11,645 research outputs found

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Intermediate Phases, structural variance and network demixing in chalcogenides: the unusual case of group V sulfides

    Full text link
    We review Intermediate Phases (IPs) in chalcogenide glasses and provide a structural interpretation of these phases. In binary group IV selenides, IPs reside in the 2.40 < r < 2.54 range, and in binary group V selenides they shift to a lower r, in the 2.29< r < 2.40 range. Here r represents the mean coordination number of glasses. In ternary alloys containing equal proportions of group IV and V selenides, IPs are wider and encompass ranges of respective binary glasses. These data suggest that the local structural variance contributing to IP widths largely derives from four isostatic local structures of varying connectivity r; two include group V based quasi-tetrahedral (r = 2.29) and pyramidal (r = 2.40) units, and the other two are group IV based corner-sharing (r = 2.40) and edge-sharing (r = 2.67) tetrahedral units. Remarkably, binary group V (P, As) sulfides exhibit IPs that are shifted to even a lower r than their selenide counterparts; a result that we trace to excess Sn chains either partially (As-S) or completely (P-S) demixing from network backbone, in contrast to excess Sen chains forming part of the backbone in corresponding selenide glasses. In ternary chalcogenides of Ge with the group V elements (As, P), IPs of the sulfides are similar to their selenide counterparts, suggesting that presence of Ge serves to reign in the excess Sn chain fragments back in the backbone as in their selenide counterparts

    The role of local structure in dynamical arrest

    Full text link
    Amorphous solids, or glasses, are distinguished from crystalline solids by their lack of long-range structural order. At the level of two-body structural correlations, glassformers show no qualitative change upon vitrifying from a supercooled liquid. Nonetheless the dynamical properties of a glass are so much slower that it appears to take on the properties of a solid. While many theories of the glass transition focus on dynamical quantities, a solid's resistance to flow is often viewed as a consequence of its structure. Here we address the viewpoint that this remains the case for a glass. Recent developments using higher-order measures show a clear emergence of structure upon dynamical arrest in a variety of glass formers and offer the tantalising hope of a structural mechanism for arrest. However a rigorous fundamental identification of such a causal link between structure and arrest remains elusive. We undertake a critical survey of this work in experiments, computer simulation and theory and discuss what might strengthen the link between structure and dynamical arrest. We move on to highlight the relationship between crystallisation and glass-forming ability made possible by this deeper understanding of the structure of the liquid state, and emphasize the potential to design materials with optimal glassforming and crystallisation ability, for applications such as phase-change memory. We then consider aspects of the phenomenology of glassy systems where structural measures have yet to make a large impact, such as polyamorphism (the existence of multiple liquid states), aging (the time-evolution of non-equilibrium materials below their glass transition) and the response of glassy materials to external fields such as shear.Comment: 70 page

    Preparation of Cu-based bulk metallic glasses by suction casting

    Get PDF
    A series of Cu-Hf-Ti alloys prepared by rapid solidification of the melt and by copper mould casting were studied in the present work. Alloy ingots were prepared by arc-melting mixtures of pure metals in an argon atmosphere. An indication of the cooling rate obtained was determined using an Al-4.5 wt%Cu alloy. Cooling rates varied from 540 K/s for the centre section of a 4 mm die to 885 K/s for the outside wall section of the 2 mm die. The glass-forming ability, structure and thermal stability of Cu-Hf-Ti glassy alloys were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Bulk glass formation was observed for the Cu64Hf36, Cu55Hf25Ti20 and Cu56Hf25Ti19 alloys, with critical diameters dc for a fully glassy structure of 1, 4 and 5 mm, respectively. The substitution of Hf by Ti increased the glassforming ability (GFA) and the thermal stability

    Superconductivity and short range order in metallic glasses Fex_{x}Ni1−x_{1-x}Zr2_{2}

    Full text link
    In amorphous superconductors, superconducting and vortex pinning properties are strongly linked to the absence of long range order. Consequently, superconductivity and vortex phases can be studied to probe the underlying microstructure and order of the material. This is done here from resistance and local magnetization measurements in the superconducting state of Fex_{x}Ni1−x_{1-x}Zr2_{2} metallic glasses with 0≤x≤0.60\leq x \leq 0.6. Firstly, we present typical superconducting properties such as the critical temperature and fields and their dependence on Fe content in these alloys. Then, the observations of peculiar clockwise hysteresis loops, wide double-step transitions and large magnetization fluctuations in glasses containing a large amount of Fe are analyzed to reveal a change in short range order with Fe content.Comment: 8 pages, 7 figure

    Criteria for formation of metallic glasses: The role of atomic size ratio

    Get PDF
    We consider metallic alloys of Cu*, Cu, and Cu** in which the atoms differ only in their atomic radii and examine how the size ratio affects the local orders in the alloy systems. These studies use molecular dynamics simulations in which the atomic interactions are modeled with a Sutton–Chen many-body potential. Considering rapid cooling of these binary and ternary alloys from the melt, we find three regimes defined by the magnitude of atomic size ratio lambda (lambda<=1.0): with (i) large size ratios of 0.95<lambda<=1.0, crystallization occurs; (ii) with moderate size ratios of 0.60<=lambda<=0.95, a glass phase forms; and (iii) with small size ratios of lambda<0.60, the alloy phase separates into pure phases and crystallize. From analyzing the structures of these binary and ternary alloys, we find that the liquid phase is characterized by local structures in which bonded atoms have local fivefold symmetry, which becomes more prominent as the glass phase forms. For phases that crystallize this local fivefold symmetry disappears as the long-range order of the crystalline phase dominates. The fivefold symmetry in the glass phase is mainly due to the icosahedral cluster formation. Energetically, the formation of icosahedral cluster is favored at the atomic size ratio of lambda~0.85, which is close to the lambda at which our analyses shows the maximum in the fivefold symmetry and the number of icosahedral clusters. As lambda decreases further, the phase separation is observed. The fivefold symmetry character and the number of icosahedral cluster shows the local minimum at this onset of the phase separation

    Phase Transformations in Binary Colloidal Monolayers

    Full text link
    Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates.Comment: 13 pages, 7 figures. Soft Matter Latex template was used. Published online in Soft Matter, 201

    Simulation of Cu-Mg metallic glass: Thermodynamics and Structure

    Get PDF
    We have obtained effective medium theory (EMT) interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact the splitting temperature for the Cu-Cu RDF is well above TgT_g. The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific heat jump of around 1.5kB/at.1.5 k_B/\mathrm{at.} indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates.Comment: 12 pages (revtex, two-column), 12 figures, submitted to Phys. Rev.
    • …
    corecore