26 research outputs found

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least n−m/4.5n-m/4.5 vertices, an induced partial 2-tree of at least n−m/5n-m/5 vertices, and an induced planar subgraph of at least n−m/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most n−m/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application

    Crossing Patterns in Nonplanar Road Networks

    Full text link
    We define the crossing graph of a given embedded graph (such as a road network) to be a graph with a vertex for each edge of the embedding, with two crossing graph vertices adjacent when the corresponding two edges of the embedding cross each other. In this paper, we study the sparsity properties of crossing graphs of real-world road networks. We show that, in large road networks (the Urban Road Network Dataset), the crossing graphs have connected components that are primarily trees, and that the remaining non-tree components are typically sparse (technically, that they have bounded degeneracy). We prove theoretically that when an embedded graph has a sparse crossing graph, it has other desirable properties that lead to fast algorithms for shortest paths and other algorithms important in geographic information systems. Notably, these graphs have polynomial expansion, meaning that they and all their subgraphs have small separators.Comment: 9 pages, 4 figures. To appear at the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL 2017

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    A Linear Time Parameterized Algorithm for Node Unique Label Cover

    Get PDF
    The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstr\"om [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstr\"om and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover

    The Parameterized Complexity of Finding Point Sets with Hereditary Properties

    Get PDF
    We consider problems where the input is a set of points in the plane and an integer k, and the task is to find a subset S of the input points of size k such that S satisfies some property. We focus on properties that depend only on the order type of the points and are monotone under point removals. We exhibit a property defined by three forbidden patterns for which finding a k-point subset with the property is W[1]-complete and (assuming the exponential time hypothesis) cannot be solved in time n^{o(k/log k)}. However, we show that problems of this type are fixed-parameter tractable for all properties that include all collinear point sets, properties that exclude at least one convex polygon, and properties defined by a single forbidden pattern

    Modification to planarity is fixed parameter tractable

    Get PDF
    A replacement action is a function L that maps each k-vertex labeled graph to another k-vertex graph. We consider a general family of graph modification problems, called L-Replacement to C, where the input is a graph G and the question is whether it is possible to replace in G some k-vertex subgraph H of it by L(H) so that the new graph belongs to the graph class C. L-Replacement to C can simulate several modification operations such as edge addition, edge removal, edge editing, and diverse completion and superposition operations. In this paper, we prove that for any action L, if C is the class of planar graphs, there is an algorithm that solves L-Replacement to C in O(|G| 2 ) steps. We also present several applications of our approach to related problems.publishedVersio

    Modification to Planarity is Fixed Parameter Tractable

    Get PDF
    A replacement action is a function L that maps each k-vertex labeled graph to another k-vertex graph. We consider a general family of graph modification problems, called L-Replacement to C, where the input is a graph G and the question is whether it is possible to replace in G some k-vertex subgraph H of it by L(H) so that the new graph belongs to the graph class C. L-Replacement to C can simulate several modification operations such as edge addition, edge removal, edge editing, and diverse completion and superposition operations. In this paper, we prove that for any action L, if C is the class of planar graphs, there is an algorithm that solves L-Replacement to C in O(|G|^{2}) steps. We also present several applications of our approach to related problems

    5-Approximation for ?-Treewidth Essentially as Fast as ?-Deletion Parameterized by Solution Size

    Get PDF
    The notion of ?-treewidth, where ? is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of ?-treewidth at most k can be decomposed into (arbitrarily large) ?-subgraphs which interact only through vertex sets of size ?(k) which can be organized in a tree-like fashion. ?-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for ?-deletion problems, which ask to find a minimum vertex set whose removal from a given graph G turns it into a member of ?. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree ?-decompositions. We present FPT-approximation algorithms to compute tree ?-decompositions for hereditary and union-closed graph classes ?. Given a graph of ?-treewidth k, we can compute a 5-approximate tree ?-decomposition in time f(?(k)) ? n^?(1) whenever ?-deletion parameterized by solution size can be solved in time f(k) ? n^?(1) for some function f(k) ? 2^k. The current-best algorithms either achieve an approximation factor of k^?(1) or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time 2^?(k) ? n^?(1) parameterized by bipartite-treewidth and Vertex Planarization in time 2^?(k log k) ? n^?(1) parameterized by planar-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures
    corecore