
A Linear-Time Parameterized Algorithm for Node
Unique Label Cover∗

Daniel Lokshtanov1, M. S. Ramanujan2, and Saket Saurabh3

1 University of Bergen, Bergen, Norway
daniello@ii.uib.no

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

3 University of Bergen, Bergen, Norway; and
The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract
The optimization version of the Unique Label Cover problem is at the heart of the Unique
Games Conjecture which has played an important role in the proof of several tight inapproximab-
ility results. In recent years, this problem has been also studied extensively from the point of view
of parameterized complexity. Chitnis et al. [FOCS 2012, SICOMP 2016] proved that this problem
is fixed-parameter tractable (FPT) and Wahlström [SODA 2014] gave an FPT algorithm with an
improved parameter dependence. Subsequently, Iwata, Wahlström and Yoshida [SICOMP 2016]
proved that the edge version of Unique Label Cover can be solved in linear FPT-time, and
they left open the existence of such an algorithm for the node version of the problem. In this pa-
per, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique
Label Cover.

1998 ACM Subject Classification G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Algorithms and data structures, Fixed Parameter Tractability, Unique
Label Cover, Linear Time FPT Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.57

1 Introduction

In the Unique Label Cover problem we are given an undirected graph G, where each
edge uv = e ∈ E(G) is associated with a permutation φe,u of a constant size alphabet Σ.
The goal is to construct a labeling Ψ : V (G) \ X → Σ maximizing the number of edge
constraints, that is, edges for which (Ψ(u),Ψ(v)) ∈ φuv,u holds. For some ε > 0 and given
Unique Label Cover instance L, Unique Label Cover(ε) is the decision problem of
distinguishing between the following two cases: (a) there is a labeling Ψ under which at
least (1− ε)|E(G)| edges are satisfied; and (b) for every labeling Ψ at most ε|E(G)| edges
are satisfied. This problem is at the heart of famous Unique Games Conjecture (UGC) of
Khot [27]. Essentially, UGC says that for any ε > 0, there is a constant M such that it is
NP-hard to decide Unique Label Cover(ε) on instances with label set of size M . The

∗ Daniel Lokshtanov acknowledges support from Pareto-Optimal Parameterized Algorithms, ERC Starting
Grant 715744. M. S. Ramanujan acknowledges support from FWF, project P26696. Saket Saurabh
acknowledges support from Parameterized Approximation, ERC Starting Grant 306992.

© Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

Unique Label Cover(ε) problem over the years has become a canonical problem to obtain
tight inapproximability results. We refer the reader to a survey of Khot [28] for more detailed
discussion on UGC.

In recent times Unique Label Cover has also attracted a lot of attention in the realm
of parameterized complexity. In particular two parameterizations, namely, Edge Unique
Label Cover and Node Unique Label Cover have been extensively studied. These
problems are, not only, interesting combinatorial problems on its own but they also generalize
several well-studied problems in the realm of parameterized complexity. The objective of
this paper is to study the following problem.

Node Unique Label Cover Parameter: |Σ| + k

Input: A simple graph G, finite alphabet Σ, integer k and for every edge e = (u, v) ∈
E(G), permutations φe,u and φe,v of Σ such that φe,u = φ−1

e,v and a function τ : V (G)→
2Σ.
Question: Does there exist a set X ⊆ V (G) and a function Ψ : V (G) \X → Σ such that
|X| ≤ k and for any v ∈ V (G)\X, for any (u, v) ∈ E(G−X), we have (Ψ(u),Ψ(v)) ∈ φuv,u
where Ψ(v) ∈ τ(v) for every v ∈ V (G)?

We remark that the standard formulation of this problem excludes the function τ . However,
this formulation is a clear generalization of the standard formulation (simply set τ(v) = Σ
for every vertex v) and the way we describe our algorithm makes it notationally convenient
to deal with this statement. To make the presentation simpler, we assume that Σ = [|Σ|] =
{1, . . . , |Σ|}.

The parameterized complexity of the Node Unique Label Cover problem was first
studied by Chitnis et al. [5] who proved it is FPT by giving an algorithm running in time
2O(k2·log |Σ|)n4 logn. They complemented this result by proving that an FPT algorithm for
this problem parameterized only by k is unlikely to exist. Subsequently, Wahlström [38]
(see also [25]) improved the parameter dependence by giving an algorithm running in time
O(|Σ|2knO(1)). The edge version of this problem was proved to be solvable in FPT-linear
time by Iwata et al. [25] who gave an algorithm running in time O(|Σ|2k(m+ n)). However,
their approach does not apply to the much more general node version of the problem and they
asked whether there is an FPT algorithm for the node version with a linear time dependence
on the input size. In this paper, we answer this question in the affirmative by giving a linear
time FPT algorithm for this problem. Note that we have stated the problem in a slightly
more general form than is usually seen in literature. However, this modification does not
affect the solvability of the problem in linear FPT time. We now state our theorem formally.

I Theorem 1.1. There is a 2O(k·|Σ| log |Σ|)(m+ n) algorithm solving Node Unique Label
Cover, where m and n are the number of edges and vertices respectively in the input graph.

Not only does our result answer the open question of Iwata et al. [25], when the label set
Σ is of constant-size for some fixed constant, our algorithm also achieves optimal asymptotic
dependence on the budget k under the Exponential Time Hypothesis [22].

By its very nature, the Node Unique Label Cover problem is a problem about
breaking various types of dependencies between vertices. Since these dependencies are
propagated along edges, it is reasonable to view the problem as breaking these dependencies
by hitting appropriate sets of paths in the graph. Chitnis et al. [5] used this idea to argue that
highly connected pairs of vertices will always remain dependent on each other and hence one
can recursively solve the problem by first designing an algorithm for graphs that are ‘nearly’
highly connected and then use this algorithm as a base case in a divide and conquer type

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:3

approach. However, the polynomial dependence of their algorithm is O(n4 logn) where n is
the number of vertices in the input. Subsequently, Wahlström [38] improved the parameter
dependence by using a branching algorithm based on the solution to a specific linear program.
However, since this algorithm requires solving linear programs, the dependence on the input
is far from linear. Iwata et al. [25] showed that for several special kinds of LP-relaxations,
including those involved in the solution of the edge version of Unique Label Cover, the
corresponding linear program can be solved in linear-time using flow-based techniques and
hence they were able to obtain the first linear-time FPT algorithm for the edge version of
Unique Label Cover. However, their approach fails when it comes to the node version of
this problem.

Our Techniques. In this paper, we view the Node Unique Label Cover problem as
a problem of hitting paths between certain pairs of vertices in an appropriately designed
auxiliary graph H whose size is greater than that of the input graph G by a factor depending
only on the parameter. The high level road map for the solution follows those in the algorithms
developed for solving graph separation problems via important separators in [31, 4], the
LP-guided branching in [14, 6, 29, 23], the Valued CSP-based algorithms in [38, 25], the
skew-symmetric branching algorithm for 2-SAT Deletion in [33] and most recently, the
branching algorithm for the edge version of Group Feedback Vertex Set [32]. We show
that for any prescribed labeling on the vertices of G, it is possible to select (in linear time) a
constant-size set of vertices of G such that after guessing the intersection of this set with a
hypothetical solution, if we augment the labeling by branching over all permitted labelings
of the remaining vertices in this set then we reduce a pre-determined measure of the input
which depends only on the parameter. By repeatedly doing this, we obtain a branching
algorithm for this problem where each step requires linear time. The main technical content
of the paper is in proving that
(a) there exists a constant-size vertex set and an appropriate measure for the instance such

that the measure ‘improves’ in each step of the branching and
(b) such a vertex set can be computed in linear time.

Related work on improving dependence on input size in FPT algorithms. Our algorithm
for Node Unique Label Cover belongs to a large body of work where the main goal
is to design linear time algorithms for NP-hard problems for a fixed value of k. That is,
to design an algorithm with running time f(k) · O(|I|), where |I| denotes the size of the
input instance. This area of research predates even parameterized complexity. The genesis
of parameterized complexity is in the theory of graph minors, developed by Robertson and
Seymour [35, 36, 37]. Some of the important algorithmic consequences of this theory include
O(n3) algorithms for Disjoint Paths and F-Deletion for every fixed values of k. These
results led to a whole new area of designing algorithms for NP-hard problems with as small
dependence on the input size as possible; resulting in algorithms with improved dependence
on the input size for Treewidth [1, 2], FPT approximation for Treewidth [3, 34], Planar
F-Deletion [1, 2, 8, 10, 9], and Crossing Number [11, 12, 19], to name a few.

The advent of parameterized complexity started to shift the focus away from the running
time dependence on input size to the dependence on the parameter. That is, the goal became
designing parameterized algorithms with running time upper bounded by f(k)nO(1), where
the function f grows as slowly as possible. Over the last two decades researchers have tried
to optimize one of these objectives, but rarely both at the same time. More recently, efforts
have been made towards obtaining linear (or polynomial) time parameterized algorithms that

ESA 2017

57:4 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

compromise as little as possible on the dependence of the running time on the parameter k.
The gold standard for these results are algorithms with linear dependence on input size as well
as provably optimal (under ETH) dependence on the parameter. New results in this direction
include parameterized algorithms for problems such as Odd Cycle Transversal [24, 33],
Subgraph Isomorphism [7], Planarization [26, 15], Subset Feedback Vertex Set [30]
as well as a single-exponential and linear time parameterized constant factor approximation
algorithm for Treewidth [3]. Other recent results include parameterized algorithms with
improved dependence on input size for a host of problems [13, 16, 17, 18, 20, 21].

2 Preliminaries

We fix a label set Σ and assume that all instances of Node Unique Label Cover we deal
with are over this label set. When we refer to a set X being a solution for a given instance
of Node Unique Label Cover, we implicitly assume that X is a set of minimum size. We
denote the set of functions {φe,u}e∈E(G),u∈e simply as φ (without any subscript).

Before we proceed to describe our algorithm for Node Unique Label Cover, we make
a few remarks regarding the representation of the input. We assume that the input graph is
given in the form of an adjacency list and for every edge e = (u, v) the permutations φe,v
and φe,u are included in the two nodes of the adjacency list corresponding to the edge e.
This is achieved by representing the permutations as |Σ|-length arrays over the elements in
[|Σ|]. It is straightforward to check that given the input to Label Cover in this form, the
decision version of the problem can be solved in time O(|Σ|O(1)(m+ n)). We assume that
the input to Node Unique Label Cover is also given in the same manner.

3 Setting up the tools

3.1 Defining the auxiliary graph
I Definition 3.1. Let (G, k, φ, τ) be an instance of Node Unique Label Cover and let
Ψ : V (G)→ Σ. We say that Ψ is a feasible labeling for this instance if for all (u, v) ∈ E(G),
(Ψ(u),Ψ(v)) ∈ φuv,u. For τ : V (G)→ 2Σ, we say that Ψ is consistent with τ if for every
v ∈ V (G), Ψ(v) ∈ τ(v).

For an instance I = (G, k, φ, τ) of Node Unique Label Cover, we define an associated
auxiliary graph HI as follows. The vertex set of HI is V (G)×Σ. For notational convenience,
we denote the vertex (v, i) by vi. The vertex vi is meant to represent the (eventual) labeling
of v by the label i. The edge set of HI is defined as follows. For every edge e = (u, v) and
for every i ∈ Σ, we have an edge (ui, vφe,u(i)). That is, we add an edge between ui and uj
where j is the image of i under the permutation φe,u.

We now prove certain structural lemmas regarding this auxiliary graph which will be
used in the design as well as analysis of our algorithm. For ease of description, we will treat
instances of Label Cover as instances of Node Unique Label Cover. To be precise, we
represent an instance (G,φ) of Label Cover as the trivially equivalent instance (G, 0, φ, τ0)
of Node Unique Label Cover where, τ0(v) = Σ for every v ∈ V (G). The first observation
follows from the definition of HI and the fact that since G is a simple graph, for every edge
e ∈ E(G), the set of edges in HI that correspond to this edge form a matching.

I Observation 3.2. Let I = (G, 0, φ, τ) be an instance of Node Unique Label Cover.
Then, for every v ∈ V (G), for every distinct i, j ∈ Σ, vi and vj have no common neighbors
in HI .

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:5

I Observation 3.3. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
and let Ψ be a feasible labeling for this instance. Let v ∈ V (G) and i = Ψ(v). Then, for
any vertex u ∈ V (G) and j ∈ Σ, if uj is in the same connected component as vi in HI then
Ψ(u) = j.

The above observation describes the ‘dependency’ between pairs of vertices which are in
the same connected component of G. Moving forward, we will characterize the dependencies
between vertices when subjected to additional constraints.

I Definition 3.4. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. For
v ∈ V (G), we use [v] to denote the set {v1, . . . , v|Σ|}. For a subset S ⊆ V (G), we use [S]
to denote the set

⋃
v∈S [v]. Similarly, for e = (u, v) ∈ E(G), we use [e] to denote the set

{(ui, vj)}i∈Σ,j=φe,u(i) of edges and for a subset X ⊆ E(G), we use [X] to denote the set⋃
e∈X [e]. For the sake of convenience, we also reuse the same notation in the following way.

For v ∈ V (G) and α ∈ Σ, we also use [vα] to denote the set {v1, . . . , v|Σ|}. This definition
extends in a natural way to sets of vertices and edges of the auxiliary graph HI . Finally, for
a set S ⊆ V (HI) ∪ E(HI), we denote by S−1 the set {s|s ∈ V (G) ∪ E(G) : [s] ∩ S 6= ∅}.

I Definition 3.5. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover.
We say that a set Z ⊆ V (HI) ∪ E(HI) is regular if |Z ∩ [v]| ≤ 1 for any v ∈ V (G) and
|Z ∩ [e]| ≤ 1 for any e ∈ V (G) and irregular otherwise. That is, regular sets contain at
most 1 copy of any vertex and edge of G.

Now that we have defined the notion of regularity of sets, we prove the following lemma
which shows that the auxiliary graph displays a certain symmetry with respect to regular
paths. This will allow us to transfer arguments which involve a regular path between vertices
vi and uj to one between vertices vi1 and uj1 where i 6= i1 and j 6= j1.

I Lemma 3.6. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Let P
be a regular path in HI from vi to uj. Let V (P) denote the set of vertices of G in P and
let U denote the set [V (P)]. Then, there are vertex disjoint paths P1, . . . , P|Σ| in HI and a
partition of U into sets U1, . . . , U|Σ| such that for each r ∈ [|Σ|], V (Pr) = Ur and Pr is a
path from vi1 to ui2 for some i1, i2 ∈ Σ.

In the next lemma, we describe additional structural properties of the auxiliary graph. In
particular, we establish the relation between various copies of the same vertex set. Intuitively,
the following lemma says that for every connected and regular set of vertices Z, simply
observing the set N [Z] can allow one to make certain useful assertions about the set of
vertices in the neighborhood of the set Z ′ = [Z] \ Z. Note that for a graph H and set
Z ⊆ V (H), we use NH [Z] and NH(Z) to denote the closed and open neighborhoods of Z in
H respectively. If H is clear from the context, then we drop the subscript.

I Lemma 3.7. Let Z ⊆ V (HI) be a connected regular set of vertices and let Y = N(Z).
Further, suppose that N [Z] is regular. Let Z ′ = [Z] \ Z and Y ′ = [Y] \ Y . Then, Y ′ ⊆
N(Z ′) ⊆ [Y]. Furthermore, for every connected component C in HI [Z ′], N(C) ∩ [v] 6= ∅ for
every v ∈ V (G) for which there is a j ∈ Σ such that vj ∈ Y .

Using the observations and structural lemmas proved so far, we will now give a forbidden-
structure characterization of Yes instances of Node Unique Label Cover.

I Lemma 3.8. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
where G is connected. Let v ∈ V (G) and i ∈ Σ. Then, there is a feasible labeling Ψ such
that Ψ(v) = i if and only if there is no j ∈ Σ such that vi and vj are in the same connected
component of HI .

ESA 2017

57:6 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

So far, we have studied the structure of Yes instances of this problem when the budget
k = 0. The next lemma is a direct consequence of Lemma 3.8 and allows us to characterize
Yes instances of the problem for values of k greater than 0.

I Lemma 3.9. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Then,
I is a Yes instance if and only if there is a set S ⊆ V (G) of at most k vertices such that for
every v ∈ V (G) \ S, there is an iv ∈ Σ such that [S] intersects all paths from viv to vj for
every Σ 3 j 6= iv in the graph HI . Moreover if there is a feasible labeling for G−S consistent
with τ that labels v with the label i ∈ τ(v) then for every u ∈ V (G) and j ∈ Σ \ τ(u), [S]
intersects all vi-uj paths.

Using the above lemma, we will interpret the Node Unique Label Cover problem
as a parameterized cut-problem and use separator machinery to design a linear-time FPT
algorithm for this problem.

3.2 Defining the associated cut-problem
We begin by recalling standard definitions of separators in undirected graphs.

I Definition 3.10. Let G be a graph and X and Y be disjoint vertex sets. A set S disjoint
from X ∪ Y is said to be an X-Y separator if there is no X-Y path in the graph G − S.
We denote the vertices in the components of G− S which intersect X by R(X,S) and we
denote by R[X,S] the set R(X,S) ∪ S. We say that an X-Y separator S1 covers an X-Y
separator S2 if R(X,S1) ⊇ R(X,S2).

I Definition 3.11. Let I be an instance of Node Unique Label Cover and let X and Y
be disjoint vertex sets of HI . We say that a minimal X-Y separator S is good if the set
R[X,S] is regular and bad otherwise.

Note that if S is a minimal X-Y separator then N(R(X,S)) = S. We are now ready to
prove the Persistence Lemma which plays a major role in the design of the algorithm. In
essence this lemma says that if we are guaranteed the existence of a solution whose deletion
leaves a graph with a feasible labeling Ψ and if we are given a vertex v excluded from the
deletion set which has a single label α in its allowed label set, then we can define a set T
such that the solution under consideration must separate vα from T . Furthermore, if we find
a good minimum vα-T separator S, then we can correctly fix the labels of all vertices which
have exactly one copy in R(vα, S). It will be shown later that once we fix the labels of these
vertices, the subsequent exhaustive branching steps will decrease a pre-determined measure
of the input instance.

I Lemma 3.12 (Persistence Lemma). Let I = (G, k, φ, τ) be a Yes instance of Node Unique
Label Cover. Let X ⊆ V (G) be a minimal set of size at most k such that G−X has a
feasible labeling and let Ψ be a feasible labeling for G−X consistent with τ . Let v be a vertex
not in X with |τ(v)| = 1 and let α ∈ Σ be such that α = Ψ(v) and τ(v) = {α}. Let T denote
the set

⋃
u∈V (G)

⋃
γ∈Σ\τ(u){uγ}.

[X] is a vα-T separator in HI .
Let S be a good vα-T minimum separator in HI and let Z = R(vα, S). Then, there is a
solution for the given instance disjoint from Z−1.

Proof. The first statement follows from Lemma 3.9. We now prove the second statement.
We begin by observing that T contains the set [v] \ {vα}. This is because τ(v) is a singleton
and only contains the label α. As a result, we know that the set [X] must intersect all vα-vβ

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:7

paths for α 6= β. Let X1 denote the set X ∩ Z−1. If X1 is empty then we are already done.
Therefore, X1 6= ∅. Let S′ denote the subset of S \ [X] which is not reachable from vα in the
graph HI − [X] via paths whose internal vertices lie in Z. We now have 2 cases depending
on S′ being empty or non-empty. We will argue that the first case cannot occur since it
contradicts the minimality of X. In the second case we use very similar arguments but show
that we can modify X to get an alternate solution X ′ which is disjoint from the set Z.

Case 1: S′ is empty. That is, every vertex in S \ [X] is reachable from vα in HI − [X] via
paths whose internal vertices lie in Z. Let u ∈ X1 and let b ∈ Σ such that ub ∈ Z. Since Z
is regular, Z ∩ [u] must in fact be equal to {ub}. We now claim that X ′ = X \ {u} is also a
set such that G−X ′ has a feasible labeling, contradicting the minimality of X.

Suppose that this is not the case. That is, G − X ′ does not have a feasible labeling.
Since every connected component of G−X ′ which does not contain u is also a connected
component of G−X, all such components do have a feasible labeling. Indeed any feasible
labeling of G −X restricted to the vertices in these components is a feasible labeling for
these components. Therefore, there is a single component in G−X ′ which does not have a
feasible labeling – the component containing u.

By Lemma 3.8, if there is no b′ ∈ Σ \ {b} such that the connected component of HI − [X ′]
containing ub also contains ub′ , then there is a feasible labeling of the component of G−X ′
which contains u, a contradiction. Therefore, there is a b′ ∈ Σ \ {b} such that there is a
ub-ub′ path in HI − [X ′]. If this path contains vertices of [u] other than ub and ub′ , then we
pick the vertex of [u] \ {ub} which is closest to ub on this path and call it ub′ . Therefore,
the path P from ub to ub′ is internally disjoint from [u]. We now have the following claim
regarding P .

I Claim 3.13. The path P is internally regular.

We now return to the proof of the first case. Since ub ∈ Z and ub′ /∈ Z (as N [Z] is
regular), P must intersect N(Z) which is the same as S, in S \ [X]. Furthermore, P must
intersect N(C) where C is the connected component of Z ′ = [Z]\Z containing the vertex ub′ .
We now have the following 2 subcases based on the intersection of P with the(not necessarily
non-empty) set S ∩ N(C). In both subcases we will demonstrate the presence of a vα-vβ
path in HI − [X] for some β ∈ Σ \ {α}.

Case 1.1: P contains a vertex in S∩N(C). Let w` be a vertex in S∩N(C) which appears
in P . We let P1 denote the subpath of P from ub to w` and P2 denote the subpath of P
from w` to ub′ . Furthermore, since P is internally regular, P1 and P2 are regular. We apply
Lemma 3.6 to the regular path P2 to get a path P ′2 with ub as one endpoint and wh as
the other endpoint, where wh 6= w`. Now, since W` ∈ N [Z] and N [Z] is regular by our
assumption, it must be the case that wh /∈ Z. Therefore the path P ′2 must intersect S at
a vertex other than w`. Let xr be such a vertex, where x ∈ V (G) and r ∈ Σ. However, in
the case we are in, we know that xr (which is contained in S \ [X]) is reachable from vα in
HI − [X] by a path Q whose internal vertices lie in Z. We let the subpath of P ′2 from xr to
wh be denoted by J . Furthermore, the case we are in guarantees that w` is reachable from
vα in HI − [X] via a path L whose internal vertices lie in Z. Since L lies completely in N [Z],
it is regular and we may apply Lemma 3.6 on this path to obtain a path L′ with wh s one
endpoint and vβ as the other endpoint for some β ∈ Σ. Since we have already argued that
wh 6= w`, it follows that β 6= α. Therefore, we get a concatenated walk Q+ J +L′ which is a
walk that is present in the graph HI − [X] and contains vα and vβ , contradicting the premise

ESA 2017

57:8 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

of the lemma that there is a feasible labeling for G−X setting v to α. This completes the
argument for this subcase.

Case 1.2: P does not contain a vertex in S ∩N(C). Let xr be the last vertex of S which
is encountered when traversing P from ub to ub′ and let w` be the last vertex of N(C)
encountered in the same traversal. Observe that since the previous subcase does not hold, it
must be the case that xr occurs before w` in this traversal. We let J denote the subpath of
P between xr and w`. Now, Lemma 3.7 implies that there is a h ∈ Σ \ {`} such that wh ∈ S.
This is because N(C) ⊆ [S]. Now, the case we are in guarantees the presence of paths L and
Q from vα to wh and xr respectively such that L and Q both lie strictly inside N [Z] and
hence are regular. Now, we apply Lemma 3.6 on the regular path J to get a path J ′ with
wh as one endpoint and xr1 as the other for some r1 ∈ Σ. Since we have already argued that
wh 6= w`, it must be the case that r1 6= r. Now, we apply Lemma 3.6 on the regular path Q
to get a path Q′ with xr1 as one endpoint and vβ as the other for some β ∈ Σ. Since we have
shown that r1 6= r, we infer that β 6= α. Now, the concatenated walk L+ J ′ +Q′ implies the
presence of a vα-vβ path in HI − [X], a contradiction to the premise of the lemma. This
completes the argument for this subcase.

Thus we have concluded that G−X ′ has a feasible labeling, contradicting the minimality
of X. This completes the argument for the first case.

Case 2: S′ is non-empty. Let Q be a set of |S|-many vα-S paths contained entirely in N [Z]
which are vertex disjoint except for the vertex vα. Since S is a minimum vα-T separator,
such a set of paths exists. Recall that X1 denotes the set X ∩Z−1. We let X̂1 denote the set
[X] ∩ Z. That is, those copies of X1 present in Z. Due to the presence of the set of paths
Q and the fact that v is disjoint from X, it must be the case that X̂1 contains at least one
vertex in each path in Q that connects v and S′. Furthermore, since S is a good separator,
we conclude that |X1| = |(X̂1)−1| ≥ |(S′)−1|. We now claim that X ′ = (X \X1) ∪ (S′)−1 is
also a solution for the given instance. That is, |X ′| ≤ |X| and G−X ′ has a feasible labeling.
By definition, |X ′| ≤ |X| holds. Therefore, it remains to prove that G−X ′ has a feasible
labeling.

Again, it must be the case that any connected component of G−X ′ which does not have
a feasible labeling must intersect the set X1. Any other component of G−X ′ is contained
in a component of G−X and already has a feasible labeling by the premise of the lemma.

By Lemma 3.8, there must be a vertex u1 ∈ X1 and distinct labels b, b′ ∈ Σ such that
u1
b ∈ Z and there is a u1

b − u1
b′ path P in HI − [X ′]. We now consider the intersection of P

with the set [X1] and let pγ1 and qγ2 be vertices on P such that pγ1 , qγ2 ∈ [Z], the subpath
of P from pγ1 to qγ2 is internally disjoint from [X1] and pγ1 ∈ Z and qγ2 /∈ Z. We first argue
that such a pair of vertices exist.

We begin by setting pγ1 = u1
b and qγ2 = u1

b′ . If the path P is already internally disjoint
from [X1] then we are done. Otherwise, let u2

c be the vertex of [X1] closest to pγ1 along the
subpath between pγ1 and qγ2 . Now, if u2

c is not in Z then we are done by setting qγ2 = u2
c .

Otherwise, we continue by setting pγ1 = u2
c . Since this process must terminate, we conclude

that the vertices pγ1 and qγ2 with the requisite properties must exist.
For ease of notation we will now refer to the path between pγ1 and qγ2 as P . Note that

by definition, P is internally disjoint from [X1]. We now have a claim identical to that in
the previous case.

I Claim 3.14. The path P is internally regular.

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:9

We now complete the proof of this case. Since pγ1 ∈ Z and qγ2 ∈ [Z]\Z, P must intersect
N(Z) in (S \ [X]) \ S′. Furthermore, P must also intersect N(C) where C is the connected
component of HI [Z ′] containing qγ2 , where Z ′ = [Z] \Z. We again consider 2 subcases based
on the intersection of the path P with the (not necessarily non-empty) set N(C) ∩ S.

Case 2.1: P contains a vertex in S∩N(C). Let w` be a vertex in S∩N(C) which appears
in P . We let P1 denote the subpath of P from pγ1 to w` and P2 denote the subpath of P
from w` to qγ2 . Since P is internally regular, P1 and P2 are regular. Furthermore, since
qγ2 /∈ Z, there is a γ3 ∈ Σ \ {γ2} such that qγ3 ∈ Z. We now apply Lemma 3.6 on the regular
path P2 to get a path P ′2 with qγ3 as one endpoint and wh as the other, where h 6= ` since
γ2 6= γ3. Furthermore, since w` ∈ N [Z] and N [Z] is regular, it must be the case that wh /∈ Z.
Therefore the path P ′2 must intersect N(Z) at a vertex xr. Let J be the subpath of P ′2 from
xr to wh. Now, since xr ∈ (S \ [X]) \ S′, we know that there is a vα-xr path in HI − [X]
which lies entirely in N [Z]. Let Q be such a path. Similarly, we know that there is a vα-w`
path L in HI − [X] which also lies entirely in N [Z] and hence is regular. We now apply
Lemma 3.6 on L to get a path L′ with wh as one endpoint and vβ as the other endpoint for
some β ∈ Σ. Since we have already argued that wh 6= w`, we conclude that β 6= α. However,
the concatenated walk Q+ J +L′ is present in HI − [X], implying a vα-vβ path in HI − [X],
a contradiction to the premise of the lemma. We now address the second subcase under the
assumption that this subcase does not occur.

Case 2.2: P does not contain a vertex in S ∩N(C). Let xr be the last vertex of S which
is encountered when traversing P from pγ1 to qγ2 and let w` be the last vertex of N(C)
encountered in the same traversal. Since the previous subcase is assumed to not hold, xr
must occur before w` in this traversal. We let J denote the subpath of P between xr and
w`. Lemma 3.7 implies the existence of a label h ∈ Σ \ {`} such that wh ∈ S. This follows
from the fact that N(C) ⊆ [S]. Also, since w` occurs in P , wh is not contained in S′ or
[X]. The same holds for xr Therefore, the case we are in guarantees the presence of paths L
and Q from vα to wh and xr respectively, where L and Q are contained within the set N [Z]
and hence they must be regular and amenable to applications of Lemma 3.6. We begin by
applying Lemma 3.6 on the regular path J to get a path J ′ with wh as one endpoint and
xr1 as the other for some r1 ∈ Σ. However, since h 6= `, we conclude that r1 6= r. Therefore,
we now apply Lemma 3.6 on the path Q to obtain a path Q′ with xr1 as one endpoint with
the other endpoint being vβ for some β ∈ Σ. Again, since r1 6= r, we conclude that β 6= α.
Now, observe that the concatenated walk L+ J ′ +Q′ implies the presence of a vα-vβ path
in HI − [X], a contradiction to the premise of the lemma. This completes the argument for
this subcase as well and consequentially that for Case 2.

We have thus proved that Case 1 cannot occur at all and in Case 2, there is an exchange
argument which constructs an alternate solution X ′ which is disjoint from Z. This completes
the proof of the lemma. J

The main consequence of the above lemma is that at any point in the run of our algorithm
solving an instance I = (G, k, φ, τ), if there is a vertex v whose label is ‘fixed’, i.e. τ(v) = {α}
for some α ∈ Σ and there is a good vα-T separator S where T is defined as in the premise of
the above lemma, then we can correctly ‘fix’ the labelings of all vertices in the set (R(vα, S))−1.
That is, we can define a new function τ ′ as follows. For every u ∈ V (G) and γ ∈ Σ, we
set τ ′(u) = {γ} if uγ ∈ R(vα, S) and τ ′(u) = τ(u) otherwise. Lemma 3.12 implies that the
given graph has a deletion set of size at most k which leaves a graph with a feasible labeling
consistent with τ if and only if the graph has deletion set of size at most k which leaves a
graph with a feasible labeling consistent with τ ′.

ESA 2017

57:10 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

3.3 Computing good separators
I Lemma 3.15. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v
be a vertex in G and let α ∈ Σ. Let Tαv denote the set [v] \ {vα} and T ⊇ Tαv be a set not
containing vα. There is an algorithm that, given I, v, α, and T runs in time O(|Σ| ·k(m+n))
and either

correctly concludes that there is no vα-T separator of size at most |Σ| · k or
returns a pair of minimum vα-T separators S1 and S2 such that S2 covers S1, S1 is
good, S2 is bad and for any vertex u ∈ R(vα, S2) \R[vα, S1], the size of a minimal vα-T
separator containing u is at least |S1|+ 1 or
returns a good minimum vα-T separator S such that no other minimum vα-T separator
covers S or
correctly concludes that there is no good vα-T minimum separator.

I Lemma 3.16. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v be
a vertex in G, α ∈ Σ, T ⊇ [v] \ {vα} be a set not containing vα and let ` > 0 be the size of
a minimum vα-T separator in HI . Let S1 and S2 be a pair of minimum vα-T separators
such that S1 is good, S2 is bad, and for any vertex y ∈ R(vα, S2) \ R[vα, S1], the size of a
minimal vα-T separator containing y is at least `+ 1. Let u ∈ V (G) and γ1, γ2 ∈ Σ such that
uγ1 , uγ2 ∈ R[vα, S2]. Then,
1. R[vα, S2] contains a pair of paths P1 and P2 such that for each i ∈ {1, 2}, the path Pi is

a vα-uγi path and both paths are internally vertex disjoint from S2 and contain at most
one vertex of S1.

2. Given I, vα, S1 and S2, there is an algorithm that, in time O(|Σ| · k(m+ n)), computes
a pair of paths with the above properties.

3. For i ∈ {1, 2}, any minimum vα-T ∪ {uγi
} separator disjoint from V (Pi) ∩ (S1 ∪ S2) and

R(vα, S1) has size at least `+ 1, where ` is the size of a minimum vα-T separator.

We are now ready to prove Theorem 1.1 by describing our algorithm for Node Unique
Label Cover. Before doing so, we make the following important remark regarding the way
we use the algorithms described in this subsection. In the description of our main algorithm,
there will be points where we make a choice to not delete certain vertices. That is, we will
choose to exclude them from the solution being computed. At such points, we say that we
make these vertices undeletable.

All the above algorithms also work when given an undeletable set of vertices in the graph
and the minimum separators we are looking for are the minimum among those separators
disjoint from the undeletable set of vertices. Regarding the running time of these algorithms,
there will be a multiplicative factor of |Σ| · k which arises due to potentially blowing up the
size of the graph by a factor of |Σ| · k by making (|Σ| · k) + 1 copies of every undeletable
vertex.

4 The Linear time algorithm for Node Unique Label Cover

Before we describe our algorithm, we state certain assumptions we make regarding the input.
We assume that at any point, we are dealing with a connected graph G. Furthermore, we
assume that instances of Node Unique Label Cover are given in the form of a tuple –
(G, k, φ, τ, w∗, V∞) where the element w∗ denotes either a vertex from V (G) or it is undefined.
If w∗ denotes a vertex then, |τ(w∗)| = 1 and we will attempt to solve the problem on the
tuple (G, k, φ, τ, w∗, V∞) under the assumption that w∗ is not in the solution (which is
required to be disjoint from V∞). Furthermore the definition of the problem allows us to

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:11

assume that if there is a feasible labeling for this instance (after deleting a solution) then
there is one consistent with τ . Since τ(w∗) is singleton, any feasible labeling consistent with
τ must set w∗ to the unique label in τ(w∗).

We first check if G already has a feasible labeling (not necessarily one consistent with τ).
If so, then we are done. If not and k = 0 then we return No. If any connected component of
G has a feasible labeling then we remove this component. Otherwise, we check if w∗ is defined.
If w∗ is undefined, then we pick an arbitrary deletable vertex v ∈ V (G). That is v /∈ V∞.
We then recursively solve the problem on the instances Iq0 , . . . , Iqr where {q1, . . . , qr} = τ(v)
and for each qi where i ≥ 1, the instance Iqi

is defined to be (G, k, φ, τv=qi
, w∗, V∞1) with

τv=qi defined as the function obtained from τ by restricting the image of v to the singleton
set {qi}, w∗ defined as w∗ = v and V∞1 defined as V∞1 = V∞ ∪ {v}. The instance Iq0 is
defined as (G− {v}, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to the
graph G− {v}. This will be the only branching rule which has a branching factor depending
on the parameter (in this case the size of the label set Σ) and we call this rule, B0.

We now describe the steps executed by the algorithm in the case when w∗ is defined.
Suppose that w∗ = v, τ(v) = α. Recall that by our assumption regarding well-formed inputs,
if w∗ is defined then τ(w∗) must be a singleton set. We set T =

⋃
u∈V (G)

⋃
γ∈Σ\τ(u) uγ .

Intuitively, T is the set of all vertices uγ such that if there is a feasible labeling of G (after
deleting the solution) which sets v to α then it cannot be consistent with τ unless the solution
hits all paths in HI (where I is the given instance) between vα and uγ . We remark that
since T depends only on the input instance I, we use T (I) to denote the set T corresponding
to any input instance I. Once we set T as described we first check if there is a vα-T path
in HI . If not, then the algorithm deletes the component of G containing v and recurses by
setting w∗ to be undefined. The correctness of this operation is argued as follows. Observe
that T contains all vertices of [v] \ {vα} and excludes vα. Therefore, Lemma 3.8 implies that
the component of G containing v already has a feasible labeling and hence can be removed.

Otherwise if there is a vα-T path in HI , then we execute the algorithm of Lemma 3.15
with this definition of v, α and T and undeletable set [V∞]. Observe that T contains all
vertices of [v] \ {vα} but excludes vα. This is because τ(v) = {α}. The next steps of our
algorithm depend on the output of this subroutine. For each of the four possible outputs, we
describe an exhaustive branching.

Case 1: The subroutine returns that there is no vα-T separator of size at most |Σ| · k
which is disjoint from [V∞]. In this case, our algorithm returns No. The correctness of this
step follows from Lemma 3.12.

Case 2: The subroutine returns a good vα-T separator S which is smallest among all vα-T
separators disjoint from [V∞] such that no other vα-T separator disjoint from [V∞] and
having the same size as S, covers S. In this case, we do the following. For each vertex
uγ in the set R(vα, S) where u ∈ V (G) and γ ∈ Σ, we set τ(u) = {γ} and add u to V∞.
That is, we set V∞ = V∞ ∪ (R(vα, S))−1. Note that prior to this operation, γ ∈ τ(u) since
otherwise uγ would belong to T . We then pick an arbitrary vertex xδ ∈ S and recursively
solve the problem on 2 instances I1 and I2 defined as follows. The instance I1 is defined
to be (G − {x}, k − 1, φ′, τ ′, V∞) where φ′ and τ ′ are restrictions of φ and τ to G − {x}.
The instance I2 is defined to be (G, k, φ, τ ′, V∞1) where V∞1 = V∞ ∪ {x} and τ ′ is defined
to be the same as τ on all vertices but x and τ ′(x) = {δ}. We call this branching rule, B1.
The exhaustiveness of this branching step follows from the fact that once the vertices in
(R(vα, S)−1) are made undeletable, unless the vertex x is deleted, Observation 3.3 forces any
feasible labeling that labels v with α to label x with δ.

ESA 2017

57:12 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

Case 3: The subroutine correctly concludes that there is no good vα-T separator which is
also smallest among all vα-T separators disjoint from [V∞]. In this case, we compute S,
the minimum vα-T separator that is disjoint from V∞ and closest to vα. Since S is not
good, R[vα, S] contains a pair of vertices uγ1 and uγ2 for some u ∈ V (G) and γ1, γ2 ∈ Σ.
Furthermore, since S is a vα-T separator, it must be the case that uγ1 and uγ2 are not in T .
This implies that {γ1, γ2} ⊆ τ(u). We now recursively solve the problem on 3 instances I0,
I1, I2 defined as follows. The instance I0 is defined as (G− {u}, k− 1, φ′, τ ′, w∗, V∞), where
φ′ and τ ′ are defined as the restrictions of φ and τ to the graph G− {u}. The instance I1 is
defined as (G, k, φ, τ ′, w∗, V∞1) where V∞1 = V∞ ∪ {u} and τ ′ is defined to be be the same
as τ on all vertices but u and τ ′(u) = τ(u) \ {γ1}. Similarly, the instance I2 is defined as
(G, k, φ, τ ′, w∗, V∞1) where V∞1 = V∞ ∪ {u} and τ ′ is defined to be be the same as τ on all
vertices but u and τ ′(u) = τ(u) \ {γ2}. We call this branching rule B2.

The exhaustiveness of this branching follows from the fact that if u is not deleted (the
first branch) then any feasible labeling of G−X for a hypothetical solution X must label
u with at most one label out of γ1 and γ2. Therefore, if I is a Yes instance then for at
least one of the 2 instances I1 or I2, there is a feasible labeling of G−X consistent with the
corresponding τ ′.

Case 4: Finally, we address the case when the subroutine returns a pair of minimum (among
those disjoint from [V∞]) vα-T separators S1 and S2 such that S2 covers S1, S1 is good,
S2 is bad and there is no minimum (among those disjoint from V∞) vα-T separator which
covers S1 and is covered by S2. In this case, R[vα, S2] contains a pair of vertices uγ , uδ for
some vertex u ∈ V (G) and γ, δ ∈ Σ.

We execute the algorithm of Lemma 3.16 to compute in time O(|Σ| · k(m+ n)), a vα-uγ
path P1 and a vα- uδ path P2 such that both paths are internally vertex disjoint from S2
and contain at most one vertex of S1 each. Let x1, x2 ∈ V (G) and β1, β2 ∈ Σ be such that
x1
β1

and x2
β2

are the vertices of S1 in P1 and P2 respectively. Note that P1 or P2 may be
disjoint from S1. If Pi (i ∈ {1, 2}) is disjoint from S1 then we let xiβi

be undefined. We now
recurse on the following (at most) 5 instances I1, . . . , I5 defined as follows.

I1 = (G−x1, k−1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G−{x1}.
I2 = (G−x2, k−1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G−{x2}.
I3 = (G− u, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G− {u}.
I4 = (G, k, φ, τ ′, w∗, V∞1) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x1} and τ ′ is the same as
τ on all vertices of G except u and τ ′(u) = τ(u) \ {γ}.
I5 = (G, k, φ, τ ′, w∗, V∞1) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x2} and τ ′ is the same as
τ on all vertices of G except u and τ ′(u) = τ(u) \ {δ}.

This branching rule is called B3 and we now argue the exhaustiveness of the branching.
The first three branches cover the case when the solution intersects the set {x1, x2, u}.
Suppose that a hypothetical solution, say X, is disjoint from {x1, x2, u}. By Lemma 3.12,
we may assume that X is disjoint from R(vα, S1). Since any feasible labeling of G−X sets
u to at most one of {γ1, γ2}, branching into 2 cases by excluding γ1 from τ(u) in the first
case and excluding γ2 from τ(u) in the second case gives us an exhaustive branching. This
completes the description of the algorithm. The correctness follows from the exhaustiveness
of the branchings. We will now prove the running time bound.

Analysis of running time. It follows from the description of the algorithm and the bounds
already proved on the running time of each subroutine, that each step can be performed in
time O((Σ + k)O(1)(m+ n)). Therefore, we only focus on bounding the number of nodes in

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:13

the search tree resulting from this branching algorithm. In order to analyse this number, we
introduce the following measure for the instance I = (G, k, φ, τ, w∗, V∞) corresponding to
any node of the search tree. We define µ(I) = (Σ + 1)k − λ(I) where λ(I) is λ(w∗, T (I)) if
w∗ is defined and 0 otherwise.

Note that λ(w∗, T (I)) denotes the size of the smallest w∗-T (I) separator in HI among
those disjoint from [V∞]. Furthermore, observe that µ(I) ≤ (|Σ|+ 1) · k for any instance
on which the algorithm can potentially branch. We now argue that this measure strictly
decreases in each branch of every branching rule and since the number of branches in any
branching rule is bounded by max {|Σ|+ 1, 5} (Rules B0 and B3), the time bound claimed
in the statement of Theorem 1.1 follows.

References

1 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16-18, 1993, San Diego, CA, USA, pages 226–234, 1993.

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. 25(6):1305–1317, 1996.

3 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. In
FOCS, pages 499–508, 2013. doi:10.1109/FOCS.2013.60.

4 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009. doi:10.1007/
s00453-007-9130-6.

5 Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk,
and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized
contractions. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 460–469, 2012. doi:
10.1109/FOCS.2012.29.

6 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. TOCT, 5(1):3, 2013. doi:10.1145/
2462896.2462899.

7 Frederic Dorn. Planar subgraph isomorphism revisited. In STACS, pages 263–274, 2010.
8 Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-

time decidability. J. ACM, 35(3):727–739, 1988. doi:10.1145/44483.44491.
9 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket Saur-

abh. Solving d-sat via backdoors to small treewidth. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 630–641, 2015.

10 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, Oc-
tober 20-23, 2012, pages 470–479, 2012.

11 Martin Grohe. Computing crossing numbers in quadratic time. In Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 231–236, 2001.

12 Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004.

ESA 2017

http://dx.doi.org/10.1109/FOCS.2013.60
http://dx.doi.org/10.1007/s00453-007-9130-6
http://dx.doi.org/10.1007/s00453-007-9130-6
http://dx.doi.org/10.1109/FOCS.2012.29
http://dx.doi.org/10.1109/FOCS.2012.29
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/44483.44491

57:14 A Linear-Time Parameterized Algorithm for Node Unique Label Cover

13 Martin Grohe, Ken ichi Kawarabayashi, and Bruce A. Reed. A simple algorithm for the
graph minor decomposition – logic meets structural graph theory. In SODA, pages 414–431,
2013. doi:10.1137/1.9781611973105.30.

14 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61–71, 2011.

15 Ken ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In FOCS,
pages 639–648, 2009. doi:10.1109/FOCS.2009.45.

16 Ken ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. doi:10.1016/j.jctb.
2011.07.004.

17 Ken ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism and all polyhed-
ral embeddings in linear time. In STOC, pages 471–480, 2008. doi:10.1145/1374376.
1374443.

18 Ken ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear time algorithm
for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-
width. In FOCS, pages 771–780, 2008. doi:10.1109/FOCS.2008.53.

19 Ken ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time.
In STOC, pages 382–390, 2007. doi:10.1145/1250790.1250848.

20 Ken ichi Kawarabayashi and Bruce A. Reed. A nearly linear time algorithm for the half
integral parity disjoint paths packing problem. In SODA, pages 1183–1192, 2009. doi:
10.1145/1496770.1496898.

21 Ken ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd
cycles transversal. In SODA, pages 365–378, 2010.

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

23 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time fpt algorithms via network flow.
In SODA, pages 1749–1761, 2014. doi:10.1137/1.9781611973402.127.

24 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time fpt algorithms via network flow.
In SODA, pages 1749–1761, 2014. doi:10.1137/1.9781611973402.127.

25 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

26 Bart M.P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In SODA, pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

27 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 767–775, 2002.

28 Subhash Khot. On the unique games conjecture (invited survey). In Proceedings of the
25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Mas-
sachusetts, June 9-12, 2010, pages 99–121, 2010.

29 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions
on Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

30 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. In Automata, Languages, and Programming –
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part I, pages 935–946, 2015. doi:10.1007/978-3-662-47672-7_76.

31 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006. doi:10.1016/j.tcs.2005.10.007.

32 M.S. Ramanujan. A faster parameterized algorithm for group feedback edge set. In
Graph-Theoretic Concepts in Computer Science – 42nd International Workshop, WG

http://dx.doi.org/10.1137/1.9781611973105.30
http://dx.doi.org/10.1109/FOCS.2009.45
http://dx.doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1145/1374376.1374443
http://dx.doi.org/10.1145/1374376.1374443
http://dx.doi.org/10.1109/FOCS.2008.53
http://dx.doi.org/10.1145/1250790.1250848
http://dx.doi.org/10.1145/1496770.1496898
http://dx.doi.org/10.1145/1496770.1496898
http://dx.doi.org/10.1137/1.9781611973402.127
http://dx.doi.org/10.1137/1.9781611973402.127
http://dx.doi.org/10.1137/140962838
http://dx.doi.org/10.1137/1.9781611973402.130
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-662-47672-7_76
http://dx.doi.org/10.1016/j.tcs.2005.10.007

D. Lokshtanov, M. S. Ramanujan, and S. Saurabh 57:15

2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, pages 269–281, 2016.
doi:10.1007/978-3-662-53536-3_23.

33 M.S. Ramanujan and Saket Saurabh. Linear time parameterized algorithms via skew-
symmetric multicuts. In SODA, pages 1739–1748, 2014. doi:10.1137/1.9781611973402.
126.

34 B. Reed. Finding approximate separators and computing tree-width quickly. In Proceedings
of the 24th Annual ACM symposium on Theory of Computing (STOC’92), pages 221–228.
ACM, 1992.

35 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

36 Neil Robertson and Paul D. Seymour. Graph minors. XVIII. tree-decompositions and
well-quasi-ordering. J. Comb. Theory, Ser. B, 89(1):77–108, 2003.

37 Neil Robertson and Paul D. Seymour. Graph minors. XX. wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004.

38 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, pages 1762–1781, 2014. doi:10.1137/
1.9781611973402.128.

ESA 2017

http://dx.doi.org/10.1007/978-3-662-53536-3_23
http://dx.doi.org/10.1137/1.9781611973402.126
http://dx.doi.org/10.1137/1.9781611973402.126
http://dx.doi.org/10.1137/1.9781611973402.128
http://dx.doi.org/10.1137/1.9781611973402.128

	Introduction
	Preliminaries
	Setting up the tools
	Defining the auxiliary graph
	Defining the associated cut-problem
	Computing good separators

	The Linear time algorithm for Node Unique Label Cover

