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1

Chapter 1: Introduction

1.1 Edge computing in Internet of Things

Figure 1.1: The proliferation of Cloud computing.

Cloud computing has tremendously changed the way we live, work, and study since

its inception around 2005 [16], as shown in Figure 1.1. For example, Software as a Service

(SaaS) instances, such as Google Apps, Twitter, Facebook and Flickr, have been widely used

in our daily life. Moreover, scalable infrastructures as well as processing engines developed

to support cloud service are also significantly influencing the way of running business, for in-

stance, Google File System [50], MapReduce [35], Apache Hadoop [112], Apache Spark [133],

and so on.

Internet of Things (IoT) was firstly introduced to the community in 1999 for supply

chain management [18], and then the concept of “making a computer sense information

without the aid of human intervention" was widely adapted to other fields such as healthcare,

home, environment, and transports [116, 55]. Now with IoT, we will arrive in the post-Cloud

era, where there will be a large quality of data generated by things that are immersed in

our daily life, and a lot of applications will also be deployed at the edge to consume these

data. By 2019, data produced by people, machines, and things will reach 500 zettabytes, as
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Figure 1.2: The proliferation of Internet of Things [12].

estimated by Cisco Global Cloud Index, however, the global data center IP traffic will only

reach 10.4 zettabytes by that time [12]. By 2019, 45% of IoT-Created data will be stored,

processed, analyzed, and acted upon close to, or at the Edge of, the network [13]. There

will be 50 billion things connected to the Internet by 2020, as predicted by Cisco Internet

Business Solutions Group [38] and shown in Figure 1.2.

Moreover, the end user in Cloud computing paradigm is also changing from data

consumer to data producer. As we can see from Figure 1.3, more and more data in cloud

service is generated by end users. This changing of role also requires data to be computed

at the Edge of network in order to save bandwidth and cloud computing resource. Some

IoT applications might require very short response time, some might involve private data,

and some might produce a large quantity of data which could be a heavy load for networks.

Cloud computing is not efficient enough to support these applications.

1.1 Two scenarios for Edge computing

Edge computing could be a good solution for IoT applications by allowing compu-

tation to be performed at the edge of the network, on downstream data on behalf of cloud



3

Figure 1.3: Data generated by end user [3].

services and upstream data on behalf of IoT services. Here we use Smart home and AMBER

alert as two scenarios to further illustrate how Edge computing could benefit our daily life.
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Figure 1.4: Smart home overview [7].

Smart home

First we take smart home as a scenario, as shown in Figure 1.4. With more and more

connected things at home, people could implement a lot of smart services and automation

jobs. IoT would benefit the home environment a lot. Some products have been developed

and are available on the market such as smart light, smart TV and robot vacuum. However,

just adding a Wi-Fi module to the current electrical device and connecting it to the cloud is

not enough for a smart home. In a smart home environment, besides the connected device,

cheap wireless sensors and controllers should be deployed to room, pipe, and even floor and

wall. These things would report an impressive amount of data and for the consideration of

data transportation pressure and privacy protection, this data should be mostly consumed

in the home. This feature makes the Cloud computing paradigm unsuitable for a smart

home. Nevertheless, Edge computing is considered perfect for building a smart home: with

an edge gateway running a specialized EdgeOS (Edge Operating System) in the home, the
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things can be connected and managed easily in the home, the data can be processed locally

to release the burdens for Internet bandwidth, and the service can also be deployed on

the EdgeOS for better management and delivery. Researchers in this community have put

some effort in building the smart home. Power management is smart home is discussed

in [57, 60, 71, 94]. Assistant service in smart home for a more convenient life is proposed

in [78, 88, 20]. Current smart home systems such as HomeOS from Microsoft, HomeKit

Figure 1.5: Smart home systems.

from Apple, and SmartThings from Samsung provide the connectivity of their own devices,

as shown in Figure 1.5. However, there are some missing part in those smart home systems.

First is that they only support their own communication protocol, which means you can only

use their supported devices. Second is that these systems only provide connection between

gateway and Edge devices, but they do not satisfy other performance requirements such as

differentiation, extensibility and isolation. Details about these requirements will be discussed

in the following Chapter.When applying Edge computing in smart home, practitioners should

take several characteristics into consideration, including resource constrains in end devices

and sensors, usage privacy and heterogeneous communication channels. These features of

smart home bring about several new challenges that remains unsolved.
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• First is the missing of an operating system specialized for Edge computing system.

Without an operating system, it is very hard to manage the device as well as the

service in any Edge computing application.

• Secondly, device management is an issue, without an efficient naming mechanism of

components in smart home, it is impossible to easily deploy new service or add/re-

move/replace any device at home.

• Thirdly, component selection is another challenge in Edge computing. When devel-

oping Edge computing applications, system designers and practitioners usually face

several performance requirements such as the accuracy, battery life and system relia-

bility. Given the hard requirements in system performance, how to choose an optimal

combination from various sensors, algorithms and Edge computing systems to form the

application is the most important problem that practitioners need to address.

• Last is privacy and security, such as identity and access management, network security,

privacy, as well as secure data storage and computation at different layers.

Figure 1.6: How social media helps in evidence collection [4].

AMBER Alert

Considering AMBER Alert, the child abduction alert system which originated in the

US in 1996 as another scenario. Through commercial radio channel, cable TV, email, and
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SMS text message, the alert message could be distributed efficiently to each individual, how-

ever, individualâĂŹs contribution is very limited in these communication channels. Social

media which leverage Cloud computing could help in this situation. Twitter and Facebook

are proved to be very important policing tools in the Boston marathon bombing attack in

2013 since a lot of onsite photos were uploaded to the centralized cloud server via individu-

alâĂŹs social media account, which were used for evidence collection, as shown in Figure 1.6.

Now with Edge computing, it would be much easier to find the missing child. With Edge

computing, the computing task of searching the missing child can be distributed to every

Edge device, such as smartphone, security camera, smart vehicle, etc. Moreover, the Edge

device can automatically perform video and image analysis locally and eventually the result

will be collected via different layers of Edge and reach Cloud for decision making. In this

scenario, two key questions are remaining unsolved.

• How can practitioners program for the computing task that can be deployed on var-

ious Edge devices including cloud server, PC, mobile phone, and smart camera with

computing capability?

• How can the raw data and fractional computing result from various Edge device being

collected and abstracted efficiently through multiple layers and eventually summarized

as the final integral computing result?

1.1 SOFIE: Smart Operating System For Internet Of Everything

To realize the vision of Edge computing, we argue that the systems and network com-

munity need to work together. For the challenges mentioned in smart home and AMBER

Alert scenarios, we further summarized them as programmability, naming, data abstraction,

service management, privacy and security and optimization metrics. To address these chal-

lenges, we propose SOFIE: Smart Operating System For Internet Of Everything. SOFIE will

manage and maintain the connections between gateway and Edge devices via multiple com-

munication channels; SOFIE provides programmability for Edge application practitioners to
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design and implement their applications easily on SOFIE; SOFIE also supports a naming

mechanism to support better service management and device management; data abstrac-

tion layer is introduced in SOFIE to isolate Edge device and Edge applications/services,

which cloud help protect privacy and security of the data. We also argue that following

four fundamental features should be supported in SOFIE to guarantee a reliable system,

including Differentiation, Extensibility, Isolation, and Reliability (DEIR). Moreover, SOFIE

also comes with a Wellness Management model to handle the health of the Edge devices.

Data quality will be detected to guarantee the accuracy of the data; Lifetime of the Edge

devices will be managed by the life-cycle management model; In order to make sure that

the selection of the optimized component combination for each service can achieve the best

performance, SURF framework is also included in wellness management model.

1.2 Summary of Contributions

Figure 1.7: Contribution overview.

Figure 1.7 shows the overview structure of our work. On top of the computing

paradigm is Cloud computing, and at the Edge of the paradigm are IoT devices, which

also known as Edge devices. Edge will handle the data and computing between Cloud and

Edge devices. Edge Gateway sitting in the middle will connecting Cloud and Edge devices;

downstream data on behalf of cloud services; and upstream data on behalf of IoT services.



9

SOFIE will run on the Edge gateway to handle the communication with Edge devices;

abstract and per-process data; and manage the service running on the gateway. Moreover,

SOFIE will also manage the wellness of the system, including data quality management

to handle the accuracy of the data, life-cycle management to handle the battery-life and

component failure on Edge devices, and SURF to choose the optimized combination of Edge

devices for different services based on their performance requirements such as battery-life,

data precision, data quantity, etc. The main contributions of our work are:

1. we came up with our understanding of Edge computing, with the rationale that com-

puting should happen at the proximity of data sources. Then we list several cases

whereby Edge computing could flourish from cloud offloading to a smart environment

such as home and city. We also introduce Collaborative Edge, since Edge can connect

end user and cloud both physically and logically so not only the conventional Cloud

computing paradigm is still supported, but also it can connect long distance networks

together for data sharing and collaboration because of the closeness of data. At last,

we put forward the challenges and opportunities that are worth working on, including

programmability, naming, data abstraction, service management, privacy and security,

as well as optimization metrics.

2. We have designed SOFIE, a Smart Operating System For Internet of Everything. With

the design of SOFIE, challenges of programmability, naming, data abstraction, service

management, privacy and security, as well as optimization metrics could be addressed

efficiently in Edge computing applications and systems.

3. To help the Edge computing practitioners to select the optimal component combina-

tions that can meet the performance requirements and reduce cost as much as possible

at the same time, we introduce SURF: a framework for component selection in Edge

computing application development. SURF includes performance evaluation metrics

and a methodology for using performance vector. We tested our methodology through
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a case study, and the result showed that our methodology is very efficient in finding

the optimal component combination.

4. We implemented SOFIE on a mature IoT/M2M system, which is oneM2M SDP. We

also supported semantic service for the system meanwhile provide access control as the

security feature.

1.3 Outline

The rest of this document is organized as follows: Chapter 1.3 illustrate our vision and

understanding of Edge computing. We also give several case studies to further explain how

Edge computing could be adapted to the current computing paradigm. Then we summarize

the challenges in detail and bring forward some potential solutions and opportunities worth

further research, including programmability, naming, data abstraction, service management,

privacy and security and optimization metrics; Chapter 2.4 introduce the design of SOFIE

and further illustrate how SOFIE can help address the challenges in Chapter 1.3; In order

to explain how SOFIE could be used to solve the component selection problem in Edge

computing, in Chapter 3.8 we introduce SURF, which is a model in SOFIE aiming to address

the component selection problem, we also illustrate how this model can be applied to real life

applications through a case study, and discuss challenging issues and two interesting finds

from our implementation; Chapter 4.6 introduces how we deploy SOFIE on an IoT/M2M

system and support semantics with access control. Finally, this dissertation concludes and

my future research agenda lists in Chapter 5.6 and Chapter 5.6.
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Chapter 2: Edge Computing

The proliferation of Internet of Things and the success of rich cloud services have

pushed the horizon of a new computing paradigm, Edge computing, which calls for processing

the data at the edge of the network. Edge computing has the potential to address the

concerns of response time requirement, battery life constraint, bandwidth cost saving, as well

as data safety and privacy. In this Chapter, we introduce the definition of Edge computing,

followed by several case studies, ranging from cloud offloading to smart home and city, as

well as collaborative Edge to materialize the concept of Edge computing. Finally, we present

several challenges and opportunities in the field of Edge computing.

2.1 What is Edge computing

Data is increasingly produced at the edge of the network, therefore, it would be more

efficient to also process the data at the edge of the network. Previous work such as micro

DataCenter [52, 33], Cloudlet [102], and fog computing [22] has been introduced to the

community because Cloud computing is not always efficient for data processing when the

data is produced at the edge of the network. In this section, we list some reasons why Edge

computing is more efficient than Cloud computing for some computing services, then we give

our definition and understanding of Edge computing.

2.1 Why do we need Edge computing

Push from cloud services

Putting all the computing tasks on the cloud has been proved to be an efficient way for

data processing since the computing power on the cloud outclasses the capability of the things

at the edge. However, compared to the fast developing data processing speed, the bandwidth

of the network has come to a standstill. With the growing quantity of data generated at

the edge, speed of data transportation is becoming the bottleneck for the Cloud based

computing paradigm. For example, about 5 Gigabyte data will be generated by a Boeing

787 every second [2], but the bandwidth between the airplane and either satellite or base



12

station on the ground is not large enough for data transmission. Consider an autonomous

vehicle as another example. 1 Gigabyte data will be generated by the car every second

and it requires real-time processing for the vehicle to make correct decisions [6]. If all the

data needs to be sent to the cloud for processing, the response time would be too long.

Not to mention that current network bandwidth and reliability would be challenged for its

capability of supporting a large number of vehicles in one area. In this case, the data needs

to be processed at the edge for shorter response time, more efficient processing and smaller

network pressure.

Pull from Internet of Things

Almost all kinds of electrical devices will become part of IoT, and they will play the

role of data producers as well as consumers, such as air quality sensors, LED bars, streetlights

and even an Internet-connected microwave oven. It is safe to infer that the number of things

at the Edge of the network will develop to more than billions in a few years. Thus, raw data

produced by them will be enormous, making conventional Cloud computing not efficient

enough to handle all these data. This means most of the data produced by IoT will never

be transmitted to the cloud, instead it will be consumed at the edge of the network.

Figure 2.1: Cloud computing paradigm.

Figure 2.1 shows the conventional Cloud computing structure. Data producers gen-

erate raw data and transfer it to cloud, and data consumers send request for consuming

data to cloud, as noted by the blue solid line. The red dotted line indicates the request

for consuming data being sent from data consumers to cloud, and the result from cloud is

represented by the green dotted line. However, this structure is not sufficient for IoT. Firstly,

data quantity at the edge is too large, which will lead to huge unnecessary bandwidth and
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computing resource usage. Secondly, the privacy protection requirement will pose an obsta-

cle for Cloud computing in IoT. Lastly, most of the end nodes in IoT are energy constrained

things, and the wireless communication module is usually very energy hungry, so offloading

some computing tasks to the edge could be more energy efficient.

Change from data consumer to producer

In the Cloud computing paradigm, the end devices at the edge usually play as data

consumer, for example, watching a YouTube video on your smart phone. However, people

are also producing data nowadays from their mobile devices. The change from data consumer

to data producer/consumer requires more function placement at the edge. For example, it is

very normal that people today take photos or do video recording then share the data through

a cloud service such as YouTube, Facebook, Twitter or Instagram. Moreover, every single

minute, YouTube users upload 72 hours of new video content; Facebook users share nearly

2.5 million pieces of content; Twitter users tweet nearly 300,000 times; Instagram users post

nearly 220,000 new photos [3]. However, the image or video clip could be fairly large and

it would occupy a lot of bandwidth for uploading. In this case, the video clip should be

demised and adjusted to suitable resolution at the edge before uploading to cloud. Another

example would be wearable health devices. Since the physical data collected by the things

at the Edge of the network is usually private, processing the data at the edge could protect

user privacy better than uploading raw data to cloud.

2.1 What is Edge computing

Edge computing refers to the enabling technologies allowing computation

to be performed at the edge of the network, on downstream data on behalf of

cloud services and upstream data on behalf of IoT services. Here we define “Edge"

as any computing and network resources along the path between data sources and cloud

data centers. For example, a smart phone is the edge between body things and cloud, a

gateway in a smart home is the edge between home things and cloud, a Micro Data Center
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(MDC) and a Cloudlet [102] is the edge between a mobile device and cloud. The rationale of

Edge computing is that computing should happen at the proximity of data sources.

From our point of view, Edge computing is interchangeable with Fog computing [14], but

Edge computing focus more toward the Things side, while Fog computing focus more on the

infrastructure side. We envision that Edge computing could have as big an impact on our

society as has the Cloud computing.

Figure 2.2: Edge computing paradigm.

Figure 4.3 illustrates the two-way computing streams in Edge computing. In the Edge

computing paradigm, the things not only are data consumers, but also play as data producers.

At the edge, the things can not only request service and content from the cloud, but also

perform the computing tasks from the cloud. Edge can perform computing offloading, data

storage, caching and processing, as well as distribute request and delivery service from cloud
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to user. With those jobs in the network, the edge itself needs to be well designed to meet

the requirement efficiently in service such as reliability, security and privacy protection.

2.1 Edge computing benefits

In Edge Computing we want to put the computing at the proximity of data sources.

This have several benefits compared to traditional Cloud based computing paradigm. Here

we use several early results from the community to demonstrate the potential benefits. Re-

searchers built a proof-of-concept platform to run face recognition application in [129], and

the response time is reduced from 900ms to 169ms by moving computation from cloud to

the Edge. In [58], the researchers use Cloudlets to offload computing tasks for wearable

cognitive assistance, and the result shows that the improvement of response time is between

80ms to 200ms. Moreover, the energy consumption could also be reduced by 30-40% by

cloudlet offloading. CloneCloud in [32] combine partitioning, migration with merging, and

on-demand instantiation of partitioning between mobile and the cloud, and their prototype

could reduce 20x running time and energy for tested applications.

2.2 Case study for Edge Computing

In this section, we give several case studies where Edge computing could shine to

further illustrate our vision of Edge computing.

2.2 Cloud Offloading

In the Cloud computing paradigm, most of the computations happen in the cloud,

which means data and requests are processed in the centralized cloud. However, such a com-

puting paradigm may suffer longer latency (e.g., long tail latency), which weakens the user

experience. Numbers of researches have addressed the cloud offloading in terms of energy-

performance tradeoff in a mobile-cloud environment [99, 63, 76, 74]. In Edge computing,

the edge has certain computation resources, and this provides a chance to offload part of the

workload from cloud.
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In the traditional content delivery network (CDN), only the data is cached at the

edge servers. This is based on the fact that the content provider provides the data on the

Internet, which is true for the past decades. In the IoT, the data is produced and consumed

at the edge. Thus, in the Edge computing paradigm, not only data but also operations

applied on the data should be cached at the edge.

One potential application that could benefit from Edge computing is online shopping

services. A customer may manipulate the shopping cart frequently. By default, all these

changes on his/her shopping cart will be done in the cloud, and then the new shopping cart

view is updated on the customer’s device. This process may take a long time depending on

network speed and the load level of servers. It could be even longer for mobile devices due

to the relatively low bandwidth of a mobile network. As shopping with mobile devices is

becoming more and more popular, it is important to improve the user experience, especially

latency related. In such a scenario, if the shopping cart updating is offloaded from cloud

servers to edge nodes, the latency will be dramatically reduced. As we mentioned, the users’

shopping cart data and related operations (e.g., add an item, update an item, delete an

item) both can be cached at the edge node. The new shopping cart view can be generated

immediately upon the user request reaching the edge node. Of course, the data at the edge

node should be synchronized with the cloud, however, this can be done in the background.

Another issue involves the collaboration of multiple edges when a user moves from

one edge node to another. One simple solution is to cache the data to all edges the user

may reach. Then the synchronization issue between edge nodes rises up. All these issues

could become challenges for future investigation. At the bottom line, we can improve the

interactive services quality by reducing the latency. Similar applications also include: i)

Navigation applications can move the navigating or searching services to the edge for a local

area, in which case only a few map blocks are involved; ii) content filtering/aggregating

could be done at the edge nodes to reduce the data volume to be transferred; and iii) real-

time applications such as vision-aid entertainment games, augmented reality, and connected
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health, could make fast responses by using edge nodes. Thus, by leveraging Edge computing,

the latency and consequently the user experience for time-sensitive application could be

improved significantly.

2.2 Video Analytics

The widespread of mobilephones and network cameras make video analytics an emerg-

ing technology. Cloud computing is no longer suitable for applications that requires video

analytics due to the long data transmission latency and privacy concerns. Here we give an

example of finding a lost child in the city. Nowadays, different kinds of cameras are widely

deployed in the urban area and in each vehicle. When a child is missing, it is very possible

that this child can be captured by a camera. However, the data from the camera will usu-

ally not be uploaded to the cloud because of privacy issues or traffic cost, which makes it

extremely difficult to leverage the wide area camera data. Even if the data is accessible on

the cloud, uploading and searching a huge quantity of data could take a long time, which is

not tolerable for searching a missing child. With the Edge computing paradigm, the request

of searching a child can be generated from the cloud and pushed to all the things in a target

area. Each thing, for example a smart phone, can perform the request and search its local

camera data and only report the result back to the cloud. In this paradigm, it is possible

to leverage the data and computing power on every thing and get the result much faster

compared with solitary Cloud computing.

2.2 Smart City

The Edge computing paradigm can be flexibly expanded from a single home to com-

munity, or even city scale. Edge computing claims that computing should happen as close

as possible to the data source. With this design, a request could be generated from the top

of the computing paradigm and be actually processed at the edge. Edge computing could

be an ideal platform for smart city considering the following characteristics:
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large data quantity

A city populated by 1 million people will produce 180 PB data per day by 2019 [12],

contributed by public safety, health, utility, and transports, etc. Building centralized cloud

data centers to handle all of the data is unrealistic because the traffic workload would be too

heavy. In this case, Edge computing could be an efficient solution by processing the data at

the Edge of the network.

low latency

For applications that require predictable and low latency such as health emergency or

public safety, Edge computing is also an appropriate paradigm since it could save the data

transmission time as well as simplify the network structure. Decision and diagnosis could be

made as well as distributed from the Edge of the network, which is more efficient compared

with collecting information and making decision at central cloud.

location awareness

For geographic based applications such as transportation and utility management,

Edge computing exceed cloud computing due to the location awareness. In Edge computing,

data could be collected and processed based on geographic location without being trans-

ported to cloud.

2.2 Collaborative Edge

Cloud, arguably, has become the de facto computing platform for the big data pro-

cessing by academia and industry. A key promise behind cloud computing is that the data

should be already held or is being transmitted to the cloud and will eventually be processed

in the cloud. In many cases, however, the data owned by stakeholders is rarely shared to

each other due to privacy concerns and the formidable cost of data transportation. Thus,

the chance of collaboration among multiple stake-holders is limited. Edge, as a physical

small data center that connects cloud and end user with data processing capability, can also

be part of the logical concept. Collaborative Edge, which connects the edges of multiple
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stakeholders that are geographically distributed despite their physical location and network

structure is proposed [22]. Those ad hoc-like connected edges provide the opportunity for

stakeholders to share and cooperate data.

Figure 2.3: Collaborative Edge example: connected health.

One of the promising applications in the near future is connected health, as shown

in Figure 2.3. The demand of geographically distributed data processing applications, i.e.,

healthcare, requires data sharing and collaboration among enterprises in multiple domains.

To attack this challenge, Collaborative Edge can fuse geographically distributed data by

creating virtual shared data views. The virtual shared data is exposed to end users via a

predefined service interface. An application will leverage this public interface to compose

complex services for end users. These public services are provided by participants of Collab-

orative Edge, and the computation only occurs in the participant’s data facility such that

the data privacy and integrity can be ensured.

To show the potential benefits of Collaborative Edge, we use connected healthcare as

a case study. We use a flu outbreak as the beginning of our case study. The patients flow to

hospitals, and the Electronic Medical Record (EMR) of the patients will be updated. The

hospital summarizes and shares the information for this flu outbreak, such as the average cost,

the symptoms, and the population, etc. A patient theoretically will follow the prescription



20

to get the pills from a pharmacy. One possibility is that a patient did not follow the therapy.

Then the hospital has to take the responsibility for re-hospitalization since it cannot get the

proof that the patient did not take the pills. Now, via Collaborative Edge, the pharmacy

can provide the purchasing record of a patient to the hospital, which significantly facilitates

healthcare accountability.

At the same time, the pharmacies retrieve the population of the flu outbreak using

the Collaborative Edge services provided by hospitals. An apparent benefit is that the phar-

macies have enough inventory to obtain much more profits. Behind the drug purchasing,

the pharmacy can leverage data provided by pharmaceutical companies and retrieve the lo-

cations, prices and inventories of all drug warehouses. It also sends a transport price query

request to the logistics companies. Then the pharmacy can make an order plan by solving

the total cost optimization problem according to retrieved information. The pharmaceutical

companies also receive a bunch of flu drug orders from pharmacies. At this point, a phar-

maceutical company can reschedule the production plan and re-balance the inventories of

the warehouses. Meanwhile, the Centers for Disease Control and Prevention (CDC), as our

government representative in our case, is monitoring the flu population increasing at wide

range areas, can consequently raise a flu alert to the people in the involved areas. Besides,

further actions can be taken to prevent the spread of flu outbreak.

After the flu outbreak, the insurance companies have to pay the bill for the patients

based on the policy. The insurance companies can analyze the proportion of people who has

the flu during the outbreak. This proportion and the cost for flu treatment are significant

factors to adjust the policy price for the next year. Furthermore, the insurance companies

can also provide a personalized healthcare policy based on their EMR if the patient would

like to share it.

Through this simple case, most of the participants can benefit from Collaborative

Edge in terms of reducing operational cost and improving profitability. However, some of
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them, like hospitals in our case, could be a pure contributor to the healthcare community

since they are the major information collector in this community.

2.3 Challenges in Edge Computing

We have described five potential applications of Edge computing in the related work.

To realize the vision of Edge computing, we argue that the systems and network community

need to work together. In this section, we will further summarize these challenges in detail

and bring forward some potential solutions and opportunities worth further research, includ-

ing programmability, naming, data abstraction, service management, privacy and security

and optimization metrics.

2.3 Programmability

In Cloud computing, users program their code and deploy them on the cloud. The

cloud provider is in charge to decide where the computing is conducted in a cloud. Users

have zero or partial knowledge of how the application runs. This is one of the benefits of

Cloud computing that the infrastructure is transparent to the user. Usually, the program

is written in one programing language and compiled for a certain target platform, since the

program only runs in the cloud. However, in the Edge computing, computation is offloaded

from the cloud, and the edge nodes are most likely heterogeneous platforms. In this case,

the runtime of these nodes differ from each other, and the programmer faces huge difficulties

to write an application that may be deployed in the Edge computing paradigm.

2.3 Naming

In Edge computing, one important assumption is that the number of things is tremen-

dously large. Atop the edge nodes, there are a lot of applications running, and each appli-

cation has its own structure about how the service is provided. Similar to all computer

systems, the naming scheme in Edge computing is very important for programing, address-

ing, things identification, and data communication. However, an efficient naming mechanism

for the Edge computing paradigm has not been built and standardized yet. Edge practi-
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tioners usually needs to learn various communication and network protocols in order to

communicate with the heterogeneous things in their system. The naming scheme for Edge

computing needs to handle the mobility of things, highly dynamic network topology, privacy

and security protection, as well as the scalability targeting the tremendously large amount

of unreliable things.

Traditional naming mechanisms such as DNS and URI (Uniform Resource Identifier)

satisfy most of the current networks very well. However, they are not flexible enough to

serve the dynamic Edge network since sometimes most of the things at Edge could be highly

mobile and resource constrained. Moreover, for some resource constrained things at the

Edge of the network, IP based naming scheme could be too heavy to support considering its

complexity and overhead.

New naming mechanisms such as Named Data Networking (NDN) [135] and Mobility-

First [95] could also be applied to Edge computing. NDN provide a hierarchically structured

name for content/data centric network, and it is human friendly for service management

and provides good scalability for Edge. However, it would need extra proxy in order to fit

into other communication protocols such as BlueTooth or Zigbee, and so on. Another issue

associated with NDN is security, since it is very hard to isolate things hardware information

with service providers. MobileFirst can separate name from network address in order to

provide better mobility support, and it would be very efficient if applied to Edge services

where things are of highly mobility. Neverless, a global unique identification (GUID) needs

to be used for naming is MobileFirst, and this is not required in related fixed information

aggregation service at the Edge of the network such as home environment. Another disad-

vantage of MobileFirst for Edge is the difficulty in service management since GUID is not

human friendly.

2.3 Data Abstraction

Various applications can run on the EdgeOS consuming data or providing service

by communicating through the APIs from the service management layer. Data abstraction
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has been well discussed and researched in the wireless sensor network and Cloud computing

paradigm. However, in Edge computing, this issue becomes more challenging. With IoT,

there would be a huge number of data generators in the network, and here we take a smart

home environment as an example. In a smart home, almost all of the things will report data

to the EdgeOS, not to mention the large number of things deployed all around the home.

However, most of the things at the Edge of the network, only periodically report sensed data

to the gateway. For example, the thermometer could report the temperature every minute,

but this data will most likely only be consumed by the real user several times a day. Another

example could be a security camera in the home which might keep recording and sending

the video to the gateway, but the data will just be stored in the database for a certain time

with nobody actually consuming it, and then be flushed by the latest video.

2.3 Service Management

In terms of service management at the Edge of the network, we argue that following

four fundamental features should be supported to guarantee a reliable system, including

Differentiation, Extensibility, Isolation, and Reliability (DEIR).

Differentiation: With the fast growth of IoT deployment, we expected multiple ser-

vices will be deployed at the Edge of the network, such as Smart Home. These services will

have different priorities. For example, critical services such as things diagnosis and failure

alarm should be processed earlier than ordinary service. Health related service, for example,

fall detection or heart failure detection should also have a higher priority compared with

other service such as entertainment.

Extensibility: Extensibility could be a huge challenge at the Edge of the network,

unlike a mobile system, the things in the IoT could be very dynamic. When the owner

purchases a new thing, can it be easily added to the current service without any problem?

Or when one thing is replaced due to wearing out, can the previous service adopt a new

node easily? These problems should be solved with a flexible and extensible design of service

management layer in the EdgeOS.
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Isolation: Isolation would be another issue at the Edge of the network. In mobile

OS, if an application fails or crashes, the whole system will usually crash and reboot. Or in

a distributed system the shared resource could be managed with different synchronization

mechanisms such as a lock or token ring. However, in a smart EdgeOS, this issue might be

more complicated. There could be several applications that share the same data resource,

for example, the control of light. If one application failed or was not responding, a user

should still be able to control their lights, without crashing the whole EdgeOS. Or when

a user removes the only application that controls lights from the system, the lights should

still be alive rather than experiencing a lost connection to the EdgeOS. This challenge could

be potentially solved by introducing a deployment/undeployment framework. If the conflict

could be detected by the OS before an application is installed, then a user can be warned

and avoid the potential access issue. Another side of the isolation challenge is how to isolate

a user’s private data from third party applications. For example, your activity tracking

application should not be able to access your electricity usage data. To solve this challenge,

a well-designed control access mechanism should be added to the service management layer

in the EdgeOS.

Reliability: Last but not least, reliability is also a key challenge at the Edge of the

network. We identify the challenges in reliability from the different views of service, system,

and data here.

• From the service point of view, it is sometimes very hard to identify the reason for a

service failure accurately at field. For example, if an air conditioner is not working,

a potential reason could be that a power cord is cut, compressor failure, or even a

temperature controller has run out of battery. A sensor node could have lost connection

very easily to the system due to battery outage, bad connection condition, component

wear out, etc. At the Edge of the network, it is not enough to just maintain a current

service when some nodes lose connection, but to provide the action after node failure

makes more sense to the user. For example, it would be very nice if the EdgeOS could
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inform the user which component in the service is not responding, or even alert the user

ahead if some parts in the system have a high risk of failure. Potential solutions for

this challenge could be adapted from a wireless sensor network, or industrial network

such as PROFINET [40].

• From the system point of view, it is very important for the EdgeOS to maintain the

network topology of the whole system, and each component in the system is able to

send status/diagnosis information to the EdgeOS. With this feature, services such as

failure detection, thing replacement and data quality detection could be easily deployed

at the system level.

• From the data point of view, reliability challenge rise mostly from the data sensing

and communication part. As previously researched and discussed, things at the Edge

of the network could fail due to various reasons and they could also report low fidelity

data under unreliable condition such as low battery level [28]. Also various new com-

munication protocols for IoT data collection are also proposed. These protocols serves

well for the support of huge number of sensor nodes and the highly dynamic network

condition [34]. However, the connection reliability is not as good as BlueTooth or

WiFi. If both sensing data and communication is not reliable, how can the system

still provide reliable service by leveraging multiple reference data source and historical

data record is still an open challenge.

2.3 Privacy and Security

To illustrate the privacy and security of Edge computing more clearly, we will use

smart home as a scenario in this section.

At the Edge of the network, usage privacy and data security protection are the most

important services that should be provided. If a home is deployed with IoT, a lot of privacy

information can be learned from the sensed usage data. For example, with the reading of

the electricity or water usage, one can easily speculate if the house is vacant or not. In this
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case, how to support service without harming privacy is a challenge. Some of the private

information could be removed from data before processing such as masking all the faces in

the video. We think that keeping the computing at the edge of data resource, which means

in the home, could be a decent method to protect privacy and data security. To protect the

data security and usage privacy at the Edge of the network, several challenges remain open.

First is the awareness of privacy and security to the community. We take WiFi

networks security as an example. Among the 439 million households who use wireless con-

nections, 49% of WiFi networks are unsecured, and 80% of households still have their routers

set on default passwords. For public WiFi hotspots, 89% of them are unsecured [10]. All

the stake holders including service provider, system and application developer and end user

need to aware that the users’ privacy would be harmed without notice at the Edge of the

network. For example, ip camera, health monitor, or even some WiFi enabled toys could

easily be connected by others if not protected properly.

Second is the ownership of the data collected from things at Edge. Just as what

happened with mobile applications, the data of end user collected by things will be stored

and analyzed at the service provider side. However, leave the data at the Edge where it is

collected and let the user fully own the data will be a better solution for privacy protection.

Similar to the health record data, end user data collected at the Edge of the network should

be stored at the Edge and the user should be able to control if the data should be used

by service providers. During the process of authorization, highly private data could also be

removed by the things to further protect user privacy.

Third is the missing of efficient tools to protect data privacy and security at the Edge

of the network. Some of the things are highly resource constrained so the current methods

for security protection might not be able to be deployed on thing because they are resource

hungry. Moreover, the highly dynamic environment at the Edge of the network also makes

the network become vulnerable or unprotected. For privacy protection, some platform such
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as Open mHealth is proposed to standardize and store health data [5], but more tools are

still missing to handle diverse data attributes for Edge Computing.

The proliferation of Internet of Things is pushing the development of smart home.

Composed of dependent devices or sensors which depend on edge nodes to compute and

transmit data, independent gateway (edge) which are powerful enough do computation, and

connected smart phone applications, smart home has become a typical scenario both in

Internet of Things and Edge Computing. As shown in Figure 2.4, physical devices and

sensors located at the periphery of the network will report data to edge (including routers,

laptop, desktop computer, etc.), and most of them only do it periodically since not all data

will be utilized. Some physical devices such as light bulbs, oven are not necessary to interact

with the outside network while other devices like IP camera and smart TV may often expose

themselves to the Cloud. On one hand, communicating with the Cloud could significantly

increase the probability of attack. On the other hand, as mentioned in section II, the

independent devices only interacting with edge nodes also take the risk of being attacked

because of their limited capability. Due to unique characteristics of smart home, security

and privacy are the most important services to be introduced and deployed in smart home

operating system design. In this section, we will discuss new issues raised by smart home

that related with security and privacy.

Why new issues in smart home

In a smart home, all household devices have the ability to connect to network, in-

cluding doors, cameras, oven, thermostat, etc. Located at the Edge of network, these huge

amount of IoT devices can generate a significant amount of data, while not all data are useful

to users. In this situation, data should be preprocessed and then wait for further utilization.

Periphery physical devices communicate with Edge operating system through multiple radio

protocols such as Wi-Fi, Bluetooth, ZigBee or a cellular network. These different types of

data, including device status and device info, then be gathered and processed by data ab-
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Figure 2.4: Edge computing in smart home.

straction layer. Service Management layer provides APIs for applications running on top of

it to consume data or provide service.

Limited resources and computational capabilities, as well as multiple communication

protocols makes it very difficult to protect smart home from attackers. What’s more, security

and privacy problems in smart home can always raise people’s concerns. The reasons are

mainly on the following several unique characteristics in smart home:

Resource Constrain. Devices in IoT always have the properties of small memory

space, limited battery life, and low computational capability. Smart home has no exception

but to take these factors into consideration. Constrained resource makes it impossible for

IoT devices to employ some traditional security solutions, which have high requirements on

computational ability or memory space.

Usage Privacy. Privacy issues can always draw people’s attention, especially in a

home environment. User data are keeping collected and analyzed by smart home system,

then transmitted to provider’s server and store there. It is hard to tell whether there are

malicious applications which steal data for their own use. Besides, even if users have a strong

sense of privacy, it is hard for them to tell which kind of smart home data should have the
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highest or lowest privacy. For example, some users do not care about data on their utility

reports and set it as low privacy, while burglars can deduce family demographic composition

and living standards from utility data, even what time the house could be empty.

Heterogeneous Communication. IoT devices in smart home are versatile both in

function and capability. For example, home security surveillance system runs complicated

algorithm (e.g., face recognition, voice detection) and report potential dangerous to users in

real-time. In contrast, automatically controlled lights only perform simple computations like

when to turn on or off the light. Different requirements on capability and complexity of IoT

devices lead to various communicate methods when the devices exchange information with

the smart home operating system, which also leads to different security levels in the same

OS.

Although smart home system has experienced rapid development in recent decades,

and early complicated device deployment systems had been improved into recently more

friendly ones [41], security and privacy issues have not been taken great care of [114]. Sev-

eral researchers and news reports illustrate that smart home system is vulnerable and easy

to disclose users’ privacy when facing attacks. For example, Forbes.com reported that hack-

ers broke into a baby monitor and yelled at the baby [1]. Seizures in epileptic users by

causing compact florescent lights to rapidly power cycle is introduced in [90]. Samsung’s

SmartThings framework has several design flaws that make door lock and alarm system ex-

posed to attackers is found in [41]. CNN Money also reported that smart home devices were

exposed security flaws to hackers [11]. These attacks could produce a very bad effect and

severe losses to users.

It is easy to find out that cases are more complex in smart home when comparing

with traditional smart phone or personal computer. Normally, if a malicious program infects

a laptop, user can run a malware detector and reboot the machine. But if same thing

happens in a smart home where various kinds of devices dividing labor and cooperating

with each other, it is impossible to just simply turn everything off or to locate the problem
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among devices. Various reasons are responsible for this problem. On one hand, many device

producers may have little expertise in security, unintentionally using the operating system

and protocols only half patched or even malicious tampered. On the other hand, users may

not be able to tell high priority data from tremendous amount of data produced by all

devices he is using. It makes the whole system vulnerable for attackers to make use of seems

meaningless data to achieve his evil goal. As mentioned above, consequences of insecure

smart home are much more severe and pose heavier threat to users than PC or smart phone.

Victims could suffer from property or psychological damage, even life threaten. Since neither

users nor device manufacturers can guarantee the safety, the operating system in smart home

is duty-bound to take care of potential security and privacy issues for users.

What are the new issues

1. Identity and Access Management.

Challenge The first challenge is access control around applications and events at

service management layer. In personal computer and smart phone, access control is

defined by users. When an application requests for some resources, the operating

system asks for user permission first, then decide what kind of resources could be

allocated depending on user response or authorization. In Edge operating system,

users still have the highest privilege and authority to assign resources, but the system

should consider more since it has tight relationship with physical world and devices.

Unbalanced operations and corresponding security risk. Similar operations could have

widely different security risks. For example, turning on/off light is less risky than

performing the same operation on oven. Even to the same device, opposite operations

takes different risk. Locking doors mistakenly will block authorized users and cause

some inconvenience, while unlocking doors to burglars will threat home safety.

Arbitrary events and resource trust. Largely deployed IoT devices are responsible

for diverse tasks. Different applications accept various events and interact with the
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operating system, which increase the probability of being attacked. A novel security

mechanism that can verify the identity of event source, and selectively make sensitive

data visible to authorized apps needs to be developed.

Possible solutions To assign authorizations correctly, it is indispensable to classify

privilege level for applications. Granting application permissions by users is reasonable,

but this is not enough. As mentioned before, some users are not aware of potential

security and privacy issues hidden in seems meaningless data, or hackers could make

use of low privilege devices to achieve malicious attack to high privilege ones. In this

situation, Edge operating system should be smart enough to have a pre-defined privi-

lege level for all categories of applications, and have the ability to deny abnormal raised

events. i.e., to introduce access control and intrusion detection into Edge operating sys-

tem. Attribute-based encryption (ABE), proxy re-encryption, and lazy re-encryption

are combined to propose a fine-grained data access control scheme in [132]. A secu-

rity framework that to fight against intrusions to distance clouds, security attacks on

mobile devices, and malicious access to cloud is proposed in [110]. To Edge operating

system, it is a challenge to design fine-grained access control and intrusion detection

mechanism to ensure the system security and preserve user privacy.

2. Connection Security.

Considering structure and components in Edge operating system, challenge in connec-

tion security can be viewed from two aspects.

Connection Diversity. Isolated with service management layer, communication layer is

encouraged to have its own security mechanism. As mentioned before, versatile IoT de-

vices in smart home have different hardware specifications and software systems. They

may be deployed with variant operating systems and communicate protocols. There-

fore, different levels of security solutions are taken on theses various devices considering

their computational capabilities and communication channels. As a result, because of
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connection diversity, the overall level of security is determined by the device that has

the minimum level of security. It is possible to utilize some security algorithms if all

devices are using the same communication protocol. For example, bluetooth security

mode uses Secure Simple Pairing (SSP) to achieve service level enforced security [105],

ZigBee has 128-bit keys to implement its security mechanisms. But it is a huge chal-

lenge to design a universal security solution for all these protocols. One possible way

is making security strategy spun off from device specifications, operating systems and

communication channels.

Network Security. The predominance of wireless communication in Edge operating

system raises great concerns on network security, especially for normal users who have

little awareness on this kind of security. According to a community research, among

the 439 million households using wireless connections, 49% of Wi-Fi networks are

unsecured, and 80% of households even still use default passwords on their routers [9].

What’s more, highly dynamic edge nodes also makes the network becomes vulnerable

to attackers. Although it is possible to enhance community’s awareness of security

and privacy, other stake holders in Edge operating system, including service provider,

system and application developers are supposed to take more responsibility on it.

3. Privacy.

Like cloud computing raises community’s attention on privacy, smart home in edge

computing also has to face the same problem. Deployed with IoT, a smart home can

generate a lot of privacy information along with sensed usage data. These data are

even more sensitive than those in cloud computing since they generate directly from

daily life, other than in the core network. For example, by reading the utility usage

data, one can deduce the family demographic composition and living standards, even

what time the house could be empty. In this situation, the challenge is how to provide
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reliable service and protect data and usage privacy at the same time. In Edge operating

system, there are three main problems:

4. Secure Data Storage and Computation in Different Layers.

In Edge operating system, data could be stored and computed in different layers,

including sensor/device, gateway, and cloud.

In each layer the outsourced data could be intentionally modified or abused because of

no more physical possession by users. Also, data transmitted through different layers

could suffer from malicious use by unauthorized third part applications. Researchers

conducted an attack by snooping door lock pin code in [41]. In this case, how to make

sure the data is under protection in each layer is a new challenge.

2.3 Optimization Metrics

In Edge computing, we have multiple layers with different computation capability.

Workload allocation becomes a big issue. We need to decide which layer to handle the

workload or how many tasks to assign at each part. There are multiple allocation strategies to

complete a workload, for instances, evenly distribute the workload on each layer or complete

as much as possible on each layer. The extreme cases are fully operated on endpoint or fully

operated on cloud. To choose an optimal allocation strategy, we discuss several optimization

metrics in this section, including latency, bandwidth, energy and cost.

Latency: Latency is one of the most important metrics to evaluate the performance,

especially in interaction applications/services [68, 79]. Servers in Cloud computing pro-

vide high computation capability. They can handle complex workloads in a relatively short

time, such as image processing, voice recognition and so on. However, latency is not only

determined by computation time. Long WAN delays can dramatically influence the real-

time/interaction intensive applications’ behavior [101]. To reduce the latency, the workload

should better be finished in the nearest layer which has enough computation capability to

the things at the Edge of the network. For example, in the smart city case, we can leverage
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phones to process their local photos first then send a potential missing child’s info back to

the cloud instead of uploading all photos. Due to the large amount of photos and their

size, it will be much faster to pre-process at the edge. However, the nearest physical layer

may not always be a good option. We need to consider the resource usage information to

avoid unnecessary waiting time so that a logical optimal layer can be found. If a user is

playing games, since the phone’s computation resource is already occupied, it will be better

to upload a photo to the nearest gateway or micro-center.

Bandwidth: From latency’s point of view, high bandwidth can reduce transmission

time, especially for large data (e.g., video, etc.) [53, 16]. For short distance transmission,

we can establish high bandwidth wireless access to send data to the edge. On one hand,

if the workload can be handled at the edge, the latency can be greatly improved compared

to work on the cloud. The bandwidth between the edge and the cloud is also saved. For

example, in the smart home case, almost all the data can be handled in the home gateway

through Wi-Fi or other high speed transmission methods. In addition, the transmission

reliability is also enhanced as the transmission path is short. On the other hand, although

the transmission distance cannot be reduced since the edge cannot satisfy the computation

demand, at least the data is pre-processed at the edge and the upload data size will be

significantly reduced. In the smart city case, it is better to pre-process photos before upload,

so the data size can be greatly reduced. It saves the users’ bandwidth, especially if they

are using a carriers’ data plan. From a global perspective, the bandwidth is saved in both

situations, and it can be used by other edges to upload/download data. Hence, we need to

evaluate if a high bandwidth connection is needed and which speed is suitable for an edge.

Besides, to correctly determine the workload allocation in each layer, we need to consider

the computation capability and bandwidth usage information in layers to avoid competition

and delay.

Energy: Battery is the most precious resource for things at the Edge of the network.

For the endpoint layer, offloading workload to the edge can be treated as an energy free
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method [86, 32]. So for a given workload, is it energy efficient to offload the whole workload

(or part of it) to the edge rather than compute locally? The key is the trade-off between the

computation energy consumption and transmission energy consumption. Generally speaking,

we first need to consider the power characteristics of the workload. Is it computation inten-

sive? How much resource will it use to run locally? Besides the network signal strength [37],

the data size and available bandwidth will also influence the transmission energy overhead

[28]. We prefer to use Edge computing only if the transmission overhead is smaller than

computing locally. However, if we care about the whole Edge computing process rather than

only focus on endpoints, total energy consumption should be the accumulation of each used

layer’s energy cost. Similar to the endpoint layer, each layer’s energy consumption can be

estimated as local computation cost plus transmission cost. In this case, the optimal work-

load allocation strategy may change. For example, the local data center layer is busy, so

the workload is continuously uploaded to the upper layer. Comparing with computing on

endpoints, the multi-hop transmission may dramatically increase the overhead which causes

more energy consumption.

Cost: From the service providers’ perspective, e.g., YouTube, Amazon, etc., Edge

computing provides them less latency and energy consumption, potential increased through-

put and improved user experience. As a result, they can earn more money for handling the

same unit of workload. For example, based on most residents’ interest, we can put a popular

video on the building layer edge. The city layer edge can free from this task and handle

more complex work. The total throughput can be increased. The investment of the service

providers is the cost to build and maintain the things in each layer. To fully utilize the local

data in each layer, providers can charge users based on the data location. New cost models

need to be developed to guarantee the profit of the service provider as well as acceptability

of users.

Workload allocation is not an easy task. The metrics are closely related to each other.

For example, due to the energy constraints, a workload needs to be complete on the city
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data center layer. Comparing with the building server layer, the energy limitation inevitably

affects the latency. Metrics should be given priority (or weight) for different workloads so

that a reasonable allocation strategy can be selected. Besides, the cost analysis needs to

be done in runtime. The interference and resource usage of concurrent workloads should be

considered as well.

2.4 Summary

In this Chapter, we illustrate our vision and understanding of Edge computing. We

also give several case studies to further explain how Edge computing could be adapted to the

current computing paradigm. Then we summarize the challenges in detail and bring forward

some potential solutions and opportunities worth further research, including programmabil-

ity, naming, data abstraction, service management, privacy and security and optimization

metrics. In the next Chapter, we will introduce the design of SOFIE and talk about how we

want to address these challenges using SOFIE.
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Chapter 3: SOFIE - Smart Operating System For Internet Of Everything

In this Chapter we introduce the design of SOFIE, a Smart Operating System For

Internet of Everything. SOFIE will manage and maintain the connections between gateway

and Edge devices via multiple communication channels. We also argue that following four

fundamental features should be supported in SOFIE to guarantee a reliable system, including

Differentiation, Extensibility, Isolation, and Reliability (DEIR). Moreover, we also introduce

lifetime management model in service management layer to detect the remaining lifetime for

batteries and Edge devices in the system, as well as SURF model to optimize the system

performance. SOFIE provides programmability for Edge application practitioners to design

and implement their applications on SOFIE. SOFIE also supports a naming mechanism to

support better service management and device management. Data management layer is

introduced in SOFIE to isolate Edge device and Edge applications/services, which cloud

help protect privacy and security of the data. In data management layer we will support

data quality management, data abstraction, and programming interface.
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3.1 Related work

In this Section, we summarize research topics and prior works that are closely related

to this dissertation.

3.1 Distributed system

The distributed network computing has been widely adopted in the computer frame-

work nowadays. Grid [46, 45, 47] is proposed as a large-scale distributed framework which

can use the widely distributed computing resources for one computing task. Unlike cloud

computing, each node in the grid could perform a different computing task or run a different

application.

Cyber Foraging [19] is proposed to utilize the the computing resources on the ubiq-

uitous network dynamically through nearby high-performance computing infrastructures.

Although Goyal et al. [51] developed a lightweighted infrastructure for cyber foraging and

can be deployed on resource-constrained devices, this virtual machine based solution is still

too heavy in order to run on Edge devices.

Guan et al. [54] proposed a grid service infrastructure for mobile devices, which allowes

users to access Grid services using mobile devices However, this system cannot be deployed

in wireless sensor networks or IoT devices, which makes it is not a good candidate for Edge

computing.

Slingshot [115] is a system which can deploying mobile grid services at wireless hot-

spots, and the deployment mechanism could be adopted by SOFIE for computing distribu-

tion.

Automatically partition applications such as Coign [64], Globus [44], Condor [118],

and Legion [89] could also contribute to SOFIE as resource partition methods for client-server

computing model. However, the APIs and drivers for various communication methods and

devices are missing in those solutions.
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Cannataro et al. [27] discussed the possibility of using the semantic web on an open

grid service architecture, which also inspires us for supporting the semantic service on SOFIE.

3.1 Edge computing applications

Inspired by low-latency analytics, edge computing [107] (a.k.a. fog computing [23],

cloudlet [103]) is proposed to process data at the proximity of data sources. To leverage

computing resources on edge nodes, mobile device cloud [39], femto clouds [59], mobile edge-

clouds [42], and Foglets [104] have been proposed to orchestrate multiple edge devices for

intensive applications that are difficult to run on a single device. Differencing from these

systems, SOFIE leverages not only mobile devices and the cloud, but also edge nodes to

complete big data processing task collaboratively, while aforementioned systems are not for

large scale data processing and sharing among multiple stakeholders.

GigaSight [113] has been proposed as a reversed content distribution network using

VM-based cloudlets for scalable crowd-sourcing of video from mobile devices. GigaSight

collects personal video at the edges of Internet with denaturing for privacy that automatically

applies contributor-specific privacy policy. The captured video in GigaSight is tagged for

search and shared using network file system (NFS). However, GigaSight is designed to share

video data and cannot apply video analytics functions. In contrast to GigaSight, SOFIE

provides APIs for data owners to create customized video analytics functions, which can be

used by a user to compose his/her IoE application.

Vigil [137] is a distributed wireless surveillance system that prioritizes video frames

that are most relevant to the user’s query and maximizes the number of query-specified

objects while minimizing the wireless bandwidth cost. Vigil partitions video processing

(e.g., object/face recognition or trajectory synthesis) between edge nodes and the cloud with

a fixed configuration. Differencing from this prior work, SOFIE allows a user to define

workload partitioning and deployment and provides dynamic workload migration (e.g., JVM

migration) depending on the available resources on the edge nodes and the cloud.
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Wang et al. [124] propose OpenFace that is an open-source face recognition frame-

work to provide real-time face recognition/tracking by using edge computing (i.e., cloudlet

[103]). Integrated with video stream denaturing, OpenFace selectively blurs faces depending

on user-specific privacy policy. However, OpenFace leverages only edge computing whose

computation is conducted on edge nodes. In contrast to OpenFace, SOFIE leverages both

edge nodes and the cloud to reduce the response latency and network bandwidth cost. A

programming interface is provided to manipulate data from multiple data sources.

Panoptes [69] presents a cloud-based view virtualization system to share steerable

cameras among multiple applications by moving the cameras in a timely manner to the ex-

pected view for each application. A mobility-aware scheduler prioritizes virtualized views

based on motion prediction to minimize the impact on application performance caused by

camera moving and network latency. Zhang et al. [134] propose VideoStorm to support real-

time video streams analytics over large clusters. An offline profiler generates query-resource

quality profile, and an online scheduler allocates resources to each query to maximize perfor-

mance on quality and lag based on the quality profile. Resource demand for a query can be

reduced by sacrificing the lag, accuracy, and quality of outputs. These prior works are orthog-

onal to Firework. Panoptes can be adopted by SOFIE to provide customized camera views

which are most relevant to user interests. The online scheduling algorithm of VideoStorm

can also be used to adjust the resources allocated for a Firework.View. Furthermore, SOFIE

can reduce impact on application performance (e.g., latency and network bandwidth cost)

by carrying out the analytics on edge nodes, while both Panoptes and VideoStorm assume

video data are preloaded in the cloud and clusters, which is infeasible given the scale of

zettabytes data.

Ananthanarayanan et al. [15] present a geo-distributed framework for large-scale

video analytics that can meet the strict requirements of real-time. The proposed frame-

work in [15] leverages public cloud, private clusters, and edge nodes to carry out different

computation modules of vision analytics. The prior works, Panoptes [69] and VideoStream
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[134], are integrated with the framework to optimize the resource allocation and minimize

latency. SOFIE differs from [15] because our work expands data sharing along with attached

computing modules and provides programming interfaces for users to compose their IoE

application.

3.1 Performance of Edge computing applications

Performance evaluation for Edge Computing applications has been studied in exten-

sive research work [85, 81, 67, 119, 131, 100]. In [138], Zeigel et al. proposed the notion

of weighted diagnostic distortion (WDD), which is a novel measure for data quality in a

health care related application. Based on this work, a general methodology for developing

quality of information for body sensor design was proposed in [17]. In this work, the authors

claim that the performance of the application should be evaluated based on their capability

in finishing the desired job. However, the work above did not give a general framework

that can be used in evaluate the performance of Edge Computing applications from different

requirement aspects.

In wireless sensor network area, various sensor selection schemes are developed to

make trade off between power conservation and quality of service [98, 56, 24]. Moreover,

several work mentioned that component selection is a important issue in system design [61,

77].

In Edge Computing we want to put the computing at the proximity of data sources.

This have several benefits compared to traditional Cloud based computing paradigm. Here

we use several early results from the community to demonstrate the potential benefits. Re-

searchers built a proof-of-concept platform to run face recognition application in [129], and

the response time is reduced from 900ms to 169ms by moving computation from cloud to

the Edge. In [58], the researchers use Cloudlets to offload computing tasks for wearable

cognitive assistance, and the result shows that the improvement of response time is between

80ms to 200ms. Moreover, the energy consumption could also be reduced by 30-40% by

cloudlet offloading. CloneCloud in [32] combine partitioning, migration with merging, and
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on-demand instantiation of partitioning between mobile and the cloud, and their prototype

could reduce 20x running time and energy for tested applications.

3.2 Overview of SOFIE

Figure 3.1: The structure of SOFIE.

Figure 3.1 shows the structure of a SOFIE. SOFIE needs to collect data from mobile

devices and all kinds of things through multiple communication methods such as Wi-Fi,

Bluetooth, ZigBee or a cellular network. Data from different sources needs to be fused and

massaged in the data management layer. In data management layer, data abstraction model

will fuse and massage the data into one table. On top of the data abstraction layer is the

service management layer. Requirements including Differentiation, Extensibility, Isolation,

and Reliability (DEIR) will be supported in this layer. In the following section, this issue

will be further addressed. The naming mechanism is required for all layers with different

requirements. Thus, we leave the Naming module in a cross-layer fashion. Challenges in

naming are discussed later. Moreover, SOFIE will also manage the wellness of the system,

including life-cycle management to handle the battery-life and component failure on Edge

devices, and SURF to choose the optimized combination of Edge devices for different services

based on their performance requirements such as battery-life, data precision, data quantity,

etc.
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We have described five potential applications of Edge computing in the previous sec-

tion. To realize the vision of Edge computing, we argue that the systems and network com-

munity need to work together. In this section, we will further bring forward some potential

solutions for addressing these challenges using SOFIE, including programmability, naming,

data abstraction, service management, privacy and security and optimization metrics.

3.3 Service Management Layer

In terms of service management at the Edge of the network, we argue that following

four fundamental features should be supported in SOFIE to guarantee a reliable system,

including Differentiation, Extensibility, Isolation, and Reliability (DEIR). In order to support

DEIR features in SOFIE, we propose three models in service management layer, which are

SURF, lifecycle management, and privacy management. SURF could be very helpful in

supporting differentiation, isolation and extensibility of the system, since it can choose the

most suitable devices for different tasks. Lifecycle management model is used to maintain

the reliability and wellness of the system. At last, privacy management model is proposed

also to support the isolation as well as the reliability requirement.

3.3 SURF

In the design and development of Edge computing applications, practitioners usually

face several performance requirements from service providers, end users, and/or hardware

constrains. Moreover, there could be a large number of available choices for different compo-

nents in the application. To help the practitioners to select the optimal component combi-

nations that can meet the performance requirements and reduce cost as much as possible at

the same time, in SOFIE we will use the performance evaluation metrics we have proposed

in SURF and also use the methodology for using performance vector. Moreover, when a

critical services comes with higher priority, SURF could guarantee the critical service to use

the desired device first, and provide lower quality device to other services as replacement,

in this way, differentiation feature is supported in SOFIE. If one application failed, SURF
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could also make sure that the devices it is assigned will not be affected, so that other appli-

cations that share the same devices could still work normally, in this way, isolation feature

is supported. Since SURF will be responsible for choosing the most suitable devices for each

application, extensibility feature is also supported by SURF for easy replacement and new

device adoption. The design and performance of SURF will be discussed in detail in the

next Chapter.

3.3 Lifecycle Management

In a typical Edge computing system such as smart home, the number of Edge devices

could be very large. Moreover, most of the devices are battery powered. According to our

previous research [28], some device could provide very low quality data when the battery is

about to die. In this case, it is very important for SOFIE to be able to detect and remind

the user that some devices are running out of battery and need to be recharged before it lose

effectiveness or report low-quality data.

Another goal of lifecycle management is detecting the remaining service life of the

Edge devices. In Edge computing systems there could be some devices that are consumables

with a limited operating life such as light bulb or fuse, etc. The lifecycle management

Figure 3.2: The Lifecycle management model of SOFIE.

model in SOFIE will detect and manage the lifetime of the Edge devices from three aspects,

as shown in Figure 3.2. First is the heartbeat check. SOFIE will do a period life check

for all the inactive devices. If they don’t response of the check, SOFIE will then notify

the system administrator for a maintenance. Second is the battery life calculator. SOFIE

will ask for the time of last recharge and calculate the remaining battery life, and if the

device is capable of reporting the remaining battery life, SOFIE could make the correction
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correspondingly. Last is the service life calculator. Based on the estimated MTTF/MTBF

(Mean Time to Failure/Mean Time Between Failures) provided by the manufacturer and the

time of installation, SOFIE could calculate the remaining service life and remind the user to

be prepared for replacement when the device is not reliable due to wear out.

3.3 Privacy Management

Part of the Isolation feature is the requirement of privacy of the user. To protect

the security of private data, Identity and Access Management (IAM) mechanism can be

introduced to SOFIE. Different from traditional IAM system wherein assigns digital identity

to users, SOFIE do identification of applications. With a digital identity, application can

tell system who it is, and access to its authorized resources or devices or function. What’s

more, access control is provided to triggered events (i.e., door lock application can trigger

the door to lock), avoiding malicious applications spoofing unauthorized events.

Figure 3.3: Identity and Access Management in smart home.

As shown in Figure 3.3, the user has the highest privilege, which is "home" level

privilege. User authorizes applications to obtain a certain kind or kinds of capability and

access to the corresponding resources. One application could have right to take charge of

several devices for the same function and one device may also may communicate with several

applications that taking care of different functions. On a fine granularity level, door lock and

unlock are belong to different applications because of the asymmetric risks they have. Except

these two apps which responsible for opening and closing the door respectively, digital locks
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also need to interact with a battery monitoring app that keeps tracking of its power status.

This battery monitoring app works for other devices who require the same service at home

as well, e.g., the IP camera or smart TV. The access management only allocates specific

authority to the specified application, avoiding sensitive data dissemination effectively.

In many scenarios like wireless network, smart grid and cloud computing, one widely

used privacy protect concept is privacy-preserving. A similar mechanism may be designed

SOFIE. There are basically two types of privacy in SOFIE.

Data Privacy. To protect data privacy, periphery devices and sensors should be able

to encrypt sensitive data before communicating with edge nodes. At edge, nodes can run

privacy-preserving algorithm. In smart grid scenario, EPPA was proposed as an efficient

and privacy-preserving aggregation scheme, using homomorphic Paillier cryptosystem to

structure and encrypt multidimensional data [83]. Key generation algorithm can be utilized

when edge nodes uploading data for further computation [49].

Usage Privacy. Usage pattern, which has been widely used to analysis user behavior

in the context of cloud computing, smartphone, etc., can leak quantities of user privacy

information. For example, during what time the house could be vacant, at what time the

light in sitting room is turned on, and when will the householders fall to sleep. It is extremely

easy for an intended person to monitor his target and schedule his malicious plan. Since there

lacks a trusted third party, researchers proposed to hide privacy information by partitioning

application which using offloaded resource in [130].

3.4 Data Management Layer

3.4 Data Abstraction

Figure 3.4: Data abstraction layer structure on SOFIE.

To address the data abstraction challenge, we envision that human involvement in

edge computing should be minimized and the Edge node should consume/process all the data

and interact with users in a proactive fashion. In this case, data should be preprocessed at
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the gateway level, such as noise/low-quality removal, event detection, and privacy protection,

and so on. Processed data will be sent to the upper layer for future service providing. There

will be several challenges in this process.

First, data reported from different things comes with various formats, as shown in

Figure 3.4. For the concern of privacy and security, applications running on the gateway

should be blinded from raw data. Moreover, they should extract the knowledge they are

interested in from an integrated data table. We can easily define the table with id, time,

name, data (e.g.,{0000, 12:34:56PM 01/01/2016, kitchen.oven2.temperature3, 78}) such that

any Edge thing’s data can be fitted in. However, the details of sensed data have been hidden,

which may affect the usability of data.

Second, it is sometimes difficult to decide the degree of data abstraction. If too much

raw data is filtered out, some applications or services could not learn enough knowledge.

However, if we want to keep a large quantity of raw data, there would be a challenge for

data storage. To address this challenge, we will add SURF to SOFIE’s data abstraction

layer.

Lastly, data reported by things at Edge could be not reliable sometime, due to the

low precision sensor, hazard environment and unreliable wireless connection. In this case,

how to abstract useful information from unreliable data source is still a challenge for IoT

application and system developers. In the future work, we will add a data quality detection

model to SOFIE to solve this issue.

One more issue with data abstraction is the applicable operations on the things.

Collecting data is to serve the application and the application should be allowed to control

(e.g., read from and write to) the things in order to complete certain services the user desires.

Combining the data representation and operations, the data abstraction layer will serve as

an public interface for all things connected to SOFIE. Furthermore, due the heterogeneity of

the things, both data representation and allowed operations could diverse a lot, which also

increases the barrier of universal data abstraction.
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3.4 Data Quality Management

In Edge computing systems, data could easily falling into a certain pattern due to

the usage pattern by user. To provide better service to Edge computing applications and

devices, we will leverage the current data mining and machine learning algorithm to train a

model for data quality detection model in SOFIE, as shown in Figure 3.5. This model could

automatically detect abnormal data pattern from historical data record, and further analyze

the reason for the abnormal pattern, which could be user behavior changing, device failure,

communication interfacing, or system under attack. Moreover, in the Edge computing sys-

Figure 3.5: The data quality management model of SOFIE.

tem, same data could be reported from multiple source. For example, the room temperature

could be reported from various thermometer, temperature controller, or weather forecast

from online service. If one device report abnormal data, then the data from other sources

could be used as the reference to detect if the abnormal comes from device defective.

3.4 Programming Interface

Without a flexible interface, developers would have to put a lot of effort into im-

plementing applications for edge environments. They need to carefully coordinate Edge

gateway, Edge devices and the cloud in their implementation, guaranteeing that their appli-

cations could enjoy the benefits provided by edge computing.
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Figure 3.6: The programming interface in SOFIE.

In order to provides a flexible programming interface, through which the developer

could implement user-specified policies with very little effort, helping the system efficiently

execute the application on the edge infrastructure from Cloud to edge device, we propose

Program Interface in data management layer. The main design goal of this interface is to

provide satisfactory performance for user applications with minimum developer effort.

In this interface, SOFIE will manage the collection of data form all the Edge devices

on behalf of each service. SOFIE will also record the controller for all the Edge devices. The

collected data will be abstracted into a single table, and the control commands for various

Edge devices will be record in a centralized controller, as shown in Figure 3.6. In this

case, service providers do not need to handle various data collection protocols and control

commands for different Edge devices. Instead, they could easily use a unified interface for

getting data and sending commands from SOFIE to handle multiple Edge devices.
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Figure 3.7: The communication layer in SOFIE.

3.5 Communication Layer

The communication layer will manage the connection between Edge gateway and

Edge devious. In an Edge computing system, there could be various end devices connected

to the gateway, and they might speak different languages such as Zigbee, Bluetooth, Wi-Fi,

or cellular data such as 3G/4G. It would be a onerous task to handle the data collection

and commands distribution through multiple communication protocols. In this case, the

communication layer in SOFIE could integrate all the supported communication protocols

into one package and open a unified interface to the upper layer, which is data management

layer, to collect data from and distribute control commands to different devices, as shown in

Figure 3.7.

3.6 Naming

Figure 3.8: The naming mechanism in SOFIE.

For a relative small and fixed Edge such as home environment, let SOFIE assign

network address to each thing could be a solution. With in one system, each thing could have

a unique human friendly name which describes the following information: location (where),

role (who), and data description (what), for example, “kitchen.oven2.temperature3". Then
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SOFIE will assign identifier and network address to this thing, as shown in Figure 3.8. The

human friendly name is unique for each thing and it will be used for service management,

things diagnosis, and component replacement. For user and service provider, this naming

mechanism makes management very easy. For example, the user will receive a message from

SOFIE like “Bulb 3 (what) of the celling light (who) in living room (where) failed", and then

the user can directly replace the failed bulb without searching for an error code or reconfigure

the network address for the new bulb. Moreover, this naming mechanism provides better

programmability to service providers and in the meanwhile, it blocks service providers from

getting hardware information, which will protect data privacy and security better. Unique

identifier and Network address could be mapped from human friendly name. Identifier will

be used for things management in SOFIE. Network address such as IP address or MAC

address will be used to support various communication protocols such as BlueTooth, ZigBee

or WiFi, and so on. When targeting highly dynamic environment such as city level system,

we think it is still an open problem and worth further investigation by the community.

3.7 Security

3.7 Connection Security

Considering the configuration in Edge computing which allowing computation to be

performed at the edge of the network [108], massive computational edge nodes make it

difficult to access for maintenance. To ease the network management and enhance network

security, SDN (Software Defined Network) or similar architecture can be deployed in SOFIE.

It may enable network security by controller’s central view of the network, and has ability

to reprogram the data plane at any time. By allowing network administrators to manage

network services through abstraction of lower-level functionality, SDN can support the dy-

namic, scalable computing and storage needs of SOFIE. It can benefit SOFIE’s security in

several aspects.
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Network Access Control. Besides ABE we mentioned above, SDN technique also can

be applyed in access control management. By assigning network only to authorized devices

and sensors, system security could be improved at the device layer.

Network Traffic Scheduling. SDN technology can enhance data security by simplify

extending VLANs (network segments) [48] beyond the building perimeter, or using VLAN ID

to isolate malicious traffic. In SOFIE, variant devices and sensors compose nebulous network

perimeters with vague boundaries, which makes it difficult to deploy security devices like

firewalls. In this situation, SDN allows administrators to schedule routing for all periphery

devices to go through one central firewall [8].

IDS and IPS. When network traffic flowing through a single point, SDN can help with

real-time capture and analysis of Intrusion Detection System (IDS) and Intrusion Preven-

tion System (IPS). CloudWatcher to provide monitoring services using OpenFlow in cloud

computing, enabling administrator easily protect the dynamic network security is proposed

in [111].

3.7 Secure Data Storage and Computation in Different Layers

In SOFIE, data could be stored and computed in different layers, including sensor/de-

vice, gateway, and cloud.

SOFIE could solve the challenges in the following three layers:

Communication Layer. Due to resource constraints, this layer is more responsible for

data transmission rather than data storage and computation.

Data Abstraction Layer. In this layer, raw data from different sources will be fused and

massaged, waiting for further utilization by upper layer. Acting as the backbone of the whole

system, data abstraction layer is supposed to support verifiable computation [49]. Verifiable

computation enables resource constrained devices outsource computation to randomly picked

servers and verify returned proof to get trusted results.

Service Management Layer. Located on the top of SOFIE, service management layer

featured with four elements (DEIR) to guarantee a secure system. This layer accepts pro-
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cessed data from data abstraction layer, as well as service requests sent from applications. In

cloud computing, secure Third Party Auditor (TPA) was introduced to achieve a secure data

storage. A privacy-preserving public cloud data auditing system combining homomorphic

authenticator and random masking in cloud data storage is proposed in [123].

3.8 Summary

In this Chapter, we introduce the design of SOFIE, and explain the details about

each layer of SOFIE, including Communication layer, Data Management Layer, Service

Management Layer, Naming, and Security. Moreover, we further illustrate how SOFIE can

help address the challenges of Edge computing in Chapter 2. SURF is part of the Service

Management Layer and in the next Chapter, we will propose and evaluate SURF.
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Chapter 4: SURF - A Framework for Component Selection in Edge Computing

Application Development

Wireless sensor network-based technologies and applications have attracted a lot of

attention in the past two decades because of their huge potential to change people’s way of

life. These applications usually need close collaboration among multiple sensors, gateways,

services and end users. When developing these applications, system designers and practi-

tioners usually face several performance requirements such as the accuracy, battery life and

system reliability. Given the hard requirements in system performance, how to choose an

optimal combination from various sensors, algorithms and Edge computing systems to form

the application is the most important problem that practitioners need to address. Ad hoc

solutions were proposed in specific applications in the past; however, a general methodology

that can be easily applied to future applications is lacking. In this work, we take the chal-

lenge and propose a general framework aiming to address the component selection problem,

illustrate how this framework can be applied to real life applications through a case study,

and discuss challenging issues and two interesting finds from our implementation.

4.1 Component selection in Edge Computing

The fast development and deployment of wireless communication technologies, and

mobile devices, including sensors, robots, smart phones and tablets, have significantly changed

the way we live [61, 77, 126, 82, 128, 91]. Wireless sensor network-based technologies and

applications have been widely used in process management, health care monitoring, and

environmental sensing, and so on. Trans-disciplinary collaboration is very common in these

applications. For example, a wireless health application needs closely collaboration from

health and medical research groups, mechanical engineers, computer scientists, doctors and

nurses, and health insurance companies. System design is one of the most important tasks in

the Edge Computing application development. There are several challenges that need to be

addressed in the design of Edge Computing applications. One such challenge is meeting the

performance requirements from service providers and end users. These requirements could
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Figure 4.1: System overview of a Edge Computing application.

cover quality of information, battery life, hardware size and weight, and system cost, and so

on [26, 125, 31]. Moreover, in some applications, the performance requirements could not

be fixed, but are adaptive. For example, a sensor could working in a high power mode to

achieve good performance when it is powered by a plug, and it could also turn to a worse

performance to conserve energy and extend battery life when powered by the battery.

In designing Edge Computing applications, practitioners normally face a great deal of

choices in the components of the applications. Figure 4.1 shows a conceptual view of a typical

collaborative monitoring application’s system structure. When a target event happens, raw

data is collected on the spot by wireless sensors, and then sent to data aggregator through

wireless communication channels such as Wi-Fi, Zig-bee or Blue-tooth. The raw data is

then processed in the decision maker, and then a decision is made based on the result of

the detection algorithm with processed data as input. In the decision making process, the

decision maker could also refer to the data reported by the outside systems. For example, a

fire detection system makes decision mainly on the smoke detection sensor, however, it could

also use a real-time camera to find the fire source and use this information in making the

decision.

Combination of system components such as sensors, data transfer methods, detection

algorithms and reference data sources obviously have significant impact on system’s perfor-

mance. Moreover, the number of combinations could be considerable large and practitioners

could feels no place to start when facing such a large dataset. In this way, how to choose the
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appropriate combination of system components that can meet the performance requirement

with less cost is the key issue in Edge Computing application design. The practitioners

could test all of the component combinations to find the best solution, if possible. However,

it could be a tediously long process to go through the whole dataset. Best to the authors’

knowledge, a much more efficient method to optimize the component selection is still a miss-

ing part in the Edge Computing area. To the best of our knowledge, a general framework

for component selection has not been proposed yet in the literature.

4.2 Performance metrics vector

There are several performance requirements for a Edge computing application, includ-

ing those from service providers, end users, and/or hardware constrains. In designing and

developing Edge computing applications, practitioners need to understand the performance

of the system very well in order to satisfy the requirements. With multiple requirements and

a large number of component choices, it is very difficulty for the practitioners to evaluate

and compare every choice. In this section, we propose performance vector, which is a metric

can be used in evaluating the performance of different component combinations.

4.2 Performance requirements

Before designing the combination of components for an application, it is extremely

significant for the practitioners to define the requirements of performance very clearly. More-

over, it is also very important that the proper metrics to describe the performance are se-

lected. For instance, to demonstrate Quality of Information (QoI) [100, 36, 29], practitioners

can choose root mean square error (RMSE), percentage RMS difference (PRD), or signal

to noise ratios (SNR), and so on. Moreover, the requirements could cover various aspects

such as accuracy, battery life, sensor size and weight, and so on. In this paper, we use Rx to

indicate the performance requirements. For example, RAccuracy = 90% means the application

requires accuracy to be at least 90%, and RBatteyLife = 24 hrs imply the system should work

longer than one day before battery runs out.
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4.2 Performance score

To demonstrate the performance of a component combination i, we introduce Pi,x. For

example, Pi,Accuracy= 90% means the accuracy of component combination i is 90%. We also

come up with a performance score Si,x to denote the relationship between the performance

and requirement for a component combination.

Si,x =


Pi,x if performance is better than

or equal to Rx,

Null if performance is worse than Rx.

(4.1)

From Equation 4.1 we can see that the performance score Si,x is Null if the perfor-

mance of component combination i cannot satisfy the requirement Rx. We also set the value

of performance score to be Pi,x, so that the practitioners can easily compare the performance

of different component combinations.

4.2 Performance vector

With performance score Si,x one can describe the component combination’s perfor-

mance for one requirement very clearly. Nevertheless, there are normally multiple require-

ments for a Edge computing application. In this case, practitioners need a metric to demon-

strate a component combination’s performance from several requirement aspects. To overall

evaluate the performance of a component combination, we define performance vector V as

follows:

Vi =< Si,1, Si,2, ..., Si,n > (4.2)

In this way, practitioners can easily eliminate the combinations that do not meet all of

the performance requirements if there is Null in their performance vector. Moreover, they
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can also compare the performance over multiple requirement aspects between component

combinations intuitively.

4.2 A toy example

In order to better demonstrate how the performance vector can help practitioners in

component combination selection, we build a very simple toy example. In this toy example,

the target application has two requirements in performance, RAccuracy and RBatteryLife. For

the practitioners, there are four available component combinations, denoted as CC1, CC2,

CC3, and CC4. After measurement and calculation, we get the performance vectors of

these four combinations as V1 =< 0.3, Null >, V2 =< 0.3, 3 >, V3 =< Null, 4 >, and

V4 =< 0.5, 5 >.

In this case, combination 1 can not be choose because S1,BatteryLife = Null, which

means the battery life of this component combination can not satisfy the requirement. Sim-

ilarly, combination 3 should also be excluded since S3,Accuracy is Null. Combination 4 is the

optimal choice because both S4,Accuracy and S4,BatteryLife are larger than that of combination

2, which means combination 4 has a better accuracy, while the battery life is longer than

combination 2.

4.3 Methodology for using performance vector

As shown in the toy example in last section, with performance vector, practitioners

can make the optimal choice of component combinations for an application. However, There

could be a large number of possible combinations in a complex application, and only a

small portion of them can meet the requirements. In this paper, we name these component

combinations as ‘possible combinations’. In order to conserve the workload and improve

the efficient in system designing, practitioners should calculate the performance vector only

for the possible combinations rather than the whole sets. In this section, we propose a

methodology that can be applied easily to eliminate the impossible combinations and find

the optimal choice through calculating the performance vector of possible combinations.
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4.3 Define performance requirement

Based on the performance requirements from service providers, end users, and/or

hardware consratins, and so on, the practitioners need to define and quantize the require-

ments into a set of values < R1, R2, R3, ..., Rn >.

4.3 List all the component combinations

In this step, the practitioners need firstly define the components in the system design,

and then find all the available choices for each component. With the number of components

m, and ni for the number of available choices in component i, we can have

Number of component combinations =
m∏
i=1

ni (4.3)

4.3 Sort the list for each requirement

For one component, it is usually not difficult to order the available choices based on

the given requirement by using the empirical approach or a simple experiment. In this step,

practitioners should sort the list in previous step for each component and each requirement

separately.

4.3 find and test the best combination for each requirement

When the practitioners have the sorted list of component combinations for each re-

quirement, it is very simple to find the best performance combination for each requirement.

Practitioners should then test the best combinations to see if they can meet the requirements.

If any of the performance vectors has Null inside, which means for some requirement, even

the best combination can not satisfy it. In this case, practitioners should either consider

lowering the requirement, or trying to change the system design. For example, leverage

other technologies to make new components.
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4.3 Exclude impossible component combinations

To find the impossible component, practitioners can start with the best combinations

in Step 4. By replacing only one component choice in the best combinations, practitioners can

easily test if the replacement is possible or not for the application. For this test, practitioner

should always start with the ‘worst’ choice in the sorted list in Step 3. This step has

significant influence in reducing the workload for component combination selection. For

example, in a dataset of 100 component combinations, if we can reduce the possible choices

in one component from 5 to 4, which means we exclude only one choice for this component,

the total dataset size will be reduced to 100× 4÷ 5 = 80. In other word, we reduce 20 % of

the dataset size by only eliminate one choice from one component.

4.3 Calculate performance vector for all the possible combinations

After exclude the impossible combinations, practitioners can calculate the perfor-

mance vector for the remaining part. If any of the Si,x is Null, this combination i should be

eliminated from the possible combinations, and there is no need to calculate other Si,x in Vi.

4.3 Find the optimal combination

Now practitioners should have a table of the performance vectors for all the possible

combinations, and they can choose the optimal combination based on the highest score

in the table. In some applications, there is no component combination that achieves best

performance score for all the requirement. In this circumstance, the practitioners need to

make a choice depend on the focus or key requirement.

4.4 Applying performance vector in a real application: Walking position detection

In this section, we declare how to use our methodology in a real Edge computing

application. A wireless low-power fall detection application called Asgard [97] was used in

this case study. An Asgard wireless sensor contains an accelerometer collecting acceleration,

a flash memory that can store the data, and a CPU to process the data. Asgard sensor was
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fixed on the left ankle of each user, and each user was asked to walk 100 steps on flat ground

and take stairs for another 100 steps. Practitioners wanted to identify the walking segment

that is shown in the left part of Figure 4.2 and the stair segment that is depicted in the right

part. In addition, they also wanted to count exactly how many steps were performed on flat

ground and on stairs. The acceleration in the detection of gravity (Ag) was calculated by

applying the Pythagorean Theorem.

Ag =
√

x2 + y2 + z2 (4.4)

In this case study, the decision-making algorithm put a threshold on Ag and used it to

identify the walking segment and the stair segment.
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Figure 4.2: The walking segment and the stair segment.

4.4 Define performance requirement

In this application, there are three performance requirements that need to be satisfied:

Accuracy

There is no doubt that the quality of data is the most notable feature in Edge com-

puting applications. No matter if we consider service providers or receivers, the fidelity of

the application is always the highest priority issue to be taken care of [106, 17]. In order to

measure the accuracy of the detection, we introduce three measures in statistics, which are

precision, recall and Fscore. In this application, there are two events, walking on flat ground

and taking stairs, so the algorithm will have the following four outputs.
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True positive (TP): stair step correctly identified as stair step.

False positive (FP): flat ground step incorrectly identified as stair step.

True negative (TN): flat ground step correctly identified as flat ground step.

False negative (FN): stair step incorrectly identified as flat ground step.

Then we also list the definitions of precision and recall here.

Precision =
TP

TP + FP
(4.5)

Recall =
TP

TP + FN
(4.6)

From the above equations we can deduce that both precision and recall scales are

from 0 to 1, and in the ideal case, both precision and recall are equal to 1. In addition,

we can understand that the larger precision and recall indicated the better performance our

algorithm gives. In order to measure the accuracy of the system with precision and recall,

we introduced Fscore, which is the harmonic mean of precision and recall:

Fscore = 2× Precision×Recall

Precision+Recall
(4.7)

We can also deduce that Fscore scales from 0 to 1, and in the ideal case, Fscore = 1.

Similar to precision and recall, a larger Fscore means our detection is more accurate. In this

application, service providers came up with the requirement of Fscore to be 0.9 for the fidelity

of the data, so we set RAccuracy = 0.9.

Battery Life

Because Asgard is powered by a battery, battery life is another key requirement

to evaluate its performance [66, 87]. In this application, end user want that the Asgard

sensor can work for more than one week without recharge the battery for convenience [136],
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which means the battery life should be longer than 24 × 7 = 168 hrs. In our expression,

RBatteryLife = 168.

Data quantity

The storage size of Asgard sensor is 512 MB, subjected to this hardware constrain,

there should be a requirement in data quantity. In this case study, we set RDataQuantity = 512

to restrict the amount of data collected by Asgard sensor.

As a conclusion, there are three performance requirements for this application, RAccuracy =

0.9, RBatteryLife = 168, and RDataQuantity = 512.

4.4 Component combination analysis

Component with multiple choices

In this application, we found that there are three components that have multiple

choices.

First is the number of axes of accelerometer we use in the application. Asgard sensor

uses a 3-axes accelerometer, which means we can get the data from x, y, and z axes. In this

case study, we have the following seven choices in axes: xyz, xy, xz, yz, x, y, and z. Using

different number of axes does not affect battery life significantly since all the three axes are

collecting data and we cannot shut down any axe while the sensor is working. However, it

could affect the accuracy and data quantity a lot.

The second component that we can leverage is the sampling rate of the accelerometer.

Asgard sensor allows us to configure the sampling rate to four distinctive values: 6 Hz, 15

Hz, 50 Hz, and 200 Hz. Using different sampling rate has influence on accuracy, battery life

and data quantity.

The last component is decimal digits. In Asgard sensor, we can flexibly compress the

data size to different decimal digits or even round it to integer. In this application, we tried

four different decimal digits, which are a.bcd, a.bc, a.b, and integer part a only. Similar

to the choice of axes, different decimal digits has influence on accuracy and data quantity,



64

but can barely affect battery life because decimal digits is fixed to be a.bcd in raw data

collection.

By applying equation 3, The total number of component combinations is 7× 4× 4 =

112.

Sort the combinations

Common knowledge tells us that for the choice of axes, more axes could lead to

a better accuracy, however, it could also use more space to store the data; and a higher

sampling rate usually means a better accuracy, a larger data quantity and a shorter battery

life, considering it could consume more power for data collection; similarly, more decimal

digits stands for a better accuracy, but a larger data quantity.

Based on the above analysis, we sort all the component combinations for each of the

requirements, as shown in the following table.

As we can see from this table, using more axes, more decimal digit, and higher sam-

pling rate will take more space to store data and consumes more energy, however, accuracy

could also be increased as a benefit.

The best combination

According to the above table, for accuracy, the best component combination is xyz

+ a.bcd + 200 Hz. We tested this combination and find out the accuracy PAccuracy is 1.0.

Since PAccuracy > RAccuracy, it passes the test.

For battery life, the best combination is x + a + 6 Hz. The battery life is calculated

by the following equation.

battery life =
battery capacity

power dispassion
working voltage

(4.8)
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Asgard sensor has the battery capacity of 2100 mAh with working voltage at 4V ,

and we measured the power consumption for 6 Hz sampling rate is 29 mW. By applying

Equation 8, we have PBatteryLife = 290, which has a better performance than RBatteryLife =

168.

For data quantity, combination x + a + 6 Hz is still the best combination. For each

data entry, we need to have at least two Bytes to store it, one is sign bit and another is

the number. Each second, this combination will generate 6 × 2 = 12 B data, and since

RBatteryLife = 168, the total data size PDataQuantity is 168 × 3600 × 12 = 7.2576 MB, which

is smaller than RDataQuantity = 512.

Exclude impossible component combinations

In this case study, we first tested 200 Hz sampling rate. For 200 Hz sampling rate,

the longest battery life it could achieve is using combination: x/y/z + 200 Hz + a. The

PBatteryLife we got for this combination is 88, which is less than RBatteryLife = 168. So in

this test, we exclude 200 Hz from the possible choice.

We then replace the number of axes in the best combinations. We tried to use only

two axes, which gives us the combinations xy/xz/yz + 50 Hz + a.bcd for the best accuracy.

The test result is show in Figure 4.3.
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Figure 4.3: Accuracy of different axes combination.
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From Figure 4.3 we can see, only using all of the three axes can provide PAccuracy =

0.9 = RAccuracy, so in this test, we eliminate all the axes choices but xyz, since it is the only

possible component choice.

We also tested 6 Hz sampling rate for the best accuracy requirement it can achieve.

By testing combination xyz + 6 Hz + a.bcd, we got PAccuracy = 0.87, which is smaller than

RAccuracy. So we exclude 6 Hz sampling rate from possible component choice list.

For decimal digits, we tested choice integer a. The best accuracy it can get is through

combination xyz + 50 Hz + a, and the test result shows PAccuracy = 0.87. This means only

save the integer data is not accurate enough for this application.

Performance vector for all the possible combinations

After the above elimination, there are only 6 possible combinations left, we name

them CC1 to CC6 and list all of them in Table 4.1.

Table 4.1: Possible Name and Component Combinations.

Name Component combination
CC1 xyz + 15 Hz +a.b
CC2 xyz + 15 Hz +a.bc
CC3 xyz + 15 Hz +a.bcd
CC4 xyz + 50 Hz +a.b
CC5 xyz + 50 Hz +a.bc
CC6 xyz + 50 Hz +a.bcd

We then measure the performance of these 6 component combinations from accuracy,

battery life and data quantity.

Accuracy:

In this case study, we calculate the Fscore and show the result in Figure 4.4.
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By applying Equation 4.1, we get the Si,Accuracy for all the six component combinations

and list them in Table 4.2.

Table 4.2: Accuracy score for all the six component combinations.

S1,Accuracy 0.9
S2,Accuracy 0.9
S3,Accuracy 0.91
S4,Accuracy Null
S5,Accuracy Null
S6,Accuracy 0.9

From the table above we can see that both S4,Accuracy and S5,Accuracy are Null, which

means component combinations CC4 and CC5 cannot be used in the application, so in the

following measurement, we only consider component combinations CC1, CC2, CC3, and

CC6.

Data quantity:

In this case study, for each data entry, we need to have one Byte to store sign bit

and one more for each number. In Table 4.3 below we list the format of one data entry for
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component combinations CC1, CC2, CC3, and CC6.

Table 4.3: The format of one data entry for component combinations CC1, CC2, CC3, and CC6.

CCi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 ± x bx ± y by ± z bz
2 ± x bx cx ± y by cy ± z bz cz
3 ± x bx cx dx ± y by cy dy ± z bz cz dz
6 ± x bx cx dx ± y by cy dy ± z bz cz dz

As we can see from the table, the length of one data entry for component combinations

CC1, CC2, CC3, and CC6 respectively are 9 B, 12 B, 15 B, and 15 B. By applying the

following equation:

PDataquantity = Sampling rate× Battery life

×Length of one data entry
(4.9)

We can have the SDataquantity for each component combination, as listed in Table 4.4:

Table 4.4: Data quantity for each component combination.

S1,DataQuantity 81.684
S2,DataQuantity 108.864
S3,DataQuantityy 136.08
S6,DataQuantity 453.6

All of these four component combinations meets the requirement for data quantity,

which is RDataQuantity = 512.

Battery Life:
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As we have discussed before, only sampling rate has influence on battery life, and

since we have collected PBatteryLife for 6 Hz and 200 Hz in the previous tests, here we present

all of the results in one figure. Firstly, we measured the power dissipation for all of the four

sampling rates, as shown in Figure 4.5.
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Figure 4.5: Effect of sampling rate on power dissipation.

By applying Equation 4.8 to the data in Figure 4.5, we get the PBatteryLife for all the

four sampling rates, and the result is demonstrated in Figure 4.6. We continue calculating

the SBatteryLife for all the four component combinations, and list the result in Table 4.5.

Table 4.5: BatteryLife score for all the four component combinations.

S1,BatteryLife 210
S2,BatteryLife 210
S3,BatteryLife 210
S6,BatteryLife Null

Since S6,BatteryLife = Null, we need to exclude CC6 from the possible combinations.

Now we have three component combinations left, and all of them meet the require-

ments from accuracy, battery life and data quantity. We summarize their performance and

get their performance vector in Table 4.6:
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Figure 4.6: Effect of sampling rate on PBatteryLife.

Table 4.6: Performance vector for all the three component combinations.

Combination Si,Accuracy Si,BatteryLife Si,DataQuantity

CC1 0.9 210 81.684
CC2 0.9 210 108.864
CC3 0.91 210 136.08
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4.4 Find the optimal combination

From Table 4.6 we can see that all of the component combinations have the same

performance in battery life, and preform very similarly in accuracy. However, since CC1

uses much less storage space compared with CC2 and CC3, in this application, we select

CC1 as the best combination and use it in the real application developent.

4.5 Two interesting findings in the case study

When we are testing our methodology for using performance vector in our case study,

we fully studied the relationship between data quality, battery life and data quantity for the

application. We observed two interesting phenomenons during in case study. The first one

is the effect of decision making algorithm on data quality, and the second one is different

operation periods for battery.

4.5 Effect of decision making algorithm on data quality

In our case study, we first collected data using these four sampling rates and ran

the classification algorithm on them, respectively. The threshold used in the algorithm was

firstly set to 4.8 empirically, and the Fscore was then calculated and shown in Figure 4.7. As

expected, the Fscore of the datasets has a positive correlation with the sampling rate, which

suggests that with a larger quantity of data as input, decision makers can more easily make

the correct diagnosis.

By analyzing the raw data collected at different sampling rates, we found that the

information that is useful in diagnosis is presented in a more detailed fashion with a larger

sampling rate. However, a problem was also introduced when increasing the sampling rate.

The difference between the walking segment and the stair segment was reduced since both of

them contain more details at a larger sampling rate, which could lead to a worse performance

of classification even if the sampling rate is enlarged. Based on this observation, we applied a

series of thresholds from 4.6 to 6.2 on the four datasets and tested their accuracy separately.
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Figure 4.7: Effect of sampling rate on Fscore.

Figure 4.8 and Figure 4.9 show the recall and precision, and the Fscore is presented in Figure

4.10.
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Figure 4.8: Effect of threshold on Recall.

We can see from Figure 4.8 that no matter which threshold is used, the recall will

not decrease when enlarging the sampling rate, or in other words, it is easier to identify the

step movements from the non-step ones such as standing still. Nevertheless, Figure 4.9 tells
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us that in most cases, the precision decreases while the sampling rate increases from 6 Hz to

200 Hz, which verifies our deduction that it is more difficult to identify the stair segments

from the walking segments when the data is collected at a larger sampling rate. Then we

took these two factors into consideration and got Figure 4.10, from which we can see that
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when the threshold is below 5, the performance increases with the sampling rate; however,

if we take a look at the overall figure, the Fscore of each sampling rate varies. For 50 Hz and

200 Hz, the accuracy of the algorithm decreases when enlarging the threshold, and for 15

Hz the Fscore does not vibrate too much; however, for 6 Hz the performance becomes better

if we use a larger threshold. This means each sampling rate reaches its highest Fscore at

different thresholds and the algorithm should be adapted when the sampling rate is changed

to get the best accuracy.

0.87 

0.91 
0.90 

1.00 

0.80

0.85

0.90

0.95

1.00

6 Hz 15 Hz 50 Hz 200 Hz

Be
st

 P
er

fo
rm

an
ce

 (F
-s

co
re

) 

Sampling rate 

Figure 4.11: Highest Fscore each sampling rate can get.

Based on the above observation, we extracted the best performance that each sam-

pling rate can get from adaptive thresholds and showed the results in Figure 4.11. Comparing

it with Figure 4.7 we can make the following two conclusions. First is that enlarging the

data quantity in this case study will not increase the data quality too much. As shown in

Figure 4.11, both 6 Hz and 15 Hz can get the Fscore around 0.9, which is the highest Fscore

that 50 Hz can get. Second, if the practitioners have to exchange some data quantity for a

longer battery life, they can modify the algorithm to shrink the gap of data quality intro-

duced by this trade off. In some cases, the practitioners can attempted to use a cheaper or

more energy saving sensor but still achieve a good performance if the corresponding decision

making algorithm is properly modified [84, 122, 62]. We believe the second finding here
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can be applied to other wireless health applications and benefit their practitioners in similar

situations [127].

4.5 Three operation period for battery

In the case study, we have observed that when the battery is about to running out,

Asgard sensor works abnormally by logging incorrect data. To better understand the reason

of this abnormality, the operating characteristic of batteries was analyzed first to give us a

better understanding of a battery’s discharge process [96]. We first fully charged the battery

of Asgard sensor, then configured the sensor to continually log acceleration data at 200 Hz

sampling rate until the battery runs out. Considering 88 hours of battery life is too long

for us to monitor, we changed to a 400 mAh battery. During the whole process we kept

measuring the working voltage of the sensor to get the discharge curve of the battery, as

shown in Figure 4.12.
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Figure 4.12: Discharge curve of Asgard sensor battery.

Figure 4.12 shows that the Asgard sensor can continually work for 17 hours for one

charge, and the working voltage of the sensor drops from 4.1V to 2.5V until the battery

runs out. Also, we can see from Figure 4.12 that during the first 16 hours of 17 hours
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working time, the working voltage is only changed subtly from 4.1V to 3.7V . In the last

hour, however, the working voltage decreases significantly until the sensor shuts down.

Working voltage has a significant impact on the performance stability of electronic

devices. While the battery is running out, there is usually a certain stage in which the device

can still be powered by the battery, yet the performance is not stable due to the low working

voltage level. This phenomenon is more likely observed on a low-power device. For example,

a flashlight could be dim or work intermittently when the battery runs out. Since wireless

health applications generally use low-power sensors to guarantee a long battery life, such

as in this case study the power dispassion of the Asgard sensor is lower than 100mW , we

suspect that this phenomenon could also appear in wireless health applications that involve

low-power sensors. To verify this hypothesis, we performed an off-body analysis on an Asgard

sensor. In the off-body analysis, one Asgard sensor powered by a battery was placed on a

flat table as the treatment group, and we also set another Asgard sensor powered by a wire

on the same table as the control group. We kept recording the acceleration reported by both

sensors until the battery of the first sensor ran out. The results show that the wire powered

sensor reports 9.8m/s2 throughout the process, and the data reported by the battery powered

sensor is shown in Figure 4.13.
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Figure 4.13: Effect of working voltage on Asgard sensor.
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Figure 4.13 shows that when the working voltage drops from 4.1V to 3.4V , the sensor

works normally and reports the correct acceleration. However, when the working voltage is

below 3.4V , the data reported by the sensor drops with the working voltage. Finally, when

the working voltage is lower than 2.7V , the sensor does not work. Based on this observation,

we define the following three sensor operation periods:

Working Period (WP): when the battery capacity is sufficient so that the sensor can

work normally.

Transfer Period (TP): when the working voltage is low and the sensor’s performance

is affected.

Non Working Period (NWP): when the working voltage is too low to support the

sensor.

In this case study, the sensor first worked in the working period, which means the

stage when the working voltage is between 4.1V and 3.4V . Then the working voltage dropped

from 3.4V to 2.7V , which means the sensor worked in the transfer period. Last, the sensor

went to the non working period when the working voltage was below 2.7V . Obviously, The

deviation between the values reported by these two sensors powered by the wire and battery

affected the accuracy of the fall detection algorithm in the Asgard system. However, it is

usually an arduous task to catch the transfer period during real usage of the sensor. In this

case study, in order to evaluate the influence of the error introduced by the low working

voltage on data quality, we used the normalized root-mean-square deviation (NRMSD) to

show the difference between the values reported by the wire powered Asgard sensor and

the values reported by the battery powered one, where lower values indicate less residual

variance.

RMSD =

√∑n
i=1(xb,i − xw,i)2

n
(4.10)
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NRMSD =
RMSD

xmax − xmin

(4.11)

In Equation 4.10, xb denotes the values collected by the battery powered sensor, and

xw denotes the data from wire powered sensor. Variable n was set to 1000, which means for

every 0.1V from 2.7V to 3.4V . We collected 1000 samples and used them to calculate the

result. NRMSD of these two datasets is shown in Figure 4.14.
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Figure 4.14: Data quality recession in the transfer period.

Figure 4.14 shows that data quality in the transfer period is not as good as when

battery capacity is sufficient, and it becomes worse when working voltage keeps decreasing.

In order to identify how long the transfer period lasts, we zoomed in on Figure 4.12 and

located the points corresponding to 3.4V and 2.7V . The result is presented in Figure 4.15.

From Figure 4.15 we can see that the transfer period took about 15 minutes in the 17-hour

working period. This may not be a large number, but if we extend the battery life to days

or even months, the transfer period could also be prolonged to hours or days. Since the data

collected in this stage is highly unreliable, the practitioners must be aware of this stage and

take appropriate measures to avoid making incorrect decisions from it.
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Figure 4.15: Three operation periods of battery.

4.6 Summary

In the design and development of Edge computing applications, practitioners usually

face several performance requirements from service providers, end users, and/or hardware

constrains. Moreover, there could be a large number of available choices for different compo-

nents in the application. To help the practitioners to select the optimal component combina-

tions that can meet the performance requirements and reduce cost as much as possible at the

same time, we proposed performance evaluation metrics and a methodology for using perfor-

mance vector. We tested our methodology through a case study, and the result showed that

our methodology is very efficient in finding the optimal component combination. Finally,

we discussed two interesting findings we have observed in the case study, one is the effect of

decision making algorithm on data quality, and the other is different operation periods for

battery.



80

Chapter 5: Enabling Semantics in oneM2M Service Delivery Platform

With the burgeoning of Edge computing, data from Internet of Things (IoT) and

Machine-to-Machine (M2M) systems are shared and consumed at the edge of the network.

How to understand and leverage the data from other systems is a key challenge for infor-

mation exchange and communication among IoT/M2M. Semantic paved the road for the

knowledge-driven IoT/M2M systems. Context awareness becomes possible with the help of

semantic information. In this chapter, we proposed the methods of support semantic service

in a mature IoT/M2M system with reasonable overhead. Moreover, we also discussed the

approaches of support secure mechanism such as access control directly in within the se-

mantic information to boost the performance of the system. Our experiment shows that the

proposed method could effectively and securely provide semantic service to the IoT/M2M

system.

5.1 Introduction

New streams of data that previous unimaginable are generated by the Internet of

Things (IoT) and Machine-to-Machine (M2M) communications, both in quantity and variety.

Cisco Global Cloud Index estimated that 500 Zettabytes data will be generated by people,

machines, and things by 2019 [65]. The sensors on a Boeing 787 will produce about 5

Gigabytes data every second [43]. The current vehicle will also generate one Gigabytes data

every second [121]. Despite the proliferation of IoT/M2M, IoT/M2M is a fast-growing area

and still in its infancy. New generation of things introduce new sensors to the community

every day, and the new sensors generate new data and new functional requirements. However,

it is very difficult for the IoT/M2M systems to interoperable with each other due to the

nature that they are usually designed in a silo-based fashion. In IoT/M2M systems, data

are collected from various resource, modeled in various data formats, and stored in various

databases. This heterogeneous nature makes it extremely challenging for the IoT/M2M

systems to exchange data and communicate with each other.



81

In [109] the researchers came up with Edge computing as the new computing paradigm

for the IoT/M2M applications and systems. Although Edge computing could improve the

efficiency and reduce the cost in data collection and processing for IoT/M2M systems, the

implementation of connecting multiple IoT/M2M systems on the Edge of the network is still

very challenging due to the difficulty in understanding the data from each other. Built on top

of the fundamental lightweight communication protocols such as HyperText Transfer Pro-

tocol (HTTP) and Constrained Application Protocol (CoAP), interfaces are often provided

by modern constrained IoT systems for resource access, request, and discovery. Although

the common communication protocols solved the connectivity issue, data from IoT/M2M

systems are still difficult to be used by others due to the lack of common semantic informa-

tion. How the data is encoded? How the access is controlled? What is the format, unit,

and precision of the data? Similar problems bring huge challenges to the interoperability of

IoT/M2M systems.

Semantic approaches discussed in [92] paved the road for the knowledge-driven IoT/M2M

systems with context awareness. The effort to access, discover, and extract knowledge from

the data would be significantly reduced by employing semantic technologies to the IoT/M2M

platforms. Unlike semantic web, the data is stored and managed differently in the IoT/M2M

systems where the devices are resource constrained, thus the semantic service should be en-

abled in a different mechanisms. There are several challenges in applying semantic techniques

to the IoT/M2M systems. An IoT/M2M system usually employs its own database such as

MySQL, SQLite, or MongoDB, etc. However, semantic technology such as the Resource

Description Framework (RDF) usually require graph data-store. How to support semantic

service for an IoT/M2M system in an affordable and secure manner meanwhile with rea-

sonable overhead in storage size and resource retrieve time is remaining an open issue for

IoT/M2M practitioners. In this chapter, we take the challenge and present our implemen-

tation of semantic service in oneM2M Service Delivery Platform (SDP) [117, 80], which is
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a scalable horizontal IoT/M2M system that conforms to the global oneM2M and ETSI TC

M2M standard.

The rest of the chapter is organized as follows. Section 5.2 presents the background

information of semantic technologies that can be applied in IoT/M2M systems and the

brief description of oneM2M SDP. Section 5.3 explains the design of our solution which

employs Jena semantic web framework. In Section 5.4 we propose two different approaches

of supporting access control in semantic graph store alongside the SDP. The performance of

our approach is evaluated in Section 5.5. At last, this chapter concludes in Section 5.6.

5.2 Background

In this section, we will first review the semantic technologies that could be employed

by the IoT/M2M systems. Then we will introduce the design of oneM2M SDP to give the

readers a brief overview background.

Figure 5.1: oneM2M SDP Architecture.

5.2 Semantic Technologies

In [75], the semantic technologies that could be applied to IoT/M2M systems are

reviewed. Here we present the background knowledge of what we used in our project.
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• Resource Description Framework (RDF) RDF is a metadata model provided by

World Wide Web Consortium (W3C) specifications [73]. It is proposed as a framework

to represent information on the Web. RDF can connect the concrete syntax with

the formal semantics based on the abstract syntax. Applying the entity-relationship

conceptual modeling approaches [30], RDF data model describes the resource using

statements expressed in the form of subjectâĂŞpredicateâĂŞobject. This form is also

refereed as triples. In a triple, the subject refers to the resource itself, and the predicate

expresses the relationship between the subject and the object.

In RDF, the triples can be represented in a machine-readable manner. The subject,

predicate, and object can all be addressed as unique URIs. For example, the statement

“sensor1-measures-temperature” could be represented in RDF as

“http://example.subject#sensor1

http://example.predicate#measures

http://example.object#temperature”.

The database that stores and retrievals the collection of triples via the query language

is named Triplestore, and in this project we use Apache Jena [70] as our triplestore.

Details background of Apache Jena will be presented in the next Section.

• RDF Schema (RDFS) RDF ontologies, or RDF vocabularies can be used to build

resource structure in the triplestore, and the set of classes which enables this model

is called RDFS [25]. Web Ontology Language (OWL) [21], which is the family of

ontologies authoring languages, contains most of the RDFS.

• SPARQL Protocol and RDF Query Language (SPARQL) SPARQL [93] is the

RDF query language for semantic triples store and retrieve. A couple of semantic

operations such as discovery, query, and reasoning are supported by SPARQL. Apache

Jena offers an interface to receive and execute SPARQL queries.
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5.2 oneM2M SDP

This work is finished during the Author’s internship at Interdigital, Inc. The IoT/M2M

system used in this chapter is Interdigital’s oneM2M SDP, which is a scalable service de-

livery platform. oneM2M SDP is a standard-compliant M2M/IoT service platform that

provides standardized End-to-End solutions. All the entities in M2M/IoT such as devices,

gateways, servers, services, and applications. As a scalable service platform, oneM2M SDP

could not only be deployed on the cloud using an universe architecture, but also run on re-

source constrained M2M/IoT devices and gateways. The service oriented design of oneM2M

SDP leveraging RESTful architecture enables the efficient deployment of the applications

and supports a various choice of IoT/M2M devices.

Figure 5.1 shows the architecture of oneM2M SDP. All the services in the oneM2M

service layer connect to the Open Message Bus (OMB) through the infrastructure of OMB

backbone. OMB clients play as the interface to abstract the connection between the under-

lying transport communication protocols (such as HTTP, CoAP, WebSockets, UDP, MQTT,

XMPP, etc.) and the oneM2M service layer services. The API provided by the OMB clients

will allow the services exchange messages with other services through the connection to the

OMB broker. All the clients connected to the OMB are administered and monitored by the

OMB Administration service.

This architecture specifies a process by which a primitive is received at the SDP and

then it proceeds through a sequence of âĂĲoperationsâĂİ on the primitive and then pass

the primitive to the âĂĲnext operationâĂİ in the lifecycle. The operations are captured in

terms of a âĂĲserviceâĂİ performed on the primitive. The transition to the next operation

or âĂĲserviceâĂİ is done using OMB messages.

All of the services will store data and query information from the database service

in the OMB backbone. The database service will also provide a Generic Database Interface

(GDI) to support various databases such as SQL and MongoDB without the awareness of
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the OMB. For the operations related to the database, Create, Retrieve, Update, and

Delete (CRUD) are supported by the SDP.

5.3 Solution Design

In the previous section, we presented the background information of semantic tech-

nologies used in our work, and introduced oneM2M SDP, which is the IoT/M2M system

that we are targeting. In this section, we will move on illustrate the design of our solution

which enables semantic service in oneM2M SDP. First we will start with the basic semantic

features that we want to support.

5.3 Basic semantic operations

In order to enable semantic service on oneM2M SDP, several basic operations should

be supported.

• Semantic annotation: Semantic annotation refers to the operation of triple creation

for the IoT/M2M devices. The annotated semantic information could later on be used

for semantic discovery and query by other services and devices.

• Semantic discovery: Semantic discovery means the resource discover operation based

on the semantic criteria. Giving the semantic filter, the semantic service should be

able to find all the matched resources and send back the discovered list.

• Semantic query: Unlike semantic discovery which restrict the query result to be the

resource (usually the unique ID or the URI of IoT/M2M devices), semantic query focus

more on the knowledge that could be learned based on the semantic information of the

system. For example, the overview statistics of the database or the detailed description

of a resource.

5.3 Semantic service design

In order to support semantic annotation, discovery, and query in SDP, we add

〈semanticDescriptor〉 as the virtual child resource of the devices in SDP. By doing this,
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the semantic description of a device will be stored in 〈semanticDescriptor〉, and we can use

the CRUD operation from the SDP to implement semantic annotation, discovery, and query.

Now we can store the semantic information in the SDP’s native databse, which is

MongoDB. However, MongoDB doesn’t support RDF data model and SPARQL query lan-

guage. To solve this issue and support semantic discovery and query, we introduce Apache

Jena [70] in our solution as the RDF triple store and the SPARQL query engine.

To build the communication bridge between MongoDB and Jena, we introduced Se-

mantic service to the SDP’s oneM2M service layer, as shown in Figure 5.2.

Figure 5.2: oneM2M SDP semantic service.

There are two main functions for the semantic service, which are semantic annotation

for the resources with semantic information, and handle semantic based retrieve request as

either semantic query or semantic discovery. When the database service of the SDP received

a CRUD event message that contains semantic information, semantic service will perform

the functions based on the event type. The detailed CRUD event processing procedure in

semantic service is presented in Figure 5.3.
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Figure 5.3: CRUD event processing in semantic service.

If the event type is Create, Update, or Delete event, the semantic service will auto-

matically generate corresponding SPARQL request and perform the annotation operation

in Jena, as shown in Figure 5.4. If the event is Retrieve, the semantic service will first

decide whether the request is for semantic query or discovery based on the Semantic Query

Indicator (SQI) in the primitive OMB message, and send SPARQL query to Jena for the

operation. The query result, either resource ID, which is a URI in SDP, or the result string,

which is a string, will be added to the primitive OMB message by the semantic service and

send to the destination services in the SDP life-cycle, as shown in Figure 5.5 and Figure 5.6.

By this design of semantic service, we successfully implemented message convert and

communication between the native database of SDP, which is the MongoDB, and our seman-

tic RDF triple store, which is the Jena. However, there are still challenges in the syncroniza-

tion between these two databases. In the semantic annotation lifecycle in Figure 5.4, Jena

will perform the SPARQL request generated by the semantic service, however, the result

is not send back to the original primitive OMB message. In this way, if there are failures

during the Jena operation due to the incorrect semantic information in format or content,



88

Figure 5.4: Semantic annotation lifecycle.

Figure 5.5: Semantic query/discovery lifecycle.

Figure 5.6: Semantic query indicator.

the SDP can not be informed and handle the errors correspondingly. To solve this issue, we

implemented the triple validation feature in the semantic service, as presented in Figure 5.7.
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Figure 5.7: Triple validation in semantic service.

In our triple validation mechanism, the database service will send primitive OMB

message to the semantic service after the create and update operation is completed in the

MongoDB. Then the semantic service will wait for the response from Jena for the SPARQL

request, and if the annotation operation in Jena is failed due to the incorrect semantic

information, semantic service will embed the failure message in the primitive OMB message

and notify the database service to delete the resource that are created, or restore the resource

that are just updated. Finally, the message originator will be notified the failure and check

the semantic information.

5.3 Case study

To better illustrate our solution in a more detailed manner and make it easier to

understand, we will present a case study of the temperature sensor in a smart home in this

chapter.

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns="http://www.onem2m.org/ontology/houses_temperature_example#"

3 xml:base="http://www.onem2m.org/ontology/houses_temperature_example"

4 xmlns:temperature_example="http://www.onem2m.org/ontology/temperature_example#">

5
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6 <owl:NamedIndividual rdf:about="http://www.onem2m.org/ontology/

houses_temperature_example#House1">

7 <rdf:type rdf:resource="http://www.onem2m.org/ontology/temperature_example#House

"/>

8 <temperature_example:hasIndoorTemperature rdf:resource="http://www.onem2m.org/

ontology/houses_temperature_example#IndoorTempProperty1"/>

9 </owl:NamedIndividual>

10

11 <owl:NamedIndividual rdf:about="http://www.onem2m.org/ontology/

houses_temperature_example#IndoorTempProperty1">

12 <rdf:type rdf:resource="http://www.onem2m.org/ontology/temperature_example#

TemperatureProperty"/>

13 <temperature_example:hasDatatype>xsd:int</temperature_example:hasDatatype>

14 <temperature_example:hasUnit rdf:datatype="http://www.w3.org/2001/XMLSchema#

string">Fahrenheit</temperature_example:hasUnit>

15 </owl:NamedIndividual>

16

17 <owl:NamedIndividual rdf:about="http://www.onem2m.org/ontology/

houses_temperature_example#IndoorTempSensor1">

18 <rdf:type rdf:resource="http://www.onem2m.org/ontology/temperature_example#

TemperatureSensor"/>

19 <temperature_example:hasTemperatureProperty rdf:resource="http://www.onem2m.org/

ontology/houses_temperature_example#IndoorTempProperty1"/>

20 <temperature_example:hasResourceID>oneMPOWER−IN−CSE/tempsensorae1</

temperature_example:hasResourceID>

21 </owl:NamedIndividual>

22

23 </rdf:RDF>
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The code above shows how the semantic descriptor look like in oneM2M SDP. In

this case, we have an example house named House1, and there is a temperature sensor

IndoorTempSensor1, which has resource ID as oneMPOWER-IN-CSE/tempsensorae1 and

measures temperature in Fahrenheit.

The semantic query example is presented in the following code.

1

2 PREFIX temp: <http://www.onem2m.org/ontology/temperature_example#>

3 SELECT ?sensor WHERE {

4 ?sensor temp:hasTemperatureMeasuringFunction ?tempFunction .

5 ?tempFunction temp:measuresTemperature ?property .

6 ?property temp:hasUnit "Celsius"^^<http://www.w3.org/2001/XMLSchema#string>

7 }

This query will return the resource ID of the sensor which measures the temperature

in celsius unit.

In this section, we present the design of our solution for semantic support of oneM2M

SDP. In the next section, we will discuss different methods that we tested for supporting

access control with semantic information.

5.4 Access Control

Security is one of the most important feature in any IoT/M2M system, in oneM2M

SDP, access control policy is applied for each resource to ensure the secure data access. Since

semantic data could contain private and security sensitive information, access control should

also be supported in the semantic database.

In order to find the most efficient method of supporting access control with semantic

data, we proposed and implemented three different solutions regrading store the semantic

information in single or multiple graphs, and evaluated the performance of them correspond-

ingly. In this section, we will introduce the design and implementation of these methods.
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Graph is the basic unit for RDF triple storage in Jena with the concept similar with

table or form in other databases. Multiple graphs with unique names are supported in one

Jena database.

5.4 Store semantic descriptor in one graph without access control

Since access control has already been implemented in oneM2M SDP, the most straight-

forward method would be leverage the access control policy in oneM2M SDP. In this method,

oneM2M SDP will generate two query messages when the user is trying to find the resource

with specific semantic criteria. First the SDP will query its own MongoDB to get a list

with all the resource IDs which the user has access permission. Meanwhile the SDP will also

generate a query message to Jena with the semantic criteria and find another list which holds

all the resource IDs that matches the criteria. Finally the SDP will find the intersection of

these two lists and return the result to the user.

Although this method is very easy to implement and all the semantic information

could be stored in a single graph, the disadvantage of doing this is obvious. Both of the lists

mentioned above could be very long and this will increase the query time significantly. We

will look at this issue in details in the next section.

5.4 Store semantic descriptor in one graph with access control

Instead of only store semantic information in the RDF database, we could also save

access control policy as RDF triples and use Jena to manage access permission, the detailed

implementation of this method is also described in. To support this, we need to modify the

original triples during the semantic annotation operation.

The following example shows how the original triples are modified in order to support

access control in Jena.

1

2 HomeA rdf:type ex:Home .

3 HomeA ex:hasLocation LocationA .
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4 LocationA ex:hasLatitude âĂĲ300âĂİ .

5 LocationA ex:hasLongitude âĂĲ200âĂİ .

The code above shows a simple example of a semantic descriptor named 〈SD − 1〉

with only 4 original triples. To add access control policy as triples in Jena, the original

triples need to be modified as the following format:

1

2 atomDescription1 rdf:type sd:atomDescription .

3 <SD−1> rdf:type sd:semanticDescriptor .

4 atomDescription1 sd:hasSubject HomeA .

5 atomDescription1 sd:hasObject ex:Home .

6 atomDescription1 sdhasProperty rdf:type .

7 atomDescription1 sd:describedIn <SD−1> .

8 atomDescription2 sd:hasSubject HomeA .

9 atomDescription2 sd:hasObject LocationA .

10 atomDescription2 sd:hasProperty ex:hasLocation .

11 atomDescription2 sd:describedIn <SD−1> .

12 atomDescription3 sd:hasSubject LocationA .

13 atomDescription3 sd:hasObject âĂĲ300âĂİ .

14 atomDescription3 sd:hasProperty ex:Latitude .

15 atomDescription3 sd:describedIn <SD−1> .

16 atomDescription4 sd:hasSubject LocationA .

17 atomDescription4 sd:hasObject âĂĲ200âĂİ .

18 atomDescription4 sd:hasProperty ex:hasLongtitude .

19 atomDescription4 sd:describedIn <SD−1> .

And the following access control policy could also be applied in the triple store:

1

2 acp:ACP1 acp:applidedTo ex:<SD−1> .

3 acp:rule1_1 rdf:type acp:accessControlRule .
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4 acp:ACP1 acp:hasACPRule acp:rule1_1 .

5 acp:rule1_1 acp:hasACOriginator "User1" .

6 acp:rule1_1 acp:hasACOperations "CREATE", "RETRIEVE" .

In this example, we add the access control policy named "ACP1" to the triple store,

"ACP1" applied to semantic descriptor 〈SD− 1〉 and has one access control rule "rule1–1",

which gives user "User1" the permission to perform create and retrieve operations.

The query message also needs to be modified in this method. Consider the original

query like this:

1

2 select distinct ?home

3 where

4 {

5 ?home rdf:type ex:Home .

6 ?home ex:hasLocation ?location .

7 ?location ex:hasLatitude "300" .

8 }

In order to query the modified triple store, the query message will be adjusted corre-

spondingly as shown in the following code:

1

2 select distinct ?home

3 where

4 {

5 ?accessControlRule acp:hasACOriginator ?Originator

6 FILTER(?Originator = "User1")

7 ?accessControlRule acp:hasACOperations "RETRIEVE" .

8 ?accessControlPolicy acp:hasACPRule ?accessControlRule .

9 ?accessControlPolicy acp:appliedTo ?semanticDescriptor1 .
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10 ?accessControlPolicy acp:appliedTo ?semanticDescriptor2 .

11 ?accessControlPolicy acp:appliedTo ?semanticDescriptor3 .

12

13 ?atomDescription1 sd:describedIn ?semanticDescriptor1 .

14 ?atomDescription1 sd:hasSubject ?home .

15 ?atomDescription1 sd:hasObject ex:Home .

16 ?atomDescription1 sd:hasProperty rdf:type .

17 ?atomDescription2 sd:describedIn ?semanticDescriptor2 .

18 ?atomDescription2 sd:hasSubject ?home .

19 ?atomDescription2 sd:hasObject ?location .

20 ?atomDescription2 sd:hasProperty ex:hasLocation .

21 ?atomDescription3 sd:describedIn ?semanticDescriptor3 .

22 ?atomDescription3 sd:hasSubject ?location .

23 ?atomDescription3 sd:hasObject "300" .

24 ?atomDescription3 sd:hasProperty ex:hasLatitude .

25

26 }

This method, although directly support access control in the triple store, the disad-

vantage is very obvious. The triple store needs to handle triples with four times more than

the number of the original triples, which will cause extra cost in both storage size and the

query time.

5.4 Store semantic descriptor in multiple graphs with access control

In order to solve the issue in the previous method, we designed another solution to

support access control in the triple store, which leverages the multiple graphs feature in

Jena.

In this method, all the access control policies are stored in one graph, and the triples

from each semantic descriptor will be stored in an individual graph, the resource ID of the



96

semantic descriptor will be used as the name of the graph, and the key to search among the

triple store.

The triples in the ACP graph looks very similar with the ones in the previous method,

and the query message will looks like

1

2 SELECT DISTINCT ?pi WHERE {

3 ?accessControlRule acp:hasACOriginator ?Originator

4 FILTER(?Originator = âĂĲUser1")

5 ?accessControlRule acp:hasACOperations "DISCOVERY" .

6 ?accessControlPolicy acp:hasACPRule ?accessControlRule .

7 ?accessControlPolicy acp:appliedTo ?graph .

8 GRAPH ?graph{

9 ?home rdf:type ex:Home .

10 ?home ex:hasLocation ?location .

11 ?location ex:hasLatitude "300" .

12 }

13 }

Please note that in this method, Jena will first search in the ACP graph when handling a

query message, and then go through the graphs returned by the ACP graph, this is a tree

based search and will significantly reduce the searching time compared with the previous

methods, which need to go through the whole triple store.

In this section, we introduced the design of three potential solutions that we designed

to support access control in the triple store. In the next section, we will evaluate the

performance of these methods.

5.5 Performance Evaluation

In this section, we will move on evaluate the performance of our proposed solutions.

First we would like to start with the stress test of RDF triple store.
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5.5 RDF triple store limitation

In the previous research [72], the researchers trying to use RDF triplestore to store

and query the data from all the domestic flights to and from Atlanta airport in one day,

which is about 2.4M triples. The triple store successfully handled the storage and query,

while the query time could be as long as 27 mins.

To verify the capability of Jena, we also download two large RDF databases from

data.gov [120], which are city of Detroit crime data from 2009 to 2016, and city of Chicago

crime data from 2001 to 2016. We store these two databases in Jena and want to test if Jena

can handle the saving and querying without crash. The test result is shown in the following

table.

Table 5.7: Stress test result of Jena using public crime data
Detroit Chicago

Row# 1,311,744 6,426,882
Col# 16 23
Disk(MB) 3,563 27,610
Triple# 20,987,904 146,125,721
Query Time(ms) 27,669 71,386

In our test, Jena successfully handled both of the databases, one with 20 million

triples, the other with 146 million, without crash. Although the query time reaches minute

level, this stress test gave us the confidence of using Jena in oneM2M SDP to support million

level sensors.

5.5 Performance of the proposed methods

To evaluate the performance of the proposed methods, 6 test cases were designed with

different number of semantic descriptors and number of triples in each semantic descriptor,

as shown in Table II. To test the scalability of the proposed system, the test cases is designed

with 100,000 sensors and 100,000 semantic descriptors every sensor. The experiment is set

up using two Lenovo T580 laptop, with Intel Core i7-8650U CUP, 32GB DDR4 2400 MHz

memory and 16 GB SSD hard-drive. The two machines are connect to the same router as
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network configuration. One laptop is configured as the standalone Jena server and another

simulating all semantic descriptors and send them to Jena server using HTTP request.

Table 5.8: Test cases used in the evaluation
Test case # of semantic descriptors triples#/semantic descriptor
1 100,000 1
2 10,000 10
3 1,000 100
4 100 1000
5 10 10,000
6 1 100,000

In these 6 cases, the total number of triples are controlled to be 100,000. We tried

to test with million level triples, but it would take several days to simulate the semantic

descriptors and push them to Jena. Although Jena has been proved to be capable of handling

those amount of data, the laptop we used in the experiment will crash due to the lack of

memory during the generating of triples.

We evaluated the performance of the proposed methods from three aspects as query

time, storage size and triple numbers, as shown in Figure 5.8, Figure 5.9, and Figure 5.10.

Figure 5.8: Query time of three proposed methods.
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Figure 5.9: Storage size of three proposed methods..

Figure 5.10: Triple number of three proposed methods.

Figure 5.8 shows the query time of the three proposed methods. Here we collected the

total time from the user sent the query to the user received the result. Since the experiment

is employed on a single machine, the travel time through the network is always fixed and
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measured to be 17 ms. In this case, the actual query time in Jena and oneM2M SDP could

be clearly observed from Figure 5.8.

From Figure 5.8 we could tell that when the number of semantic descriptors are small,

the query time will be small if the ACP is controlled by the oneM2M SPD itself. However,

as the number of semantic descriptors increase, the query time of our first method becomes

intolerable, since it will take to much time to search both Jena and the MongoDB then find

the intersection list. The multiple graphs method is always faster compared with the other

two.

From Figure 5.9 and Figure 5.10 we could tell the overhead of implementing ACP

in Jena in either single and multiple graphs. Without ACP, Jena only need to store the

original triples. If the ACP is stored in the single graph method, the number of triples will

be increased significantly when the number of semantic descriptors are large. Reflecting to

the storage size used by the disk, we can tell that the same trend from Figure 5.9.

Overall, the method which store access control policy in a separate graph and store

the triples from one semantic descriptor in an individual graph only brings a little overhead

in the storage size, but this method could reduce the query time significantly compared

with the one that leverage the access control mechanism of oneM2M SDP. Based on this

conclusion, we will add the proposed method in the future release of the oneM2M SDP.

To further test the scalability of the proposed method, we enlarge both the number

of the semantic descriptors and the number of triples per descriptor to ten times of their

original scale, and compared the result of both query time and storage size in the following

tables.

From Table 5.9 and 5.10 we can tell that when the number of Semantic descriptors

and number of triples increased to ten times of its original size, the proposed method still

performs very stable with reasonable query time and storage size. In this experiment, we

successfully verified the scalability of our system to support million level triples in one stand

alone machine.
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Table 5.9: Compared query time (ms) for scalability test
SD \Triple# 1 10 100 1000 10000 100000
100000 146
10000 15 46
1000 18 33
100 17 32
10 18 33
1 17 32

Table 5.10: Compared storage size (MB) for scalability test
SD \Triple# 1 10 100 1000 10000 100000
100000 217
10000 1.49 214
1000 1.47 214
100 1.49 214
10 1.28 217
1 4.15 358

5.6 Summary

More and more IoT/M2M systems are deployed at the edge of the network and

connected with each other for collaboration. Context awareness becomes a huge challenge for

data exchange and communication under this background. Semantic paved the road for the

knowledge-driven IoT/M2M systems. With semantic annotation, data from one IoT/M2M

system could be easily understood and used by others. However, provide semantic service to

an IoT/M2M system is a challenging task since the original database used in the system may

not be capable of semantic annotation. In this chapter, we took the challenge and proposed

a design to support semantic service to oneM2M SDP, which is a mature M2M system with

its own database. Moreover, we also discussed the approaches of support secure mechanism

such as access control directly in within the semantic information to boost the performance of

the system. Our experiment shows that the proposed method could effectively and securely

provide semantic service to the IoT/M2M system.
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Chapter 6: Conclusions

The proliferation of Internet of Things and the success of rich cloud services have

pushed the horizon of a new computing paradigm, Edge computing, which calls for processing

the data at the edge of the network. Applications such as cloud offloading, smart home,

and smart city are idea area for Edge computing to achieve better performance than cloud

computing. Edge computing has the potential to address the concerns of response time

requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy.

However, there are still some challenges for applying Edge computing in our daily

life. The missing of the specialized operating system for Edge computing is holding back the

flourish of Edge computing applications.

We illustrated our vision and understanding of Edge computing. We also give several

case studies to further explain how Edge computing could be adapted to the current comput-

ing paradigm. Then we summarize the challenges in detail and bring forward some potential

solutions and opportunities worth further research, including programmability, naming, data

abstraction, service management, privacy and security and optimization metrics. we also in-

troduced the design of SOFIE and talk about how we want to address these challenges using

SOFIE.

To address the challenges for Edge computing systems and applications in these as-

pects, we have planned a series of empirical and theoretical research. We proposed SOFIE:

Smart Operating System For Internet Of Everything. SOFIE is the operating system special-

ized for Edge computing running on the Edge gateway. SOFIE could establish and maintain

a reliable connection between cloud and Edge device to handle the data transportation be-

tween gateway and Edge devices; to provide service management and data management

for Edge applications; to protect data privacy and security for Edge users; to guarantee

the wellness of the Edge devices. Moreover, SOFIE also provide a naming mechanism to

connect Edge device more efficiently. To solve the component selection problem in Edge
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computing paradigm, SOFIE also include our previous work, SURF, as a model to optimize

the performance of the system.

In the design and development of Edge computing applications, practitioners usually

face several performance requirements from service providers, end users, and/or hardware

constrains. Moreover, there could be a large number of available choices for different com-

ponents in the application. To help the practitioners to select the optimal component com-

binations that can meet the performance requirements and reduce cost as much as possible

at the same time, we proposed performance evaluation metrics and a methodology for us-

ing performance vector. We tested our methodology through a case study, and the result

showed that our methodology is very efficient in finding the optimal component combination.

Moreover, we discussed two interesting findings we have observed in the case study, one is

the effect of decision making algorithm on data quality, and the other is different operation

periods for battery.

As more and more IoT/M2M systems are deployed at the edge of the network and

connected with each other for collaboration. Context awareness becomes a huge challenge for

data exchange and communication under this background. Semantic paved the road for the

knowledge-driven IoT/M2M systems. With semantic annotation, data from one IoT/M2M

system could be easily understood and used by others. However, provide semantic service to

an IoT/M2M system is a challenging task since the original database used in the system may

not be capable of semantic annotation. In this chapter, we took the challenge and proposed

a design to support semantic service to oneM2M SDP, which is a mature M2M system with

its own database. Moreover, we also discussed the approaches of support secure mechanism

such as access control directly in within the semantic information to boost the performance of

the system. Our experiment shows that the proposed method could effectively and securely

provide semantic service to the IoT/M2M system.
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Chapter 7: Future Work

In the future, I plan to extend my research in the following four areas.

7.1 Connected Health

Connected health can be defined as the use of Internet, sensing, communications and

intelligent techniques in support of health related applications, systems and engineering.

Connected health brings together multidisciplinary technologies to provide preventive or

remote treatments by utilizing digital health information structure such as body sensor

networks and intelligent techniques such as from Data to Knowledge to Decisions, while at

the same time connecting patient and caregivers seamlessly in the loop of the healthcare

ecosystem. Future Connected health will be realized by providing rich medical information

to each individual through replacing infrequent, clinic-based measurements with unobtrusive,

continuous sensing, monitoring and assessment. Connected health technologies will enable

preventive health and personalized medicine and may significantly reduce healthcare costs.

I have learned some experience from the design and development of several connected

health systems, and plan to collaborate with health care providers, patients, insurance,

pharmaceutical and medical technology companies to further reduce the healthcare cost and

improve the healthcare efficiency.

7.2 Data Quality Management in Edge Computing

In an Edge Computing system, data driven applications provide information to users

in order to make decisions. It is important that those decisions are based on data that is

accurate, complete, and in or close to real-time. Data accuracy, completeness, and delay

play a critical role, particularly in a smart home environment. In order to detect sensing

error, we think in Edge Computing systems data quality could be evaluated by two aspects:

history pattern and reference data.

In an Edge Computing system, data could easily fall into a certain pattern due to

the periodical user behavior. To provide better service to applications and devices, new
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data mining and machine learning algorithm should be introduced to data quality detection

model. This model should automatically detect abnormal data pattern from the historical

data record, and further analyze the reason for the abnormal pattern, which could be user

behavior changing, device failure, communication interfacing, or attack from outside.

In the future, I plan to design a data quality management infrastructure for Edge

Computing. This infrastructure could benefit Edge Computing systems from two aspects:

error/low-quality data detection; and provide suitable data to the application based on

quality requirement.

7.3 Knowledge Abstraction in Edge Computing

Various applications can run on an Edge Computing system consuming data or pro-

viding service. We envision that human involvement in Edge Computing should be mini-

mized and the Edge node should consume/process all the data and interact with users in

a proactive fashion. In this case, data should be preprocessed at the gateway level, such

as noise/low-quality removal, event detection, and privacy protection, and so on. Processed

data will be sent for future service providing.

My internship work at InterDigital includes using RDF triple store to annotate the

semantic information of IoT data, and I plan to expand this work in the future to abstract

valuable information from the raw data collected from Edge nodes, and provide the knowledge

to other applications and systems.

7.4 Security and Privacy in Edge Computing

Limited resources and computational capabilities, as well as multiple communica-

tion protocols makes it very difficult to protect Edge Computing systems from attackers.

WhatâĂŹs more, security and privacy problems at Edge such as smart home can always

raise peopleâĂŹs concerns. Resource constrains and heterogeneous communication brings

new challenges to security and privacy in Edge Computing.
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In the future, I plan to work on Edge Computing security and privacy protection

from two aspects. One is usage privacy protection between various applications running on

the Edge of the network. The other one is secure data storage and computation in different

Edge Computing layers.
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The proliferation of Internet of Things and the success of rich cloud services have

pushed the horizon of a new computing paradigm, Edge computing, which calls for processing

the data at the edge of the network. Applications such as cloud offloading, smart home,

and smart city are idea area for Edge computing to achieve better performance than cloud

computing. Edge computing has the potential to address the concerns of response time

requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy.

However, there are still some challenges for applying Edge computing in our daily

life. The missing of the specialized operating system for Edge computing is holding back

the flourish of Edge computing applications. Service management, device management,

component selection as well as data privacy and security is also not well supported yet in

the current computing structure.

To address the challenges for Edge computing systems and applications in these as-

pects, we have planned a series of empirical and theoretical research. We propose SOFIE:

Smart Operating System For Internet Of Everything. SOFIE is the operating system special-

ized for Edge computing running on the Edge gateway. SOFIE could establish and maintain

a reliable connection between cloud and Edge device to handle the data transportation be-

tween gateway and Edge devices; to provide service management and data management for

Edge applications; to protect data privacy and security for Edge users; to guarantee the well-

ness of the Edge devices. Moreover, SOFIE also provide a naming mechanism to connect
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Edge device more efficiently. To solve the component selection problem in Edge computing

paradigm, SOFIE also include our previous work, SURF, as a model to optimize the per-

formance of the system. Finally, we deployed the design of SOFIE on an IoT/M2M system

and support semantics with access control.
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