457 research outputs found

    Authorization Framework for the Internet-of-Things

    Get PDF
    This paper describes a framework that allows fine-grained and flexible access control to connected devices with very limited processing power and memory. We propose a set of security and performance requirements for this setting and derive an authorization framework distributing processing costs between constrained devices and less constrained back-end servers while keeping message exchanges with the constrained devices at a minimum. As a proof of concept we present performance results from a prototype implementing the device part of the framework

    Managing Event-Driven Applications in Heterogeneous Fog Infrastructures

    Get PDF
    The steady increase in digitalization propelled by the Internet of Things (IoT) has led to a deluge of generated data at unprecedented pace. Thereby, the promise to realize data-driven decision-making is a major innovation driver in a myriad of industries. Based on the widely used event processing paradigm, event-driven applications allow to analyze data in the form of event streams in order to extract relevant information in a timely manner. Most recently, graphical flow-based approaches in no-code event processing systems have been introduced to significantly lower technological entry barriers. This empowers non-technical citizen technologists to create event-driven applications comprised of multiple interconnected event-driven processing services. Still, today’s event-driven applications are focused on centralized cloud deployments that come with inevitable drawbacks, especially in the context of IoT scenarios that require fast results, are limited by the available bandwidth, or are bound by the regulations in terms of privacy and security. Despite recent advances in the area of fog computing which mitigate these shortcomings by extending the cloud and moving certain processing closer to the event source, these approaches are hardly established in existing systems. Inherent fog computing characteristics, especially the heterogeneity of resources alongside novel application management demands, particularly the aspects of geo-distribution and dynamic adaptation, pose challenges that are currently insufficiently addressed and hinder the transition to a next generation of no-code event processing systems. The contributions of this thesis enable citizen technologists to manage event-driven applications in heterogeneous fog infrastructures along the application life cycle. Therefore, an approach for a holistic application management is proposed which abstracts citizen technologists from underlying technicalities. This allows to evolve present event processing systems and advances the democratization of event-driven application management in fog computing. Individual contributions of this thesis are summarized as follows: 1. A model, manifested in a geo-distributed system architecture, to semantically describe characteristics specific to node resources, event-driven applications and their management to blend application-centric and infrastructure-centric realms. 2. Concepts for geo-distributed deployment and operation of event-driven applications alongside strategies for flexible event stream management. 3. A methodology to support the evolution of event-driven applications including methods to dynamically reconfigure, migrate and offload individual event-driven processing services at run-time. The contributions are introduced, applied and evaluated along two scenarios from the manufacturing and logistics domain

    EFFICIENT AND SECURE ALGORITHMS FOR MOBILE CROWDSENSING THROUGH PERSONAL SMART DEVICES.

    Get PDF
    The success of the modern pervasive sensing strategies, such as the Social Sensing, strongly depends on the diffusion of smart mobile devices. Smartwatches, smart- phones, and tablets are devices capable of capturing and analyzing data about the user’s context, and can be exploited to infer high-level knowledge about the user himself, and/or the surrounding environment. In this sense, one of the most relevant applications of the Social Sensing paradigm concerns distributed Human Activity Recognition (HAR) in scenarios ranging from health care to urban mobility management, ambient intelligence, and assisted living. Even though some simple HAR techniques can be directly implemented on mo- bile devices, in some cases, such as when complex activities need to be analyzed timely, users’ smart devices should be able to operate as part of a more complex architecture, paving the way to the definition of new distributed computing paradigms. The general idea behind these approaches is to move early analysis to- wards the edge of the network, while relying on other intermediate (fog) or remote (cloud) devices for computations of increasing complexity. This logic represents the main core of the fog computing paradigm, and this thesis investigates its adoption in distributed sensing frameworks. Specifically, the conducted analysis focused on the design of a novel distributed HAR framework in which the heavy computation from the sensing layer is moved to intermediate devices and then to the cloud. Smart personal devices are used as processing units in order to guarantee real-time recognition, whereas the cloud is responsible for maintaining an overall, consistent view of the whole activity set. As compared to traditional cloud-based solutions, this choice allows to overcome processing and storage limitations of wearable devices while also reducing the overall bandwidth consumption. Then, the fog-based architecture allowed the design and definition of a novel HAR technique that combines three machine learning algorithms, namely k-means clustering, Support Vector Machines (SVMs), and Hidden Markov Models (HMMs), to recognize complex activities modeled as sequences of simple micro- activities. The capability to distribute the computation over the different entities in the network, allowing the use of complex HAR algorithms, is definitely one of the most significant advantages provided by the fog architecture. However, because both of its intrinsic nature and high degree of modularity, the fog-based system is particularly prone to cyber security attacks that can be performed against every element of the infrastructure. This aspect plays a main role with respect to social sensing since the users’ private data must be preserved from malicious purposes. Security issues are generally addressed by introducing cryptographic mechanisms that improve the system defenses against cyber attackers while, at the same time, causing an increase of the computational overhead for devices with limited resources. With the goal to find a trade-off between security and computation cost, the de- sign and definition of a secure lightweight protocol for social-based applications are discussed and then integrated into the distributed framework. The protocol covers all tasks commonly required by a general fog-based crowdsensing application, making it applicable not only in a distributed HAR scenario, discussed as a case study, but also in other application contexts. Experimental analysis aims to assess the performance of the solutions described so far. After highlighting the benefits the distributed HAR framework might bring in smart environments, an evaluation in terms of both recognition accuracy and complexity of data exchanged between network devices is conducted. Then, the effectiveness of the secure protocol is demonstrated by showing the low impact it causes on the total computational overhead. Moreover, a comparison with other state-of-art protocols is made to prove its effectiveness in terms of the provided security mechanisms

    A Semantic Web approach to ontology-based system: integrating, sharing and analysing IoT health and fitness data

    Get PDF
    With the rapid development of fitness industry, Internet of Things (IoT) technology is becoming one of the most popular trends for the health and fitness areas. IoT technologies have revolutionised the fitness and the sport industry by giving users the ability to monitor their health status and keep track of their training sessions. More and more sophisticated wearable devices, fitness trackers, smart watches and health mobile applications will appear in the near future. These systems do collect data non-stop from sensors and upload them to the Cloud. However, from a data-centric perspective the landscape of IoT fitness devices and wellness appliances is characterised by a plethora of representation and serialisation formats. The high heterogeneity of IoT data representations and the lack of common accepted standards, keep data isolated within each single system, preventing users and health professionals from having an integrated view of the various information collected. Moreover, in order to fully exploit the potential of the large amounts of data, it is also necessary to enable advanced analytics over it, thus achieving actionable knowledge. Therefore, due the above situation, the aim of this thesis project is to design and implement an ontology based system to (1) allow data interoperability among heterogeneous IoT fitness and wellness devices, (2) facilitate the integration and the sharing of information and (3) enable advanced analytics over the collected data (Cognitive Computing). The novelty of the proposed solution lies in exploiting Semantic Web technologies to formally describe the meaning of the data collected by the IoT devices and define a common communication strategy for information representation and exchange

    Sofie: Smart Operating System For Internet Of Everything

    Get PDF
    The proliferation of Internet of Things and the success of rich cloud services have pushed the horizon of a new computing paradigm, Edge computing, which calls for processing the data at the edge of the network. Applications such as cloud offloading, smart home, and smart city are idea area for Edge computing to achieve better performance than cloud computing. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. However, there are still some challenges for applying Edge computing in our daily life. The missing of the specialized operating system for Edge computing is holding back the flourish of Edge computing applications. Service management, device management, component selection as well as data privacy and security is also not well supported yet in the current computing structure. To address the challenges for Edge computing systems and applications in these aspects, we have planned a series of empirical and theoretical research. We propose SOFIE: Smart Operating System For Internet Of Everything. SOFIE is the operating system specialized for Edge computing running on the Edge gateway. SOFIE could establish and maintain a reliable connection between cloud and Edge device to handle the data transportation between gateway and Edge devices; to provide service management and data management for Edge applications; to protect data privacy and security for Edge users; to guarantee the wellness of the Edge devices. Moreover, SOFIE also provide a naming mechanism to connect Edge device more efficiently. To solve the component selection problem in Edge computing paradigm, SOFIE also include our previous work, SURF, as a model to optimize the performance of the system. Finally, we deployed the design of SOFIE on an IoT/M2M system and support semantics with access control

    Open Infrastructure for Edge Computing

    Get PDF
    Edge computing, bringing the computation closer to end-users and data producers, has now firmly gained the status of enabling technology for the new kinds of emerging applications, such as Virtual/Augmented Reality and IoT. The motivation backing this rapidly developing computing paradigm is mainly two-fold. On the one hand, the goal is to minimize the latency that end-users experience, not only improving the quality of service but empowering new kinds of applications, which would not even be possible given higher delays. On the other, edge computing aims to save core networking bandwidth from being overwhelmed by myriads of IoT devices, sending their data to the cloud. After analyzing and aggregating IoT streams at edge servers, much less networking capacity will be required to persist remaining information in distant cloud datacenters. Having a solid motivation and experiencing continuous interest from both academia and industry, edge computing is still in its nascency. To leave adolescence and take its place on a par with the cloud computing paradigm, finally forming a versatile edge-cloud environment, the newcomer needs to overcome a number of challenges. First of all, the computing infrastructure to deploy edge applications and services is very limited at the moment. Indeed, there are initiatives supported by the telecommunication industry, like Multi-access Edge Computing. Also, cloud providers plan to establish their facilities near the edge of the network. However, we believe that even more efforts will be required to make edge servers generally available. Second, to emerge and function efficiently, the ecosystem of edge computing needs practices, standards, and governance mechanisms of its own kind. The specificity originates from the highly dispersed nature of the edge, implying high heterogeneity of resources and diverse administrative control over the computing facilities. Finally, the third challenge is the dynamicity of the edge computing environment due to, e.g., varying demand, migrating clients, etc. In this thesis, we outline underlying principles of what we call Open Infrastructure for Edge (OpenIE), identify its key features, and provide solutions for them. Intended to tackle the challenges we mentioned above, OpenIE defines a set of common practices and loosely coupled technologies creating a unified environment out of highly heterogeneous and administratively partitioned edge computing resources. Particularly, we design a protocol capable of discovering edge providers on a global scale. Further, we propose a framework of Ingelligent Containers (ICONs), capable of autonomous decision making and forming a service overlay on a large-scale edge-cloud setting. As edge providers need to be economically incentivized, we devise a truthful double auction mechanism where edge providers can meet application owners or administrators in need of deploying an edge service. Due to truthfulness, in our auction, it is the best strategy for all participants to bid one's privately known valuation (or cost), thus making complex market behavior strategies obsolete. We analyze the potential of distributed ledgers to serve for OpenIE decentralized agreement and transaction handling and show how our auction can be implemented with the help of distributed ledgers. With the key building blocks of OpenIE, mentioned above, we hope to make an entrance for anyone interested in service provisioning at the edge as easy as possible. We hope that with the emergence of independent edge providers, edge computing will finally become pervasive.Reunalaskenta, joka tuo laskentakapasiteettia lähemmäksi loppukäyttäjiä ja datan tuottajia, on noussut uudentyyppisten sovelluksien, kuten virtuaalisen ja lisätyn todellisuuden (VR/AR) sekä esineiden internetin (IoT) keskeiseksi mahdollistajaksi. Reunalaskennan kehitystä tukevat pääosin kaksi sen tuomaa etua. Ensiksi, reunalaskenta minimoi loppukäyttäjien kokemaa latenssia mahdollistaen uudentyyppisiä sovelluksia. Toiseksi, reunalaskenta säästää ydinverkon tiedonsiirtokapasiteettia, esimerkiksi IoT-laitteiden pilveen lähettämien tietojen osalta. Kun reunapalvelimet analysoivat ja aggregoivat IoT-virrat, verkkokapasiteettia tarvitaan paljon vähemmän. Reunalaskentaan on panostettu paljon, sekä teollisuuden, että tutkimuksen osalta. Reunalaskennan kehittymispolulla monipuoliseksi reunapilviympäristöksi on edessä useita haasteita. Ensinnäkin laskentakapasiteetti tietoverkkojen reunalla on tällä hetkellä hyvin rajallinen. Vaikka teleoperaattorit ja pilvipalvelujen tarjoajat suunnittelevat lisäävänsä laskentakapasiteettia reunalaskennan tarpeisiin, uskomme kuitenkin, että enemmän ponnisteluja tarvitaan, jotta reunalaskennan edut olisivat yleisesti saatavilla. Toiseksi, toimiakseen tehokkaasti, reunalaskennan ekosysteemi tarvitsee omat käytäntönsä, standardinsa ja hallintamekanisminsa. Reunalaskenan erityistarpeet johtuvat resurssien heterogeenisyydestä, niiden suuresta maantieteellisesta hajautuksesta ja hallinnollisesta jaosta. Kolmas haaste on reunalaskentaympäristön dynaamisuus, joka johtuu esimerkiksi vaihtelevasta kysynnästä ja asiakkaiden liikkuvuudesta. Tässä väitöstutkimuksessa esittelemme Avoimen Infrastruktuurin Reunalaskennalle (OpenIE), joka vastaa edellä mainittuihin haasteisiin, ja tunnistamme ongelman pääominaisuudet ja tarjoamme niihin ratkaisuja. OpenIE määrittelee joukon yleisiä käytäntöjä ja löyhästi yhdistettyjä tekniikoita, jotka luovat yhtenäisen ympäristön erittäin heterogeenisistä ja hallinnollisesti jaetuista reunalaskentaresursseista. Suunnittelemme protokollan, joka kykenee etsimään reunaoperaattoreita maailmanlaajuisesti. Lisäksi ehdotamme Älykontti (ICON) -kehystä, joka kykenee itsenäiseen päätöksentekoon ja muodostaa palvelupäällysteen laajamittaisessa reunapilviympäristössä. Koska reunaoperaattoreita on kannustettava taloudellisesti, suunnittelemme totuudenmukaisen huutokauppamekanismin, jossa reunapalveluntarjoajat voivat kohdata sovellusten omistajia tai järjestelmien omistajia, jotka tarvitsevat reunalaskentakapasiteettia. Totuudenmukaisessa huutokaupassa paras strategia kaikille osallistujille on tehdä tarjous yksityisesti tunnetun arvostuksen perusteella, mikä tekee monimutkaisen markkinastrategian kehittämisen tarpeettomaksi. Analysoimme lohkoketjualustojen potentiaalia palvella OpenIE:n hajautetun sopimisen ja tapahtumien käsittelyä ja näytämme, miten huutokauppamme voidaan toteuttaa lohkoketjuteknologia hyödyntäen. Edellä mainittujen OpenIE:n keskeisten kompponenttien avulla pyrimme luomaan yleisiä puitteita joiden avulla jokainen reunalaskennan kapasiteetin tarjoamisesta kiinnostunut taho voisi ryhtyä palveluntarjojaksi helposti. Riippumattomien reunapalveluntarjoajien mukaantulo tekisi reunalaskennan lupaamat hyödyt yleisesti saataviksi

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    A distributed middleware for IT/OT convergence in modern industrial environments

    Get PDF
    The modern industrial environment is populated by a myriad of intelligent devices that collaborate for the accomplishment of the numerous business processes in place at the production sites. The close collaboration between humans and work machines poses new interesting challenges that industry must overcome in order to implement the new digital policies demanded by the industrial transition. The Industry 5.0 movement is a companion revolution of the previous Industry 4.0, and it relies on three characteristics that any industrial sector should have and pursue: human centrality, resilience, and sustainability. The application of the fifth industrial revolution cannot be completed without moving from the implementation of Industry 4.0-enabled platforms. The common feature found in the development of this kind of platform is the need to integrate the Information and Operational layers. Our thesis work focuses on the implementation of a platform addressing all the digitization features foreseen by the fourth industrial revolution, making the IT/OT convergence inside production plants an improvement and not a risk. Furthermore, we added modular features to our platform enabling the Industry 5.0 vision. We favored the human centrality using the mobile crowdsensing techniques and the reliability and sustainability using pluggable cloud computing services, combined with data coming from the crowd support. We achieved important and encouraging results in all the domains in which we conducted our experiments. Our IT/OT convergence-enabled platform exhibits the right performance needed to satisfy the strict requirements of production sites. The multi-layer capability of the framework enables the exploitation of data not strictly coming from work machines, allowing a more strict interaction between the company, its employees, and customers
    • …
    corecore