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Abstract
We consider problems where the input is a set of points in the plane and an integer k, and the
task is to find a subset S of the input points of size k such that S satisfies some property. We
focus on properties that depend only on the order type of the points and are monotone under
point removals. We exhibit a property defined by three forbidden patterns for which finding a k-
point subset with the property is W[1]-complete and (assuming the exponential time hypothesis)
cannot be solved in time no(k/ log k). However, we show that problems of this type are fixed-
parameter tractable for all properties that include all collinear point sets, properties that exclude
at least one convex polygon, and properties defined by a single forbidden pattern.
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1 Introduction

In this work, we study the parameterized complexity of finding subsets of planar point sets
having hereditary properties, by analogy to past work on hereditary properties of graphs.

Hereditary properties of graphs have long been a central organizing principle for such
diverse topics as coloring, perfection, intersection graph theory, and the theories of claw-free
and triangle-free graphs. Finding the largest induced subgraph with any hereditary property
is NP-hard [11,21]. The parameterized complexity of finding a k-vertex induced subgraph
with a given hereditary property was resolved by Khot and Raman [19]. If all cliques and
all independent sets have the property, then only graphs of bounded size can fail to include
a k-vertex induced subgraph with the property. If there exist a clique and an independent
set that do not have the property, then only bounded-size induced subgraphs can have the
property. In all remaining cases the problem is W[1]-complete. For hereditary properties
with finitely many minimal forbidden induced subgraphs, removing k vertices so that the
remaining induced subgraph has the property is always fixed-parameter tractable, as a hitting
set problem [1,10]. The parameterized complexity of problems of this type with more than
finitely many obstacles, such as deletion to a planar graph (k-apex graph recognition) [5, 17]
or to a bipartite graph (odd cycle transversal) [18,20], also remains of interest.
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11:2 The Parameterized Complexity of Finding Point Sets with Hereditary Properties

Point sets in the Euclidean plane can be described combinatorially by their order type,
the specification for each ordered triple of points of whether that triple forms the vertices of
a triangle in clockwise or counterclockwise order, or whether the three points are collinear.
It is natural to define a hereditary property of point sets to be a property that depends only
on the order type, and that remains true for every subset of a point set having the property.
This concept of hereditary properties has been adopted recently as a central organizing
principle in discrete geometry [8] and encompasses many famous and well-studied problems:

The happy ending problem concerns conditions that force some k-point subset to be
in convex position [9, 24]. The property of not containing a k-point convex subset is
hereditary [8, Chapter 11]. It can be tested in polynomial time for points in the plane [6,7],
but is NP-hard in three dimensions, and finding the largest 3d k-point convex set that
does not enclose any other input points is W[1]-hard [12].
The no-three-in-line problem concerns the size of the largest general-position subset of an
n× n grid [15, 23]. Here, “general position” means having no three collinear points. The
property of not containing a k-point general-position subset is hereditary [8, Chapter 9].
The Erdős–Ulam problem asks whether there exist dense sets with all distances rational [25];
Harborth’s conjecture is that every planar graph can be drawn with non-crossing straight
edges of rational length [16]. The existence of a rational-distance point set with the same
order type as the given point set is hereditary. If every general-position order type has
a rational-distance realization then Harborth’s conjecture follows, and if not then the
Erdős–Ulam problem has a negative answer [8, Section 13.5].

Every hereditary property can be defined by its forbidden patterns, the point-minimal
order types that do not have the property. The first author’s recent book on these problems
asked whether every problem of finding k points with a hereditary property defined by finitely
many forbidden patterns is fixed-parameter tractable [8, Open Problem 7.6]. We answer this
question negatively, by finding a property for which (under standard complexity-theoretic
assumptions) no FPT algorithm exists. However, we show that several natural classes of
properties have fixed-parameter tractable algorithms. Specifically, we show:

There exists a hereditary property Π, defined by finitely many forbidden patterns, such
that finding a k-point subset with property Π is W[1]-complete and (assuming the
exponential time hypothesis) cannot be solved in time no(k/ log k)).
Finding a k-point subset with a given hereditary property is fixed-parameter tractable
whenever all collinear sets have the property.
Finding a k-point subset with a given hereditary property is fixed-parameter tractable
whenever there exists a convex polygon that does not have the property.
Finding a k-point subset that avoids a single forbidden pattern is fixed-parameter tractable.

As with the analogous graph problems, the dual problem of removing k points to make the
remaining points have a given property is fixed-parameter tractable whenever the property
has finitely many forbidden patterns, as a hitting set problem for the copies of the patterns
within the point set [8, Theorem 7.9].

Our algorithmic results apply to any model of point set input that allows us to determine
the orientation of a triple of points in constant (or polynomial) time. For points given by
Cartesian coordinates, these orientations can be determined from the sign of a quadratic
polynomial of these coordinates. Not all order types can be realized with integer coordinates,
and even when this is possible a realization may need very large coordinates [13], but our
algorithms could instead use inputs that specify an n × n × n three-dimensional array of
orientations. The point sets used for our hardness results and lower bounds can be constructed
using explicit integer coordinates of polynomial magnitude.
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Figure 1 The three forbidden patterns for a compliant point set.

2 A hard property

The property for which we will prove finding a k-point subset hard is defined by the three
forbidden patterns in Figure 1: four points in a line (left), an eight-point pattern based on a
complete quadrilateral3 (center), and a nine-point pattern resembling a tic-tac-toe board or
3× 3 grid, but with the central vertical line broken rather than straight (right). We call a
set of points compliant if it does not contain any of these three patterns.

The hard inputs to our problem will be point sets of a special form, which we call yards.
A yard consists of points with the following properties:

Most of its points are arranged onto horizontal lines of at least three points per line, which
we call rows. We call the leftmost and rightmost points of each row the guards of the
row (or more specifically the left and right guards, respectively). We call the remaining
points, that are neither leftmost nor rightmost in their row, the inmates.
Some triples of points from different rows form non-horizontal lines of three points, but
there are no non-horizontal lines of four points.
Every line between two inmates of different rows passes completely above or completely
below all left guards, and completely below or completely above (respectively) all right
guards. Similarly, every line through two left guards or through two right guards passes
completely above or completely below all inmates. (These points may determine vertical
lines, which we consider to pass above and below all points.)
The only lines of three or more points with both inmate and guard points are rows.
No subset of nine guards forms the configuration on the right of Figure 1.
In addition to the points on rows, the yard has six additional points, forming a complete
quadrilateral. We call these points the fence.
The only lines of three or more points that include points of the fence are the four lines
from which the fence was defined. No other six points of the yard form a complete
quadrilateral.
The fence encloses the inmates but not the guards. Every two inmates on a single row,
plus the fence, form the middle forbidden pattern of Figure 1, and every instance of the
middle forbidden pattern is formed in this way.

An example of a yard is shown in Figure 2. For a yard with r rows, we define a lineup to
be a compliant subset of k = 3r + 6 points from the yard.

I Lemma 1. Every lineup must consist of all six points of the fence, and two guards and
one inmate from each row. Whenever three rows have the property that their three left guards
and their three right guards form two collinear triples of points, the three inmates of the
lineup from these rows must also be collinear.

3 A complete quadrilateral consists of four lines and six points, with each line containing three points and
each point contained in two lines. It can be constructed from four Euclidean lines, no two parallel and
no three crossing in a single point, by including the six crossing points of pairs of lines.
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Figure 2 A yard with three rows. The fence and its points are shown in red; the rows and their
guards are blue, and the inmates on each row are yellow. The green lines are the most far from
vertical among the lines through pairs of inmates that are not both on the same row as each other;
they can be used to verify that all non-horizontal and non-vertical lines through pairs of inmates
pass above or below the guards on each side, and that no pair of inmates on different rows from
each other forms a forbidden pattern with the fence. By Lemma 1, every lineup in this yard consists
of all of the blue and red points together with three collinear yellow points, one from each row. In
this example all the left guards and all the right guards are collinear, but in larger examples only
certain triples of guards would be collinear.

Proof. The forbidden four-point line forces the lineup to contain at most three points from
each row, so if it contains 3r + 6 points it must include exactly three points from each row
and all six points of the fence. The forbidden pattern in the form of a complete quadrilateral
plus two points forces the lineup to contain at most one inmate from each row, so in order
for it to contain three points from each row it must contain both guards.

If the three left guards and the three right guards of a triple of rows are collinear (as they
are in Figure 2), then the three inmates of the lineup from the same three rows must also
be collinear. For otherwise, they would form the forbidden pattern on the right of Figure 1,
either as shown or under a 180◦ rotation (which causes no change to the order type of the
configuration). Therefore, every such triple of inmates must be collinear. J

Lemma 1 is not a necessary and sufficient condition (for instance, it is possible to have a
subset of points that meets the condition of the lemma but contains a copy of the rightmost
forbidden pattern, rotated by 90◦) but we will see that it is necessary and sufficient for the
yards constructed by the reduction that we describe next.

We prove hardness of finding lineups in yards via a parameterized reduction from
partitioned subgraph isomorphism. This problem’s input consists of two graphs, a host graph
H and a pattern graph G, whose sizes (numbers of edges) are n and k respectively. The
vertices of G and H are colored, with all vertices of G having distinct colors. The problem is
to find a subgraph of H that is isomorphic to G and matches it in coloring. Thus, the color
classes of H partition its vertices. We must choose a representative vertex from each color
class so that whenever two vertices in G are adjacent their representatives in H are also
adjacent. The color partition of the vertices in H is what gives rise to the name, partitioned
subgraph isomorphism. In our hardness reduction, we will consider a restricted case of this
problem, cubic partitioned subgraph isomorphism, in which we require the pattern graph G
to be a cubic (that is, 3-regular) graph. H is not restricted. This problem is W[1]-complete
and, assuming the exponential time hypothesis, cannot be solved in time no(k/ log k).
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Cubic partitioned subgraph isomorphism has been used for the same sort of hardness
reduction previously [3, 4]. The W[1]-completeness of partitioned subgraph isomorphism
appears to be folklore, but it has a straightforward proof by reduction from the W[1]-complete
clique problem.4 In turn, partitioned subgraph isomorphism on graphs of minimum degree
at least three can be reduced to the 3-regular case by expanding each high-degree vertex into
a 3-regular tree, as follows:

Choose for each vertex v of the pattern graph a tree Tv having degree three at each
internal vertex and having the neighbors of v as its leaves. Let T ′v be the subtree of Tv

consisting only of the interior nodes of Tv.
Form the disjoint union of the trees T ′v. For each edge uv of the pattern graph add an
edge to this union, connecting the node in T ′u to which the leaf for v is attached to the
node in T ′v to which the leaf for u is attached.
For each vertex w of the host graph, having the same color as a vertex v of the pattern
graph, make a tree T ′w isomorphic to T ′v. Form a new host graph from the disjoint union
of these trees T ′w.
For each pair of vertices wx of the host graph such that w has the same color as a vertex
u of the pattern graph, x has the same color as a vertex v of the pattern graph, u and v
are adjacent, and w and x are adjacent, add an edge to this union, connecting the node
in T ′w corresponding to the one in T ′u to which the leaf for v would be attached with the
node in T ′x corresponding to the one in T ′v to which the leaf for u would be attached.

The ETH-based lower bounds on cubic partitioned subgraph isomorphism come from Corollary
6.1 of Marx [22], using the fact that a cubic expander graph G has treewidth Ω(k) [14].

To translate an instance of cubic partitioned subgraph isomorphism to the problem of
finding lineups in yards, we construct a yard with a row for each vertex or edge of the pattern
graph G. We will arrange the guards and inmates of the yard in such a way that collinearities
of guards correspond to vertex-edge incidences in the pattern graph, and collinearities of
inmates correspond to vertex-edge incidences in the host graph. In this way, every lineup of
the yard will necessarily correspond to a solution to the partitioned subgraph isomorphism
instance. We take some care in the construction in order to ensure that the resulting yard
uses only points with integer coordinates of small magnitude.

The rows of the yard will be placed on horizontal lines, with positive integer y-coordinate
yv or yuv for each vertex v or edge uv of the pattern graph. It will be convenient to be able
to place arbitrary integer-coordinate points on two vertex rows and have the intersection of
the line through these points with an edge row automatically be an integer-coordinate point.
To ensure this property, we will always choose yuv = 2yv− yu (where yv > yu). However, this
requires that we choose the coordinates yu and yv carefully, so that no two vertices or edges
have rows with equal y-coordinates. We make this choice greedily, choosing the coordinates
yv for the vertices in an arbitrary order. For each vertex v in this order, we choose yv to be
the smallest positive integer that obeys the following constraints:

yv is unequal to any yu for an earlier vertex u
yv is unequal to any yuw for any two adjacent earlier vertices u and w

4 The reduction uses the tensor product product G × H of graphs G and H. This product has as vertices
the pairs (u, v) where u is a vertex in G and v is a vertex in H. Pairs (u, v) and (u′, v′) are adjacent if
and only if either u = u′ and v is adjacent to v′, or v = v′ and u is adjacent to u′. If we properly color
Kk and assign each vertex (u, v) in G × Kk the same color as v, then G has a k-clique if and only if the
partitioned subgraph isomorphism instance for G × Kk and Kk (with these colors) has a solution. This
reduction proves the W[1]-completeness of partitioned subgraph isomorphism problem from the known
completeness of the clique problem.

IPEC 2018
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yv does not make any yu = yvx for any earlier vertex u and earlier neighbor x of v
yv does not make yuw = yvx for any three earlier vertices u, w, or x with u adjacent to w
and x to v.

These conditions are each determined by at most one earlier vertex u, at most one of three
neighbors w of u, and at most one of three neighbors x of v. For each combination of these
vertices, each condition causes one integer to be unavailable as a choice for yv. Therefore, O(k)
positive integers are unavailable. Because our greedy algorithm chooses the first available
integer in each case, it chooses all coordinates yv and yuv to have magnitude O(k). Our
actual row coordinates will be scaled and translated from these values, but both of these kinds
of transformations preserve the property that two integer points on vertex rows determine
an integer point on an edge row.

The first points we determine in the construction are the six points of the fence. We
construct a complete quadrilateral with integer coordinates, by using lines with rational
coefficients and then clearing denominators. We scale it by a sufficiently large factor so that
there are as many integer-coordinate horizontal lines through the fence as we need rows
(given the assignment of row coordinates to vertices and edges of the pattern graph) and so
that each row intersects the region inside the fence in a segment of length proportional to the
diameter of the fence. We scale these fences and rows a second time, by a polynomially-large
factor φ, to ensure that the following steps can be carried out using integer coordinates for
the remaining points. We leave φ unspecified for now, and will later state constraints on how
large it needs to be for the construction to work.

Next, we choose three intervals on the x-coordinate axis: a left interval that will contain
the x-coordinates of all left guards, a middle interval that will contain the x-coordinates of
all inmates, and a right interval that will contain the x-coordinates of all right guards. The
middle interval should be chosen so that its intersection with all row lines is inside the fence
(using the fact that there is a vertical line segment inside the fence that crosses all row lines)
and the left and right intervals should intersect all row lines outside the fence, on either side
of it. inside the fence and the left and right intervals should be outside it, on either side
of the fence. These intervals should be sufficiently narrow that all lines through pairs of
points on corresponding intervals of different rows pass in the correct way above or below the
points of the fence and the intervals of other types. In order to prevent an inmate from being
collinear with two guards from other rows than its own, we also require that there be no line
that crosses a row line in the left interval, a second row line in the middle interval, and a
third row line in the right interval. In order to achieve this, it will be sufficient to choose the
interval widths to be smaller than the diameter of the fence by a sufficiently large factor ρ.
With this factor, we can choose the left and right guard intervals first, arbitrarily subject to
the above constraints. Given this choice, let C be the set of crossing points of the rows with
non-horizontal lines through potential left and right guard points. Then C is a union of a
cubic number of intervals (one for each triple of rows). Each of these intervals defining C is
wider than the left and right intervals by a factor of O(k), because the slopes of the lines
through points within the left and right intervals on different rows are bounded away from
zero by Ω(1/k). Therefore, the projection of C onto the x-axis has length O(k4/ρ) relative to
the diameter of the fence. For ρ = ρ0k

4 for a sufficiently large constant factor ρ0, a constant
fraction of the length within the fence will remain disjoint from C, and at least one interval
within this constant fraction of the length will be long enough to use as the middle interval.

After these choices, we place the two guards on each row, with the left guard having its
x-coordinate within the left interval and the right guard within the right interval. We choose
the positions of the vertex guards (the guards on the rows that correspond to vertices of the
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pattern graph), one at a time. As each vertex guard is placed, it may also determine the
location of one or more edge guards (the guards on the rows that correspond to edges of the
pattern graph). An edge guard’s location is determined when the vertex guards for its two
endpoints have been placed. Whenever this happens, we place the edge guard at the point
where the line through the two vertex guards crosses the edge’s row. In order to ensure that
the edge guards are placed within the left and right intervals, we place each vertex guard
within the middle third of its interval. In this way, for each edge uv of the pattern graph we
will produce two collinear triples of guards: the triple of left guards for u, v, and uv, and
the triple of right guards for u, v, and uv. We will position the vertex guards in sufficiently
general position so that these are the only collinearities between triples of guards. As with
our choice of row coordinates, we achieve this absence of extra collinearities by a greedy
algorithm, in which we place one vertex guard at a time, subject to the constraint that this
choice should not create any undesired collinearities between the new vertex guard, the new
edge guards whose position becomes determined by the new vertex guard, and the previously
determined vertex and edge guards. Each potential undesired collinearity is determined by
the choice of two previous guard positions (for which there are O(k) choices) and possibly
one of the three neighbors of the vertex whose guard we are trying to place. This implies
that, when we are placing each vertex guard, there may be up to O(k2) positions that we
should not place it, because placing it in one of those positions would cause a collinearity.
Recall that, when constructing the fence, we left a scaling factor φ undetermined, and that
the left and right interval each contain Ω(kφ/ρ) integer coordinates, where ρ = O(k4) is the
factor by which the intervals are narrower than the diameter of the fence and where the
factor of k comes from the earlier scaling used to make the fence big enough to include as
many integer-coordinate rows as we need. We will choose our scaling factor φ to be large
enough (at least a sufficiently large multiple of k5) to ensure that the middle thirds of the
left and right intervals contain more integer coordinates than the number of unavailable
positions. With this choice of φ, our greedy guard-placing strategy will always be able to
determine a valid integer-coordinate placement for each vertex guard point. By our previous
choice of the row coordinates, the edge guard points will also have integer coordinates.

Finally, we place the inmates on each row, within the middle interval. Each edge or
vertex of the host graph corresponds to exactly one inmate point, which we place on the
row for the corresponding edge or vertex of the pattern graph, given by the coloring of the
host graph vertex or the coloring of the endpoints of the host graph edge. We choose the
locations for these inmate points in exactly the same way as we chose them for the guard
points, greedily one vertex at a time, with the vertex guards placed within the middle third
of the middle interval. We place each edge inmate point on the intersection between each
edge row and the line through the inmate points for its two endpoints, as soon as these two
vertex inmate points have been placed. This will cause each triple of an edge and its two
endpoints in the host graph to correspond to three collinear inmate points. We require in
addition that no three inmate points on different rows are collinear if they do not form such
a triple, and that no two points on the same row as each other coincide. Each potential
undesired collinearity is determined by the choice of two previous guard positions (for which
there are O(n2) choices, as the host graph may be dense) and possibly one of up to O(n)
neighbors of the vertex whose guard we are trying to place. This implies that there may be
O(n5) positions in the row of the new vertex guard that would cause an unwanted collinearity
or coincidence. We will choose our scaling factor φ to be large enough (at least a sufficiently
large multiple of k3n5) to ensure that the middle third of the middle interval in which we
place the inmate points contains more integer coordinates than this number of unavailable
positions. In this way, we ensure the success of our greedy inmate-placing strategy.

IPEC 2018
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a b

c

d e

Figure 3 Illustration for the proof of Lemma 2.

I Lemma 2. The translation described above constructs a yard.

Proof. The construction explicitly ensures that most properties of a yard are true: there is
a fence, and rows of points, each having two guards outside the fence and inmates inside the
fence. There are no non-horizontal lines of four points, and all non-horizontal lines defined
by pairs of guards or pairs of inmates pass above or below the other points and through the
fence in the proper manner. There are no lines of three points that include both guards and
inmates and are not rows. It remains to verify two properties, not stated explicitly as part
of the construction: there must be no complete quadrilateral other than the fence, and no
subset of guards that form the forbidden pattern on the right of Figure 1.

If either of these forbidden patterns existed, but did not include three points from the
same row of the configuration, then all of its three-point lines would have to be non-horizontal
lines, composed only of guards or only of inmates. But an edge point can only participate in
one such line, and both forbidden patterns include at least one line all three points of which
participate in two three-point lines. So all three of the points on this line would have to be
vertex points, an impossibility.

The only remaining possibility is a complete quadrilateral that uses at least one row as
one of its lines. Let a and b be any two points of this row, and choose c, d, and e so acd and
bce are distinct lines of the quadrilateral. Then triples acd and ade must each be the crossing
points of their lines with three rows that correspond in G to an edge and its two endpoints.
The choice of the row through a and b, and a second row through c, determines the third
row, which must therefore include both d and e. But then lines ab and de are parallel, and
cannot intersect to produce the sixth point of a complete quadrilateral (Figure 3). J

I Lemma 3. An instance (H,G, c) of partitioned subgraph isomorphism (where c is the
coloring of the instance) is solvable if and only if the yard constructed from it admits a lineup.

Proof. If a lineup exists, it must include all fence and guard points, and one inmate from
each row. This choice of the inmate for each row selects one vertex or edge from the host
graph H, of the appropriate color class (or pair of endpoint color classes), for each vertex or
edge in the pattern graph G. If the selected collection of vertices and edges in H does not
form an isomorph of G, it will include two vertices u and v in H that are adjacent in G but
for which the edge uv does not exist in H, or has not been selected by the choice of inmate
for its row. In this case, the guards for the rows of u, v, and uv will be collinear in triples
(because the corresponding vertices in G are adjacent) but the inmates will not be collinear,
creating an instance of the forbidden pattern on the right of Figure 1. So when H does not
contain a subgraph isomorphic to G, the yard admits no lineup.

If H does contain a subgraph isomorphic to G, we can choose the points corresponding
to the vertices and edges of that subgraph as the inmates of a lineup. As the following case
analysis shows, the resulting system of points does not include any forbidden pattern.
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It does not include four points in a line.
Because it has only one inmate on each row and the fence is the only complete quadrilateral
in the yard, it does not include the middle forbidden pattern in Figure 1.
It does not include a copy of the right forbidden pattern in which none of its lines are
rows, or in which only one of the vertical lines is a row, because in that case (as in
Lemma 2) the other vertical line would be a line of three points, each of which belongs to
two non-row lines of three points. This is an impossibility because the points on edge rows
only belong to one non-row three-point line, and each non-row three-point line includes
at least one of these edge points.
It does not include a copy of the right forbidden pattern in which only one or two of its
horizontal lines is a row, because then the two vertical lines could only be lines through
three guards. This would force the remaining horizontal lines to contain a left guard, a
right guard, and a point between them, and therefore be rows themselves.
It does not include a copy of the right forbidden pattern with two rows as its two three-
point vertical lines. If these rows represent two vertices u and v of G, the three points not
on these lines would belong to the row for edge uv, as they belong to a line containing a
representative for u and a representative for v. If the rows represent a vertex u and edge
uv of G, the three points not on these lines would all belong to the row for vertex v. In
either case these points form another line, unlike the forbidden pattern.
The only remaining possibility is that the three horizontal lines of this pattern are rows.
To form this pattern, the guards of these three rows must be collinear, meaning that
they represent two adjacent vertices and the edge between them in G. But since we have
selected the inmates on each row to form a correctly-colored subgraph isomorphic to G,
the three inmates must also be collinear, preventing the forbidden pattern from occurring.

Thus, the selected points form a lineup of the yard, as required. J

By combining these results with the known hardness of partitioned subgraph isomorphism
we obtain our main result:

I Theorem 4. Finding a k-vertex compliant subset of a given n-point set is W[1]-complete
and, under the exponential time hypothesis, cannot be solved in time no(k/ log k).

3 Collinearity and convex subsets

We have claimed that finding a k-point subset with a given hereditary property is fixed-
parameter tractable whenever the property is true for all collinear sets, or whenever there
exists a convex polygon for which the property is not true. We split the proof into cases:

Properties that are true for all collinear point sets and for all convex polygons.
Properties that are neither true for all collinear point sets nor for all convex polygons.
Properties that are true for all collinear point sets but not true for all convex polygons

However, the first two cases follow easily from known results.
The first case covers properties that are true for all collinear subsets and for all convex

polygons. By the happy ending theorem, every n points in the plane include Ω(logn) points
that are either all collinear or all in convex position. So, if property Π is true for all collinear
subsets and for all convex polygons (the first case), then every sufficiently large point set has
a k-point subset with property Π. Here, “sufficiently large” means large enough that this
Ω(logn) bound is at least k. For smaller values of n we can search by brute force all subsets
of the point set in time that is fixed-parameter tractable in k, because (for these values) n
itself is bounded by a function of k. For larger values of n, we can either just answer yes (for

IPEC 2018
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Figure 4 If G (blue) is a maximal general-position subset of P , the remaining points of P (yellow)
must be covered by lines through pairs of points in G, or else they could be added to G.

a decision problem) or reduce the input arbitrarily to the smallest number of points that
ensures the existence of a solution (a number bounded by a function of k) and then perform
a brute force search for a solution within the reduced subproblem.

The second case covers properties that exclude a collinear subset and a convex polygon.
By the happy ending theorem, sets of points with the property have bounded size (at most
some number p independent of the parameter k), because all sufficiently large sets contain a
collinear or convex subset without the property, and by heredity do not have the property
themselves. To test whether there exists a k-point subset with such a property, we answer
no immediately when k > p. Otherwise we perform a brute-force search over all subsets of
the input of size k. The time for this search is O(np), a polynomial with constant exponent.

We now detail a fixed-point-tractable solution for the remaining case.

I Lemma 5. Let decidable hereditary property Π be true for all collinear point sets but not
true for all convex polygons. Then it is fixed-parameter tractable to find a k-point subset
having property Π, among a given set of points in the plane.

Proof. It is straightforward, in polynomial time, to find all lines through pairs of input
points and determine whether any of these lines contains k or more points. If so, we can
immediately return a subset of k collinear points. So for the remainder of the proof we
assume without loss of generality that each line contains at most k − 1 input points.

Let q be the smallest number of vertices in a convex polygon that does not have property
Π. By assumption, q exists, and by the definition of hereditary properties, any set of points
containing the vertices of a convex q-gon does not have property Π. Let r be the largest
number of points in a set of points in general position (no three in a line) that does not
include a convex q-gon; by Suk’s improvement to the happy ending theorem [24], r ≤ 2q+o(q).
Let P be the unknown k-point subset (assuming it exists), and G be a maximal subset of P
that is in general position (meaning that no other point from P can be added to G without
creating a three-point line). Then |G| ≤ r, or else G and P would contain a convex q-gon
and P would not have property Π. The pairs of points in G determine

(|G|
2

)
≤

(
r
2
)
lines, and

these lines together must cover all of P , or else G would not be maximal (Figure 4).
Therefore, we can solve the problem of finding a k-point subset P with property Π by

guessing an
(

r
2
)
-tuple of lines that cover P , among all

(
n
2
)
lines through pairs of input points,

and then for each tuple of lines performing a brute-force search among the points covered by
those lines. Because r is a constant (depending on Π but not on the input parameter k),
there are a polynomial number of tuples of lines to be searched. Each tuple covers at most
(k − 1)

(
r
2
)
points, so performing each brute-force search takes time bounded by a function of

k, independent of the input size. Therefore, this algorithm is fixed-parameter tractable. J
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This completes the last case of the following result:

I Theorem 6. Let decidable hereditary property Π either be true for all collinear point sets
or not be true for at least one convex polygon (or both). Then it is fixed-parameter tractable
to find a k-point subset having property Π, among a given set of points in the plane.

Not every hereditary property is decidable: there are uncountably many hereditary
properties,5 only countably many of which are decidable. When a hereditary property is not
decidable, the same technique applies, but (because of the need to test the property within
each brute-force search used as a subroutine of the algorithms) it gives us a non-uniform
fixed-parameter tractable algorithm.

4 Properties with a single obstacle

If X is any fixed point set, we can define hereditary property ΠX to be true for the point
sets that do not contain X, and false otherwise. We are then interested in testing whether a
given input includes k points with property ΠX . That is, are there at least k points in the
largest point set that avoids X? If X is not itself collinear, then all collinear point sets have
property ΠX . Therefore, there is only one family of possible choices for X that is not already
covered by Theorem 6: the family of sets X consisting of q points on a single line. The order
type of any such point set depends only on q. We call a point set with this order type Lq.

I Lemma 7. Let q be fixed. Then it is fixed-parameter tractable to find a k-point subset
avoiding Lq, among a given set of points in the plane.

Proof. We assume q > 2 for otherwise the problem is trivial (an L2-avoiding set can only
be a single point, and an L1-avoiding set must be empty). We begin by finding a maximal
subset G of the input that is in general position (no three in a line). If |G| ≥ k, we return
any k points from G as our k-point Lq-avoiding set. Otherwise, as in Lemma 5 and Figure 4,
the input can be covered by at most

(
k−1

2
)
lines, the lines through pairs of points in G.

Observe that, on each of these lines, an Lq-avoiding set can include at most q − 1 points
from the line. Consider a single line ` and a process in which we build up a k-point Lq-
avoiding set, one point at a time, starting from a subset of points that are disjoint from
` and then adding points from ` in an arbitrary order. At each step of this process, at
most q − 2 points from ` have already been chosen, and the next point must be chosen
to be disjoint from these already-chosen points and from any of the lines through pairs of
points (neither on `) that already contain q − 1 points. There at most

(
k−1

2
)
of these lines

through pairs of already-chosen points (because we have already chosen at most k−1 points),
and each can prevent only a single point of ` from being chosen. So, as long as ` contains(

k−1
2

)
+ q − 1 points, there will always remain at least one point that is free to be added

until we have included exactly q − 1 points from `. Therefore, if we reduce the input to
contain any arbitrary subset of

(
k−1

2
)

+ q − 1 points on `, keeping the points disjoint from `

unchanged, we cannot affect the existence or nonexistence of a k-point Lq-avoiding subset.

5 This follows from the fact that there are infinite families of point sets in which no family member has
the same order type as a subset of another family member. For example, the set of vertices and edge
midpoints of a convex r-gon is not a subset of the set of vertices and edge midpoints of any other convex
polygon, so choosing one such point set for each r gives a family of point sets none of which have the
order type of a subset of another. This family has uncountably many subfamilies, each of which forms
the set of forbidden patterns for a hereditary property. See [8, Observation 5.9].
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By applying this observation repeatedly we can kernelize the problem. That is, we find a
polynomial-time algorithm that reduces any parameterized instance to an equivalent instance
(the “kernel”) whose size is bounded by a function of the parameter. To do so, we consider
the lines through pairs of points of G, one at a time. Whenever any such line contains more
than

(
k−1

2
)

+ q − 1 points of the remaining input, we delete arbitrarily chosen points until
it contains exactly

(
k−1

2
)

+ q − 1 points. At the end of this process, the total number of
remaining points is at most

(
k−1

2
) ((

k−1
2

)
+ q − 1

)
= O(k4), depending only on k. We may

then find a k-point Lq-avoiding subset by a brute force search of this kernel. J

This includes as a special case the problem of finding an L3-avoiding subset (that is,
a subset in general position), the central computational task for the no-3-in-line problem.
(We already proved this special case to be NP-hard in [8, Theorem 9.3] and fixed-parameter
tractable in [8, Theorem 9.5].) It completes the last case of the following result:

I Theorem 8. Let X be any fixed finite set of points. Then it is fixed-parameter tractable to
find a k-point subset avoiding X, among a given set of points in the plane.

5 Conclusions

We have identified a hereditary property of point sets such that finding a k-point subset with
this property is unlikely to be fixed-parameter tractable, and identified several general classes
of properties for which the corresponding problems are fixed-parameter tractable. These
include properties that include all collinear sets, properties that exclude a convex polygon,
and properties with a single obstacle. Several additional cases are fixed-parameter tractable:

The largest convex subset (avoiding two forbidden patterns, one of three points on a line
and the other of a triangle with an interior point) is polynomially solvable, in cubic time
and linear space [6, 7].

If finding k-point subsets is fixed-parameter tractable for two properties Π and Π′, then
it is also fixed-parameter tractable for their disjunction (the point sets that have at least
one of the two properties), by running both algorithms and returning any k-point set
found by either of them.

If finding k-point subsets is fixed-parameter tractable for property Π, then it is also
fixed-parameter tractable for the property Πq of being partitionable into q subsets that
have property Π, by color-coding [2]. Alternatively one could use a different hereditary
property for each color class.

We have been unable to complete a classification of which of these problems are fixed-
parameter tractable and which are not. We leave this as open for future research.

Another open problem concerns properties (such as being in convex position) that can
be true only of point sets in general position. That is, these properties have a three-point
line as one of their forbidden patterns. Can it be hard, for such a property, to find a k-point
subset with the property? We suspect that the answer is yes, by a reduction that mimics the
one we have given, using more complex constraints on general-position subsets of points to
make them act like the collinear subsets of points in our reduction. However, we have not
worked out the details of such a reduction.
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