5-Approximation for ?-Treewidth Essentially as Fast as ?-Deletion Parameterized by Solution Size

Abstract

The notion of ?-treewidth, where ? is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of ?-treewidth at most k can be decomposed into (arbitrarily large) ?-subgraphs which interact only through vertex sets of size ?(k) which can be organized in a tree-like fashion. ?-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for ?-deletion problems, which ask to find a minimum vertex set whose removal from a given graph G turns it into a member of ?. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree ?-decompositions. We present FPT-approximation algorithms to compute tree ?-decompositions for hereditary and union-closed graph classes ?. Given a graph of ?-treewidth k, we can compute a 5-approximate tree ?-decomposition in time f(?(k)) ? n^?(1) whenever ?-deletion parameterized by solution size can be solved in time f(k) ? n^?(1) for some function f(k) ? 2^k. The current-best algorithms either achieve an approximation factor of k^?(1) or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time 2^?(k) ? n^?(1) parameterized by bipartite-treewidth and Vertex Planarization in time 2^?(k log k) ? n^?(1) parameterized by planar-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures

    Similar works