieved by intro-
ducing more knowledge on different levels: on the one hand 
knowledge about the data, their semantics, and relations; 
on another level, however, also knowledge about processes 
and connections between different knowledge chunks and 
underlying physics or rules. Knowledge graphs are one way 
to formalize this knowledge (Mai et al. 2020). Furthermore, 
it would be good if data was always accompanied by its 
whole processing history, metadata, and associated software 
tools. Only in this way, spatial analysis can be reproducible 
and causes of problems can be identified.

5.3.5  Machine Learning and Data Fusion

In the last decades, machine learning has become a more and 
more mature technique. One way of using machine learning 
for data fusion and data integration is to use machine learn-
ing to project data into a data space in which the distance 
or topology has some application-dependent meaning. For 
example, one can learn a vector representation of text in 
which sentences with similar meanings are near each other. 
A good introduction to this topic including high-quality 
open source implementations is given by Facebook’s fast-
text library (Joulin et al. 2017). Such models have lately 
been applied to various spatial data types as well. The basic 
idea is that we want to construct a so-called latent space 
in which a notion of similarities like the Euclidean or the 
cosine similarity of feature vectors captures a, maybe noisy 
or only partially available, notion of similarity or identity in 
the source datasets.

5.3.6  Heterogeneous Information Networks

Spatial data integration inevitably leads to situations in 
which ambiguities need to be resolved and, as discussed 
before, we can either resolve them by data imputation, 
data selection, data integration, or random choice. Alter-
natively, we can make these ambiguities explicit in a linked 
data representation based on knowledge graphs. However, 
spatial data models are often formalized in a relational or 
object-oriented schema (e.g., objects are of certain types 
and these types have certain required or optional attributes). 
Knowledge graphs, in their general form, neither represent 

nor constrain data to follow such schemata and, hence, if 
they are used for data integration, such schema information 
is lost. Heterogeneous information networks have been pro-
posed as an approach to generalize the notion of a database 
schema to knowledge graphs and to render more flexible the 
queries at hand in such a way that schema information can 
be exploited. In this case, every node in the knowledge graph 
is assigned a certain type, and types can prescribe subgraph 
patterns such as which relations should (at least) exist and 
how they are modeled. This schema information (type and 
attribute information) can be valuable in efficient querying 
and data completion or imputation tasks. Furthermore, such 
schemata can be enforced implying that all modeled data in 
the knowledge graph contain all required information for 
an application. However, these techniques are still not fully 
mature, and spatial aspects have not been at the center of 
investigation yet. And the challenge of finding and integrat-
ing different schemata is not solved by the concept. Hetero-
geneous information networks can, however, be a viable tool 
in data integration as the existence of schemata on the input 
and the output can be exploited (Shi et al. 2016).

Many more research challenges need to be resolved to 
reduce the problems that spatial data integration currently 
still implies for practitioners. These challenges relate to 
aspects like user-friendliness, explainability, real-time prop-
erties, cost, complexity, communication, and many more. In 
summary, data integration methods can be roughly catego-
rized as follows:

 (i) Methods that resolve ambiguities and enforce a clean 
data output at the risk of errors, loss of information, 
and loss of quality.

 (ii) Methods that avoid to enforce a clean output at the 
expense of an increased complexity and the risk a 
need for query languages, and joint conceptualiza-
tions.

 (iii) Methods that have a non-spatial but simple interme-
diate representation (e.g., vector embedding, deep 
learning data fusion) at the risk of loss of explain-
ability, generality, and of limited usefulness beyond 
the initial use case.

Future research should reduce the number of errors occur-
ring in methods of type (i), reduce the burden on practically 
working with complex linked data in methods of category 
(ii), and provide more universal representation learning 
schemes in data fusion research to make (iii) a more useful 
data integration strategy beyond representations tailored to 
single applications.
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Drawing a final conclusion, we can say that despite the 
fact that geospatial information integration provides a well-
studied and long-formulated problem, no one-fits-all solu-
tion has been proposed so far. Due to the complexity of the 
tradeoffs involved, geospatial data integration will remain to 
provide a vast number of research opportunities including 
case studies (examples, how one can successfully integrate 
into a certain limited setting), foundational computational 
research (novel algorithms and data models to mitigate 
certain challenges and incompatibilities existing today in 
the geospatial field), and accompanying multidisciplinary 
research (societal, political, economic, and ethical consid-
erations in the context of data integration).

6  Geospatial decision support

6.1  State of the Art

A spatial decision support system (SDSS) can help spa-
tial planners and decision-makers conduct an analysis of 
the situation and come to appropriate decisions. SDSS is 
defined as “interactive computer-based systems designed 
to support a user or group of users in achieving a higher 
effectiveness of decision making while solving a semi-
structured spatial decision making problem” (Malczewski 
1999). In this context, a “semi-structured” problem is a 
problem whose criteria are not well defined a priori, e.g., 
due to a lack of knowledge or because of different stake-
holders having different objectives. SDSS combines spa-
tial and non-spatial data, the analysis and visualization 

functions of GIS, and decision models in specific domains 
(Crossland 2008; Keenan and Jankowski 2018). Accord-
ing to Sugumaran and DeGroote (2011), an SDSS usu-
ally consists of five components, including a geographic 
information system, a model management component, a 
dialog management component, a knowledge management 
component (including a knowledge base and an inference 
engine), and a stakeholder component (including methods 
and tools supporting the involvement of and communica-
tion among different players).

A crucial and challenging step towards tackling a spatial 
decision-making problem is, thus, to develop a mathematical 
model that formalizes the problem’s criteria in terms of con-
straints and potentially competing objectives. Another step 
is to compute an optimal trade-off between these objectives 
subject to the constraints of the problem. Often, the aim is to 
compute a set of alternative solutions to the problem (rather 
than a single one) to reflect different preferences among the 
objectives. Moreover, spatial decision-making is usually 
considered as an iterative process, e.g., since an evaluation 
of the solution may reveal the necessity to revise the model.

The types of decision problems addressed with SDSSs 
include resource location-allocation (e.g., a decision con-
cerning which land to allocate to realize a building project), 
network routing and reachability (e.g. the best path from A 
to B or service coverage areas), resource status decisions 
(e.g., a decision concerning when to harvest a field), and 
policy decisions (e.g., a decision concerning subsidies to 
promote wind energy). A more detailed introduction is pro-
vided by Keenan and Jankowski (2018).

Fig. 15  GIS-based decision sup-
port system for land use options 
and ecosystem services (Source: 
Project PROSPER-RO)
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6.2  Case Studies

6.2.1  Case Study “Land Use Options and Ecosystem 
Services”

Land is a limited resource. It is under increasing pressure 
from competing uses such as urbanization, agriculture, 
forestry, and mining. Therefore, decisions involving the 
use of land have to be well informed and balanced. The 
aim of PROSPER-RO (Prospektive synergistische Planung 
von Entwicklungsoptionen in Regiopolen am Beispiel des 
Stadt-Umland-Raums Rostock, https:// prosp er- ro. auf. uni- 
rosto ck. de/) is to strengthen cross-regional and cross-actor 
cooperation in the Rostock urban-surrounding area through 
i) providing a GIS-based expert support system (GIS-EUS) 
as a jointly used data and planning basis, ii) developing a 
uniform monetary valuation standard for all land functions 
based on the ecosystem service approach and iii) using 
the aforementioned products to develop concrete syner-
gistic solutions for the areas of land development, circular 

economy and water management. The decision support 
system (see Fig. 15) developed in collaboration between 
science, administration, and private enterprises uses a rule-
base. The implementation is based on open source software 
and integrates authoritative and open data (Hoffmann et al. 
2021).

6.2.2  Case Study “Public Health Monitoring”

The implementation of SDSS has the potential to facilitate 
public health decision-makers with many tasks from detect-
ing high-risk locations for influenza outbreaks to determin-
ing the distribution of medical facilities (Beard et al. 2018). 
The importance and potential of such decision support sys-
tems for disease surveillance by incorporating spatial and 
temporal components of reportable disease data to model 
outbreaks and using geographic information systems for 
analysis and visualization is currently encountered by eve-
rybody every day in the Corona pandemic (Fig. 16).

Fig. 17  A mobile app developed 
in the cluster of excellence Phe-
noRob that shows an interactive 
map, weather information, and 
information from the PhenoRob 
database, such as information 
on past crop treatments (Source: 
Project: PhenoRob). (Image 
taken from a mobile application, 
leading to a reduced resolution)

Fig. 16  COVID-19-Dashboard 
of the Robert Koch Institute 
(https:// exper ience. arcgis. com/ 
exper ience/ 47822 0a4c4 54480 
e823b 17327 b2bf1 d4)

https://prosper-ro.auf.uni-rostock.de/
https://prosper-ro.auf.uni-rostock.de/
https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4
https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4
https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4
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6.2.3  Case Study “Decision Support for Smart Farming”

Robots and unmanned aerial vehicles equipped with multi-
ple sensors are increasingly used by farmers and agricultural 
scientists for the monitoring of field crops. Based on the 
data acquired, decisions concerning field operations (e.g., 
weeding or fertilizing) are inferred. The aim is to increase 
the precision of such operations and, consequently, the sus-
tainability of crop production. While future field robots and 
UAVs will reach a high degree of autonomy, human experts 
will still be indispensable, e.g., to plan the mission goals of 
a robot. This requires a good awareness of the current situ-
ation. Therefore, mobile apps that provide an overview are 
needed. Figure 17 shows a solution that has been developed 
in the cluster of excellence PhenoRob (see Sect. 9) to help 
human experts make the right decisions.

6.3  Research Perspectives

The application fields of SDSS will increase, e.g. in the envi-
ronmental management of waste and pollution, in dealing 
with natural hazards, emergency, and disaster responses, or 
in forestry and agriculture applications, just to name a few. 
Due to the close link between SDSSs and GIS, the develop-
ment of the two goes hand in hand. However, certain chal-
lenges of geodata acquisition, representation and data fusion, 
analysis, and visualization are of particular importance in 
the context of SDSS and need further research.

With the advent of the IoT and big data, the problem of 
semantic heterogeneity caused by different meanings of data, 
terminologies, and models needs to be solved.

Methods to analyze urban and landscape structures are 
needed to provide spatial planners and decision-makers with 
a better understanding of the situation. The emerging field 
of urban analytics focuses on analyzing urban data (e.g., 
geographic and demographic data) to detect patterns that 
are relevant for city planning tasks. A typical example is the 
analysis of data on urban green spaces together with census 
data and data on transportation networks to detect areas with 
a shortage of green spaces (Oehrlein et al. 2019).

Simulation methods are needed to predict the growth 
of a city (e.g. cellular automata), changes in land use, and 
to determine event patterns by agent-based modeling. For 
this task, modern machine learning approaches offer new 
opportunities. Furthermore, tools supporting multi-criteria 
decision-making including new multi-objective optimization 
algorithms embedding the fundamental (i.e. special) proper-
ties of spatial data, spatial dependence, and spatial hetero-
geneity are needed (Malczewski and Rinner 2015; Malc-
zewski and Jankowski 2020). This relates, for example, to 
algorithms for spatial unit allocation, land use allocation, or 
districting that, today, often produce only one single optimal 

solution as an outcome. Developing algorithms that yield a 
set of alternative solutions is a challenge for future research.

The timely availability of spatial data requires both, 
advanced planning in the provision of appropriate SDI 
data and the use of crowdsourcing and real-time data col-
lection to augment or update existing data. Integrating the 
huge amount of sensor data or social media data becoming 
available worldwide will allow focusing SDSS research on 
real-time decision-making in mobile or dynamic environ-
ments. Mobile devices will facilitate the delivery of results 
of SDSS for location-based services such as decision support 
for the public or specialized applications in, for instance, 
smart farming. Moreover, as highly detailed 3D city models, 
as well as real-time data from IoT sensors and social media, 
are becoming increasingly available, spatial planners have, 
on the one hand, new opportunities to make more informed 
and timelier decisions but, on the other hand, also need new 
methods that can handle large sets or streams of heterogene-
ous and sometimes fuzzy data.

New visualization solutions are needed to provide deci-
sion-makers and the public with a good overview of the cur-
rent situation of their environment. Dashboard-style visu-
alization systems (as shown in Fig. 16), for example, are a 
promising tool for real-time traffic monitoring. Furthermore, 
interactive web-based multi-user geoinformation systems are 
needed to enable discourse among different stakeholders and 
to support public participation.

New methods and models should enable decision-makers 
in business and public policy to respect given constraints in 
strategic planning and to understand geospatial contribu-
tions and impacts (location matters!). Research is needed 
to determine the right spatial units for analysis and defining 
the boundaries at an appropriate local scale, but consist-
ent with a common global basis. This requires the develop-
ment of an accepted system of metrics that can be applied 
consistently at and across different scales. New modeling 
approaches should allow the integration of fuzzy knowledge 
by knowledge engineering techniques. New decision-making 
techniques will involve research on spatial thinking, analyti-
cal reasoning, and knowledge engineering.

Heterogeneous and conflicting multicriteria decision 
analysis (MCDA) can be applied to consider multiple stake-
holders’ points of view, as well as the multiple aspects of 
the problem under examination. This allows the stakehold-
ers to express their preferences to decision criteria and/or 
alternative scenarios using GIS-based procedures, which 
provide feedback, increasing the trust in the results. Public 
participation SDSS represent a demanding and advanced 
application of SDSS principles supporting the public having 
a real interest in decisions made affecting their local region. 
This brings together people from different social and educa-
tional backgrounds, and this diversity poses a challenge to 
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represent the decision problem in a format suitable for the 
public which may have had no training in spatial representa-
tions. Web-based applications may be appropriate, including 
interactive elements such as geo-questionnaires and geo-dis-
cussion platforms, in which questions and structured online 
discussions are coupled with interactive analytics and visu-
alizations to collect data on people's preferences concern-
ing current and/or future conditions. Moreover, those maps 
become ‘visual indices’ offering solutions to the planners to 
change and optimize the conditions and support collabora-
tive decision-making involving spatial representations and 
data sets.

In the future, decision support will benefit even more 
from mainstream IT developments and societal demands. 
The development of suitable cloud-based tools will pro-
vide the computing capacity to address problems with large 
amounts of data. Traditional government and commercial 
sources of spatial data have been augmented with open data 
initiatives (starting from OpenStreetMap in 2004 via open 
governmental data to crowdsourced data today) or geolo-
cated social media data. Standardization and service orienta-
tion support easier integration in classical administrative and 
enterprise environments (Keenan and Jankowski 2018). The 
general IT development will allow the integration of com-
putationally intensive models and to run more complex sce-
narios. Richer sources of data and increased complexity only 
increase the decision-support challenge of presenting infor-
mation in a way that reflects the needs of decision-makers. 
This will foster research on rich problem representations, 
including the use of dashboards with multiple GIS layers 
linked with graphs, tables, text and/or 3D visualization.

7  Geospatial Information Visualization

The task of visualizing geographic information with maps is 
classically attributed to cartography. At present, however, it 
is often addressed with a highly interdisciplinary approach.

7.1  The Interdisciplinarity of Geoinformation 
Visualization

Today, it is common to consider problems of cartographic 
visualization in the context of information visualization, 
which also includes the visualization of non-spatial informa-
tion with other means than maps, such as diagrams or charts 
(Andrienko and Andrienko 2006). This modern view of car-
tography has led to the term “geovisualization”. Informa-
tion visualization provides the link to computer science and 
several of its subdisciplines, including computer graphics, 
human–computer interaction, and theoretical computer sci-
ence (with a focus on the development of efficient geometric 

algorithms and data structures), as well as to cognitive sci-
ence and psychology, which are particularly relevant for the 
evaluation of visualization by users. The development of 
interactive visualization systems for the analysis of large 
volumes of spatio-temporal data is often subsumed under 
the term “visual analytics”. Moreover, present-day carto-
graphic research often involves experts from application 
domains, such as geoscience or social sciences. Last but not 
least, experts in geodesy and geospatial information science 
deal with cartography while considering the whole process 
of map production from the acquisition of data to the dis-
semination of maps. In particular, they bring in expertise in 
modeling geographic phenomena with spatio-temporal and 
thematic data models as well as generalizing and integrat-
ing the respective data while considering the uncertainties 
in them.

Often, cartographic research is driven by technological 
innovations that entail both new opportunities and chal-
lenges. As an example, smart and mobile devices have 
enabled a whole range of new applications of maps for 
location-based services. Cartographers have understood 
this, on the one hand, as an opportunity to generate new 
types of personalized and interactive maps addressing a 
user’s individual need in his or her current situation. On 
the other hand, providing a good overview of the situation 
on the small screen of a smartphone or smartwatch is still a 
largely open challenge.

7.2  Case Studies

This section aims to shed light on current and future chal-
lenges of geovisualization by discussing some recent 
research works of exemplary nature.

7.2.1  Case Study “Visualization of POIs”

With the increasing availability of point data—for example 
as user-generated POIs or measurements with huge sensor 
networks—the problems of enormous volume and semantic 
and temporal heterogeneity must be addressed. Both aspects 
can drastically reduce the user-friendliness in the visual rep-
resentation and exploration, in particular through geometric 
or thematic point cluttering. There is still a significant need 
to optimize generalization workflows designed for specific 
high-level visual interpretation tasks. Static, multi-scale, or 
multi-temporal points must be taken into account. One pos-
sible solution considers the task-oriented generalization of 
these point data sets using agent-based modeling (Schiewe 
2019).
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7.2.2  Case Study “Intuitive Visualization Based on Mixed 
Reality”

Due to more and more hardware solutions and falling costs, 
Mixed Reality (MR) is finding its way into everyday life. 
Although 4D geodata is an essential component in virtual 
or augmented reality applications, cartography and maps 
have only played a subordinate role in the entire develop-
ment process so far. For example, generalized maps that are 
linked to other visualizations can be used for the overview 
function in MR. Collaboration and communication between 
MR users need to be improved, which includes further devel-
opment of interfaces as well as on-the-fly and collaborative 
generation of map elements such as symbols or annotations 
(Edler et al. 2019). Additionally, gamification elements have 
already shown a positive motivation effect.

7.2.3  Case Study “Visualization of Uncertainties”

Diverse uncertainties due to errors in raw data acquisition, 
uncertain model assumptions, or misleading visual repre-
sentations are rarely taken into account in spatial analysis 
workflows. To be more effective and efficient, the visual 
representation should not reflect the detailed representation 

of individual values, but the effects on decision-making. 
This requires a more detailed, task-oriented concept of vis-
ualization formats and parameters that are tailored to spe-
cific tasks. This also includes the often neglected aspect of 
uncertainty propagation (Knura and Schiewe 2020). Closer 

Fig. 18  Test setting for orientation (top) and shortest route selection 
(bottom) (Liu et al. 2020)

Fig. 19  Fixations of orientation for two road patterns (left) and two 
landmark categories (right) (Liu et al. 2020)

Fig. 20  Desktop Environment (left) versus Virtual Reality (right) 
(Dong et al. 2020)
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cooperation with cognitive sciences is necessary because 
the cognitive processing of uncertain information still is a 
fundamental and not well-understood problem.

7.2.4  Case Study “Visualization‑Based Spatial Cognition”

The eye-tracking technologies enable the documentation of 
eye movements for spatial cognition tasks. Two case studies 
are reported here. The first one has the objective to explore 
the impacts of road patterns and landmarks on navigation 
and wayfinding based on the gaze behavior of pedestrians. 
Given regular and irregular road patterns in Streetview 
images, landmarks on roads and outside roads, 21 users were 
recruited to perform tasks of orientation and shortest route 
selection (Figs. 18 and 19) (Liu et al. 2020).

The analytical results showed that participants using 
irregular road patterns relied on landmarks more strongly 
and performed better in terms of more accurate answers than 
those using regular road patterns. Moreover, all participants 
regardless of tasks and road patterns rely on labels or land-
marks in the environment more intensively than those on 
the roads.

The second case is dedicated to exploring the perfor-
mance of map use in a desktop environment (DE) in com-
parison to virtual reality (VR) as shown in Fig. 20 (Dong 
et al. 2020). A total of 108 participants were recruited for 
three groups of tasks: estimation, ranking, and association. 
The performance indicators include accuracy, information 
search, information processing, interaction, and subjective 
rating. The analytical results of eye-movement patterns have 
proven the complementarity between DE and VR.

There are no significant differences in terms of accuracy 
and satisfaction; participants of VR processed information 
faster than their counterparts in a DE, but the other way 
around for the search tasks. The ranking task requires the 
most interactions, but the estimation is most difficult in both 
environments. In addition, the performance of map use is 
more heterogenous among participants of VR than those in 
DE. This implies the need for habituation for VR. These user 
tests can be transferred to larger scales involving outdoor 
test environments and neuroimaging technologies such as 
electroencephalography and functional magnetic resonance 
imaging.

7.2.5  Case Study “Interactive Maps for the Exploration 
of Spatio‑temporal Point Data”

Contributions uploaded to social media or crowdsourcing 
platforms often include both spatial coordinates and time 
stamps. As a consequence, large collections of geo-tagged 
events have become available. Examples are data sets about 
occurrences of birds reported by voluntary bird watchers as 
well as visits to attractions reported by tourists. Effective 
interaction techniques are needed to enable the discovery 
of spatio-temporal patterns in such data sets. A common 
interaction technique is to filter the data with a temporal 
window and to render a map providing a good overview of 
all events within the filter. Efficient methods are needed to 
speed up the map generation in this scenario, such that a user 
can continuously move a temporal filter over the time axis 
and, at any time, sees the map corresponding to the current 
position of the filter without a noticeable delay. To solve this 
challenge, an idea is to adopt the concept of time-windowed 

Fig. 21  Number of reported 
occurrences of gulls within a 
selected time window (Image 
taken from a mobile application, 
leading to a reduced resolution)
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data structures that was introduced by Bannister et al. (2014) 
in the context of fundamental problems of computational 
geometry. Bonerath et al. (2019) developed an efficient 
time-windowed data structure for maps showing polygonal 
representations of clusters of events within a user-selected 
temporal filter. Similarly, Bonerath et al. (2020) presented a 
time-windowed data structure to efficiently generate a spa-
tial density map for all events within a temporal filter (see 
Fig. 21). This research shows the potential of specialized 
geometric data structures for the interactive exploration of 
big geodata and the need for closer collaborations between 
cartography and computational geometry.

7.2.6  Case Study “Cartographic Label Placement 
for Small‑Screen Maps”

Research on cartographic label placement has a relatively 
long tradition in computer science, where it is often consid-
ered as a packing problem asking to place as many labels as 
possible on the map without creating overlaps. However, the 
optimal solutions generated with this approach often result 
in a map full of labels, covering the features displayed in the 
map almost completely. Moreover, research on cartographic 
label placement has so far primarily dealt with static maps or 
with maps where zooming is the only possible interaction. 
Consequently, the existing solutions often require the user 
to zoom into an extremely large scale to receive a map in 
which all features are labeled. This is unsatisfactory espe-
cially for maps on small devices such as smartphones or 
smartwatches, where at a large scale only a small area can 
be shown, causing the user to lose the context. New labe-
ling models and labeling algorithms for small-screen maps 
need to be developed to allow a user to access all labels at a 
medium scale, where a sufficient overview is still provided. 
An approach by Gedicke et al. (2020) is to use external 
labels, avoiding the occlusion of the background map and 
to allow the user to navigate through multiple views of the 
same map to access all labels (see Fig. 22). Efficient heuris-
tic optimization methods are used to compute solutions in 
real-time, yet for the evaluation of the mathematical model 
that formalizes the labeling problem, exact optimization 
methods based on mathematical programming are of advan-
tage. As this research shows, the combination of algorithm 
engineering and cartography has a large potential, which has 
not been fully exploited yet.

7.3  Research Perspectives

The aforementioned research works of DGK members 
are also being explored in the international community. A 
recent survey on the research priorities among 27 commis-
sions of the International Cartographic Association (ICA) 

Fig. 22  Two labeling models allow a user to access labels for all 
points on a map without zooming into a very large scale. Top: A 
model allowing a user to navigate from page to page. Bottom: A 
model based on a slider that can be used to let labels enter or leave 
the map (Image taken from a mobile application, leading to a reduced 
resolution) Fig. 23  Research priorities of ICA commissions
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has revealed 9 topic clusters as shown in Fig. 23. “The two 
dominating clusters, i.e. visualization technologies and geo-
graphic information technologies, can very well justify the 
ICA as an international community for the promotion of 
the discipline and profession of cartography and GI science. 
The two other clusters, i.e. cartographic knowledge, includ-
ing its preservation, accessibility and communication, and 
user study with research questions related to user experience, 
usability testing, human–computer interface etc., have also 
gained significant visibility. Integrated geographic informa-
tion technologies and visualization has been a sustainable 
cluster for more than ten years and is characterized by topics 
of visual analytics. Open data and standards are a cluster 
with two mutually enhancing concepts. It has grown rap-
idly in recent years with open source platforms. Education 
and training covers both regular cartographic education pro-
grams for young people and life-long learning for mid-career 
professionals. Finally, there is an increasing awareness of 
ethics and quality issues in the value chain from raw data to 
user behavior, for which the role of cartographers is becom-
ing indispensable.” (Meng et al. 2020). More detailed key-
words and their frequencies of occurrence are represented 
in the word cloud in Fig. 24.

Concerning the automatic generation of maps, which falls 
into the cluster visualization technologies, algorithms and 
data structures are needed that can efficiently deal with large 
data sets. While in principle this challenge is not new, future 
maps will be more interactive, allowing the users to custom-
ize a map with multiple thematic, spatial, and temporal fil-
ters. Hence, an important task is to design multi-dimensional 
data structures which, after a set-up phase, can be queried in 
real time for a map corresponding to the filter settings speci-
fied by the user. These data structures need to be dynamic 
since new data are often incrementally added or even come 
in the form of continuous data streams.

A query, in this context, can be considered as a point in 
a multi-dimensional space. Sequences of queries issued by 
a user can be considered as trajectories in that space; e.g., a 
trajectory could represent the continuous change of the map 
scale during zooming or the interaction of a user with a time-
slider interface. This idea also opens up new possibilities to 
study how users interact with maps. A particularly promising 
approach is to adapt methods of trajectory mining to analyze 
sequences of interactions. For example, using algorithms for 
trajectory clustering, one could identify groups of users with 
similar behaviors and preferences.

Another open challenge in the context of user studies is 
to define realistic tasks that can be quantitatively evaluated. 
There is a large agreement in the cartography community 
that a map should be tailored to a task, which is why task-
based user studies are very popular and relevant. However, 
the tasks in such studies are often rather narrow, e.g., the 
participants are asked to find specified text labels on the 
map. Tasks that are more complex, such as tasks requiring 
a good overview for strategic planning, are rarely defined 
in such studies as they are more difficult to define and their 
solutions more difficult to assess.

Another promising direction of research is the develop-
ment of new measures for the assessment of maps. In par-
ticular, measures of similarity for geometric objects are 
needed, e.g., to compare an automatically generated map 
with a reference solution or to assess the difference between 
two maps of different scales. Moreover, measures of visual 
complexity are needed to find a good trade-off between 
information fidelity and map legibility when generating a 
map from a large and detailed data set.

Finally, it is evident that in the future the links between 
the two disciplines cartography and information visualiza-
tion will become even stronger. Algorithmic approaches to 
visualizing non-spatial and spatial (geographic) data are in 
principle the same, i.e., the same optimization techniques 
are applied in both fields. Moreover, the map is increas-
ingly used as a metaphor for the visualization of non-spatial 
information, such as graphs or sets systems. For example, 
methods for visualizing author networks or instituational 
hierarchies as maps have recently found the interest of the 
InfoVis community. With their expertise in maps, cartogra-
phers have a lot to contribute to this area.

8  Geospatial information dissemination

In recent years, the amount of geospatial information and the 
frequency of data acquisition (“velocity” in big data terms) 
have increased exponentially. Mainly, this change has come 
about by innovations in data collection such as novel sur-
veying techniques and mobile mapping systems, geosensor 
networks, and remote sensing systems (e.g., Copernicus). 

Fig. 24  Frequently occurring keywords in priority topics
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Complementary to these developments the depth of penetra-
tion of the Internet in everyday life, as well as the progres-
sion of concepts such as Web 2.0–4.0 and crowdsourcing 
and crowdsensing, has increased significantly. The world-
wide diffusion of small innovative sensors and smart devices 
created a variety of new endpoints apart from traditional 
computers. In the coming years this expansion of endpoints 
to the internet will continue and new edges, which are hardly 
foreseeable today, will emerge. Connectivity and digitaliza-
tion are the main drivers of this development. With new 
wireless communication infrastructures, for instance, 5G, 
LoRaWAN, or NBIoT, but in the long-term also with initia-
tives such as StarLink, internet connectivity will propagate 
also to remote regions. At the same time, digitalization will 
continue to penetrate every aspect and object of human life. 
The advancement of embedded systems will continue to be 
characterized by miniaturization, but also energy autonomy 
with new concepts of energy harvesting will be pursued. The 
IoT will potentially connect all objects to one another, with 
or without human interaction. These new devices will link 
the physical with the digital world and observe and drive 
real-world phenomena. Since every object in the physical 
world has geospatial properties such as location, the amount 
and velocity of geospatial data will increase further.

8.1  State of the Art

8.1.1  Geoinformation Dissemination Approaches

Dissemination of data on the internet, especially with 
the evolution of the web, is usually based on the request/
response communication pattern. In the traditional web, 
users make requests to a server to retrieve or create infor-
mation about a resource such as a website. In the geospa-
tial world, this paradigm resulted in geo web services and 
Web APIs to retrieve geospatial data using protocols of the 
web. For instance, the INSPIRE initiative (European Com-
mission 2021) uses different models and standards of the 
Open Geospatial Consortium to make geospatial data acces-
sible. The INSPIRE directive specifies a framework for the 
member states of the European Union to establish and oper-
ate local, regional and national spatial data infrastructures 
(SDIs) (Minghini et al. 2020). Thereby it ensures compat-
ibility and usability across borders. Currently, it focuses on 
retrieving data with portrayal and data services defined by 
the OGC. WMS and WFS are two widely used services to 
request maps or geospatial objects from servers (Beaujar-
diere 2006; Vretanos 2010). With the introduction of the 
Sensor Web Enablement (SWE) services such as Sensor 
Observation Service (SOS) or the SensorThings API, these 
infrastructures are extended to sensor observations and task-
ing in the IoT. With the standardization of the SensorThings 
API (Liang et al. 2016) and recently the OGC API – Features 

(Portele et al. 2019), the service-based focus of the OGC has 
shifted towards the Web API approach. The design pattern 
allows a user and developer-friendly easy-to-use interface 
based on common web technologies such as HTML or GeoJ-
SON standardized (geo) services, Web APIs, and communi-
cation protocols to provide interoperability between (spatial) 
data infrastructures and enhances information fusion, for 
instance, in web applications such as geoportals.

8.1.2  Message‑Driven Communication

However, nowadays, many real-world applications are 
reactive systems, which are based on asynchronous mes-
sage-driven interaction models. They often rely on loosely 
coupled push messaging, which is initiated by the pub-
lisher and not by the requestor. Hereby, clients express 
their information preferences in advance, for instance with 
a publish/subscribe model. With this messaging mecha-
nism, the continuous real-time delivery of data tuples 
between producer and consumer is possible, so that also 
data streams can be initiated. Rieke et al. (2018) iden-
tify the need for message-driven models in contemporary 
SDIs to support the exchange of geospatial information in 
real-time. In recent years, some efforts from the OGC to 
establish push-based dissemination standards of geospatial 
data have already been made. Initially driven by the sensor 
web community, these have resulted in the OGC publish/
subscribe interface standard, which includes metadata, but 
relies on other message delivery protocols such as SOAP 
(Simple Object Access Protocol) messaging or AMQP 
(Advanced Message Queuing Protocol). By now, there 
is no designated push-based geospatial standard which 
disseminates spatially annotated messages based on push 
technology. Such a standard might help to disseminate 
messages based on geospatial properties. However, some 
research has been conducted in this field recently (e.g., 
Hasenburg and Bermbach 2020; Herlé 2019).

8.2  Case Studies

8.2.1  Case Study “EarlyDike—An Early Warning System 
for Dike Failures”

In the EarlyDike project, an early warning system for 
dike failures based on real-time geospatial events is real-
ized (Becker et al. 2016; Herlé et al. 2016). The project 
consists of three methodological approaches: (i) simula-
tion of the environmental impacts by forecasting storm 
surges and wave loads, (ii) monitoring of the condition 
of the dike itself by deploying new sensor technologies, 
and (iii) simulation of the extent of a flood in case of a 
dike failure. The architecture of the projects consists of 



380 PFG (2022) 90:349–389

1 3

three layers (see Fig. 25). The backend forms a sensor 
and spatial data infrastructure (SSDI) with an observation 
and an integration layer. Services of the SWE such as the 
SOS are used to store and retrieve the data produced in 
the project. These can be requested by the presentation 
layer, e.g., a Geo Portal, by utilizing a request/response 
pattern. Additionally, the eventing between the software 
parts is introduced by IoT protocols. The GeoMQTT pro-
tocol is used to establish a geo event bus to interconnect 
sensors, simulators, and the SSDI (Herlé 2019). It ensures 
the delivery and provisioning of real-time spatio-tempo-
ral events and data in time-sensitive architectures such as 
early warning systems.

8.2.2  Case Study “senseBox and openSenseMap”

The senseBox is an open-source Do It Yourself (DIY) 
citizen science toolkit which can be used to monitor the 
environment (Bartoschek et al. 2018). This crowdsensing 
approach addresses citizens and especially high school stu-
dents to participate in an open monitoring network for vari-
ous environmental phenomena such as temperature, particu-
lates, or noise. The senseBox can be easily connected to the 
openSenseMap (https:// opens ensem ap. org/), a sensor web 
platform to store, analyze and provide continuous measure-
ment data (see Fig. 26).

The web platform provides open interfaces, so that users 
from other citizen science projects such as luftdaten.info 
(https:// luftd aten. info/) or hackAIR (https:// platf orm. hacka 
ir. eu/) may use openSenseMap as a platform for storing and 
analyzing their data.

8.3  Research Perspectives

8.3.1  Technology Enables Novel Distributed Geo 
Applications

Novel applications in different domains will appear that 
make use of new internet edges and their geospatial events. 
These include environmental monitoring and structural 
health monitoring (SHM) in smart cities or smart buildings 
or, in general, digital twin applications. Also, moving objects 
and associated applications will benefit from increased con-
nectivity and digitalization. In transportation and logistics, 
new concepts based on inter-object communication and geo-
spatial data streams will be implemented to find solutions for 
current traffic problems. Vehicle to vehicle (V2V), vehicle to 
infrastructure (V2I), and the Internet of UAVs (IoU-AV) are 
just some of the promising concepts, which can be imple-
mented by the innovative possibilities this technology offers. 
In addition, applications of different domains such as the 
Internet of Production (IoP) or the Internet of Construction 
(IoC) will use geospatial data, so that the dissemination is 
crucial for different use cases. However, the dissemination of 
geospatial data raises a multitude of research questions and 
challenges in the future which have to be tackled to make it 
possible to implement applications and increase efficiency 
as well as sustainability.

8.3.2  Future Data Infrastructures

Future geospatial data infrastructures follow various goals 
and face different challenges: from improving productiv-
ity and efficiency over engaging citizens as data providers 
and users to ensuring individual privacy and tracking of the 
provenance of data (Dangermond and Goodchild 2020). For 

Fig. 25  Architecture with 
GeoEvent Bus in the EarlyDike 
Project (adapted from Herlé 
et al. 2016)

https://opensensemap.org/
https://luftdaten.info/
https://platform.hackair.eu/
https://platform.hackair.eu/
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instance, in the future, the SDI approach manifested, e.g., in 
the INSPIRE directive could be extended to processing or 
sensor services. Also, advanced querying languages such as 
GraphQL and similar technologies should be considered in 
these architectures (Shelden et al. 2020). Additionally, the 
interoperability focus should not be exclusively on the geo-
spatial information modeling world. New promising related 
concepts and data collecting approaches foster the integra-
tion of different domain applications and data sources. The 
IoT or other closely related domains such as BIM share com-
mon geospatial objects and should be considered in interop-
erability approaches. Thus, interoperability strategies across 
domains need to be developed and established (Herlé et al. 
2020). Since current infrastructures mainly focus on the 
request/response principle, the already mentioned push tech-
nologies which promote real-time geospatial event streams 
need to be considered in next-generation infrastructures and 
architectures as well. This integration and the vast amount 
of events create various research questions and challenges 
concerning especially the selection and aggregation of these 
data streams.

8.3.3  Finding Meaningful Messages and Events

Systems that communicate by messages or events need to 
be able to distinguish between meaningful and meaning-
less messages. Based on e.g. context, location, proximity 
or semantics, messages have to be filtered while dissemi-
nated to address the correct recipients. In systems with large 
numbers of publishers, these filtering processes have to be 
applied to potentially a high number of messages with high 
velocity. This requires real-time analytics and the fusion of 
data streams to filter meaningful messages. Extraction and 
dissemination of meaningful events become even more com-
plex when information from different domains and systems 

are fused. On the one hand, new opportunities arise; on the 
other hand, interoperability challenges increase further. 
Automatic curation, transformation, and fusion of events 
and data pose new research questions. Technologies of the 
semantic web such as linked data structures and ontologies, 
but also artificial intelligence and machine learning can be 
one solution to successfully deliver meaningful messages to 
the correct recipients. Besides typical security issues such as 
authentication or privacy, open challenges include questions 
about the provenance and validity of messages and encap-
sulated data. Especially in forecast and decision support 
systems suitable extensions and mechanisms are needed to 
model uncertainty and quality of the data. New mechanisms 
and extensions also have to be designed to meet interoper-
ability requirements and the nature of geospatial data.

8.3.4  National Research Data Infrastructures

Furthermore, big geospatial data with high volume and 
velocity such as remote sensing data gathered by Coper-
nicus or from geosensor networks introduce new types of 
data that currently cannot be integrated into SDIs using the 
existing mechanisms and standards. Usually, depending on 
the type and the use case, dedicated data infrastructures 
are conceptualized and implemented. These dedicated data 
infrastructures often form data silos which are typically diffi-
cult to access, especially if proprietary protocols and formats 
are used. Therefore, SDIs must be extended to adopt future 
requirements. For instance, in Germany, several research 
communities are launching national data infrastructures for 
different kind of scientific data (Nationale Forschungsdaten-
infrastruktur, NFDI, see Sect. 9).

Fig. 26  The openSenseMap is a 
citizen science web platform for 
environmental data (Pesch and 
Bartoschek 2019)
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9  Framework for GI Research in Germany

9.1  Infrastructures

The directive “Infrastructure for Spatial Information in 
Europe (INSPIRE)” develops a framework for the member 
states of the European Union to establish and operate local, 
regional, and national SDIs. Thereby, it ensures compat-
ibility and usability across borders. Currently, it focuses on 
retrieving data with portrayal and data services defined by 
the OGC. In the future, the approach could be extended to 
processing or sensor services. INSPIRE can be seen as state 
of the art in geospatial data management.

The directive on open data and the re-use of public sector 
information (‘Open Data Directive’, EU 2019/1024, http:// 
data. europa. eu/ eli/ dir/ 2019/ 1024/ oj) provides common 
rules for a European market for government-held open data 
(https:// digit al- strat egy. ec. europa. eu/ en/ polic ies/ open- data). 
This will stimulate the publishing of dynamic data and the 
uptake of Application Programming Interfaces (APIs) and 
limit the exceptions which currently allow public bodies to 
charge more than the marginal costs of dissemination for 
the re-use of their data. Open Data will become the default 
in the future, which will support much more data-driven 
geospatial information research and usage.

DFG RISources (https:// risou rces. dfg. de/) is an informa-
tion portal on scientific research infrastructures in Germany 
that provides scientists with resources and services for plan-
ning and carrying out research projects. Some examples of 
already existing infrastructure components are open access 
repositories (iDAI.geoserver, BonaRes, Coastal Observing 
System for Northern and Arctic Seas (COSYNA), GLUES 
Geodata Infrastructure (GLUES GDI), Live weather data 
from German sites (WETTER), Animal Tracking Data 
(Movebank) and virtual cultural landscape laboratories 
(Virtuelles Kulturlandschaftslaboratorium (VKLandLab, 
Bill 2012)).

There is a growing awareness in the research commu-
nity of the importance of FAIR principles in data handling: 
data should be free, accessible, interoperable, and reusable 
(Wilkinson et al. 2016). This implies the necessity of struc-
tured data storage with automatic search mechanisms on rich 
metadata. Many countries in recent years launched calls to 
set up national research data infrastructure (e.g. in Germany 
by DFG https:// www. dfg. de/ foerd erung/ progr amme/ nfdi/), 
intended to systematically develop, sustainably secure, and 

make accessible the data holdings of science and research 
and to network them (inter)nationally. They will be estab-
lished in a process driven by the scientific community as a 
networked structure of consortia acting on their initiative.

With NFDI4Earth (https:// www. nfdi4 earth. de/) the ger-
man earth system science community is developing such 
an infrastructure based on the FAIR principles. The con-
cept includes several standards from the geospatial world to 
ensure interoperability and sustainability. Especially huge 
amounts of spatio-temporal data must be exploited and com-
bined, which will raise new enormous challenges on existing 
or future mechanisms and standards. Despite the efforts for 
interoperability, the seamless interconnectivity with exist-
ing SDIs is not given, however, desirable. Mechanisms for 
linking data sets across boundaries of data infrastructures of 
different domains in an interoperable way have to be investi-
gated. Solving this challenge has huge potential for increas-
ing efficiency and forming new applications.

In summary, the public administration supports science 
and economy by providing up-to-date and adapted geodata 
and services. The expansion of spatial data infrastructures 
in the administration (such as INSPIRE) and economy is 
well advanced. And in science, too, the development and 
networking of data repositories from different disciplines 
are being driven forward, e.g. through the NFDI initiative. 
Still, the geoinformatics community seems to rely on exist-
ing infrastructure for their research, not (yet) seeing the 
necessity of jointly pushing forward the establishment of a 
joint infrastructure, serving several purposes in an integrated 
way, e.g. an urban observatory (building, energy, pollutants, 
waste, social aspects), or a mobility observatory (individual 
mobility, logistics, traffic control). Beyond physical infra-
structures and data infrastructures there is also an increasing 
need for software infrastructures, which allow to exploit the 
richness of the data in open and reproducible ways.

9.2  Research Funding

Funding of research is as diverse and differentiated as the 
research landscape itself. Different national and European 
research funding agencies at different levels and with dif-
ferent intentions exist: From a german perspective, these 
are the EU (Horizon 2020), DFG with more basic research 
funding, BMBF (e.g. FONA), BMWK (e.g. Copernicus 
related research), and BMVI (e.g. MFUND), which are 

http://data.europa.eu/eli/dir/2019/1024/oj
http://data.europa.eu/eli/dir/2019/1024/oj
https://digital-strategy.ec.europa.eu/en/policies/open-data
https://risources.dfg.de/
https://www.dfg.de/foerderung/programme/nfdi/
https://www.nfdi4earth.de/
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more dedicated to applied research. Three large coordinated 
research projects are described in the following.

DFG currently funds a priority program (“Volunteered 
Geographic Information: Interpretation, Visualizierung und 
Social Computing” (SPP 1894)) coordinated by TU Dres-
den. “The core question of this SPP is how visualization 
methods can contribute to the utilization of VGI and sup-
port the interaction of users involved. Research questions 
span from the extraction of spatial information to the visual 
analysis and knowledge presentation, taking into account the 
social context while collecting and using VGI. The hetero-
geneity and the limited semantic structure of user-generated 
spatial data represent a major challenge.” (https:// www. vgisc 
ience. org/).

Also the research training group RTG 2159 on “Integrity 
and Collaboration in Dynamic Sensor Networks” (https:// 
www. icsens. uni- hanno ver. de/ en/), a joint doctoral program 
at Leibniz University Hannover, is funded by DFG. Col-
laborative sensor networks which need to guarantee integ-
rity are a core element of many future systems. Examples 
are automated and autonomous vehicles, but such systems 
are also found in flexible factory automation, agriculture, 
construction, service and home robotics. In particular, multi-
sensor platforms moving around in the real world and com-
municating with each other must ensure the integrity of their 
navigation information, in order not to endanger their envi-
ronment. The prime contribution of the RTG is to provide 
basic methodologies as well as concepts of integrity and 
collaboration for dynamic sensor networks in connection 
with digital maps (Schön et al. 2018).

One of the significant challenges facing our society con-
cerning agriculture is to increase crop production, despite 
limited arable land, and at the same time, reduce the eco-
logical impact. The DFG-funded cluster of excellence 
“Phenorob: Robotics and Phenotyping for Sustainable Crop 
Production” (https:// www. pheno rob. de/) at the University 
of Bonn is developing methods and new technologies that 
observe, analyze, better understand and specifically treat 
plants. Different sensor platforms, i.e., ground and aerial 
vehicles, operated autonomously, provide precisely geo-
referenced and phenotypic data from single plants over the 
experimental plot to the field scale. 3D structural models of 
one and the same plant will be registered over time for a 4D 
reconstruction. This will lead to the development of a new 
generation of mapping systems and a better understanding 
of the spatio-temporal dynamics of structural and functional 
plant traits. The project develops an autonomous field robot 
that detects and identifies individual plants and creates a 
weed map of the field to treat individual plants with the most 
appropriate intervention method. Furthermore, the robot can 

precisely apply nitrogen fertilizer enabled by digital avatars 
that predict the plant nutrient demand and probable losses 
in the field.

10  Geospatial Information Research 
and the Grand Challenges

10.1  Grand Challenges

Grand challenges are medium to long-term focused topics 
that require significant breakthroughs in basic research, 
applied research, and technical development in key tech-
nologies. One of their primary objectives is to focus and 
align research efforts: Scenarios are developed that should 
be easy to communicate and understand. The goal must be 
very ambitious and be at the limit of what is "just about 
possible". At the same time, there should be hope that 
these goals can realistically be achieved (Mertens and Bar-
bian 2015; Wissenschaftsrat 2015). There exist different 
lists of grand challenges; most of them include health, 
demographic change, and wellbeing; food security, sus-
tainable agriculture, and forestry; marine and maritime 
and inland water research, and the bioeconomy; secure, 
clean, and efficient energy; smart, green and integrated 
transport; climate action, environment, resource efficiency, 
and raw materials; changing world, inclusive, innovative 
and reflective societies; secure societies – protecting free-
dom and security worldwide.

In a similar vein, the United Nations, in 2015, have 
identified 17 sustainable development goals addressing the 
most pressing problems facing our world (https:// sdgs. un. 
org/ goals, Kraak et al. 2021).

As a result of scientific and technical progress, for 
example in laser, information, and satellite technology, 
the core tasks in geoinformatics can be performed ever 
faster and more cost-effectively, but above all more com-
prehensively, with far higher quality and rapidly increasing 
spatial and temporal resolution. In recent years, the all-
encompassing digital transformation has entered science 
far more than before by opening up new ways of thinking 
and enabling new methods. In the course of the digital 
transformation, there is a growing realization in many dis-
ciplines that a uniform, high-quality reference to space and 
time in conjunction with digital environmental informa-
tion of all kinds is imperative as an ordering scheme for 
many questions. The references to our living space and 
the systemic understanding that has grown in the process 
offer increased points of contact for geospatial information 

https://www.vgiscience.org/
https://www.vgiscience.org/
https://www.icsens.uni-hannover.de/en/
https://www.icsens.uni-hannover.de/en/
https://www.phenorob.de/
https://sdgs.un.org/goals
https://sdgs.un.org/goals
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processing with societal mega topics, such as mobility, 
information, energy, climate, health, and environment.

10.2  GI community Contributions

The geospatial information science community can con-
tribute to the solution of nearly all grand challenges, with 
its expertise in geospatial data acquisition and interpreta-
tion, information modeling and management, information 
integration, decision support, information visualization, 
and information dissemination. Geoinformatics provides 
methods for the collection and interpretation of sensor 
data for the extraction of geoinformation as well as for its 
management, analysis, and visualization. It thus provides 
the basis for the generation of digital representations of the 
real world (digital twin) being of essential importance for 
tackling major societal challenges. For example, geoinfor-
matics contributes to more sustainable agriculture and the 
development of new mobility concepts. The development 
of methods increasingly relates to machine learning proce-
dures. In addition, new research topics are emerging, e.g. 
at the interface between humans and autonomous system: 

enhancing and supporting human actions and human under-
standing by increasing assistance and semantics through 
adequate interaction interfaces, to name only a few.

Those challenges are beyond what a single discipline can 
handle, thus, this calls for an increasing interdisciplinary col-
laboration with other disciplines disciplines—and also with 
society as a whole. Only recently, the National Academy of 
Sciences Leopoldina has called for such a collaboration to 
establish and foster a Earth System Science in Germany (Ger-
man National Academy of Sciences Leopoldina 2022). As 
spatial data and their processing are core, the GI community 
should not be too shy to also take a leading role (Fig. 27).
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