17 research outputs found

    DSTATCOM deploying CGBP based icosϕ neural network technique for power conditioning

    Get PDF
    AbstractPresent investigation focuses design & simulation study of a three phase three wire DSTATCOM deploying a conjugate gradient back propagation (CGBP) based icosϕ neural network technique. It is used for various tasks such as source current harmonic reduction, load balancing and power factor correction under various loading which further reduces the DC link voltage of the inverter. The proposed technique is implemented by mathematical analysis with suitable learning rate and updating weight using MATLAB/Simulink. It predicts the computation of fundamental weighting factor of active and reactive component of the load current for the generation of reference source current smoothly. It’s design capability is reflected under to prove the effectiveness of the DSTATCOM. The simulation waveforms are presented and verified using both MATLAB & real-time digital simulator (RTDS). It shows the better performance and maintains the power quality norm as per IEEE-519 by keeping THD of source current well below 5%

    Performance Analysis of Photovoltaic Fed Distributed Static Compensator for Power Quality Improvement

    Get PDF
    Owing to rising demand for electricity, shortage of fossil fuels, reliability issues, high transmission and distribution losses, presently many countries are looking forward to integrate the renewable energy sources into existing electricity grid. This kind of distributed generation provides power at a location close to the residential or commercial consumers with low transmission and distribution costs. Among other micro sources, solar photovoltaic (PV) systems are penetrating rapidly due to its ability to provide necessary dc voltage and decreasing capital cost. On the other hand, the distribution systems are confronting serious power quality issues because of various nonlinear loads and impromptu expansion. The power quality issues incorporate harmonic currents, high reactive power burden, and load unbalance and so on. The custom power device widely used to improve these power quality issues is the distributed static compensator (DSTATCOM). For continuous and effective compensation of power quality issues in a grid connected solar photovoltaic distribution system, the solar inverters are designed to operate as a DSTATCOM thus by increasing the efficiency and reducing the cost of the system. The solar inverters are interfaced with grid through an L-type or LCL-type ac passive filters. Due to the voltage drop across these passive filters a high amount of voltage is maintained across the dc-link of the solar inverter so that the power can flow from PV source to grid and an effective compensation can be achieved. So in the thesis a new topology has been proposed for PV-DSTATCOM to reduce the dc-link voltage which inherently reduces the cost and rating of the solar inverter. The new LCLC-type PV-DSTATCOM is implemented both in simulation and hardware for extensive study. From the obtained results, the LCLC-type PV-DSTATCOM found to be more effective than L-type and LCL-type PV-DSTATCOM. Selection of proper reference compensation current extraction scheme plays the most crucial role in DSTATCOM performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and IcosΦ schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, IcosΦ scheme is the best PV-DSTATCOM control scheme irrespective of supply and load conditions. In the view of the fact that the filtering parameters of the PV-DSTATCOM and gains of the PI controller are designed using a linearized mathematical model of the system. Such a design may not yield satisfactory results under changing operating conditions due to the complex, nonlinear and time-varying nature of power system networks. To overcome this, evolutionary algorithms have been adopted and an algorithm-specific control parameter independent optimization tool (JAYA) is proposed. The JAYA optimization algorithm overcomes the drawbacks of both grenade explosion method (GEM) and teaching learning based optimization (TLBO), and accelerate the convergence of optimization problem. Extensive simulation studies and real-time investigations are performed for comparative assessment of proposed implementation of GEM, TLBO and JAYA optimization on PV-DSTATCOM. This validates that, the PV-DSTATCOM employing JAYA offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values. Another indispensable aspect of PV-DSTATCOM is that due to parameter variation and nonlinearity present in the system, the reference current generated by the reference compensation current extraction scheme get altered for a changing operating conditions. So a sliding mode controller (SMC) based p-q theory is proposed in the dissertation to reduce these effects. To validate the efficacy of the implemented sliding mode controller for the power quality improvement, the performance of the proposed system with both linear and non-linear controller are observed and compared by taking total harmonic distortion as performance index. From the obtained simulation and experimentation results it is concluded that the SMC based LCLC-type PV-DSTATCOM performs better in all critical operating conditions

    Unified Power Quality Conditioner for Grid Integration of Wind Generators

    Get PDF
    A Unified Power Quality Conditioner (UPQC) is relatively a new member of the custom power device family. It is a comprehensive custom power device, with integrated shunt and series active filters. The cost of the device, which is higher than other custom power/FACTS devices, because of twin inverter structure and control complexity, will have to be justified by exploring new areas of application where the cost of saving power quality events outweighs the initial cost of installation. Distributed generation (such as wind generation) is one field where the UPQC can find its potential application. There has been a considerable increase in the power generation from wind farms. This has created the necessity for wind farms connectivity with the grid during power system faults, voltage sags and frequency variations. The application of active filters/custom power devices in the field of wind generation to provide reactive power compensation, additional fault ride through capability and to maintain Power Quality (PQ) at the point of common coupling is gaining popularity. Wind generation like other forms of distributed generation often relies on power electronics technology for flexible interconnection to the power grid. The application of power electronics in wind generation has resulted in improved power quality and increased energy capture. The rapid development in power electronics, which has resulted in high kVA rating of the devices and low price per kVA, encourages the application of such devices at distribution level. This work focuses on development of a laboratory prototype of a UPQC, and investigation of its application for the flexible grid integration of fixed and variable speed wind generators through dynamic simulation studies. A DSP based fully digital controller and interfacing hardware has been developed for a 24 kVA (12 kVA-shunt compensator and 12 kVA-series compensator) laboratory prototype of UPQC. The modular control approach facilitates the operation of the device either as individual series or shunt compensator or as a UPQC. Different laboratory tests have been carried out to demonstrate the effectiveness of developed control schemes.A simulation-based analysis is carried out to investigate the suitability of application of a UPQC to achieve Irish grid code compliance of a 2 MW Fixed Speed Induction Generator (FSIG). The rating requirement of the UPQC for the wind generation application has been investigated. A general principle is proposed to choose the practical and economical rating of the UPQC for this type of application. A concept of UPQC integrated Wind Generator (UPQC-WG) has been proposed. The UPQC-WG is a doubly fed induction machine with converters integrated in the stator and rotor circuits and is capable of adjustable speed operation. The operation of UPQC-WG under sub and super-synchronous speed range has been demonstrated. The Irish grid code compliance of the same has been demonstrated with a detailed dynamic simulation

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Renewable Energies for Sustainable Development

    Get PDF
    In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Droop Control of Parallel-Operated Inverters

    Get PDF
    Several critical issues for the droop control of parallel-operated inverters are addressed in this thesis, including the power quality, the parallel operation of inverters with different types of output impedance, the power sharing, the voltage and frequency regulation, as well as the current limiting

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    Technologisch herausfordernde Transformationsprozesse wie die Energiewende können durch passende Anreizsysteme entscheidend beschleunigt werden. Ziel solcher Anreize ist es hierbei, ein Umfeld idealerweise so zu schaffen, dass das Zusammenspiel aller aus Sicht der beteiligten Wettbewerber individuell optimalen Einzelhandlungen auch global optimal im Sinne eines übergeordneten Großziels ist. Die vorliegende Dissertation schafft einen regelungstechnischen Zugang zur Frage optimaler Anreizsysteme für heutige und zukünftige Stromnetze im Zieldreieck aus Systemstabilität, ökonomischer Effizienz und Netzdienlichkeit. Entscheidende Neuheit des entwickelten Ansatzes ist die Einführung zeitlich wie örtlich differenzierter Echtzeit-Preissignale, die sich aus der Lösung statischer und dynamischer Optimierungsprobleme ergeben. Der Miteinbezug lokal verfügbarer Messinformationen, die konsequente Mitmodellierung des unterlagerten physikalischen Netzes inklusive resistiver Verluste und die durchgängig zeitkontinuierliche Formulierung aller Teilsysteme ebnen den Weg von einer reinen Anreiz-Steuerung hin zu einer echten Anreiz-Regelung. Besonderes Augenmerk der Arbeit liegt in einer durch das allgemeine Unbundling-Gebot bedingten rigorosen Trennung zwischen Markt- und Netzakteuren. Nach umfangreicher Analyse des hierbei entstehenden geschlossenen Regelkreises erfolgt die beispielhafte Anwendung der Regelungsarchitektur für den Aufbau eines neuartigen Echtzeit-Engpassmanagementsystems. Weitere praktische Vorteile des entwickelten Ansatzes im Vergleich zu bestehenden Konzepten werden anhand zweier Fallstudien deutlich. Die port-basierte Systemmodellierung, der Verzicht auf zentralisierte Regeleingriffe und nicht zuletzt die Möglichkeit zur automatischen, dezentralen Selbstregulation aller Preise über das Gesamtnetz hinweg stellen schließlich die problemlose Erweiterbarkeit um zusätzliche optionale Anreizkomponenten sicher

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively
    corecore