12,308 research outputs found

    Genetic algorithms for the scheduling in additive manufacturing

    Get PDF
    [EN] Genetic Algorithms (GAs) are introduced to tackle the packing problem. The scheduling in Additive Manufacturing (AM) is also dealt with to set up a managed market, called “Lonja3D”. This will enable to determine an alternative tool through the combinatorial auctions, wherein the customers will be able to purchase the products at the best prices from the manufacturers. Moreover, the manufacturers will be able to optimize the production capacity and to decrease the operating costs in each case.This research has been partially financed by the project: “Lonja de Impresión 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17Castillo-Rivera, S.; De Antón, J.; Del Olmo, R.; Pajares, J.; López-Paredes, A. (2020). Genetic algorithms for the scheduling in additive manufacturing. International Journal of Production Management and Engineering. 8(2):59-63. https://doi.org/10.4995/ijpme.2020.12173OJS596382Ahsan, A., Habib, A., Khoda, B. (2015). Resource based process planning for additive manufacturing. Computer-Aided Design, 69, 112-125. https://doi.org/10.1016/j.cad.2015.03.006Araújo, L., Özcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R. (2015). Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks. 26th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, 401-410.Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55: 155-162. https://doi.org/10.1016/j.bushor.2011.11.003Canellidis, V., Dedoussis, V., Mantzouratos, N., Sofianopoulou, S. (2006). Preprocessing methodology for optimizing stereolithography apparatus build performance. Computers in Industry, 57, 424-436. https://doi.org/10.1016/j.compind.2006.02.004Chergui, A., Hadj-Hamoub, K., Vignata, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, 292-301. https://doi.org/10.1016/j.cie.2018.09.048Demirel, E., Özelkan, E.C., Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. https://doi.org/10.1016/j.ijpe.2018.05.001Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V. (2018). A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling. International Journal of Industrial Engineering Computations, 9, 423-438. https://doi.org/10.5267/j.ijiec.2018.1.001Hopper, E., Turton, B. (1997). Application of genetic algorithms to packing problems - A Review. Proceedings of the 2nd Online World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, 279-288. https://doi.org/10.1007/978-1-4471-0427-8_30Ikonen, I., Biles, W.E., Kumar, A., Wissel, J.C., Ragade, R.K. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. ICGA, 591-598.Kim, K.H., Egbelu, P.J. (1999). Scheduling in a production environment with multiple process plans per job. International Journal of Production Research, 37, 2725-2753. https://doi.org/10.1080/002075499190491Lawrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing systems. Foundations of Management, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2Li, Q., Kucukkoc, I., Zhang, D. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013Milošević, M., Lukić, D., Đurđev, M., Vukman, J., Antić, A. (2016). Genetic Algorithms in Integrated Process Planning and Scheduling-A State of The Art Review. Proceedings in Manufacturing Systems, 11(2), 83-88.Pour, M.A., Zanardini, M., Bacchetti, A., Zanoni, S. (2016). Additive manufacturing impacts on productions and logistics systems. IFAC, 49(12), 1679-1684. https://doi.org/10.1016/j.ifacol.2016.07.822Wilhelm, W.E., Shin, H.M. (1985). Effectiveness of Alternate Operations in a Flexible Manufacturing System. International Journal of Production Research, 23(1), 65-79. https://doi.org/10.1080/00207548508904691Xirouchakis, P., Kiritsis, D., Persson, J.G. (1998). A Petri net Technique for Process Planning Cost Estimation. Annals of the CIRP, 47(1), 427-430. https://doi.org/10.1016/S0007-8506(07)62867-4Zhang, Y., Bernard, A., Gupta, R.K., Harik, R. (2014). Evaluating the design for additive manufacturing: a process planning perspective. Procedia CIRP, 21, 144-150. https://doi.org/10.1016/j.procir.2014.03.17

    Planning and Scheduling in Additive Manufacturing

    Get PDF
    Recent advances in additive manufacturing (AM) and 3D printing technologies have led to significant growth in the use of additive manufacturing in industry, which allows for the physical realization of previously difficult to manufacture designs. However, in certain cases AM can also involve higher production costs and unique in-process physical complications, motivating the need to solve new optimization challenges. Optimization for additive manufacturing is relevant for and involves multiple fields including mechanical engineering, materials science, operations research, and production engineering, and interdisciplinary interactions must be accounted for in the optimization framework. In this paper we investigate a problem in which a set of parts with unique configurations and deadlines must be printed by a set of machines while minimizing time and satisfying deadlines, bringing together bin packing, nesting (two-dimensional bin packing), job shop scheduling, and constraints satisfaction. We first describe the real-world industrial motivation for solving the problem. Subsequently, we encapsulate the problem within constraints and graph theory, create a formal model of the problem, discuss nesting as a subproblem, and describe the search algorithm. Finally, we present the datasets, the experimental approach, and the preliminary results

    Production planning in 3D printing factories

    Full text link
    [EN] Production planning in 3D printing factories brings new challenges among which the scheduling of parts to be produced stands out. A main issue is to increase the efficiency of the plant and 3D printers productivity. Planning, scheduling, and nesting in 3D printing are recurrent problems in the search for new techniques to promote the development of this technology. In this work, we address the problem for the suppliers that have to schedule their daily production. This problem is part of the LONJA3D model, a managed 3D printing market where the parts ordered by the customers are reorganized into new batches so that suppliers can optimize their production capacity. In this paper, we propose a method derived from the design of combinatorial auctions to solve the nesting problem in 3D printing. First, we propose the use of a heuristic to create potential manufacturing batches. Then, we compute the expected return for each batch. The selected batch should generate the highest income. Several experiments have been tested to validate the process. This method is a first approach to the planning problem in 3D printing and further research is proposed to improve the procedure.This research has been partially financed by the project: “Lonja de Impresión 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17.De Antón, J.; Senovilla, J.; González, J.; Acebes, F.; Pajares, J. (2020). Production planning in 3D printing factories. International Journal of Production Management and Engineering. 8(2):75-86. https://doi.org/10.4995/ijpme.2020.12944OJS758682Canellidis, V., Giannatsis, J., & Dedoussis, V. (2013). Efficient parts nesting schemes for improving stereolithography utilization. CAD Computer Aided Design, 45(5), 875-886. https://doi.org/10.1016/j.cad.2012.12.002Chergui, A., Hadj-Hamou, K., & Vignat, F. (2018). Production scheduling and nesting in additive manufacturing. Computers and Industrial Engineering, 126(May), 292-301. https://doi.org/10.1016/j.cie.2018.09.048Cui, Y. (2007). An exact algorithm for generating homogenous T-shape cutting patterns. Computers & Operations Research, 34(4), 1107-1120. https://doi.org/https://doi.org/10.1016/j.cor.2005.05.025Dvorak, F., Micali, M., & Mathieu, M. (2018). Planning and scheduling in additive manufacturing. Inteligencia Artificial, 21(62), 40-52. https://doi.org/10.4114/intartif.vol21iss62pp40-52Gogate, A. S., & Pande, S. S. (2008). Intelligent layout planning for rapid prototyping. International Journal of Production Research, 46(20), 5607-5631. https://doi.org/10.1080/00207540701277002Gupta, M. C., & Boyd, L. H. (2008). Theory of constraints: A theory for operations management. International Journal of Operations and Production Management, 28(10), 991-1012. https://doi.org/10.1108/01443570810903122Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operational Research, 88(1), 165-181. https://doi.org/10.1016/0377-2217(94)00166-9Kucukkoc, I. (2019). MILP models to minimise makespan in additive manufacturing machine scheduling problems. Computers and Operations Research, 105, 58-67. https://doi.org/10.1016/j.cor.2019.01.006Kucukkoc, I., Li, Q., & Zhang, D. Z. (2016). Increasing the utilisation of additive manufacturing and 3D printing machines considering order delivery times. In 19th International Working Seminar on Production Economics (pp. 195-201). Innsbruck, Austria.Li, Q., Kucukkoc, I., & Zhang, D. Z. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 1339-1351. https://doi.org/10.1016/j.cor.2017.01.013López-Paredes, A., Pajares, J., Martín, N., del Olmo, R., & Castillo, S. (2018). Application of combinatorial auctions to create a 3Dprinting market. Advancing in Engineering Network, Castro and Gimenez Eds. Lecture Notes in Management and Industrial Engineering (In Press), 12-13.Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Applied Sciences, 9(18), 3865. https://doi.org/10.3390/app9183865Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., & Salminen, A. (2015). Cost Estimation of Laser Additive Manufacturing of Stainless Steel. Physics Procedia, 78(August), 388-396. https://doi.org/10.1016/j.phpro.2015.11.053Shaffer, S., Yang, K., Vargas, J., Di Prima, M. A., & Voit, W. (2014). On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer, 55(23), 5969-5979. https://doi.org/10.1016/j.polymer.2014.07.054Singhal, S. K., Pandey, A. P., Pandey, P. M., & Nagpal, A. K. (2005). Optimum Part Deposition Orientation in Stereolithography. Computer-Aided Design and Applications, 2(1-4), 319-328. https://doi.org/10.1080/16864360.2005.10738380Sung‐Hoon, A. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248-257. https://doi.org/10.1108/13552540210441166Thomas, D. S., & Gilbert, S. W. (2015). Costs and cost effectiveness of additive manufacturing: A literature review and discussion. Additive Manufacturing: Costs, Cost Effectiveness and Industry Economics, 1-96. https://doi.org/10.6028/NIST.SP.1176Toro, E., Garces, A., & Ruiz, H. (2008). Two dimensional packing problem using a hybrid constructive algorithm of variable neighborhood search and simulated annealing. Revista Facultad de Ingeniería Universidad de Antioquia, 119-131.Toro, E., & Granada-Echeverri, M. (2007). Problema de empaquetamiento rectangular bidimensional tipo guillotina resuelto por algoritmos genéticos. Scientia Et Technica.Wang, Y., Zheng, P., Xu, X., Yang, H., & Zou, J. (2019). Production planning for cloud-based additive manufacturing-A computer vision-based approach. Robotics and Computer-Integrated Manufacturing, 58(March), 145-157. https://doi.org/10.1016/j.rcim.2019.03.003Wodziak, J. R., Fadel, G. M., & Kirschman, C. (1994). A Genetic Algorithm for Optimizing Multiple Part Placement to Reduce Build Time. Proceedings of the Fifth International Conference on Rapid Prototyping., (May), 201,210.Zhang, Y., Gupta, R. K., & Bernard, A. (2016). Two-dimensional placement optimization for multi-parts production in additive manufacturing. Robotics and Computer-Integrated Manufacturing, 38, 102-117. https://doi.org/10.1016/j.rcim.2015.11.003Zhao, Z., Zhang, L., & Cui, J. (2018). A 3D printing task packing algorithm based on rectangle packing in cloud manufacturing. Lecture Notes in Electrical Engineering, 460, 21-31. https://doi.org/10.1007/978-981-10-6499-9_3Zhou, L., Zhang, L., Laili, Y., Zhao, C., & Xiao, Y. (2018). Multi-task scheduling of distributed 3D printing services in cloud manufacturing. International Journal of Advanced Manufacturing Technology, 96(9-12), 3003-3017. https://doi.org/10.1007/s00170-017-1543-zZhou, L., Zhang, L., & Xu, Y. (2016). Research on the relationships of customized service attributes in cloud manufacturing. ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016, 2, 1-8. https://doi.org/10.1115/MSEC2016-853

    Tailored Iterated Greedy metaheuristic for a scheduling problem in metal 3D printing

    Get PDF
    This article contributes to the additive manufacturing-based production planning literature by developing a Mixed-Integer Linear Programming (MILP) formulation for the Identical Parallel 3D-Printing Machines Scheduling Problem considering batching, multiple build platforms of restricted sizes, and sequence-independent setup times. Besides, a customized metaheuristic, named the Tailored Iterated Greedy (TIG) Algorithm is developed to solve the new optimization problem. TIG’s performance is evaluated through extensive numerical analysis and using a new testbed. It is shown that the customized computational mechanisms improve the optimization performance; statistical analysis is supportive of the significance of the resulting improvements. The developed mathematical model and optimization algorithm can be considered the basis for future developments in the optimization literature of additive manufacturing

    Optimization model to extend existing production planning and control systems for the use of additive manufacturing technologies in the industrial production

    Get PDF
    The use of additive manufacturing technologies for industrial production is constantly growing. This technology differs from the known production proecdures. The areas for scheduling, detailed and sequence planning are particularly important for additive production due to the long print times and flexible use of the production area. Therefore, production-relevant variables are considered and used for the production planning and control (PPC) of additive manufacturing machines. For this purpose, an optimization model is presented which shows a time-oriented build space utilization. In the implementation, a nesting algorithm is used to check the combinability of different models for each individual print job

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    A framework for production planning in additive manufacturing.

    Get PDF
    Additive manufacturing (AM) introduces a set of technology-specific problems, such as the proper orientation of parts or the placement of several heterogeneous parts in the same build cycle, which are not addressed by traditional approaches to production planning and scheduling. Although these new production subproblems have been implicitly addressed by several works according to generic nesting and scheduling concepts, a literature review revealed that there is no uniformity in identifying and, thus, solving all these subproblems. For this reason, and as a result of an in-depth analysis of the existent literature on AM production planning and an analogy with classic cutting and packing typologies, the present paper offers a framework to formalise the production planning problem in AM at the operational level. This framework can be used as a reference to focus on and address these AM-related problems for efficient production planning. It is designed at the subproblem level and centres on production order processing in AM. A coding strategy is specifically developed for the framework, which is applied to a review of relevant works that propose models for the production planning of AM systems. Finally, the review results are discussed and possible extensions of the framework are proposed

    Production planning in additive manufacturing and 3D printing (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Accompanying dataset is available via: https://ore.exeter.ac.uk/repository/handle/10871/17360Additive manufacturing is a new and emerging technology and has been shown to be the future of manufacturing systems. Because of the high purchasing and processing costs of additive manufacturing machines, the planning and scheduling of parts to be processed on these machines play a vital role in reducing operational costs, providing service to customers with less price and increasing the profitability of companies which provide such services. However, this topic has not yet been studied in the literature, although cost functions have been developed to calculate the average production cost per volume of material for additive manufacturing machines. In an environment where there are machines with different specifications (i.e. production time and cost per volume of material, processing time per unit height, set-up time, maximum supported area and height, etc.) and parts in different heights, areas and volumes, allocation of parts to machines in different sets or groups to minimize the average production cost per volume of material constitutes an interesting and challenging research problem. This paper defines the problem for the first time in the literature and proposes a mathematical model to formulate it. The mathematical model is coded in CPLEX and two different heuristic procedures, namely ‘best-fit’ and ‘adapted best-fit’ rules, are developed in JavaScript. Solution-building mechanisms of the proposed heuristics are explained stepwise through examples. A numerical example is also given, for which an optimum solution and heuristic solutions are provided in detail, for illustration. Test problems are created and a comprehensive experimental study is conducted to test the performance of the heuristics. Experimental tests indicate that both heuristics provide promising results. The necessity of planning additive manufacturing machines in reducing processing costs is also verified
    corecore