45 research outputs found

    Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Get PDF
    This document is a self-archiving copy of the accepted version of the paper. Please find the final published version in IEEEXplore: http://dx.doi.org/10.1109/TE.2014.2358551This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to design FDD strategies for a real system. To this end, the paper proposes a lab project where students are requested to develop a discrete event dynamic system (DEDS) diagnosis to cope with two faulty conditions in an autonomous mobile robot task. A sample solution is discussed for LEGO Mindstorms NXT robots with LabVIEW. This innovative practice is relevant to higher education engineering courses related to mechatronics, robotics, or DEDS. Results are also given of the application of this strategy as part of a postgraduate course on fault-tolerant mechatronic systems.This work was supported in part by the Spanish CICYT under Project DPI2011-22443

    Application of LEGO Mindstorms Kits for Teaching Mechatronics Engineering

    Get PDF
    One of the major educators’ challenges is to teach the theoretical lessons with practical examples that can be taught in the classroom or teaching laboratories. The application of these examples will face a major problem for students in engineering: the difficulty of understanding and seeing how a mechatronic device works in everyday life. This requires the use of tools that enable the construction of different low cost prototypes to assist in student learning. Another challenge to educators is the need to motivate students during the lessons and to present models that students can make and develop on their own. Within this context this paper presents a pedagogic proposition based on the use of LEGO Mindstorms kits to teach practical lab activities in a mechatronics engineering course. The objective is to develop teaching methodologies with the use of these LEGO kits in order to motivate the students and also to promote a higher interdisciplinarity, by proposing projects that unify different disciplines. Thus, the paper is divided into three parts according to the educational experiences implemented in the course of mechatronics engineering at the Federal University of Uberlândia, Brazil. The first part presents the use of the kits in robotics discipline. The second part presents the use of the virtual kits in the Computer Aided Design discipline with zero-cost. The third part presents a multi-disciplinary project EDROM in mechatronics using LEGO kits

    A Novel Real-Time MATLAB/Simulink/LEGO EV3 Platform for Academic Use in Robotics and Computer Science

    Get PDF
    Over the last years, mobile robot platforms are having a key role in education worldwide. Among others, LEGO Robots and MATLAB/Simulink are being used mainly in universities to improve the teaching experience. Most LEGO systems used in the literature are based on NXT, as the EV3 version is relatively recent. In contrast to the previous versions, the EV3 allows the development of real-time applications for teaching a wide variety of subjects as well as conducting research experiments. The goal of the research presented in this paper was to develop and validate a novel real-time educational platform based on the MATLAB/Simulink package and the LEGO EV3 brick for academic use in the fields of robotics and computer science. The proposed framework is tested here in different university teaching situations and several case studies are presented in the form of interactive projects developed by students. Without loss of generality, the platform is used for testing different robot path planning algorithms. Classical algorithms like rapidly-exploring random trees or artificial potential fields, developed by robotics researchers, are tested by bachelor students, since the code is freely available on the Internet. Furthermore, recent path planning algorithms developed by the authors are also tested in the platform with the aim of detecting the limits of its applicability. The restrictions and advantages of the proposed platform are discussed in order to enlighten future educational applications

    Lego Based Computer Communication for Business and Learning

    Get PDF

    Aplicación de programación de sensor de color con LEGO-Mindstorms NXT 2.0 para recrear un escenario simplista de detección de plaga

    Get PDF
    A hands-on assignment framed under the learning by project approach was assigned trying to offer an engaging theme for students from different Engineering undergraduate programs. Many concepts in Mechatronics were integrated in a very friendly way with LEGO-Mindstorms hardware. A vehicle concept to assist the plague detection in agriculture that was raised after project completion is proposed.Una tarea práctica diseñada bajo el enfoque de aprendizaje por proyecto tratando de ofrecer un tema motivador para estudiantes de diversos programas de pregrado de Ingeniería es profundizada. Diferentes conceptos de Mecatrónica se integraron se integraron de una manera muy amigable usando el equipo LEGO-Mindstorms. Como resultado del desarrollo de proyecto, se propone el concepto de un vehículo para ayudar en la detección de plaga en agricultura

    Aplicación de programación de sensor de color con LEGO-Mindstorms NXT 2.0 para recrear un escenario simplista de detección de plaga

    Get PDF
    A hands-on assignment framed under the learning by project approach was assigned trying to offer an engaging theme for students from different Engineering undergraduate programs. Many concepts in Mechatronics were integrated in a very friendly way with LEGO-Mindstorms hardware. A vehicle concept to assist the plague detection in agriculture that was raised after project completion is proposed.Una tarea práctica diseñada bajo el enfoque de aprendizaje por proyecto tratando de ofrecer un tema motivador para estudiantes de diversos programas de pregrado de Ingeniería es profundizada. Diferentes conceptos de Mecatrónica se integraron se integraron de una manera muy amigable usando el equipo LEGO-Mindstorms. Como resultado del desarrollo de proyecto, se propone el concepto de un vehículo para ayudar en la detección de plaga en agricultura

    Programming Robots for Activities of Everyday Life

    Get PDF
    Text-based programming remains a challenge to novice programmers in\ua0all programming domains including robotics. The use of robots is gainingconsiderable traction in several domains since robots are capable of assisting\ua0humans in repetitive and hazardous tasks. In the near future, robots willbe used in tasks of everyday life in homes, hotels, airports, museums, etc.\ua0However, robotic missions have been either predefined or programmed usinglow-level APIs, making mission specification task-specific and error-prone.\ua0To harness the full potential of robots, it must be possible to define missionsfor specific applications domains as needed. The specification of missions of\ua0robotic applications should be performed via easy-to-use, accessible ways, and\ua0at the same time, be accurate, and unambiguous. Simplicity and flexibility in\ua0programming such robots are important, since end-users come from diverse\ua0domains, not necessarily with suffcient programming knowledge.The main objective of this licentiate thesis is to empirically understand the\ua0state-of-the-art in languages and tools used for specifying robot missions byend-users. The findings will form the basis for interventions in developing\ua0future languages for end-user robot programming.During the empirical study, DSLs for robot mission specification were\ua0analyzed through published literature, their websites, user manuals, samplemissions and using the languages to specify missions for supported robots.After extracting data from 30 environments, 133 features were identified.\ua0A feature matrix mapping the features to the environments was developedwith a feature model for robotic mission specification DSLs.Our results show that most end-user facing environments exist in the\ua0education domain for teaching novice programmers and STEM subjects. Mostof the visual languages are developed using Blockly and Scratch libraries.\ua0The end-user domain abstraction needs more work since most of the visualenvironments abstract robotic and programming language concepts but not\ua0end-user concepts. In future works, it is important to focus on the development\ua0of reusable libraries for end-user concepts; and further, explore how end-user\ua0facing environments can be adapted for novice programmers to learn\ua0general programming skills and robot programming in low resource settings\ua0in developing countries, like Uganda

    Re-configurable Mechatronic Platform

    Get PDF
    To meet the increasing need of the multi-disciplinary engineering education and to provide a re-configurable mechatronic experiment platform, the team seeks to plan, design, and validate a mechatronic platform that allows simple model re-assembling and re-configuration. This platform also employs the concept of modular and expandable design. It consists of re-configurable mechanical structures, diverse sensor applications, microcontroller and motor controller control system, and graphical user interfaces on PC terminal for multi-disciplinary learning experience
    corecore