336 research outputs found

    Edge Enhancement Optimization in Flexible Endoscopic Images to the Perception of Ear, Nose and Throat Professionals

    Get PDF
    Objectives: Digital endoscopes are connected to a video processor that applies various operations to process the image. One of those operations is edge enhancement that sharpens the image. The purpose of this study was to (1) quantify the level of edge enhancement, (2) measure the effect on sharpness and image noise, and (3) study the influence of edge enhancement on image quality perceived by ENT professionals. Methods: Three digital flexible endoscopic systems were included. The level of edge enhancement and the influence on sharpness and noise were measured in vitro, while systematically varying the levels of edge enhancement. In vivo images were captured at identical levels of one healthy larynx. Each series of in vivo images was presented to 39 ENT professionals according to a forced pairwise comparison test, to select the image with the best image quality for diagnostic purposes. The numbers of votes were converted to a psychometric scale of just noticeable differences (JND) according to the Thurstone V model. Results: The maximum level of edge enhancement varied per endoscopic system and ranged from 0.8 to 1.2. Edge enhancement increased sharpness and noise. Images with edge enhancement were unanimously preferred to images without edge enhancement. The quality difference with respect to zero edge enhancement reaches an optimum at levels between 0.7 and 0.9.Conclusion: Edge enhancement has a major impact on sharpness, noise, and the resulting perceived image quality. We conclude that ENT professionals benefit from this video processing and should verify if their equipment is optimally configured. Level of Evidence: N/A Laryngoscope, 2023.</p

    Nanoscopy in nonlinear scanning fluorescence imaging systems

    Get PDF
    In the last 30 years, superresolution in optical microscopy has been a major field of research. During this time, different techniques have been created to break the diffraction limit in order to make observations at a nanometric scale. Given that optical microscopy is non-invasive, those superresolution methods pave the way for a better understanding of biological mechanism at a molecular level. Most of those methods are based on a nonlinear interaction between the excitation light intensity and the sample response (often fluorescent signal). In the same time, nanodiamonds containing fluorescent defects have been proven to be a choice probe for superresolution nanos-copy since they exhibit a strong and stable fluorescent signal even under high light intensities exposure (often required to obtain nonlinear photoresponse). Nanodiamonds containing Nitrogen Vacancy (NV) defects that exhibit a red fluorescent signal had been previously shown to be a viable biomarker for STED superresolved image. First, we demonstrated that green fluorescent nanodia-monds containing Nitrogen-Vacancy-Nitrogen (NVN) defects can be used with a Stimulated Emission Depletion (STED) superreso-lution microscope. Then, we implemented a STED microscope in our lab and compared the properties of NVN and NV centers for STED imaging. We conclude that even if nanodiamonds with NVN defects are less intense, they can be used as a second color nonbleaching biomarker. To illustrate the potential use of green nanodiamonds as bio-compatible probe, we superresolved them internalized into a cell with STED microscopy. Second, we tried to work on one of the main limitation in STED nanoscopy: the lack of information in the axial direction within a single scan. We combined our home made STED microscope with a Double Helix phase mask that modifies the detection point spread function in order to obtain axial localization of the superresolved emitters. We achieved three dimensional localization of nanometric fluorescent emitters but we note that photobleaching was the main limitation of this approach with organic dyes. We discussed different solutions to limit the photobleaching and their feasibility. We also worked on a different superresolution technique that we named Computational Nonlinear Saturated (CNS) microscopy. We showed that with digital post treatment of the acquired data, a nonlinear photoresponse can be harnessed to any scanning microscope equipped with a camera detector to enhance the resolution. We demonstrated that increasing the excitation power and inducing fluorescence saturation, it is possible to break the diffraction limit in a conventional confocal microscope (after data post-treatment). However, with this method, we did not obtain a gain in resolution as high as with other superresolution tech-niques involving fluorescence saturation, such as saturated structured illumination microscopy. To understand the origin of this limitation, we carried out simulation to investigate the performance of CNS microscopy in noisy environments compared with wide field techniques. We propose alternative implementation and quantify the possible resolution gain with simulations. Finally, we demonstrated how a technique, initially created for optical microscopy, can be adapted to lensless endoscopic imaging..

    High-resolution imaging for cancer detection with a fiber bundle microendoscope

    Get PDF
    Dysplasia and cancer of epithelial tissues, including the oral cavity and esophagus, typically have much higher survival rates if diagnosed at an early stage. Unfortunately, the clinical appearance of lesions in these tissues can be highly variable. To achieve a definitive diagnosis of a suspected lesion at these sites, an excisional biopsy must be examined at high-resolution. These procedures can be costly and timeconsuming, and in the case of Barrett's esophagus, surveillance biopsy strategies may not be entirely effective. Optical imaging modalities have the potential to yield qualitative and quantitative high-resolution data at low cost, enabling clinicians to improve early detection rate. This dissertation presents a low-cost high-resolution microendoscopy system based on a fiber optic bundle image guide. In combination with a topical fluorescent dye, the fiber bundle can be placed into contact with the tissue to be observed. A high-resolution image is then projected onto a CCD camera and stored on a PC. A pilot study was performed on both resected esophageal tissue containing intestinal metaplasia (a condition known as Barrett's esophagus, which can transform to esophageal adenocarcinoma) and resected oral tissue following surgical removal of cancer. Qualitative image analysis demonstrated similar features were visible in both microendoscope images and standard histology images, and quantitative image processing and analysis yielded an objective classification algorithm. The classification algorithm was developed to discriminate between neoplastic and non-neoplastic imaging sites. The performance of this algorithm was monitored by comparing the predicted results to the pathology diagnosis at each measurement site. In the oral cancer pilot study, the classifier achieved 85% sensitivity and 78% specificity with 141 independent measurement sites. In the Barrett's metaplasia pilot study, 87% sensitivity and 85% specificity were achieved with 128 independent measurement sites. The work presented in this dissertation outlines the design, testing, and initial validation of the high-resolution microendoscope system. This microendoscope system has demonstrated potential utility over a wide range of modalities, including small animal imaging, molecular-specific imaging, ex vivo and ultimately in vivo imaging

    Stimulated emission depletion microscopy with optical fibers

    Get PDF
    Imaging at the nanoscale and/or at remote locations holds great promise for studies in fields as disparate as the life sciences and materials sciences. One such microscopy technique, stimulated emission depletion (STED) microscopy, is one of several fluorescence based imaging techniques that offers resolution beyond the diffraction-limit. All current implementations of STED microscopy, however, involve the use of free-space beam shaping devices to achieve the Gaussian- and donut-shaped Orbital Angular Momentum (OAM) carrying beams at the desired colors –-- a challenging prospect from the standpoint of device assembly and mechanical stability during operation. A fiber-based solution could address these engineering challenges, and perhaps more interestingly, it may facilitate endoscopic implementation of in vivo STED imaging, a prospect that has thus far not been realized because optical fibers were previously considered to be incapable of transmitting the OAM beams that are necessary for STED. In this thesis, we investigate fiber-based STED systems to enable endoscopic nanoscale imaging. We discuss the design and characteristics of a novel class of fibers supporting and stably propagating Gaussian and OAM modes. Optimization of the design parameters leads to stable excitation and depletion beams propagating in the same fiber in the visible spectral range, for the first time, with high efficiency (>99%) and mode purity (>98%). Using the fabricated vortex fiber, we demonstrate an all-fiber STED system with modes that are tolerant to perturbations, and we obtain naturally self-aligned PSFs for the excitation and depletion beams. Initial experiments of STED imaging using our device yields a 4-fold improvement in lateral resolution compared to confocal imaging. In an experiment in parallel, we show the means of using q-plates as free-space mode converters that yield alignment tolerant STED microscopy systems at wavelengths covering the entire visible spectrum, and hence dyes of interest in such imaging schematics. Our study indicates that the vortex fiber is capable of providing an all-fiber platform for STED systems, and for other imaging systems where the exploitation of spatio-spectral beam shaping is required

    Multispectral image analysis in laparoscopy – A machine learning approach to live perfusion monitoring

    Get PDF
    Modern visceral surgery is often performed through small incisions. Compared to open surgery, these minimally invasive interventions result in smaller scars, fewer complications and a quicker recovery. While to the patients benefit, it has the drawback of limiting the physician’s perception largely to that of visual feedback through a camera mounted on a rod lens: the laparoscope. Conventional laparoscopes are limited by “imitating” the human eye. Multispectral cameras remove this arbitrary restriction of recording only red, green and blue colors. Instead, they capture many specific bands of light. Although these could help characterize important indications such as ischemia and early stage adenoma, the lack of powerful digital image processing prevents realizing the technique’s full potential. The primary objective of this thesis was to pioneer fluent functional multispectral imaging (MSI) in laparoscopy. The main technical obstacles were: (1) The lack of image analysis concepts that provide both high accuracy and speed. (2) Multispectral image recording is slow, typically ranging from seconds to minutes. (3) Obtaining a quantitative ground truth for the measurements is hard or even impossible. To overcome these hurdles and enable functional laparoscopy, for the first time in this field physical models are combined with powerful machine learning techniques. The physical model is employed to create highly accurate simulations, which in turn teach the algorithm to rapidly relate multispectral pixels to underlying functional changes. To reduce the domain shift introduced by learning from simulations, a novel transfer learning approach automatically adapts generic simulations to match almost arbitrary recordings of visceral tissue. In combination with the only available video-rate capable multispectral sensor, the method pioneers fluent perfusion monitoring with MSI. This system was carefully tested in a multistage process, involving in silico quantitative evaluations, tissue phantoms and a porcine study. Clinical applicability was ensured through in-patient recordings in the context of partial nephrectomy; in these, the novel system characterized ischemia live during the intervention. Verified against a fluorescence reference, the results indicate that fluent, non-invasive ischemia detection and monitoring is now possible. In conclusion, this thesis presents the first multispectral laparoscope capable of videorate functional analysis. The system was successfully evaluated in in-patient trials, and future work should be directed towards evaluation of the system in a larger study. Due to the broad applicability and the large potential clinical benefit of the presented functional estimation approach, I am confident the descendants of this system are an integral part of the next generation OR

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Present and Future of Surface-Enhanced Raman Scattering.

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    An Investigation of the Diagnostic Potential of Autofluorescence Lifetime Spectroscopy and Imaging for Label-Free Contrast of Disease

    Get PDF
    The work presented in this thesis aimed to study the application of fluorescence lifetime spectroscopy (FLS) and fluorescence lifetime imaging microscopy (FLIM) to investigate their potential for diagnostic contrast of diseased tissue with a particular emphasis on autofluorescence (AF) measurements of gastrointestinal (GI) disease. Initially, an ex vivo study utilising confocal FLIM was undertaken with 420 nm excitation to characterise the fluorescence lifetime (FL) images obtained from 71 GI samples from 35 patients. A significant decrease in FL was observed between normal colon and polyps (p = 0.024), and normal colon and inflammatory bowel disease (IBD) (p = 0.015). Confocal FLIM was also performed on 23 bladder samples. A longer, although not significant, FL for cancer was observed, in paired specimens (n = 5) instilled with a photosensitizer. The first in vivo study was a clinical investigation of skin cancer using a fibre-optic FL spectrofluorometer and involved the interrogation of 27 lesions from 25 patients. A significant decrease in the FL of basal cell carcinomas compared to healthy tissue was observed (p = 0.002) with 445 nm excitation. A novel clinically viable FLS fibre-optic probe was then applied ex vivo to measure 60 samples collected from 23 patients. In a paired analysis of neoplastic polyps and normal colon obtained from the same region of the colon in the same patient (n = 12), a significant decrease in FL was observed (p = 0.021) with 435 nm excitation. In contrast, with 375 nm excitation, the mean FL of IBD specimens (n = 4) was found to be longer than that of normal tissue, although not statistically significant. Finally, the FLS system was applied in vivo in 17 patients, with initial data indicating that 435 nm excitation results in AF lifetimes that are broadly consistent with ex vivo studies, although no diagnostically significant differences were observed in the signals obtained in vivo.Open Acces
    corecore